Cirrus Logic CS4362A User Manual

CS4362A
114 dB, 192 kHz 6-Channel D/A Converter
Features
Advanced Multi-bit Delta Sigma Architecture24-bit ConversionUp to 192 kHz Sample Rates114 dB Dynamic Range-100 dB THD+NDirect Stream DigitalOn-chip 50 kHz Filter Matched PCM and DSD Analog Output LevelsSelectable Digital FiltersVolume Control with 1 dB Step Size and Soft
Ramp
Low Clock-jitter Sensitivity+5 V Analog Supply, +2.5 V Digital SupplySeparate 1.8 to 5 V Logic Supplies for the
Control & Serial Ports
®
(DSD) Mode
Description
The CS4362A is a complete 6-channel digi tal-to-analog system. This D/A system includes digital de-emphasis, 1 dB step size volume control, ATAPI channel mixing, selectable fast and slow digital interpolation filters fol­lowed by an oversampled, multi-bit delta-sigma modulator which includes mismatch shaping technolo­gy that eliminates distortion due to capacitor mismatch. Following this stage is a multi-element switched capac­itor stage and low-pass filter with differential analog outputs.
The CS4362A also has a proprietary DSD processor which allows for 50 kHz on-chip filtering without an in­termediate decimation stage. The CS4362A is available in a 48-pin LQFP package in both Commercial (-40°C to +85°C) and Automotive grades (-40°C to +105°C). The CDB4362A Customer Demonstration board is also available for device evaluation and implementation sug­gestions. Please see “Ordering Information” on page 48 for complete details.
The CS4362A accepts PCM data at sample rates from 4 kHz to 216 kHz, DSD audio data, and delivers excel­lent sound quality. These featu res are ideal for multi­channel audio systems including SACD players, A/V re­ceivers, digital TV’s, mixing consoles, effects processors, sound cards, and automotive audio systems.
Control Port Supply = 1.8 V to 5 V
Hardware Mode or
2
C/SPI Software Mode
I
Control Data
Reset
Serial Audio Port Supply = 1.8 V to 5 V
PCM Serial Audio Input
DSD Audio
Input
http://www.cirrus.com
Digital Supply = 2.5 V
Register/Hardware
Configuration
Level Translator
Volume
6
Controls
DSD Processor
Serial Interface
Level Translator
-50 kHz filter
Copyright © Cirrus Logic, Inc. 2009
Digital Filters
(All Rights Reserved)
Multi-bit ∆Σ Modulators
Analog Supply = 5 V
Internal Voltage
Reference
Switch-Cap
DAC and
Analog Filters
External Mute
Control
6
6
6
Six Channels of Differential Outputs
Mute Signals
JAN '09
DS617F2
TABLE OF CONTENTS
1. PIN DESCRIPTION ................................................................................................................................. 6
2. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 8
RECOMMENDED OPERATING CONDITIONS .................................................................................... 8
ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 8
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ) ............................................................. 9
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ) ........................................................... 10
POWER AND THERMAL CHARACTERISTICS .................................................................................. 11
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...................................... 12
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...................................... 13
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE ............................................ 13
DIGITAL CHARACTERISTICS ...................................................................... ... ... .... ... ... ...................... 14
SWITCHING CHARACTERISTICS - PCM .......................................................................................... 15
SWITCHING CHARACTERISTICS - DSD ........................................................................................... 16
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT ............................................. 17
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT ................................ ... ... ... ... 18
3. TYPICAL CONNECTION DIAGRAM .................................................................................................. 19
4. APPLICATIONS ................................................................................................................................... 21
4.1 Master Clock .................................................................................................................................. 21
4.2 Mode Select ................................................................................................................................... 21
4.3 Digital Interface Formats ................................................................................................................ 23
4.4 Oversampling Modes ..................................................................................................................... 24
4.5 Interpolation Filter .......................................................................................................................... 24
4.6 De-emphasis .................................................................................................................................. 24
4.7 ATAPI Specification ....................................................................................................................... 25
4.8 Direct Stream Digital (DSD) Mode ................................. ... .... ... ... ... ... .... ... ... ... .... ... ... ... ................... 26
4.9 Grounding and Power Supply Arrangements ................................................................................ 26
4.9.1 Capacitor Placement ............................................................................................................. 26
4.10 Analog Output and Filtering .................. .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ............................ 26
4.11 Mute Control ............................................................. ... ... .... ... ... ... ... ............................................. 27
4.12 Recommended Power-Up Sequence .......................................................................................... 28
4.12.1 Hardware Mode ................................................................................................................... 28
4.12.2 Software Mode .................................................................................................................... 28
4.13 Recommended Procedure for Switching Operational Modes ...................................................... 29
4.14 Control Port Interface ... ... ... ... .... ... ... ... .......................................................................................... 29
4.14.1 MAP Auto Increment ........................................................................................................... 29
4.14.2 I²C Mode ................................. ... ... .... ... ....................................... ... ... ... .... ............................ 29
4.14.2.1 I²C Write ................................ ... ... ... .... ... ... ... .... ...................................... ... .... ... ......... 29
4.14.2.2 I²C Read ........................... ....................................... ... .... ... ... ................................... 30
4.14.3 SPI Mode ............................................................................................................................. 30
4.14.3.1 SPI Write ............................... ... ... ... .... ... ... ... .... ...................................... ... .... ... ......... 30
4.15 Memory Address Pointer (MAP) ................................................................................................. 31
4.16 INCR (Auto Map Increment Enable) ............................................................................................ 31
4.16.1 MAP4-0 (Memory Address Pointer) .................... ... .... ... ... ... ... .... ......................................... 31
5. REGISTER QUICK REFERENCE ........................................................................................................ 32
6. REGISTER DESCRIPTION .................................................................................................................. 33
6.1 Mode Control 1 (Address 01h) ....................................................................................................... 33
6.1.1 Control Port Enable (CPEN) ............................ ... ... ... ....................................... ... ... .... ... ... ...... 33
6.1.2 Freeze Controls (FREEZE) ................................................................................................... 33
6.1.3 Master Clock Divide Enable (MCLKDIV) ............................ ....................................... ............ 33
6.1.4 DAC Pair Disable (DACx_DIS) ................. ... .... ... ... ... .... ... ... ... ... ....................................... ... ...33
6.1.5 Power Down (PDN) ............................................................................................................... 34
6.2 Mode Control 2 (Address 02h) ....................................................................................................... 34
CS4362A
2 DS617F2
CS4362A
6.2.1 Digital Interface Format (DIF) ................................................................................................ 34
6.3 Mode Control 3 (Address 03h) .................................... ... ... .......................................... ... .... ............ 35
6.3.1 Soft Ramp and Zero Cross Control (SZC) ............ ... .... ... ... ... ... .... ...................................... ... 35
6.3.2 Single Volume Control (SNGLVOL) ...................................................................................... 36
6.3.3 Soft Volume Ramp-Up After Error (RMP_UP) ...................................................................... 36
6.3.4 Mutec Polarity (MUTEC+/-) ................................................................................................... 36
6.3.5 Auto-Mute (AMUTE) .............................................................................................................. 36
6.3.6 Mute Pin Control (MUTEC1, MUTEC0) ................................................................................. 37
6.4 Filter Control (Address 04h) ........................................................................................................... 37
6.4.1 Interpolation Filter Select (FILT_SEL) ...................................................................................37
6.4.2 De-Emphasis Control (DEM) ................................................................................................. 37
6.4.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) ....... .... ...................................... ... 37
6.5 Invert Control (Address 05h) .......................................................................................................... 38
6.5.1 Invert Signal Polarity (Inv_Xx) ............................................................................................... 38
6.6 Mixing Control Pair 1 (Channels A1 & B1)(Address 06h) Mixing Control Pair 2 (Channels A2 & B2)(Address 09h)
Mixing Control Pair 3 (Channels A3 & B3)(Address 0Ch) .... ................ ................ ................ ................ 38
6.6.1 Channel A Volume = Channel B Volume (A=B) .................................................................... 38
6.6.2 ATAPI Channel Mixing and Muting (ATAPI) .......................................................................... 39
6.6.3 Functional Mode (FM) ........................................................................................................... 40
6.7 Volume Control (Addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh) ........ ... .... ... ... ... ................................ 40
6.7.1 Mute (MUTE) ......................................................................................................................... 40
6.7.2 Volume Control (XX_VOL) .................................................................................................... 41
6.8 Chip Revision (Address 12h) ......................................................................................................... 41
6.8.1 Part Number ID (PART) [Read Only] .................................................................................... 41
6.8.2 Revision ID (REV) [Read Only] ............................................................................................. 41
7. FILTER PLOTS ..................................................................................................................................... 42
8. PARAMETER DEFINITIONS ................................................................................................................ 46
9. PACKAGE DIMENSIONS .................................................................................................................... 47
10. ORDERING INFORMATION ....... .... ... ... ....................................... ... ... ... .... ... ... ... .... ... ... ... ... ................ 48
11. REFERENCES ....................... ... ... .... ... ... ... ... .... ... ... ....................................... ... ... .... ... ... ...................... 48
12. REVISION HISTORY ................................ ... ....................................... ... .... ... ... ... .... ... ......................... 49
DS617F2 3
LIST OF FIGURES
Figure 1.Serial Audio Interface Timing ... ... ... ... .......................................... ... .... ... ... ... .... ... ... ... ................... 15
Figure 2.Direct Stream Digital - Serial Audio Input Timing ........................................................................ 16
Figure 3.Control Port Timing - I²C Format ................................................................. .... ... ......................... 17
Figure 4.Control Port Timing - SPI Format ............................. ... ... .... ... ... ... ................................................ 18
Figure 5.Typical Connection Diagram, Software Mode ................ ............. ............. ............. ............. .........19
Figure 6.Typical Connection Diagram, Hardware Mode ........................................................................... 20
Figure 7.Format 0 - Left-Justified up to 24-bit Data .................................................................................. 23
Figure 8.Format 1 - I²S up to 24-bit Data .................................................................................................. 23
Figure 9.Format 2 - Right-Justified 16-bit Data ......................................................................................... 23
Figure 10.Format 3 - Right-Justified 24-bit Data ....................................................................................... 23
Figure 11.Format 4 - Right-Justified 20-bit Data ....................................................................................... 24
Figure 12.Format 5 - Right-Justified 18-bit Data ....................................................................................... 24
Figure 13.De-Emphasis Curve .................................. ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ............................ 25
Figure 14.ATAPI Block Diagram (x = channel pair 1, 2, or 3) ............. ... ... ... .... ... ... ................................... 25
Figure 15.Full-Scale Output ............... .... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ......................... 27
Figure 16.Recommended Output Filter ..................................................................................................... 27
Figure 17.Recommended Mute Circuitry ........................ .... ... ... ... .... ... .......................................... ... ......... 28
Figure 18.Control Port Timing, I²C Mode .................................................................................................. 30
Figure 19.Control Port Timing, SPI Mode ................................................................................................. 31
Figure 20.Single-Speed (fast) Stopband Rejection ................................................................................... 42
Figure 21.Single-Speed (fast) Transition Band ......................................................................................... 42
Figure 22.Single-Speed (fast) Transition Band (detail) ............................................................................. 42
Figure 23.Single-Speed (fast) Passband Ripple ....................................................................................... 42
Figure 24.Single-Speed (slow) Stopband Rejection ................................................................................. 42
Figure 25.Single-Speed (slow) Transition Band ........................................................................................ 42
Figure 26.Single-Speed (slow) Transition Band (detail) ............................................................................ 43
Figure 27.Single-Speed (slow) Passband Ripple ...................................................................................... 43
Figure 28.Double-Speed (fast) Stopband Rejection ................................................................................. 43
Figure 29.Double-Speed (fast) Transition Band ........................................................................................ 43
Figure 30.Double-Speed (fast) Transition Band (detail) ............................................................................ 43
Figure 31.Double-Speed (fast) Passband Ripple ...................................................................................... 43
Figure 32.Double-Speed (slow) Stopband Rejection ...... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ...................... 44
Figure 33.Double-Speed (slow) Transition Band ............ .... ... ... ... .... ... ... ....................................... ... ... ...... 44
Figure 34.Double-Speed (slow) Transition Band (detail) .......................................................................... 44
Figure 35.Double-Speed (slow) Passband Ripple .......... .... ... ... ... .... ... ... ....................................... ... ... ...... 44
Figure 36.Quad-Speed (fast) Stopband Rejection . ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ...... 44
Figure 37.Quad-Speed (fast) Transition Band ... .......................................... .... ... ... ... .... ... ... ... ... ................ 44
Figure 38.Quad-Speed (fast) Transition Band (detail) ..........................................................................
Figure 39.Quad-Speed (fast) Passband Ripple ........................................................................................ 45
Figure 40.Quad-Speed (slow) Stopband Rejection ................................................................................... 45
Figure 41.Quad-Speed (slow) Transition Band ......................................................................................... 45
Figure 42.Quad-Speed (slow) Transition Band (detail) ............................................................................. 45
Figure 43.Quad-Speed (slow) Passband Ripple ....................................................................................... 45
CS4362A
.... 45
4 DS617F2
LIST OF TABLES
Table 1. Common Clock Frequencies ....................................................................................................... 21
Table 2. Digital Interface Format, Stand-Alone Mode Options ..... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ... 22
Table 3. Mode Selection, Stand-Alone Mode Options ........... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .. .22
Table 4. Direct Stream Digital (DSD), Stand-Alone Mode Options ........................................ ... .... ... ... ... ... 22
Table 5. Digital Interface Formats - PCM Mode ........................................................................................ 34
Table 6. Digital Interface Formats - DSD Mode ........................................................................................ 35
Table 7. ATAPI Decode ............................ ... ... ....................................... ... ... .... ... ... ... .... ... ... ...................... 39
Table 8. Example Digital Volume Settings ................................................................................................ 41
CS4362A
DS617F2 5

1. PIN DESCRIPTION

DSDA2
DSDB1 DSDA1
VD
GND
MCLK
LRCK(DSD_EN)
SDIN1
SCLK
TST
SDIN2
TST
AOUTA1-
VLS
TST
TST
M3(DSD_SCLK)
DSDB3
DSDA3
DSDB2
48 47 46 45 44 43 42 41 40 39 38 37
1
2
3
4
5
6
7
8
9
10
11
2
1
13 14 15 16 17 18 19 20 21 22 23 24
CS4362A
MUTEC1
CS4362A
AOUTB1+
AOUTB1-
AOUTA1+
36
AOUTA2-
35
AOUTA2+
AOUTB2+
34
AOUTB2-
33
32
VA GND
31
30
AOUTA3-
29
AOUTA3+ AOUTB3+
28
27
AOUTB3-
26
MUTEC2
25
MUTEC3
TST
SDIN3
M0(AD0/CS)
M1(SDA/CDIN)
M2(SCL/CCLK)
VQ
VLC
RST
FILT+
MUTEC5
MUTEC6
MUTEC4
Pin Name # Pin Description
VD 4 GND 5,31 Ground (Input) - Ground reference. Should be connected to analog ground. MCLK 6
LRCK 7 SDIN1
SDIN2 SDIN3
SCLK 9 Serial Clock (Input) - Serial clocks for the serial audio interface.
TST
RST
VA 32
VLS 43
VLC 18
Digital Power (Input) - Positive power supply for the digital section. Refer to the Recom­mended Operating Conditions for appropriate voltages.
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table 1 illustrates several standard audio sample rates and the required master clock frequencies.
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.
8
1113Serial Data Input (Input) - Input for two’s complement serial audio data.
10,12 14,4445Test - These pins need to be tied to analog ground.
Reset (Input) - The device enters a low power mode and all internal registers are reset to their
19
default settings when low. Analog Power (Input) - Positive power supply for the analog section. Refer to the Recom-
mended Operating Conditions for appropriate voltages. Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio
interface. Refer to the Recommended Operating Conditions for appropriate voltages. Control Port Power (Input) - Determines the required signal level for the control port and hard-
ware mode configuration pins. Refer to the Recommended Operating Conditions for appropri­ate voltages.
6 DS617F2
CS4362A
Pin Name # Pin Description
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. VQ must be
capacitively coupled to analog ground, as shown in the Typical Connection Diagram. The nom­inal voltage level is specified in the Analog Characteristics and Specifications section. VQ pre-
VQ 21
FILT+ 20
AOUT A1 +,­AOUTB1 +,­AOUT A2 +,­AOUTB2 +,­AOUT A3 +,­AOUTB3 +,-
MUTEC1 MUTEC2 MUTEC3 MUTEC4 MUTEC5 MUTEC6
Hardware Mode Definitions
M0 M2 M3
Software Mode Definitions
SCL/CCLK 15
SDA/CDIN 16
AD0/CS
DSD Definitions
DSDA1 DSDB1 DSDA2 DSDB2 DSDA3 DSDB3
DSD_SCLK 42 DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital serial audio interface. DSD_EN 7
sents an appreciable source impedance and any current drawn from this pin will alter device performance. However, VQ can be used to bias the analog circuitry assuming there is no AC signal component and the DC current is less then the maximum specified in the Analog Charac­teristics and Specifications section.
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling cir­cuits. Requires the capacitive decoupling to analog ground as shown in the Typical Connection Diagram.
39,40 38,37 35,36
Differential Analog Output (Output) - The full-scale differential analog output level is specified
34,33
in the Analog Characteristics specification table. 29,30 28,27
41 26
Mute Control (Output) - These pins are intended to be used as a control for external mute cir-
25
cuits on the line outputs to prevent the clicks and pops that can occur in any single supply sys-
24
tem. Use of Mute Control is not mandatory but recommended for designs requiring the absolute
23
minimum in extraneous clicks and pops.
22
17 16
Mode Selection (Input) - Determines the operational mode of the device as detailed in Table 6
15
and Table 7.
42
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external
pull-up resistor to the logic interface voltage in I²C
Diagram.
Serial Control Port Data (Input/Output) - SDA is a data I/O line in I²C Mode and is open drain,
requiring an external pull-up resistor to the logic interface voltage, as shown in the Typical Con-
nection Diagram; CDIN is the input data line for the control port interface in SPI™ mode.
Address Bit 0 (C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C
17
Mode; CS
3 2 1
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.
48 47 46
DSD Enable (Input) - When held at logic ‘1’, the device will enter DSD Mode (Stand-Alone Mode
only).
is the chip select signal for SPI mode.
®
Mode as shown in the Typical Connection
DS617F2 7
CS4362A

2. CHARACTERISTICS AND SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

(GND = 0 V; all voltages with respect to ground.)
Parameters Symbol Min Typ Max Units
DC Power Supply Analog Power
Digital Internal Power
Serial Data Port Interface Power
Control Port Interface Power
Ambient Operating Temperature (power applied)
Commercial Grade (-CQZ)
Automotive Grade (-DQZ)
VA
VD VLS VLC
T
A
4.75
2.37
1.71
1.71
-40
-40
5.0
2.5
5.0
5.0
5.25
2.63
5.25
5.25
-
-
+85
+105
V V V V
°C °C

ABSOLUTE MAXIMUM RATINGS

(GND = 0 V; all voltages with respect to ground.)
Parameters Symbol Min Max Units
DC Power Supply Analog Power
Digital Internal Power
Serial Data Port Interface Power
Control Port Interface Power Input Current Any Pin Except Supplies I Digital Input Voltage Serial Data Port Interface
Control Port Interface Ambient Operating Temperature (power applied) T Storage Temperature T
WARNING:Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
VLS VLC
V
V
VA
VD
in
IND-S IND-C
op
stg
-0.3
-0.3
-0.3
-0.3
10mA
-0.3
-0.3
-55 125 °C
-65 150 °C
6.0
3.2
6.0
6.0
VLS+ 0.4 VLC+ 0.4
V V V V
V V
8 DS617F2
CS4362A

DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ)

Test Conditions (unless otherwise specified): VA = VLS = VLC = 5 V; VD = 2.5 V; TA = 25°C; Full-Scale 997 Hz input sine wave
“Typical Connection Diagram” on page 19; Measurement Bandwidth 10 Hz to 20 kHz.
FS = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range 24-bit A-weighted
Total Harmonic Distortion + Noise 24-bit
Idle Channel Noise / Signal-to-noise Ratio - 114 - dB Interchannel Isolation (1 kHz) - 110 - dB
DC Accuracy
Interchannel Gain Mismatch - 0.1 - dB Gain Drift - 100 - ppm/°C
Analog Output
Full-scale Differential Output Voltage V Output Impedance (Note 3) Z Max DC Current Draw From an AOUT Pin I Min AC-load Resistance R Max Load Capacitance C Quiescent Voltage V Max Current draw from V
(Note 1); Tested under max ac-load resistance; Valid with FILT+ and VQ capacitors as shown in
Parameters Symbol Min Typ Max Unit
16-bit A-weighted
(Note 2) Unweighted
(Note 2) 16-bit 0 dB
Q
Unweighted
0 dB
-20 dB
-60 dB
-20 dB
-60 dB
THD+N
FS
OUT
OUTmax
L L
Q
I
QMAX
108 105
-
-
-
-
-
-
-
-
128%•V
A
-130-
-1.0-mA
-3-k
-100-pF
- 50%VA-VDC
-10-µA
114 111
97 94
-100
-91
-51
-94
-74
-34
132%•V
-
-
-
-
-94
-
-45
-
-
-
A
136%•V
dB dB dB dB
dB dB dB dB dB dB
Vpp
A
Notes:
1. One-half LSB of triangular PDF dither is added to data.
2. Performance limited by 16-bit quantization noise.
3. V
is tested under load RL and includes attenuation due to Z
FS
OUT
DS617F2 9
CS4362A

DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ)

Test Conditions (unless otherwise specified): VA = 4.75 to 5.25 V; VLS = 1.71 to 5.25 V; VLC = 1.71 to 5.25 V; VD = 2.37 to 2.63 V; T
tance; Valid with FILT+ and VQ capacitors as shown in “Typical Connection Diagram” on page 19; Measurement Bandwidth 10 Hz to 20 kHz.
FS = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range 24-bit A-weighted
Total Harmonic Distortion + Noise 24-bit
Idle Channel Noise / Signal-to-noise Ratio - 114 - dB Interchannel Isolation (1 kHz) - 110 - dB
DC Accuracy
Interchannel Gain Mismatch - 0.1 - dB Gain Drift - 100 - ppm/°C
Analog Output
Full-scale Differential Output Voltage V Output Impedance (Note 3) Z Max DC Current Draw From an AOUT Pin I Min AC-load Resistance R Max Load Capacitance C Quiescent Voltage V Max Current draw from V
= -40°C to 85°C; Full-Scale 997 Hz input sine wave (Note 1); Tested under max ac-load resis-
A
Parameters Symbol Min Typ Max Unit
16-bit A-weighted
(Note 2) Unweighted
(Note 2) 16-bit 0 dB
Q
Unweighted
0 dB
-20 dB
-60 dB
-20 dB
-60 dB
THD+N
FS
OUT
OUTmax
L L
Q
I
QMAX
105 102
-
-
-
-
-
-
-
-
128%•V
A
- 130 -
-1.0-mA
-3-k
- 100 - pF
- 50%•V
-10-µA
114 111
97 94
-100
-91
-51
-94
-74
-34
132%•V
-
-
-
-
-91
-
-42
-
-
-
A
A
136%•V
-VDC
dB dB dB dB
dB dB dB dB dB dB
Vpp
A
10 DS617F2

POWER AND THERMAL CHARACTERISTICS

Parameters Symbol Min Typ Max Units
Power Supplies
Power Supply Current Normal Operation, VA= 5 V
(Note 4) VD= 2.5 V
(Note 5) Interface Current, VLC=5 V
VLS=5 V
(Note 6) Power-down State (all supplies)
Power Dissipation (Note 4) VA = 5V, VD = 2.5V
Normal Operation
(Note 6) Power-down
Package Thermal Resistance Multi-layer
Two-layer
Power Supply Rejection Ratio (Note 7) (1 kHz) (60 Hz)
Notes:
4. Current consumption increases with increasing FS within a given speed mode and is sign al-dependent. Max values are based on highest FS and highest MCLK.
5. I
6. Power-down Mode is defined as RST
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figure 5 and Figure 6.
measured with no external loading on the SDA pin.
LC
pin = Low with all clock and data lines held static.
I
A
I
D
I
LC
I
LS
I
pd
θ
JA
θ
JA
θ
JC
PSRR
CS4362A
-
-
-
-
-
-
-
-
-
-
-
-
60 16
2
84
200
340
1
48 65 15
60 40
65 22
-
-
-
390
-
-
-
-
-
-
mA mA
µA µA µA
mW mW
°C/Watt °C/Watt °C/Watt
dB dB
DS617F2 11
CS4362A

COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE

The filter characteristics have been norma lized to th e sample rate (Fs) and can be referenced to the desired sam­ple rate by multiplying the given characteristic by Fs. See Note 12.
Parameter
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode - 48 kHz
Passband (Note 9) to -0.01 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
Stop Band 0.547 - - Fs Stop-band Attenuation (Note 10) 102 - - dB Group Delay - 10.4/Fs - s De-emphasis Error (Note 11) Fs = 32 kHz (Relative to 1 kHz) Fs = 44.1 kHz
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz
Passband (Note 9) to -0.01 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
Stop Band .583 - - Fs Stop-band Attenuation (Note 10) 80 - - dB Group Delay - 6.15/Fs - s
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz
Passband (Note 9) to -0.01 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
Stop Band .635 - - Fs Stop-band Attenuation (Note 10) 90 - - dB Group Delay - 7.1/Fs - s
to -3 dB corner
Fs = 48 kHz
to -3 dB corner
to -3 dB corner
0 0
-
-
-
0 0
0 0
Fast Roll-Off
-
-
-
-
-
-
-
-
-
.454 .499
±0.23 ±0.14 ±0.09
.430 .499
.105 .490
UnitMin Typ Max
Fs Fs
dB dB dB
Fs Fs
Fs Fs
Notes:
8. Slow roll-off interpolation filter is only available in Software Mode.
9. Response is clock-dependent and will scale with Fs.
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs. For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs. For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.
11. De-emphasis is available only in Single-Speed Mode; only 44.1 kHz De-emphasis is available in Hard­ware Mode.
12. Amplitude vs. Frequency plots of this data are available in Section 7. “Filter Plots” on page 42.
12 DS617F2
CS4362A

COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE

(CONTINUED)
Slow Roll-Off (Note 8)
Parameter
Single-Speed Mode - 48 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB Stop Band .583 - - Fs Stop-band Attenuation (Note 10) 64 - - dB Group Delay - 7.8/Fs - s De-emphasis Error (Note 11) Fs = 32 kHz (Relative to 1 kHz) Fs = 44.1 kHz
Fs = 48 kHz
0 0
-
-
-
-
-
-
-
-
0.417
0.499
±0.36 ±0.21 ±0.14
Double-Speed Mode - 96 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB Stop Band .792 - - Fs Stop-band Attenuation (Note 10) 70 - - dB Group Delay - 5.4/Fs - s
0 0
-
-
.296 .499
Quad-Speed Mode - 192 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB Stop Band .868 - - Fs Stop-band Attenuation (Note 10) 75 - - dB Group Delay - 6.6/Fs - s
0 0
-
-
.104 .481
UnitMin Typ Max
Fs Fs
dB dB dB
Fs Fs
Fs Fs

DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE

Parameter Min Typ Max Unit
DSD Processor mode
Passband (Note 9) to -3 dB corner 0 - 50 kHz Frequency Response 10 Hz to 20 kHz -0.05 - +0.05 dB Roll-off 27 - - dB/Oct
DS617F2 13
CS4362A

DIGITAL CHARACTERISTICS

Parameters Symbol Min Typ Max Units
Input Leakage Current (Note 13) I
in
Input Capacitance - 8 - pF High-level Input Voltage Serial I/O
Control I/O Low-level Input Voltage Serial I/O
Control I/O Low-level Output Voltage (IOL= -1.2 mA) Control I/O = 3.3 V, 5 V
Control I/O = 1.8 V, 2.5 V Maximum MUTEC Drive Current I MUTEC High-level Output Voltage V MUTEC Low-level Output Voltage V
V V
V V
V V
max
IH IH
IL IL
OL OL
OH
OL
13. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch­up.
--±10µA
70% 70%
-
-
-
-
-
-
-
-
-
-
-
-
30% 30%
20% 25%
-3-mA
-VA-V
-0-V
V
LS
V
LC
V
LS
V
LC
V
LC
V
LC
14 DS617F2
CS4362A

SWITCHING CHARACTERISTICS - PCM

(Inputs: Logic 0 = GND, Logic 1 = VLS, CL = 30 pF)
Parameters Symbol Min Max Units
RST pin Low Pulse Width (Note 14) 1-ms MCLK Frequency 1.024 55.2 MHz
MCLK Duty Cycle (Note 15) 45 55 % Input Sample Rate - LRCK Single-speed Mode
Double-speed Mode
Quad-speed Mode LRCK Duty Cycle 45 55 % SCLK Duty Cycle 45 55 % SCLK High Time t SCLK Low Time t LRCK Edge to SCLK rising edge t SDIN Setup Time before SCLK rising edge t SDIN Hold Time after SCLK rising edge t
Notes:
14. After powering up, RST
should be held low until after the power supplies and clocks are settled.
15. See Table 1 on page 21 for suggested MCLK frequencies.
F F F
sckh
sckl lcks
ds dh
s s s
4
50
100
8-ns 8-ns 5-ns 3-ns 5-ns
54 108 216
kHz kHz kHz
LRCK
SCLK
SDINx
t
lcks
t
ds
t
sckh
t
dh
MSB
Figure 1. Serial Audio Interface Timing
t
sckl
MSB-1
DS617F2 15
CS4362A

SWITCHING CHARACTERISTICS - DSD

(Logic 0 = AGND = DGND; Logic 1 = VLS; CL=20pF)
Parameter Symbol Min Typ Max Unit
MCLK Duty Cycle 40 - 60 % DSD_SCLK Pulse Width Low t DSD_SCLK Pulse Width High t DSD_SCLK Frequency (64x Oversampled)
(128x Oversampled) DSD_A / _B valid to DSD_SCLK rising setup time t DSD_SCLK rising to DSD_A or DSD_B hold time t
DSD_SCLK
sclkl
sclkh
sdlrs
sdh
t
160 - - ns 160 - - ns
1.024
2.048 20 - - ns 20 - - ns
t
sclkh
-
-
sclkl
3.2
6.4
MHz MHz
DSDxx
sdlrstsdh
Figure 2. Direct Stream Digital - Serial Audio Input Timing
t
16 DS617F2
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT
(Inputs: Logic 0 = GND, Logic 1 = VLC, CL=30pF)
Parameter Symbol Min Max Unit
SCL Clock Frequency f
Rising Edge to Start t
RST Bus Free Time Between Transmissions t Start Condition Hold Time (prior to first clock pulse) t Clock Low time t Clock High Time t Setup Time for Repeated Start Condition t SDA Hold Time from SCL Falling (Note 16) t SDA Setup time to SCL Rising t Rise Time of SCL and SDA t Fall Time SCL and SDA t Setup Time for Stop Condition t Acknowledge Delay from SCL Falling t
Notes:
16. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
buf
hdst
low high sust
hdd sud
rc
fc
susp
ack
scl irs
, t , t
rc fc
- 100 kHz
500 - ns
4.7 - µs
4.0 - µs
4.7 - µs
4.0 - µs
4.7 - µs 0-µs
250 - ns
-1µs
-300ns
4.7 - µs
300 1000 ns
CS4362A
RST
SDA
SCL
t
irs
Stop S ta rt
t
buf
hdd
t
high
t
sud
t
t
hdst
low
t
Figure 3. Control Port Timing - I²C Format
Repeated
Start
t
t
sust
hdst
Stop
t
f
t
r
t
susp
DS617F2 17

SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT

(Inputs: Logic 0 = GND, Logic 1 = VLC, CL=30pF)
Parameter Symbol Min Max Unit
CCLK Clock Frequency f
Rising Edge to CS Falling t
RST CCLK Edge to CS
High Time Between Transmissions t
CS
Falling to CCLK Edge t
CS CCLK Low Time t CCLK High Time t CDIN to CCLK Rising Setup Time t CCLK Rising to DATA Hold Time (Note 18) t Rise Time of CCLK and CDIN (Note 19) t Fall Time of CCLK and CDIN (Note 19) t
Falling (Note 17) t
Notes:
17. t
only needed before first falling edge of CS after RST rising edge. t
spi
18. Data must be held for sufficient time to bridge the transition time of CCLK.
19. F o r F
< 1 MHz .
SCK
sclk
srs
spi
csh
css
scl sch dsu
dh
r2 f2
-6MHz 500 - ns 500 - ns
1.0 - µs 20 - ns 66 - ns 66 - ns 40 - ns 15 - ns
- 100 ns
- 100 ns
= 0 at all other times.
spi
CS4362A
RST
CS
CCLK
CDIN
t
srs
t
t
css
spi
t
r2
Figure 4. Control Port Timing - SPI Format
t
scl
t
f2
t
dsu
t
sch
t
dh
t
csh
18 DS617F2

3. TYPICAL CONNECTION DIAGRAM

CS4362A
+1.8 V to + 5 V
PCM
Digital
Audio
Source
DSD
Audio
Source
+2.5 V
Micro-
Controller
220 Ω
470 Ω
470 Ω
1 µF
+
0.1 µF
6 7 9
8 11 13
43
3 2 1
48 47 46
42
19 15
16 17
0.1 µF
MCLK
LRCK SCLK
SDIN1 SDIN2 SDIN3
VLS
DSDA1 DSDB1 DSDA2
DSDB2 DSDA3
DSDB3
DSD_SCLK
RST
SCL/CCLK
SDA/CDIN
ADO/CS
4
VD
CS4362A
32
VA
AOUTA1+
AOUTA1-
AOUTB1+
AOUTB1-
AOUTA2+
AOUTA2-
AOUTB2+
AOUTB2-
AOUTA3+
AOUTA3-
AOUTB3+
AOUTB3-
MUTEC1
MUTEC2 MUTEC3 MUTEC4 MUTEC5
MUTEC6
0.1 µF
39 40
38 37
35 36
34 33
29 30
28 27
41 26
25 24 23 22
+
1 µF
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Mute Drive
+5 V
2 K
2 K
+1.8 V to + 5 V
Note*
0.1 µF
Note*: Ne c e ss a ry fo r I2C control port operation
18
VLC
GND
5
GND
31
FILT+
CMOUT
TST
10, 12, 14, 44, 45
20
0.1 µ
+
F
47 µF
21
F
0.1 µ
1 µF
+
Figure 5. Typical Connection Diagram, Software Mode
DS617F2 19
CS4362A
+1.8 V to +5 V
+1.8 V to +5 V
+2.5 V
Note
VLS
PCM
Digital
Audio
Source
DSD
Audio
Source
Stand-Alone
Mode
Configuration
DSD
220 Ω
470 Ω
470 Ω
1 µF
47 K
+
Optional
47 K
0.1 µF
Note
0.1 µF
0.1 µF
6
MCLK
7
LRCK
9
SCLK
8
SDIN1
11
SDIN2
13
SDIN3
43
VLS
3
DSDA1
2
DSDB1
1
DSDA2
48
DSDB2
47
DSDA3
46
DSDB3
DSD
42
M3(DSD_SCLK)
15
M2
16
M1
17
M0
19
RST
18
VLC
4
VD
CS4362A
32
VA
AOUTA1+
AOUTA1-
MUTEC1
AOUTB1+
AOUTB1-
MUTEC2
AOUTA2+
AOUTA2-
MUTEC3
AOUTB2+
AOUTB2-
MUTEC4
AOUTA3+
AOUTA3-
MUTEC5
AOUTB3+
AOUTB3-
MUTEC6
CMOUT
FILT+
0.1 µF
39 40 41
38 37 26
35 36 25
34 33
24
29 30 23
28 27 22
20
21
+
1 µF
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
F
0.1 µ
1 µF
+
0.1 µ
+5 V
F
+
47 µF
DSD
Note
GND
5
GND
TST
10, 12,
31
14, 44, 45
: For DSD operation:
1) LRCK must be tied to VL S an d remain stat ic high.
2) M3 PCM stand-alone configuration pin becomes DSD_SCLK
Figure 6. Typical Connection Diagram, Hardware Mode
20 DS617F2
CS4362A

4. APPLICATIONS

The CS4362A serially accepts two’s-complement formatted PCM data at standard audio sample rates including 48,
44.1, and 32 kHz in SSM, 96, 88.2, and 64 kHz in DSM, and 192, 176.4, and 128 kHz in QSM. Audio data is input via the serial data input pins (SDINx). The Left/Right Clock (LRCK) dete rmines which channel is currently being input on SDINx, and the Serial Clock (SCLK) clocks audio data into the input data buffer.
The CS4362A can be configured in Hardware Mode by the M0, M1, M2, M3, and DSD_EN pins and in Software Mode through I²C or SPI.

4.1 Master Clock

MCLK/LRCK must be an integer ratio as shown in Table 1. The LRCK frequency is equal to Fs, the frequen- cy at which words for each channel are input to the device. The M CLK-to-LRCK frequency ratio is de tected automatically during the initialization sequence by counting the number of MCLK transitions during a single LRCK period. Internal dividers are then set to generate the proper internal clocks. Table 1 illustrates several standard audio sample rates and the required MCLK and LRCK frequencies. Please note there is no re­quired phase relationship, but MCLK, LRCK, and SCLK must be synchronous.
Speed Mode
(sample-rate range)
MCLK Ratio 256x 384x 512x 768x 1024x*
Single-Speed
(4 to 50 kHz)
MCLK Ratio 128x 192x 256x 384x 512x*
Double-Speed
(50 to 100 kHz)
MCLK Ratio 64x 96x 128x 192x 256x*
Quad-Speed
(100 to 200 kHz)
Note: These modes are only available in Software Mode by setting the MCLKDIV bit = 1.
Sample
Rate
(kHz)
32 8.1920 12.2880 16.3840 24.5760 32.7680
44.1 11.2896 16.9344 22.5792 33.8688 45.1584 48 12.2880 18.4320 24.5760 36.8640 49.1520
64 8.1920 12.2880 16.3840 24.5760 32.7680
88.2 11.2896 16.9344 22.5792 33.8688 45.1584 96 12.2880 18.4320 24.5760 36.8640 49.1520
176.4 11.2896 16.9344 22.5792 33.8688 45.1584 192 12.2880 18.4320 24.5760 36.8640 49.1520
Table 1. Common Clock Frequencies
MCLK (MHz)

4.2 Mode Select

In Hardware Mode, operation is determined by the M ode Select pins. The states of these pins are continu­ally scanned for any changes; however, the mode should only be changed while the device is in reset (RST
pin low) to ensure proper switching from one mode to another. These pins require connection to sup­ply or ground as outlined in Figure 6. VLC supplies M0, M1, and M2. VLS supplies M3 and DSD_EN.
Tables 2 - 4 show the decode of these pins.
Software
Mode Only
In Software Mode, the operational mode and data format are set in the FM and DIF registers. See “Digital
Interface Format (DIF)” on page 34 and “Functional Mode (FM)” on page 40.
DS617F2 21
CS4362A
M1
(DIF1)
00 01 10 11
M3 M2
00 01 10 11
DSD_EN
(LRCK)
1 000 1 001 1 010 1 011 1 100 1 101 1 110 1 111
M0
(DIF0)
Left-justified, up to 24-bit data I²S, up to 24-bit data Right-justified, 16-bit Data Right-justified, 24-bit Data
Table 2. Digital Interface Format, Stand-Alone Mode Options
(DEM)
Single-speed without De-emphasis (4 to 50 kHz sample rates) Single-speed with 44.1 kHz De-Emphasis; see Figure 13 Double-speed (50 to 100 kHz sample rates) Quad-speed (100 to 200 kHz sample rates)
Table 3. Mode Selection, Stand-Alone Mode Options
M2 M1 M0 DESCRIPTION
Table 4. Direct Stream Digital (DSD), Stand-Alone Mode Options
DESCRIPTION FORMAT FIGURE
0 Figure 7 1 Figure 8 2 Figure 9 3 Figure 10
DESCRIPTION
64x oversampled DSD data with a 4x MCLK to DSD data rate 64x oversampled DSD data with a 6x MCLK to DSD data rate 64x oversampled DSD data with a 8x MCLK to DSD data rate 64x oversampled DSD data with a 12x MCLK to DSD data rate 128x oversampled DSD data with a 2x MCLK to DSD data rate 128x oversampled DSD data with a 3x MCLK to DSD data rate 128x oversampled DSD data with a 4x MCLK to DSD data rate 128x oversampled DSD data with a 6x MCLK to DSD data rate
22 DS617F2

4.3 Digital Interface Formats

The serial port operates as a slave and supports the I²S, Left-justified, and Right-justified digital interface formats with varying bit depths from 16 to 24 as shown in Figures 7-12. Data is clocked into the DAC on the rising edge.
CS4362A
LRCK
SCLK
SDINx +3 +2 +1+5 +4
MSB LSB MSB LSB
-1 -2 -3 -4 -5
Left Channel
Figure 7. Format 0 - Left-Justified up to 24-bit Data
LRCK
SCLK
SDINx +3 +2 +1+5 +4
LRCK
SCLK
SDINx
MSB
-2 -3 -4 -5
-1
15 14 13 12 11 10
Left Channel
Left Channel
-2 -3 -4
-1
LSB LSB
MSB
-1
-2 -3 -4
Figure 8. Format 1 - I²S up to 24-bit Data
6543210987
15 14 13 12 11 10
Right Channel
+3 +2 +1+5 +4
Right Channel
+3 +2 +1+5 +4
Right Channel
6543210987
32 clocks
Figure 9. Format 2 - Right-Justified 16-bit Data
LRCK
SCLK
SDINx
Left Channel
0
23 22 21 20 19 18
32 clocks
65432107
23 22 21 20 19 18
Right Channel
65432107
Figure 10. Format 3 - Right-Justified 24-bit Data
DS617F2 23
CS4362A
LRCK
SCLK
SDINx
10
17 16 17 16
19 18 19 18
Left Channel
15 14 13 12 11 10
32 clocks
Figure 11. Format 4 - Right-Justified 20-bit Data
LRCK
SCLK
SDINx
10
17 16 17 16
Left Channel
15 14 13 12 11 10
32 clocks
Figure 12. Format 5 - Right-Justified 18-bit Data

4.4 Oversampling Modes

Right Channel
6543210987
6543210987
15 14 13 12 11 10
Right Channel
15 14 13 12 11 10
6543210987
6543210987
The CS4362A operates in one of three oversampling modes based on the inpu t sample rate. Mode selection is determined by the DSD_EN, M3, and M2 pins in Hardware Mode or the FM bits in Software Mode. Single­speed mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-speed Mode supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-speed Mode supports input sample rates up to 200 kHz and uses an oversampling ratio of 32x.

4.5 Interpolation Filter

To accommodate the increasingly complex requirements of digital audio systems, the CS4362A incorpo­rates selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available in each of Single, Double, and Quad-Speed modes. These filters have been designed to accommodate a variety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the “Filter
Plots” on page 42 for more details).
When in Hardware Mode, only the “fast” roll-off filter is available. Filter specifications can be found in Section 2, and filter response plots can be found in Figures 20 to 43.

4.6 De-emphasis

The CS4362A includes on-chip digital de -empha sis filt ers. The de-emphasis feature is included to accom­modate older audio recordings that utilize pre-emphasis equalization as a means of noise reduction.
Figure 13 shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale pro-
portionally with changes in sample rate (Fs) if the input sample rate does not match the coefficient which has been selected.
24 DS617F2
CS4362A
In Software Mode, the required de-emphasis filter coefficients for 32 kHz, 44.1 kHz, or 48 kHz are selected via the de-emphasis control bits.
In Hardware Mode, only the 44.1 kHz coefficient is available (enabled through the M2 pin). If the input sam­ple rate is not 44.1 kHz and de-emphasis has been selected, the corner frequencies of the de-emphasis filter will be scaled by a factor of the actual Fs over 44,100.
Gain
dB
T1=50 µs
0dB
T2 = 15 µs
-10dB

4.7 ATAPI Specification

The CS4362A implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI functions are applied per A-B pair. Refer to Table 8 on page 41 and Figure 14 for additional informa­tion.
Left Chan
SDINx
Right Channel
nel
Audio Data
Audio Data
F1 F2
3.183 kHz 10.61 kHz
Frequency
Figure 13. De-Emphasis Curve
A Channel
Volume Control
MUTE
AoutAx
ΣΣ
BChannel
Volume Control
MUTE
AoutBx
Figure 14. ATAPI Block Diagram (x = channel pair 1, 2, or 3)
DS617F2 25

4.8 Direct Stream Digital (DSD) Mode

In Stand-alone Mode, DSD operation is selected by holding DSD_EN(LRCK) high and applying the DSD data and clocks to the appropriate pins. The M[2:0] pin s set the expected DSD rate and MCLK ratio.
In Control Port Mode, the FM bits set the device into DSD Mode (DSD_EN pin is not required to be held high). The DIF register then controls the expected DSD rate and MCLK ratio.
During DSD operation, the PCM related pins should either be tied low or remain active with clocks (except LRCK in Stand-alone Mode). When the DSD related pins are not being used, they should either be tied static low or remain active with clocks (except M3 in Stand-alone Mode).

4.9 Grounding and Power Supply Arrangements

As with any high-resolution converter, the CS4362A requires careful at tention to po wer supply and ground­ing arrangements if its potential performance is to be realized. The Typica l Conn ection Diagra m shows the recommended power arrangements, with VA, VD, VLC, and VLS connected to clean supplies. If the grou nd planes are split between digital ground and ana log ground, the GND pins of the CS4362 A should be con­nected to the analog ground plane.
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the DAC.

4.9.1 Capacitor Placement

CS4362A
Decoupling capacitors should be placed as close to the DAC as possible, with the low-value ceramic ca­pacitor being the closest. To further minimize imp edance, these capacitors should be located on the same layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same supply, but a decoupling capacitor should still be placed on each supply pin.
Notes: All decoupling capacitors should be referenced to analog ground.
The CDB4362A evaluation board demonstrates the optimum layout and power supply arrangements.

4.10 Analog Output and Filtering

The application note “Design Notes for a 2-pole Filter with Differential Input” discusses the second-order Butterworth filter and differential-to- single-e nded convert er which wa s implemen ted on the CS436 2A eval ­uation board, CDB4362A, as seen in Figure 16. The CS4362A does not include phase or amplitude com­pensation for an external filter. Therefore, the DAC system phase and amplitude response will be dependent on the external analog circuitry. The off-chip filter has been designed to attenuate the typical full-scale out­put level to below 2 Vrms.
Figure 15 shows how the full-scale differential analog output level specification is derived.
26 DS617F2
CS4362A
3.85 V
AOUT+
2.5 V
1.15 V
3.85 V
AOUT-
Full-Scale Output Level= (AOUT+) - (AOUT-)= 6.7 Vpp
Figure 15. Full-Scale Output
2.5 V
1.15 V
Figure 16. Recommended Output Filter

4.11 Mute Control

The Mute Control pins go active during power-up initialization, muting, or if the MCLK-to-LRCK ratio is in­correct. These pins are intended to be used as control for external mute circuits to prevent the clicks and pops that can occur in any single-ended, single-supply system. The MUT EC output pins are high impedance at the time of reset. The external mute circuitry needs to be self biased into an active state in order to be muted during reset. Once reset has been released, the MUTEC pins are active high in hardware m ode and the active state is set by the MUTEC+/- register in software mode (see Section 6.3.4).
Figure 17 shows a single example of both an active high and an active low mute drive circuit. In these de-
signs, the pull-up and pull-down resistors have been especially chosen to meet the input high/low threshold when used with the MMUN2111 and MMUN2211 internal bias resistances of 10 k
DS617F2 27
Ω.
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute min­imum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute circuit.
Figure 17. Recommended Mute Circuitry

4.12 Recommended Power-Up Sequence

CS4362A

4.12.1 Hardware Mode

1. Hold RST low until the power supplies and configuration pins are stable, and the master and left/right clocks are locked to the appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2. If RST
can not be held low long enough the SDINx pins should remain static low until all other clocks
are stable, and if possible the RST
2. Bring RST Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).
high. The device will remain in a low power state with FILT+ low and will initiate the

4.12.2 Software Mode

1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default settings; FILT+ will remain low, and VQ will be connected to VA/2.
2. Bring RST Single-speed Mode (1024 LRCK cycles in Double-speed Mode, and 2048 LRCK cycles in Quad­speed Mode).
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the completion of approximately 512 LRCK cycles in Single-speed Mode (1024 LRCK cycles in Double­speed Mode, and 2048 LRCK cycles in Quad-speed Mode). The desired register settin gs can be loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1; then set the format and mode control bits to the desired settings.
high. The device will remain in a low-power state with FILT+ low for 512 LRCK cycles in
should be toggled low again once the system is stable.
If more than the stated number of LRCK cycles passes before CPEN bit is written, the chip will enter Hardware Mode and begin to operate with the M0-M3 as the mode settings. CPEN bit may be written at anytime, even after the Hardware sequence has begun. It is advised that if the CPEN bit cannot be set in time, the SDINx pins should remain static low (this way, no audio data can be converted incorrectly by the Hardware Mode settings).
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs.
28 DS617F2

4.13 Recommended Procedure for Switching Operational Modes

For systems where the absolute minimum in clicks and pops is required, it is recommended that the MUTE bits are set prior to changing significant DAC functions (such as changing sample rates or clock sources). The mute bits may then be released after clocks have settled and the proper modes have been set.
It is required to have the device held in reset if the minimum high/low time specs of MCLK cannot be met during clock source changes.

4.14 Control Port Interface

The Control Port is used to load all the internal register settings in order to operate in Software Mode (see the “Filter Plots” on page 42). The operation of the Control Port may be completely asynchronous with the audio sample rate. However, to avoid potential interference problems, the Control Port pins should remain static if no operation is required.
The Control Port operates in one of two modes: I²C or SPI.

4.14.1 MAP Auto Increment

The device has MAP (memory address pointer) auto-increment capability enabled by the INCR bit (also the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and SPI writes. If INCR is set to 1, MAP will auto increment after each byte is written, allowing block reads or writes of successive registers.
CS4362A
4.14.2 I²C Mode
In the I²C Mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial Control Port clock, SCL (see Figure 18 for the clock to data relationship). There is no CS enables the user to alter the chip address (001100[AD0][R/W quired, before powering up the device. If the device e ver detect s a high -to-low transi tion on the AD0/CS pin after power-up, SPI Mode will be selected.
4.14.2.1 I²C Write
To write to the device, follow the procedure below while adhering to the Control Port Switching Specifica­tions in Section 2.
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit must match the setting o f th e AD0 pin, and the eighth must be 0. The eighth bit of the address byte is the R/W
2. Wait for an acknowledge (ACK) from the part; then write to the memory address pointer, MAP. This byte points to the register to be written.
3. Wait for an acknowledge (ACK) from the part; then write the desired data to the register pointed to by the MAP.
4. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers are written, then initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to initiate a repeated START condition and follow the procedure detailed from step 1. If no further writes to other registers are desired, initiate a STOP condition to the bus.
pin. Pin AD0
]) and should be tied to VLC or GND, as re-
bit.
DS617F2 29
CS4362A
4.14.2.2 I²C Read
To read from the device, follow the procedure below while adhering to the Control Port Switching Speci­fications.
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 1. The eighth bit of the address byte is the R/W
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register pointed to by the MAP. The MAP register will contain the address of the last register written to the MAP, or the default address (see Section 4.14.1) if an I²C read is the first operation performed on the device.
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con­tinue providing a clock and issue an ACK after each byte until all the desired registers are read; then initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate a repeated START condition and follow the procedure detailed from steps 1 and 2 from the I²C Write instructions followed by step 1 of the I²C Read section. If no further reads from other registers are de­sired, initiate a STOP condition to the bus.
SDA
001100
ADDR AD0
bit.
R/W
ACK
DATA 1-8
Note 1
ACK
DATA 1-8
ACK
SCL
Note: If operation is a write, this byte contains the Memory Address Pointer, MAP.

4.14.3 SPI Mode

In SPI Mode, data is clocked into the serial control da ta line, CDIN, by the serial Control Port clock, CCLK (see Figure 19 for the clock-to-data relationship). There is no AD0 pin. Pin CS is used to control SPI writes to the Control Port. When the device detects a high-to-low transition on the AD0/CS
pin after power-up, SPI Mode will be selected. All signals are inputs and data is clocked in on the
rising edge of CCLK.
4.14.3.1 SPI Write
To write to the device, follow the procedure below while adhering to the Control Port Switching Specifica­tions in Section 2.
1. Bring CS
2. The address byte on the CDIN pin must then be 00110000.
3. Write to the memory address pointer, MAP. This byte points to the register to be written.
4. Write the desired data to the register pointed to by the MAP.
5. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers are written, then bring CS
Start
low.
Stop
Figure 18. Control Port Timing, I²C Mode
is the chip select signal and
high.
30 DS617F2
CS4362A
6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring CS
high, and follow the procedure detailed from step 1. If no further writes to other registers are de-
sired, bring CS
CCLK
CS
CDIN
high.
CHIP
ADDRESS
0011000
R/W
MAP
MSB
DATA
LSB
byte 1
byte n
MAP = Memory Address Pointer
Figure 19. Control Port Timing, SPI Mode

4.15 Memory Address Pointer (MAP)

76543210
INCR Reserved Reserved MAP4 MAP3 MAP2 MAP1 MAP0
00000000

4.16 INCR (Auto Map Increment Enable)

Default = ‘0’ 0 - Disabled 1 - Enabled

4.16.1 MAP4-0 (Memory Address Pointer)

Default = ‘00000’
DS617F2 31
CS4362A

5. REGISTER QUICK REFERENCE

Addr Function 7 6 5 4 3 2 1 0
01h Mode Control 1 CPEN FREEZE MCLKDIV Reserved DAC3_DIS DAC2_DIS DAC1_DIS PDN
default
02h Mode Control 2 Reserved DIF2 DIF1 DIF0 Reserved Reserved Reserved Reserved
default
03h Mode Control 3 SZC1 SZC0 SNGLVOL RMP_UP MUTEC+/- AMUTE MUTEC1 MUTEC0
default
04h Filter Control Reserved Reserved Reserved FILT_SEL Reserved DEM1 DEM0 RMP_DN
default
05h Invert Control Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
default
06h Mixing Control
Pair 1 (AOUTx1)
default
07h Vol. Control A1 A1_MUTE A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A 1_VOL0
default
08h Vol. Control B1 B1_MUTE B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B 1_VOL0
default
09h Mixing Control
Pair 2 (AOUTx2)
default
0Ah Vol. Control A2 A2_MUTE A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0
default
0Bh Vol. Control B2 B2_MUTE B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0
default
0Ch Mixing Control
Pair 3 (AOUTx3)
default
0Dh Vol. Control A3 A3_MUTE A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0
default
0Eh Vol. Control B3 B3_MUTE B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0
default
12h Chip Revision PART4 PART3 PART2 PART1 P ART0 REV2 REV1 REV0
default
00
00000000
10000100
00000000
00000000
P1_A=B P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0 FM1 FM0
00100100
00000000
00000000
P2_A=B P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0 Reserved Reserved
00100100
00000000
00000000
P3_A=B P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0 Reserved Reserved
00100100
00000000
00000000
01010xxx
0
00001
32 DS617F2
CS4362A

6. REGISTER DESCRIPTION

Note: All registers are read/write in I²C Mode and write only in SPI, unless otherwise noted.

6.1 Mode Control 1 (Address 01h)

76543210
CPEN FREEZE MCLKDIV Reserved DAC3_DIS DAC2_DIS DAC1_DIS PDN
00000001

6.1.1 Control Port Enable (CPEN)

Default = 0 0 - Disabled 1 - Enabled
Function: This bit defaults to 0, allowing the device to power-up in Stand-Alone Mode. The Control Port Mode can
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg­isters and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user should write this bit within 10 ms following the release of Reset.

6.1.2 Freeze Controls (FREEZE)

Default = 0 0 - Disabled 1 - Enabled
Function: This function allows modifications to be made to the registers without the changes taking effect until the
FREEZE is disabled. To make multiple changes in the Control Port registers take effect simultaneously, enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.

6.1.3 Master Clock Divide Enable (MCLKDIV)

Default = 0 0 - Disabled 1 - Enabled
Function: The MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2 prior to all other
internal circuitry.

6.1.4 DAC Pair Disable (DACx_DIS)

Default = 0 0 - DAC Pair x Enabled 1 - DAC Pair x Disabled
Function: When the bit is set, the respective DAC channel pair (AOUTAx and AOUTBx) will remain in a reset state.
It is advised that changes to these bits be made while the power-down (PDN) bit is enabled to eliminate the possibility of audible artifacts.
DS617F2 33
CS4362A

6.1.5 Power Down (PDN)

Default = 1 0 - Disabled 1 - Enabled
Function: The entire device will enter a low-power state when this function is enabled, and the contents of the control
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be disabled before normal operation in Control Port Mode can occur.

6.2 Mode Control 2 (Address 02h)

76543210
Reserved DIF2 DIF1 DIF0 Reserved Reserved Reserved Reserved
00000000

6.2.1 Digital Interface Format (DIF)

Default = 000 - Format 0 (Left-Justified, up to 24-bit data) Function: These bits select the interface format for the serial audio input. The Functional Mode bits determine
whether PCM or DSD Mode is selected.
PCM Mode: The required relationship between the Left/Right clock, serial clock and serial da ta is defined
by the Digital Interface Format and the options are detailed in Figures 7-12.
Note: While in PCM Mode, the DIF bits should only be changed when th e powe r-down (PDN) bit is se t
to ensure proper switching from one mode to another.
DIF2 DIF1 DIF0 DESCRIPTION Format FIGURE
0 0 0 Left-Justified, up to 24-bit data 0 7 0 0 1 I²S, up to 24-bit data 1 8 0 1 0 Right-Justified, 16-bit data 2 9 0 1 1 Right-Justified, 24-bit data 3 10 1 0 0 Right-Justified, 20-bit data 4 11 1 0 1 Right-Justified, 18-bit data 5 12 1 1 0 Reserved ­1 1 1 Reserved -
Table 5. Digital Interface Formats - PCM Mode
34 DS617F2
CS4362A
DSD Mode: The relationship between the oversampling ratio of the DSD audio data and the required
master clock-to-DSD-data-rate is defined by the Digital Interface Forma t pin s.
DIF2 DIF1 DIFO DESCRIPTION
0 0 0 64x oversampled DSD data with a 4x MCLK to DSD data rate 0 0 1 64x oversampled DSD data with a 6x MCLK to DSD data rate 0 1 0 64x oversampled DSD data with a 8x MCLK to DSD data rate 0 1 1 64x oversampled DSD data with a 12x MCLK to DSD data rate 1 0 0 128x oversampled DSD data with a 2x MCLK to DSD data rate 1 0 1 128x oversampled DSD data with a 3x MCLK to DSD data rate 1 1 0 128x oversampled DSD data with a 4x MCLK to DSD data rate 1 1 1 128x oversampled DSD data with a 6x MCLK to DSD data rate
Table 6. Digital Interface Formats - DSD Mode

6.3 Mode Control 3 (Address 03h)

76543210
SZC1 SZC0 SNGLVOL RMP_UP MUTEC+/- AMUTE MUTEC1 MUTEC0
10000100

6.3.1 Soft Ramp and Zero Cross Control (SZC)

Default = 10 00 - Immediate Change 01 - Zero Cross 10 - Soft Ramp 11 - Soft Ramp on Zero Crossings
Function: Immediate Change When Immediate Change is selected, all level changes will take effect immediately in one step. Zero Cross Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a time­out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 4 8 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel.
Soft Ramp Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods. Soft Ramp on Zero Crossing Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. Th e zero cross funct ion is independent ly monitored and implemented for each channel.
DS617F2 35

6.3.2 Single Volume Control (SNGLVOL)

Default = 0 0 - Disabled 1 - Enabled
Function: The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. The volume on all channels is determined by the A1 Ch annel Volume Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.

6.3.3 Soft Volume Ramp-Up After Error (RMP_UP)

Default = 0 0 - Disabled 1 - Enabled
Function: An un-mute will be performed after a LRCK/MCLK ratio change or error, and after changing the Functional
Mode. When this feature is enabled, this un-mute is affected, similar to attenuation changes, by the Soft and Zero Cross bits in the Mode Control 3 register. When disabled, an immediate un-mute is performed in these instances.
CS4362A
Notes: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.

6.3.4 Mutec Polarity (MUTEC+/-)

Default = 0 0 - Active High 1 - Active Low
Function: The active polarity of the MUTEC pin(s) is determined by this register. When set to 0 (default), the MUTEC
pins are high when active. When set to 1 the MUTEC pin(s) are low when active.
Note: During reset the MUTEC output pins are high impedance and the external mute circuitry will need
to be self biased into an active state, se e Sectio n 4. 11. Once reset has been released, the MUTEC out­puts’ active polarity will be set by this bit.

6.3.5 Auto-Mute (AMUTE)

Default = 1 0 - Disabled 1 - Enabled
Function: The Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio sam-
ples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting is done independently for each channel. The quiescent voltage on the output will be retained, and the Mute Control pin will go active during the mute period. The muting function is affected, similar to volume control changes, by the Soft and Zero Cross bits in the Mode Control 3 register.
36 DS617F2
CS4362A

6.3.6 Mute Pin Control (MUTEC1, MUTEC0)

Default = 00 00 - Six mute control signals 01, 10 - One mute control signal 11 - Three mute control signals
Function: Selects how the internal mute control signals are routed to the MUTEC1 through MUTEC6 pins. When
set to ‘00’, there is one mute control signal for each channel: AOUT1A on MUTEC1, AOUT1B on MUTEC2, etc. When set to ‘01’ or ‘10’, there is a single mute contr ol sign al on the MUTEC1 pi n. When set to ‘11’, there are three mute control signa ls, one for each stereo pair: AOUT1A and AOUT1B on MUTEC1, AOUT2A and AOUT2B on MUTEC2, and AOUT3A and AOUT3B on MUTEC3.

6.4 Filter Control (Address 04h)

76543210
Reserved Reserved Reserved FILT_SEL Reserved DEM1 DEM0 RMP_DN
00000000

6.4.1 Interpolation Filter Select (FILT_SEL)

Default = 0 0 - Fast roll-off 1 - Slow roll-off
Function: This function allows the user to select whether the interpolation filter has a fast or slow roll off . For filter
characteristics, please see Section 2.

6.4.2 De-Emphasis Control (DEM)

Default = 00 00 - Disabled 01 - 44.1 kHz 10 - 48 kHz 11 - 32 kHz
Function: Selects the appropriate digital filter to maintain the standard 15
sponse at 32, 44.1 or 48 kHz sample rates. (see Figure 13) De-emphasis is only available in Single-Speed Mode.
µs/50 µs digital de-emphasis filter re-

6.4.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN)

Default = 0 0 - Disabled 1 - Enabled
Function: If either the FILT_SEL or DEM bits are changed, the DAC will stop conversion for a period of time to
change filter values. This bit selects how the data is effected prior to and after the change of the filter val-
DS617F2 37
CS4362A
ues. When this bit is enabled, the DAC will ramp down the volume prior to a filter-mode change and ramp from mute to the original volume value after a filter-mod e change according to the setting s of the Soft and Zero Cross bits in the Mode Control 3 register. When disabled, an immediate mute and unmute is per­formed.
Loss of clocks or a change in the FM bits will always cause an immediate mute; unmute in these condi­tions is affected by the RMP_UP bit.
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.

6.5 Invert Control (Address 05h)

76543210
Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
00000000

6.5.1 Invert Signal Polarity (Inv_Xx)

Default = 0 0 - Disabled 1 - Enabled
Function: When enabled, these bits will invert the signal polarity of their respective channels.

6.6 Mixing Control Pair 1 (Channels A1 & B1)(Address 06h) Mixing Control Pair 2 (Channels A2 & B2)(Address 09h) Mixing Control Pair 3 (Channels A3 & B3)(Address 0Ch)

76543210
Px_A=B PxATAPI4 PxATAPI3 PxATAPI2 PxATAPI1 PxATAPI0 PxFM1 PxFM0
00100100

6.6.1 Channel A Volume = Channel B Volume (A=B)

Default = 0 0 - Disabled 1 - Enabled
Function: The AOUTAx and AOUTBx volume levels are indep end en tly controlled by the A and the B Channel Vol-
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter­mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes are ignored when this function is enabled.
38 DS617F2
CS4362A

6.6.2 ATAPI Channel Mixing and Muting (ATAPI)

Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo) Function: The CS4362A implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI
functions are applied per A-B pair. Refer to Table 7 and Figure 14 for additional information.
ATAPI4 ATAPI3 ATAPI2 ATAPI1 ATAPI0 AOUTAx AOUTBx
00000 MUTE MUTE 00001 MUTE bR 00010 MUTE bL 0 0 0 1 1 MUTE b[(L+R)/2] 00100 aR MUTE 00101 aR bR 00110 aR bL 0 0 1 1 1 aR b[(L+R)/2] 01000 aL MUTE 01001 aL bR 01010 aL bL 0 1 0 1 1 aL b[(L+R)/2] 01100 a[(L+R)/2] MUTE 01101 a[(L+R)/2] bR 01110 a[(L+R)/2] bL 0 1 1 1 1 a[(L+R)/2] b[(L+R)/2] 10000 MUTE MUTE 10001 MUTE bR 10010 MUTE bL 1 0 0 1 1 MUTE [(aL+bR)/2] 10100 aR MUTE 10101 aR bR 10110 aR bL 1 0 1 1 1 aR [(bL+aR)/2] 11000 aL MUTE 11001 aL bR 11010 aL bL 1 1 0 1 1 aL [(aL+bR)/2] 11100 [(aL+bR)/2] MUTE 11101 [(aL+bR)/2] bR 11110 [(bL+aR)/2] bL 1 1 1 1 1 [(aL+bR)/2] [(aL+bR)/2]
Table 7. ATAPI Decode
DS617F2 39
CS4362A

6.6.3 Functional Mode (FM)

Default = 00 00 - Single-Speed Mode (4 to 50 kHz sample rates) 01 - Double-Speed Mode (50 to 100 kHz sample rates) 10 - Quad-Speed Mode (100 to 200 kHz sample rates) 11 - Direct Stream Digital Mode
Function: Selects the required range of input sample rates or DSD Mode. All DAC pairs are required to be set to the
same functional mode setting before a speed-mode change is accepted. When DSD Mode is se lected for any channel pair, all pairs switch to DSD Mode.

6.7 Volume Control (Addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh)

76543210
xx_MUTE xx_VOL6 xx_VOL5 xx_VOL4 xx_VOL3 xx_VOL2 xx_VOL1 xx_VOL0
00000000
Note: These six registers provide individual volume and mute control for each of the six channels.
The values for “xx” in the bit fields above are as follows: Register address 07h - xx = A1 Register address 08h - xx = B1 Register address 0Ah - xx = A2 Register address 0Bh - xx = B2 Register address 0Dh - xx = A3 Register address 0Eh - xx = B3

6.7.1 Mute (MUTE)

Default = 0 0 - Disabled 1 - Enabled
Function: The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will
be retained. The muting function is affected, similarly to attenuation ch anges, by the Soft and Zero Cross bits. The MUTE pins will go active during the mute period according to the MUTEC bits.
40 DS617F2
CS4362A

6.7.2 Volume Control (XX_VOL)

Default = 0 (No attenuation) Function: The Digital Volume Control registers allow independent control of the signal levels in 1 dB increments
from 0 to -127 dB. Volume settings are decoded as shown in Table 8. The volume changes are imple­mented as dictated by the Soft and Zero Cross bits. All volume settings less than -127 dB are equivalent to enabling the MUTE bit.
Binary Code Decimal Value Volume Setting
0 0 0 0 0 0 0 0 0 dB 0 0 1 0 1 0 0 20 -20 dB 0 1 0 1 0 0 0 40 -40 dB 0 1 1 1 1 0 0 60 -60 dB 1 0 1 1 0 1 0 90 -90 dB
Table 8. Example Digital Volume Settings

6.8 Chip Revision (Address 12h)

76543210
PART4 PART3 PART2 PART1 PART0 REV2 REV1 REV0
01010- - -

6.8.1 Part Number ID (PART) [Read Only]

01010 - CS4362A

6.8.2 Revision ID (REV) [Read Only]

000 - Revision A 001 - Revision B
Function: This read-only register can be used to identify the model and revision number of the device.
DS617F2 41

7. FILTER PLOTS

CS4362A
0
−20
−40
−60
Amplitude (dB)
−80
−100
−120
0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency(normalized to Fs)
0
−20
−40
−60
Amplitude (dB)
−80
−100
−120
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
Frequency(normalized to Fs)
Figure 20. Single-Speed (fast) Stopband Rejection Figure 21. Single-Speed (fast) Transition Band
0
−1
−2
−3
−4
−5
Amplitude (dB)
−6
−7
−8
−9
−10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
Frequency(normalized to Fs)
0.02
0.015
0.01
0.005
0
Amplitude (dB)
−0.005
−0.01
−0.015
−0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency(normalized to Fs)
Figure 22. Single-Speed (fast) Transition Band (detail) Figure 23. Single-Speed (fast) Passband Ripple
0
−20
−40
−60
Amplitude (dB)
−80
−100
−120
0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency(normalized to Fs)
0
−20
−40
−60
Amplitude (dB)
−80
−100
−120
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
Frequency(normalized to Fs)
Figure 24. Single-Speed (slow) Stopband Rejection Figure 25. Single-Speed (slow) Transition Band
42 DS617F2
CS4362A
0
−1
−2
−3
−4
−5
Amplitude (dB)
−6
−7
−8
−9
−10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
Frequency(normalized to Fs)
Figure 26. Single-Speed (slow) Transition Band (detail) Figure 27. Single-Speed (slow) Passband Ripple
0.02
0.015
0.01
0.005
0
Amplitude (dB)
−0.005
−0.01
−0.015
−0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
Frequency(normalized to Fs)
Figure 28. Double-Speed (fast) Stopband Rejection Figure 29. Double-Speed (fast) Transition Band
0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
Frequency(normalized to Fs)
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency(normalized to Fs)
Figure 30. Double-Speed (fast) Transition Band (detail) Figure 31. Double-Speed (fast) Passband Ripple
DS617F2 43
CS4362A
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Frequency(normalized to Fs)
Figure 32. Double-Speed (slow) Stopband Rejection Figure 33. Double-Speed (slow) Transition Band
0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
Frequency(normalized to Fs)
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Frequency(normalized to Fs)
Figure 34. Double-Speed (slow) Transition Band (detail) Figure 35. Double-Speed (slow) Passband Ripple
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Frequency(normalized to Fs)
Figure 36. Quad-Speed (fast) Stopband Rejection Figure 37. Quad-Speed (fast) Transition Band
44 DS617F2
CS4362A
0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
Frequency(normalized to Fs)
0.2
0.15
0.1
0.05
0
Amplitude (dB)
0.05
0.1
0.15
0.2 0 0.05 0.1 0.15 0.2 0.25
Frequency(normalized to Fs)
Figure 38. Quad-Speed (fast) Transition Band (detail) Figure 39. Quad-Speed (fast) Passband Ripple
0
20
40
60
Amplitude (dB)
80
0
20
40
60
Amplitude (dB)
80
100
120
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency(normalized to Fs)
100
120
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
Figure 40. Quad-Speed (slow) Stopband Rejection Figure 41. Quad-Speed (slow) Transition Band
0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
Frequency(normalized to Fs)
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
Frequency(normalized to Fs)
Figure 42. Quad-Speed (slow) Transition Band (detail) Figure 43. Quad-Speed (slow) Passband Ripple
DS617F2 45

8. PARAMETER DEFINITIONS

Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measure­ment to full scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by th e Audio Engineer­ing Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
CS4362A
Gain Error
Gain Drift
The deviation from the nominal full-scale analog output for a full-scale digital input.
The change in gain value with temperature. Units in ppm/°C.
46 DS617F2

9. PACKAGE DIMENSIONS 48L LQFP PACKAGE DRAWING

D1
D
CS4362A
E
E1
1
e
B
A
A1
L
INCHES MILLIMETERS
DIM MIN NOM MAX MIN NOM MAX
A --- 0.055 0.063 --- 1.40 1.60
A1 0.002 0.004 0.006 0.05 0.10 0.15
B 0.007 0.009 0.011 0.17 0.22 0.27 D 0.343 0.3 54 0.366 8.70 9.0 BSC 9.30
D1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
E 0.343 0.354 0.366 8.70 9.0 BSC 9.30
E1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
e* 0.016 0.020 0.024 0.40 0.50 BSC 0.60
L 0.018 0.24 0.030 0.45 0.60 0.75 µ 0.000° 7.000° 0.00° 7.00°
* Nominal pin pitch is 0.50 mm
Controlling dimension is mm.
JEDEC Designation: MS022
DS617F2 47
CS4362A

10.ORDERING INFORMATION

Product Description Package Pb-Free Grade Temp Range Container Order #
CS4362A
CDB4362A CS4362A Evaluation Board - - - - CDB4362A
114 dB, 192 kHz 6-
channel D/A Converter
48-pin
LQFP
YES
Commercial -40°C to +85°C
Automotive -40°C to +105°C
Tray CS4362A-CQZ
Tape & Reel CS4362A-CQZR
Tray CS4362A-DQZ
Tape & Reel CS4362A-DQZR

11.REFERENCES

1. How to Achieve Opt imum Perform ance fr om Delta-Sigma A/D & D/A Converters, by Stev en Harris. Pape r presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB4362A data sheet, available at http://www.cirrus.com
Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note
3. AN48.
4.
The I²C Bus Specification: Version 2.0, Philips Semiconductors, December 1998
http://www.semiconductors.philips.com
.
.
48 DS617F2

12.REVISION HISTORY

Release Changes
PP1 PP2 Corrected package type.
F1
F2
Updated output impedance spec in “DAC Analog Characteristics - Automotive (-DQZ)” on page 10. Improved interchannel isolation spec in “DAC Analog Characteristics - Automotive (-DQZ)” on page 10.
Corrected register description in “DAC Pair Disable (DACx_DIS)” on page 33. Added note to “Digital Interface Format (DIF)” on page 34 . Added PCM mode format changeable in reset only to “Mode Select” on page 21. Updated ambient operating temperature range for Commercial and Automotive grade. Updated “DAC Analog Characteristics - Commercial (-CQZ)” on page 9. Updated “DAC Analog Characteristics - Automotive (-DQZ)” on page 10. Updated “Power and Thermal Characteristics” on page 1 1. Updated “Digital Characteristics” on page 14. Updated Legal Information under “IMPORTANT NOTICE” on page 50 Updated MUTEC pin description in “Pin Description” on page 6. Updated “Mute Control” on page 27. Updated “Mutec Polarity (MUTEC+/-)” on page 36.
CS4362A
DS617F2 49
CS4362A
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is s ubject to change without noti ce and is pr ovided " AS IS" wit hout warr anty of any kind (express or impli ed). Cust omers are adv ised to ob tain the latest version of relevant information to verify, before placin g or ders, th at infor ma tion be ing re lied o n is cu rren t and com ple te. All pr oducts a re so ld s ubject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or othe r intellectual prop erty rights. Cirrus owns th e copyrights associated with the information contained herein and gives con­sent for copies to be made of the information only for use with in your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promo tion al p ur po s es, or for cre atin g a ny wo rk for resa le.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT­ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIR­RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUST OM­ER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT­TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
I²C is a registered tradem ar k of Philips Semiconductor. SPI is a trademark of Motorola, Inc. Direct Stream Digital is a registered trademark of Sony Kabushiki Kaisha TA Sony Corporation. DSD is a trademark of Sony Kabushiki Kaisha TA Sony Corporation
50 DS617F2
Loading...