Cirrus Logic CS4234 User Manual

Gain / Volume
AIN4 (± )
AIN3 (± )
AIN2 (± )
AIN1 (± )
Inter polation
Filter
Channel Volume ,
Mute, Invert,
Noise Gate
Multi-bit  Modul ators
AOUT1 ( ±) AOUT2 ( ±) AOUT3 ( ±) AOUT4 ( ±)
I2C Control
Data
Contr ol Por t
Level Transl ator
VL
1. 8 to 5.0 VDC
RSTINT
SDIN1SDOU Tx
Group
Delay
0-500 uS
Master Clock In
Fr ame Sync
Clock / LRCK
SDIN 2
Seri al Cl ock
In / Out
LDO Analog Supply
2.5 V
VA
5.0 VDC
VD
2.5 VDC
Low -Latency
Demux
5th DAC
Input Advi sory
DAC & Analog
Filters
Tr acki ng
SMPS Enable
Sample
& Hol d
Mute, Invert ,
Noise Gate
Master Volume Contr ol
Seri al Audio I nterface
AOUT 5 (±)
(SMPS Contr ol )
DAC & Analog
Filters
Master
Vol. C ntrl
Select
Master Volume
0 dB
TPS
GAIN
Filter Select
X
Inter polation F ilter
Sample & Hold
Max
Detect
Envel ope Tracking
Mute, Invert ,
Noise Gate
DAC
Volume
Multi-bit  Modul ators
Mode Select
Ful l Scal e Code
DC Of fset
X
Digital Filters
Multi-bit  ADC
-2
X
Gain
Select
-1
CS4234
4 In/5 Out CODEC with Programmable Class H Controller
DAC Features
Advanced multibit Delta–Sigma modulator24-bit resolutionDifferential or single-ended outputs-109 dB dynamic range (A-weighted)-90 dB THD+N2 Vrms full-scale output into 3-k AC loadRail-to-rail operationProgrammable group delay in 4-channel audio
output path
ADC Features
Advanced multibit Delta–Sigma modulator24-bit resolutionDifferential inputs-105 dB dynamic range (A-weighted)- 88 dB THD+N2 Vrms full-scale input
System Features
TDM, left justified, and I2S serial inputs and outputs  Nondelayed low-latency pathSupports sample rates up to 96 kHz
Class H Controller Features
Can be used with any integrated Class AB amplifier
IC or discrete amplifier solution.
Increases efficiency of Class AB amplifiersCreates audio tracking reference signal for external
switch-mode power supply
Internal envelope tracking of up to 32 channelsInput path for externally generated tracking signal
Common Applications
Discrete Class H automotive audio amplifiersAutomotive head units with internal Class H
amplifiers
Audio mixing consolesAudio effects processors
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2012
(All Rights Reserved)
MAR ‘12
DS899F1
CS4234
General Description
The CS4234 is a highly versatile CODEC that combines 4 channels of high performance analog to digital conver­sion, 4 channels of high performance digital to analog conversion for audio, and 1 channel of digital to analog conversion to provide a nondelayed audio reference signal to an external Class H tracking power supply. If not used to drive a tracking power supply, the 5 specifications identical to that of the 4 DACs in the audio path. Additionally, the CS4234 includes tunable group de­lay for each of the 4 audio DAC paths to provide lead time for the external switch-mode power supply, and a nondelayed path into the DAC outputs for input signals requiring a low-latency path to the outputs.
Targeting the automotive audio market, this controller was specifically designed to work with Apex Precision Power’s CS44417 Class AB audio amplifier, but remains flexible enough to allow any standard Class AB amplifier to be op­erated as a Class H amplifier in order to maximize efficiency. Class H control provides significant efficiency gains over traditional Class AB amplifiers, while avoiding the increased electromagnetic interference (EMI) and cost of Class D amplifiers.
The Class H controller provides a reference signal which tracks the envelope of the maximum (on a sample by sam­ple basis) of up to 32 channels of serial data in the TDM slots input on the SDINx lines. This reference signal is sent to the 5 ages to an external Class AB amplifier, thereby turning any standard Class AB amplifier into a Class H amplifier. If desired, the internal tracking power supply circuitry can be bypassed, which allows a DSP generated tracking signal to be used to control the SMPS. This feature allows an unlimited number of channels to be tracked, using a DSP to create the tracking signal.
This product is available in a 40-pin QFN package in Automotive (-40 °C to +105 °C) temperature grade. See “Or-
dering Information” on page 74 for complete details.
th
DAC to create an analog reference signal for an external switch-mode power supply that supplies rail volt-
th
DAC can instead be used as a standard audio grade DAC, with performance
DS899F1 2

TABLE OF CONTENTS

1. PIN DESCRIPTIONS ............................................................................................................................ 6
1.1 I/O Pin Characteristics ..................................................................................................................... 7
2. TYPICAL CONNECTION DIAGRAM ................................................................................................... 8
3. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 9
RECOMMENDED OPERATING CONDITIONS .................................................................................... 9
ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 9
DC ELECTRICAL CHARACTERISTICS .............................................................................................. 10
TYPICAL CURRENT CONSUMPTION ............................................................................................... 11
ANALOG INPUT CHARACTERISTICS .............................................................................................. 12
ADC DIGITAL FILTER CHARACTERISTICS ...................................................................................... 14
ANALOG OUTPUT CHARACTERISTICS ........................................................................................... 15
COMBINED DAC INTERPOLATION AND ON-CHIP ANALOG FILTER RESPONSE ........................ 16
DIGITAL I/O CHARACTERISTICS ...................................................................................................... 17
SWITCHING CHARACTERISTICS - SERIAL AUDIO INTERFACE .................................................... 18
SWITCHING SPECIFICATIONS - CONTROL PORT .......................................................................... 20
4. APPLICATIONS ................................................................................................................................... 21
4.1 Power Supply Decoupling, Grounding, and PCB Layout ............................................................... 21
4.2 Recommended Power-Up and Power-Down Sequence ................................................................ 21
4.3 I²C Control Port .............................................................................................................................. 25
4.4 System Clocking ............................................................................................................................ 26
4.5 Serial Port Interface ....................................................................................................................... 28
4.6 Internal Signal Path ....................................................................................................................... 32
4.7 Reset Line ...................................................................................................................................... 47
4.8 Error Reporting and Interrupt Behavior .......................................................................................... 47
5. REGISTER QUICK REFERENCE ........................................................................................................ 50
6. REGISTER DESCRIPTIONS ................................................................................................................ 52
6.1 Device I.D. A and B (Address 01h) (Read Only) Device I.D. C and D (Address 02h) (Read Only)
Device I.D. E and F (Address 03h) (Read Only) ...............................................................................52
6.2 Revision I.D. (Address 05h) (Read Only) ....................................................................................... 52
6.3 Clock and SP Select (Address 06h) ............................................................................................... 53
6.4 Sample Width Select (Address 07h) .............................................................................................. 54
6.5 Serial Port Control (Address 08h) .................................................................................................. 55
6.6 Serial Port Data Select (Address 09h) ........................................................................................... 56
6.7 Serial Data Input 1 Mask 1 (Address 0Ah) ..................................................................................... 57
6.8 Serial Data Input 1 Mask 2 (Address 0Bh) ..................................................................................... 57
6.9 Serial Data Input 2 Mask 1 (Address 0Ch) .................................................................................... 58
6.10 Serial Data Input 2 Mask 2 (Address 0Dh) ..................................................................................58
6.11 Tracking Power Supply Control (Address 0Eh) ........................................................................... 59
6.12 ADC Control 1 (Address 0Fh) ...................................................................................................... 60
6.13 ADC Control 2 (Address 10h) ...................................................................................................... 61
6.14 Low Latency Path Control (Address 11h) ....................................................................................61
6.15 DAC Control 1 (Address 12h) ...................................................................................................... 62
6.16 DAC Control 2 (Address 13h) ...................................................................................................... 63
6.17 DAC Control 3 (Address 14h) ...................................................................................................... 63
6.18 DAC Control 4 (Address 15h) ...................................................................................................... 64
6.19 Volume Mode (Address 16h) ....................................................................................................... 65
6.20 Master and DAC1-5 Volume Control (Address 17h, 18h, 19h, 1Ah, 1Bh, and 1Ch) ................... 66
6.21 Interrupt Control (Address 1Eh) ..........................................................................................
6.22 Interrupt Mask 1 (Address 1Fh) ................................................................................................... 67
6.23 Interrupt Mask 2 (Address 20h) ................................................................................................... 68
6.24 Interrupt Notification 1 (Address 21h) (Read Only) ...................................................................... 68
CS4234
......... 66
DS899F1 3
6.25 Interrupt Notification 2 (Address 22h) (Read Only) ...................................................................... 69
7. ADC FILTER PLOTS ............................................................................................................................ 70
8. DAC FILTER PLOTS ............................................................................................................................ 71
9. PACKAGE DIMENSIONS ................................................................................................................... 73
10. ORDERING INFORMATION .............................................................................................................. 74
11. APPENDIX A:INTERNAL TRACKING POWER SUPPLY SIGNAL .................................................. 74
11.1 Voltage Headroom ....................................................................................................................... 76
11.2 Lead Time .................................................................................................................................... 76
11.3 Gain Matching .............................................................................................................................. 76
11.4 SMPS (TPS) Modes ..................................................................................................................... 77
12. REVISION HISTORY .......................................................................................................................... 79

LIST OF FIGURES

Figure 1. CS4234 Pinout ............................................................................................................................. 6
Figure 2. Typical Connection Diagram ........................................................................................................ 8
Figure 3. Test Circuit for ADC Performance Testing ................................................................................. 13
Figure 4. PSRR Test Configuration ........................................................................................................... 13
Figure 5. Equivalent Output Test Load ..................................................................................................... 15
Figure 6. TDM Serial Audio Interface Timing ............................................................................................ 19
Figure 7. PCM Serial Audio Interface Timing ............................................................................................ 19
Figure 8. I²C Control Port Timing .............................................................................................................. 20
Figure 9. System Level Initialization and Power-up / Power-down Sequence .......................................... 23
Figure 10. DAC DC Loading ..................................................................................................................... 24
Figure 11. Timing, I²C Write ...................................................................................................................... 25
Figure 12. Timing, I²C Read ...................................................................................................................... 25
Figure 13. Master Mode Clocking ............................................................................................................. 27
Figure 14. TDM System Clock Format ...................................................................................................... 28
Figure 15. 32-bit Receiver Channel Block ................................................................................................. 29
Figure 16. Serial Data Coding and Extraction Options within the TDM Streams ...................................... 30
Figure 17. Left Justified Format ................................................................................................................ 31
Figure 18. I²S Format ................................................................................................................................ 31
Figure 19. Audio Path Routing .................................................................................................................. 32
Figure 20. Conventional SDOUT1 (Left) vs. Sidechain SDOUT1 (Right) Configuration ........................... 33
Figure 21. DAC1-4, Low Latency, and DAC5 Path Serial Data Source Selection .................................... 34
Figure 22. Example Serial Data Source Selection .................................................................................... 35
Figure 23. ADC Path ................................................................................................................................. 38
Figure 24. DAC1-4 Path ............................................................................................................................ 39
Figure 25. De-emphasis Curve ................................................................................................................. 40
Figure 26. Low-latency Path ..................................................................................................................... 40
Figure 27. DAC5 Path ............................................................................................................................... 41
Figure 28. Volume Implementation for the DAC1-4 and Low-latency Path ............................................... 43
Figure 29. Volume Implementation for the DAC5 Path .............................................................................43
Figure 30. Soft Ramp Behavior ................................................................................................................. 45
Figure 31. Interrupt Behavior and Example Interrupt Service Routine ...................................................... 49
Figure 32. ADC Stopband Rejection ......................................................................................................... 70
Figure 33. ADC Transition Band ............................................................................................................... 70
Figure 34. ADC Transition Band (Detail) ................................................................................................... 70
Figure 35. ADC Passband Ripple ............................................................................................................. 70
Figure 36. ADC HPF (48 kHz) ................................................................................................................... 70
Figure 37. ADC HPF (96 kHz) ................................................................................................................... 70
Figure 38. SSM DAC Stopband Rejection ................................................................................................ 71
Figure 39. SSM DAC Transition Band ...................................................................................................... 71
Figure 40. SSM DAC Transition Band (Detail) .......................................................................................... 71
CS4234
DS899F1 4
Figure 41. SSM DAC Passband Ripple .................................................................................................... 71
Figure 42. DSM DAC Stopband Rejection ................................................................................................ 72
Figure 43. DSM DAC Transition Band ...................................................................................................... 72
Figure 44. DSM DAC Transition Band (Detail) .......................................................................................... 72
Figure 45. DSM DAC Passband Ripple .................................................................................................... 72
Figure 46. Package Drawing ..................................................................................................................... 73
Figure 47. Progression of the Tracking Signal Through the DAC5 Path ................................................... 75
Figure 48. Directly Proportional vs. Indirectly Proportional Modes of Operation ....................................... 77
Figure 49. DAC5 TPS Modes of Operation ............................................................................................... 78
Figure 50. DAC5 Volume and TPS Offset Controls .................................................................................. 78

LIST OF TABLES

Table 1. Speed Modes .............................................................................................................................. 26
Table 2. Common Clock Frequencies ....................................................................................................... 27
Table 3. Master Mode Left Justified and I²S Clock Ratios ........................................................................ 27
Table 4. Slave Mode Left Justified and I²S Clock Ratios .......................................................................... 28
Table 5. Slave Mode TDM Clock Ratios ................................................................................................... 28
Table 6. Unmasking SDIN1 Data from DAC5 Path ...................................................................................36
Table 7. Unmasking SDIN2 Data from DAC5 Path ...................................................................................37
Table 8. Soft Ramp Rates ......................................................................................................................... 46
Table 9. Noise Gate Bit Depth Settings .................................................................................................... 46
Table 10. Error Reporting and Interrupt Behavior Details ......................................................................... 47
CS4234
DS899F1 5

1. PIN DESCRIPTIONS

AD0
AD2/SDOUT2
AOUT5+
VA
AIN3+
AIN4-
AIN3-
AIN2+
AIN2-
AIN1-
AIN1+
FILT+
SDA
MCLK
SDOUT 1
VL
GND
SDIN1
SDIN2
12
11
13
14
15
16
17
18
19
20
29
30
28
27
26
25
24
23
22
21
394038
37
36
35
34
33
32
31
2
1
3
4
5
6
7
8
9
10
AOUT1+
SCLK
VDREG
AOUT2+
AOUT2-
AOUT3+
AOUT3-
AOUT4-
AOUT4+
VBIAS
VREF
VQ
GND
AOUT5-
AOUT1-
SCL
FS/LRCK
AD1
INT
RST
AIN4+
Top-Down
(Though Package)
View
CS4234
Figure 1. CS4234 Pinout
Pin Name Pin # Pin Description
SDA 1
Serial Control Data (Input/Output) - Bidirectional data I/O for the I²C
SDINx 2,3 Serial Data Input (Input) - Input channels serial audio and low latency data.
FS/LRCK 4
Frame Synchronization Clock/Left/Right Clock (Input/Output) - Determines which channel or
frame is currently active on the serial audio data line.
MCLK 5 Master Clock (Input) -Clock source for the internal logic, processing, and modulators. SCLK 6 Serial Clock (Input/Output) -Serial Clock for the serial data port.
SDOUT1 7
VL 8 Interface Power (Input) - Positive power for the digital interface level shifters.
GND 9,21
VDREG 10 Digital Power (Output) - Internally generated positive power supply for digital section.
AINx+
AINx-
FILT+ 19 Positive Voltage Reference (Output) - Positive reference voltage for the internal ADCs. VA 20 Analog Power (Input) - Positive power for the analog sections. VQ 22 Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. VREF 23 Analog Power Reference (Input) - Return pin for the VBIAS cap.
DS899F1 6
11,13,15,
12,14,16,
Serial Data Output 1 (Output) - ADC data output into a multi-slot TDM stream or AIN1 and AIN2
ADC data output in Left Justified and I²S modes.
Ground (Input) - Ground reference for the I/O and digital, analog sections.
Positive Analog Input (Input) - Positive input signals to the internal analog to digital converters.
17
The full scale analog input level is specified in the Analog Input Characteristics table.
Negative Analog Input (Input) - Negative input signals to the internal analog to digital converters.
18
The full scale analog input level is specified in the Analog Input Characteristics table.
TM
control port.
Pin Name Pin # Pin Description
VBIAS 24 Positive Voltage Reference (Output) - Positive reference voltage for the internal DACs.
AOUTx-
AOUTx+
RST
INT
AD2/SDOUT2 37
AD1 38 I²C Address Bit 1 (Input) - Sets the I²C address bit 1. AD0 39 I²C Address Bit 0 (Input) - Sets the I²C address bit 0. SCL 40 Serial Control Port Clock (Input) - Serial clock for the I²C control port.
GND -
25,27,29,
31, 33
26,28,30,
32, 34
Negative Analog Output (Output) - Negative output signals from the internal digital to analog con-
verters. The full scale analog output level is specified in the Analog Output Characteristics table.
Positive Analog Output (Output) - Positive output signals from the internal digital to analog con-
verters. The full scale analog output level is specified in the Analog Output Characteristics table.
35 Reset (Input) - Applies reset to the internal circuitry when pulled low. 36 Interrupt (Output) - Sent to DSP to indicate an interrupt condition occurred.
I²C Address Bit 2/Serial Data Output 2 (Input/Output) - Sets the I²C address bit 2 at reset. Func-
tions as Serial Data Out 2 for AIN3 and AIN4 ADC data output in Left Justified and I²S modes. High impedance in TDM mode. See Section 4.3 I²C Control Port for more details concerning this mode of operation.
Thermal Pad - The thermal pad on the bottom of the device should be connected to the ground plane via an array of vias.

1.1 I/O Pin Characteristics

CS4234
Input and output levels and associated power supply voltage are shown in the table below. Logic levels should not exceed the corresponding power supply voltage.
Power Supply Pin Name I/O Driver
SCL Input - Weak Pull-down (~500k 5.0 V CMOS, with Hysteresis
CMOS/Open
Drain
CMOS/Open
Drain
VL
SDA Input/Output
INT
RST
MCLK Input - Weak Pull-down (~500k 5.0 V CMOS, with Hysteresis
FS/LRCK Input/Output 5.0 V CMOS- Weak Pull-down (~500k 5.0 V CMOS, with Hysteresis
SCLK Input/Output 5.0 V CMOS- Weak Pull-down (~500k 5.0 V CMOS, with Hysteresis
SDOUT1 Output 5.0 V CMOS Weak Pull-down (~500k
SDINx Input - Weak Pull-down (~500k 5.0 V CMOS, with Hysteresis AD0,1 Input - (Note 2) 5.0 V CMOS
AD2/SDOUT2 Input/Output 5.0 V CMOS- (Note 2) 5.0 V CMOS
Output
Input - (Note 2) 5.0 V CMOS, with Hysteresis
Internal Connections
(Note 1)
Weak Pull-down (~500k 5.0 V CMOS, with Hysteresis
(Note 2) -
Receiver
Notes:
1. Internal connection valid when device is in reset.
2. This pin has no internal pull-up or pull-down resistors. External pull-up or pull-down resistors should be added in accordance with Figure 2.
DS899F1 7
CS4234
CS4234
AIN 4-
AIN 3+
AIN 2-
AIN 3-
VA
FILT+
AIN 1+
AIN 1-
AIN 2+
AIN 4+
SDOUT1VLGND
FS/LRCK
MCLK
SDIN2
SDIN1
SDA
VDREG
SCLK
AD 2
INT
AOUT1-
AOUT5-
AOUT1+
AOUT5+
RST
AD 0
AD 1
SCL
35
AO UT3-
AO UT4+
GND
VRE F
VQ
VBIAS
AO UT4-
AO UT2-
AO UT3+
AO UT2+
32 31
5.0 VD C
0.1uF
Pull Up or Down
Based upon
Desired Address.
0.1uF
10uF
3k(x5 )
40 38 37 3639
13264
5
7
8
17 18141311 15 16
5.0 V DC
Switch-Mode Power Supply
(Includes SMPS Controller with PWM
Mod ulator, Gate Drive( s), Power
De vice s, Ma gnetics )
3334
VB ATT
+V P
-VP
22 uF
22 uF
22 uF
22 uF
22 uF
22 uF
22 uF
22 uF
30
282726
25
222923
0.1uF 10uF
5.0 V DC
1uF
20
24
10uF
0.1uF
10
9
12
5.0 VD C
10 uF
0.1 uF
19
40k
10uF
C2C1
C2 C1
C2C1
C2 C1
C2C1
C2 C1
C2C1
C2 C1
Bulk & Bypass Cap acitors
C1: 0.1uF Ceramic X7R
C2: 47uF Electrolytic
5.0 VDC
0.1uF
10uF
Pull Up or Down
Based upon
Des i re d A d dre s s .
3.3 uF
Digital Signal
Processor
CS44417
IMON1
IMON2
AIN2+
INT
AIN1+
RST
SDA
SCL
AIN2-
AIN1-
OUT1-
VP+
OUT2+
OUT2-
VP+
VP-
OUT1+
VL
DIAG_RAMP
VP-
22
21
19
18
14
AIN3-
IMON3
IMON4
MUTE
IREF
STBY
GND
VA
AIN4+
AIN3+
3
785
4
VP+
OUT3+
AD2/SD OUT2
VP+
OUT4+
OUT4-
VP-
VP-
OUT3-
VP-
AIN4-
AD0
1
2
VP-
AD1
20
(Heat Slug)
23
31
29
33
36
38
34
43
27
13
17
16
6
11910
15
12
41
39
35
37
32
30
24
26
28
40
42
44
25
R
T
R
REF
R
T
R
T
R
T
21
Figure 2. Typical Connection Diagram

2. TYPICAL CONNECTION DIAGRAM

DS899F1 8
CS4234

3. CHARACTERISTICS AND SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS
GND = 0 V; all voltages with respect to ground. (Note 3)
Parameters Symbol Min Typ Max Units
DC Power Supply
Analog Core VA
Level Translator VL 1.71 - 5.25 V
3.135
4.75
3.3 5
3.465
5.25
V V
Temperature
Ambient Operating Temperature - Power Applied T
Junction Temperature T
A
J
-40 - +105 C
-40 - +150 C
Notes: 3. Device functional operation is guaranteed within these limits. Functionality is not guaranteed or
implied outside of these limits. Operation outside of these limits may adversely affect device reliability.
ABSOLUTE MAXIMUM RATINGS
GND = 0 V; all voltages with respect to ground.
Parameters Symbol Min Max Units
DC Power Supply
Analog Core VA -0.3 5.5 V
Level Translator VL -0.3 5.5 V
VDREG Current (Note 4) I
VDREG
Inputs
Input Current (Note 5) I
Analog Input Voltage (Note 6) V
Logic Level Input Voltage (Note 6) V
Temperature
Ambient Operating Temperature - Power Applied T
Storage Temperature T
in
INA
IND
A
stg
-10A
10mA
- 0.3 VA + 0.4 V
-0.3 VL + 0.4 V
-55 +125 °C
-65 +150 °C
WARNING:
OPERATION BEYOND THESE LIMITS MAY RESULT IN PERMANENT DAMAGE TO THE DEVICE.
Notes: 4. No external loads should be connected to the VDREG pin. Any connection of a load to this point may
result in errant operation or performance degradation in the device.
5. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SCR latch-up.
6. The maximum over/under voltage is limited by the input current.
DS899F1 9
DC ELECTRICAL CHARACTERISTICS
GND = 0 V; all voltages with respect to ground.
Parameters Min Typ Max Units
VDREG (Note 7)
Nominal Voltage Output Impedance
FILT+
Nominal Voltage Output Impedance DC Current Source/Sink
VQ
Nominal Voltage Output Impedance DC Current Source/Sink
Notes:
7. No external loads should be connected to the VDREG pin. Any connection of a load to this point may result in errant operation or performance degradation in the device.
CS4234
-
-
-
-
-
-
-
-
2.5
0.5
VA
23
-
0.5•VA 77
-
-
-
-
-
1
-
-
0
V
V k A
V k A
DS899F1 10
CS4234
TYPICAL CURRENT CONSUMPTION
This table represents the power consumption for individual circuit blocks within the CS4234. CS4234 is configured as shown in Figure 2 on page 8. VA_SEL = 0 for VA = 3.3 VDC, 1 for VA = 5.0 VDC; F
DAC load is 3 k; All input signals are zero (digital zero for SDINx inputs and AC coupled to ground for AINx inputs) .
= 100 kHz; MCLK = 25.6 MHz;
S
Typical Current [mA]
(unless otherwise noted)
(Note 9), (Note 12)
Functional Block
Reset Overhead
1
(All lines held static, RST
Power Down Overhead
2
(All lines clocks and data lines active, RST
PLL(Note 10)
3
(Current drawn resulting from PLL being active. PLL is active for 256x and 384x)
DAC Overhead
4
(Current drawn whenever any of the five DACs are powered up.)
DAC Channel (Note 8)
5
(Current drawn per each DAC powered up.)
ADC Overhead
6
(Current drawn whenever any of the four ADCs are powered up.)
ADC Group
7
(Current drawn due to an ADC “group” being powered up. See (Note 11))
ADC Channel
8
(Current drawn per each ADC powered up.)
line pulled low.)
line pulled high, All PDNx bits set high.)
Notes:
8. Full-scale differential output signal.
9. Current consumption increases with increasing F
and increasing MCLK. Values are based on FS of
S
100 kHz and MCLK of 25.6 MHz. Current variance between speed modes is small.
10. PLL is activated by setting the MCLK RATE bit to either 000 (operating in 256x mode) or 001 (operating in 384 kHz).
11. Internal to the CS4234, the analog to digital converters are grouped together in stereo pairs. ADC1 and ADC2 are grouped together as are ADC3 and ADC4. The ADC group current draw is the current that is drawn whenever one of these groups become active.
12. To calculate total current draw for an arbitrary amount of ADCs or DACs, the following equations apply:
VA/ VL
5 0.030 0.001
3.3 0.020 0.001 5 5 0.101
3.3 5 0.101 51 -
3.3 1 ­550 -
3.3 45 ­55 -
3.3 4 ­511 -
3.3 11 ­52 -
3.3 2 ­5 2 0.109
3.3 2 0.066
i
VA
i
VL
Total Running Current Draw from VA Supply = Power Down Overhead + PLL (If Applicable)+ DAC Current Draw + ADC Current Draw
DAC Current Draw = DAC Overhead + (Number of DACs x DAC Channel)
ADC Current Draw = ADC Overhead + (Number of active ADC Groups x ADC Group) + (Number of active ADC Channels x ADC Channel)
Total Running Current Draw from V
L Supply = PDN Overhead + (Number of active ADC Channels x ADC Channel)
where
and
DS899F1 11
CS4234
ANALOG INPUT CHARACTERISTICS Test Conditions (unless otherwise specified): Device configured as shown in Figure 2 on page 8. Input sine wave:
1kHz; VA_SEL = 0 for VA = 3.3 VDC, 1 for VA = 5.0 VDC.; T to 20 kHz unless otherwise specified; Sample Rate = 48 kHz; all Power Down ADCx bits = 0.
VA, VREF = 3.3 V VA, VREF = 5.0 V
Parameter
Min Typ Max Min Typ Max Unit
Dynamic Range
A-weighted
unweighted
93 90
101
98
Total Harmonic Distortion + Noise
-1 dBFS
-60 dBFS
-
-
-95
-38
Other Analog Characteristics
Interchannel Gain Mismatch - 0.2 - - 0.2 - dB Gain Drift - ±100 - - ±100 ­Offset Error (Note 13)
High Pass Filter On High Pass Filter Off
-
-
0.0001
0.25 Interchannel Isolation - 90 - - 90 - dB Full-scale Input Voltage
(Differential Inputs) 1.58•VA 1.66•VA 1.74•VA 1.58•VA 1.66•VA 1.74•VA Vpp Input Impedance - 40 - - 40 - k Common Mode Rejection
-60- -60- dB
(Differential Inputs) PSRR (Note 14)
1 kHz
60 Hz
-
-
45 20
= -40 to +105 C; Measurement Bandwidth is 20 Hz
A
-
-
-87
-30
-
-
-
-
97 94
105 102
-
-
-
-
-
-
-88
-42
0.0001
0.25
45 20
-
-
-80
-34
-
-
-
-
dB dB
dB dB
ppm/°C
% Full Scale % Full Scale
dB dB
Notes:
13. AINx+ connected to AINx-.
14. Valid with the recommended capacitor values on FILT+ and VQ. See Figure 4 for test configuration.
DS899F1 12
CS4234
100 k
4.7 uF
100 k
100 k
470 pF
634
90 .9
Analog Signal +
+
-
100 k
4.7 uF
100 k
100 k
470 pF
634
90 .9
Analog S ignal -
+
-
VA
VA
2700 pF
Figure 3. Test Circuit for ADC Performance Testing
CS4234 AINx +
CS4234 AINx -
Operational
Amplifier
OUT
GND
Power DAC
Analog
Out
GND
PWR
DUT
+Vcc
+Vcc
+
-
OUT
Test Equipment
Analog Generator Analyzer
-Vcc
Digital
Out
+
-
+
-
+
-
Figure 4. PSRR Test Configuration
DS899F1 13
CS4234
ADC DIGITAL FILTER CHARACTERISTICS
Test Conditions (unless otherwise specified): Device configured as shown in Section 2. on page 8. Input sine wave: 1 kHz; VA_SEL = 0 for VA = 3.3 VDC, 1 for VA = 5.0 VDC.; T
20 Hz to 20 kHz unless otherwise specified. See filter plots in Section 7. on page 70.
Parameter (Note 15) Min Typ Max Unit
Passband (Frequency Response) to -0.1 dB corner 0 - 0.4535 Fs
Passband Ripple -0.09 - 0.17 dB
Stopband 0.6 - - Fs
Stopband Attenuation 70 - - dB
Single-Speed Mode
ADC Group Delay (Note 16) - 9.5/Fs - s
High-Pass Filter Characteristics (48 kHz Fs)
Frequency Response -3.0 dB
-0.13 dB
Phase Deviation @ 20 Hz - 10 - Deg
Passband Ripple -0.09 - 0.17 dB
Filter Settling Time (Note 17)
Double-Speed Mode
ADC Group Delay (Note 16) - 9.5/Fs - s
High-Pass Filter Characteristics (96 kHz Fs)
Frequency Response -3.0 dB
-0.13 dB
Phase Deviation @ 20 Hz - 10 - Deg
Passband Ripple -0.15 - 0.17 dB
Filter Settling Time (Note 17)
= -40 to +105 C; Measurement Bandwidth is
A
-
-
-
-
-
-
2
11
25000/Fs
4
22
25000/Fs
-
-
-s
-
-
-s
Hz Hz
Hz Hz
Note:
15. Response is clock dependent and will scale with Fs.
16. The ADC group delay is measured from the time the analog inputs are sampled on the AINx pins to the FS/LRCK rising transition after the last bit of that group of samples has been transmitted on SDOUT1.
17. The amount of time from input of half-full-scale step function until the filter output settles to 0.1% of full scale.
DS899F1 14
CS4234
AOUTx
GND
22 µF
V
OUT
R
L
C
L
Figure 5. Equivalent Output Test Load
ANALOG OUTPUT CHARACTERISTICS
Test Conditions (unless otherwise specified): Device configured as shown in Section 2. on page 8. VA_SEL = 0 for VA = 3.3 VDC, 1 for VA = 5.0 VDC.; T
Measurement Bandwidth is 20 Hz to 20 kHz; Specifications apply to all channels unless otherwise indicated; all
Power Down DACx bits = 0. See (Note 19).
= -40 to +105 C; Full-scale 1 kHz input sine wave; Sample Rate = 48 kHz;
A
VA, VREF= 3.3 V
(Differential/Single-ended)
VA, VREF= 5.0 V
(Differential/Single-ended)
Parameter Min Typ Max Min Typ Max Unit
Dynamic Performance
Dynamic Range 18 to 24-Bit A-weighted
unweighted
16-Bit A-weighted
unweighted
98/94 95/91
87 84
106/102
103/99
95 92
-
-
-
-
101/97
98/94
87 84
109/105 106/102
95 92
-
-
-
-
dB dB dB dB
Total Harmonic Distortion + Noise - -90/-88 -82/-80 - -90/-88 -82/-80 dB
Full-scale Output Voltage
1.48•VA/
0.74•VA
1.56•VA/
0.78•VA
1.64•VA/
0.82•VA
1.48•VA/
0.74•VA
1.56•VA/
0.78•VA
1.64•VA/
0.82•VA
Vpp
Interchannel Isolation (1 kHz) - 100 - - 100 - dB
Interchannel Gain Mismatch - 0.1 0.25 - 0.1 0.25 dB
Gain Drift - ±100 - - ±100 - ppm/°C
AC-Load Resistance (R
Load Capacitance (C
)(Note 19) 3- -3- -k
L
)(Note 19) - - 100 - - 100 pF
L
Parallel DC-Load Resistance(Note 20) 10 - - 10 - - k
Output Impedance - 100 - - 100 -
PSRR (Note 21) 1 kHz
60 Hz
-
-
60 60
-
-
-
-
60 60
-
-
dB dB
Notes:
18. One LSB of triangular PDF dither added to data.
19. Loading configuration is given in Figure 5 below.
20. Parallel combination of all DAC DC loads. See Section 4.2.3.
21. Valid with the recommended capacitor values on FILT+ and VQ. See Figure 4 for test configuration.
DS899F1 15
CS4234
COMBINED DAC INTERPOLATION AND ON-CHIP ANALOG FILTER RESPONSE
Test Conditions (unless otherwise specified): VA_SEL = 0 for VA = 3.3 VDC, 1 for VA = 5.0 VDC. The filter charac­teristics have been normalized to the sample rate (F
plying the given characteristic by F
. See filter plots in Section 8. on page 71.
S
Parameter Min Typ Max Unit
Single-Speed Mode
Passband (Note 22) to -0.05 dB corner
Frequency Response 20 Hz to 20 kHz -0.01 - +0.12 dB StopBand 0.5465 - - F StopBand Attenuation (Note 23) 102 - - dB DAC1-4 Group Delay (Note 24) (Note 25) -11/Fs-s DAC5 Group Delay (Note 25)
(w/ interpolation filter) (w/ sample and hold)
Low-Latency Group Delay (Note 25) -2/Fs-s
Double-Speed Mode
Passband (Note 22) to -0.1 dB corner
Frequency Response 20 Hz to 20 kHz -0.05 - +0.2 dB StopBand 0.5770 - - F StopBand Attenuation (Note 23) 80 - - dB DAC1-4 Group Delay (Note 24) (Note 25) -7/Fs-s DAC5 Group Delay (Note 25)
(w/ interpolation filter) (w/ sample and hold)
Low-latency Group Delay (Note 25) - 2.5/Fs - s
) and can be referenced to the desired sample rate by multi-
S
to -3 dB corner
to -3 dB corner
0 0
-
-
0 0
-
-
-
-
11/ Fs
2/Fs
-
-
7/Fs
2.5/Fs
0.4780
0.4996
-
-
0.4650
0.4982
-
-
F
S
F
S
S
s s
F
S
F
S
S
s s
22. Response is clock dependent and will scale with F
23. For Single-Speed Mode, the measurement bandwidth is 0.5465 F For Double-Speed Mode, the measurement bandwidth is 0.577 F
.
S
to 3 FS.
S
to 1.4 FS.
S
24. This specification is in addition to any delay added via the “GROUP DELAY[3:0]” bits in the "TPS
Control" register.
25. The DAC group delay is measured from the FS/LRCK rising transition before the first bit of a group of samples is transmitted on the SDINx pins to the time it appears on the AOUTx pins.
DS899F1 16
CS4234
DIGITAL I/O CHARACTERISTICS
Parameters Symbol Min Typ Max Units
High-Level Input Voltage (all input pins except
(VL=1.8V)
High-Level Input Voltage (all input pins except
(VL=2.5V, 3.3V, or 5V)
Low-Level Input Voltage (all input pins except
High-Level Input Voltage (
Low-Level Input Voltage (
High-Level Output Voltage at I
Low-Level Output Voltage at I
RST pin) V
RST pin) V
=2mA (% of VL) V
o
=2mA (% of VL) V
o
Input Leakage Current I
Input Capacitance - 8 - pF
RST)(% of VL)
RST)(% of VL)
RST)(% of VL)V
V
IH
V
IH
IL
IH
IL
OH
OL
in
75% - - V
70% - - V
--30%V
1.2 - - V
--0.3V
80% - - V
--20%V
--±10A
DS899F1 17
CS4234
SWITCHING CHARACTERISTICS - SERIAL AUDIO INTERFACE
VA_SEL = 0 for VA = 3.3 VDC, 1 for VA = 5.0 VDC.
Parameters Symbol Min Max Units
RST pin Low Pulse Width (Note 26) 1
MCLK Frequency
(Note 27) 7.68 25.6 MHz
MCLK Duty Cycle 45 55 % SCLK Duty Cycle 45 55 % Input Sample Rate (FS/LRCK pin) Single-Speed Mode
Double-Speed Mode SCLK Falling Edge to SDOUTx Valid (VL = 1.8 V) t SCLK Falling Edge to SDOUTx Valid (VL = 2.5 V) t SCLK Falling Edge to SDOUTx Valid (VL = 3.3 V or 5 V) t
F F
dh2
dh2
dh2
S
S
30 60
-31ns
-22ns
-17ns
TDM Slave Mode
SCLK Frequency
FS/LRCK High Time Pulse (Note 29)
FS/LRCK Rising Edge to SCLK Rising Edge t SDINx Setup Time Before SCLK Rising Edge t SDINx Hold Time After SCLK Rising Edge t
(Note 28) 256x 512x F
t
lpw
lcks
dh1
ds
1/f
SCLK
5-ns 3-ns 5-ns
PCM Slave Mode
SCLK Frequency 32x 64x F FS/LRCK Duty Cycle 45 55 % FS/LRCK Edge to SCLK Rising Edge t SDINx Setup Time Before SCLK Rising Edge t SDINx Hold Time After SCLK Rising Edge t
lcks
ds
dh1
5-ns 3-ns 5-ns
PCM Master Mode
SCLK Frequency 64x 64x F FS/LRCK Duty Cycle 45 55 % FS/LRCK Edge to SCLK Rising Edge t SDINx Setup Time Before SCLK Rising Edge t SDINx Hold Time After SCLK Rising Edge
(VL=1.8V)
SDINx Hold Time After SCLK Rising Edge
(VL=2.5V, 3.3V, or 5V)
lcks
t
dh1
t
dh1
ds
5-ns 5-ns
11 - ns
10 - ns
-ms
50
100
(n-1)/f
SCLK
(Note 30)
kHz kHz
S
ns
S
S
Notes:
26. After applying power to the CS4234,
RST should be held low until after the power supplies and MCLK
are stable.
27. MCLK must be synchronous to and scale with F
.
S
28. The SCLK frequency must remain less than or equal to the MCLK frequency. For this reason, SCLK may range from 256x to 512x only in single speed mode. In double speed mode, 256x is the only ratio supported.
29. The MSB of CH1 is always aligned with the second SCLK rising edge following FS/LRCK rising edge.
30. Where “n” is equal to the MCLK to LRCK ratio (set by the Master Clock Rate register bits), i.e. in 256x mode, n = 256, in 512x mode, n = 512, etc.
DS899F1 18
CS4234
SDOUT1
(output )
SDINx
(input )
t
ds
SCLK
(input )
FS/LRCK
(input )
MSB
t
dh1
MSB-1
t
lcks
t
dh2
MSB MSB-1
t
dh2
t
LPW
~~~
t
ds
MSB
t
dh1
t
dh2
MSB-1
t
lcks
FS/LRCK
(input /output)
SCLK
(input /output)
SDINx
(input)
SDOUTx
(output)
MSB
MSB-1
Figure 7. PCM Serial Audio Interface Timing
Figure 6. TDM Serial Audio Interface Timing
DS899F1 19
CS4234
t
buf
t
hdst
t
hdst
t
low
t
r
t
f
t
hdd
t
high
t
sud
t
sust
t
susp
Stop Start
Start
Stop
Repeated
SDA
SCL
t
irs
RST
Figure 8. I²C Control Port Timing
SWITCHING SPECIFICATIONS - CONTROL PORT
Test conditions (unless otherwise specified): Inputs: Logic 0 = GND = 0 V, Logic 1 = VL; SDA load capacitance equal to maxi­mum value of Cb specified below (Note 31).
Parameters Symbol Min Max Unit
SCL Clock Frequency f
RESET
Rising Edge to Start t
Bus Free Time Between Transmissions t
Start Condition Hold Time (prior to first clock pulse) t
Clock Low time t
Clock High Time t
Setup Time for Repeated Start Condition t
SDA Input Hold Time from SCL Falling (Note 33) t
SDA Output Hold Time from SCL Falling t
SDA Setup time to SCL Rising t
Rise Time of SCL and SDA t
Fall Time SCL and SDA t
Setup Time for Stop Condition t
SDA Bus Load Capacitance
SDA Pull-Up Resistance
scl
irs
buf
hdst
low
high
sust
hddi
hddo
sud
r
f
susp
C
R
p
b
- 550 kHz
(Note 32) -ns
1.3 - µs
0.6 - µs
1.3 - µs
0.6 - µs
0.6 - µs
00.9µs
0.2 0.9 µs
100 - ns
-300ns
-300ns
0.6 - µs
-400pF
500 -
Notes:
31. All specifications are valid for the signals at the pins of the CS4234 with the specified load capacitance.
32. 2 ms + (3000/MCLK). See Section 4.2.1.
33. Data must be held for sufficient time to bridge the transition time, t
, of SCL.
f
DS899F1 20

4. APPLICATIONS

4.1 Power Supply Decoupling, Grounding, and PCB Layout

As with any high-resolution converter, the CS4234 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 2 shows the recommended power ar­rangements, with VA connected to clean supplies. VDREG, which powers the digital circuitry, is generated internally from an on-chip regulator from the VA supply. The VDREG pin provides a connection point for the decoupling capacitors, as shown in Figure 2.
Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling capacitors are recommended. Decoupling capacitors should be as near to the pins of the CS4234 as pos­sible. The low value ceramic capacitor should be the nearest to the pin and should be mounted on the same side of the board as the CS4234 to minimize inductance effects. All signals, especially clocks, should be kept away from the FILT+, VBIAS, and VQ pins in order to avoid unwanted coupling into the modulators. The FILT+, VBIAS, and VQ decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize the electrical path from their respective pins and GND.
For optimal heat dissipation from the package, it is recommended that the area directly under the device be filled with copper and tied to the ground plane. The use of vias connecting the topside ground to the back­side ground is also recommended.

4.2 Recommended Power-Up and Power-Down Sequence

CS4234
The initialization and Power-Up/Down sequence flow chart is shown in Figure 9. For the CS4234 Reset is defined as all lines held static, held static,
RST line is high, all PDNx bits are ‘1’. Running is defined as RST line high, all PDNx bits are ‘0’.

4.2.1 Power-up

The CS4234 enters a reset state upon the initial application of VA and VL. When these power supplies are initially applied to the device, the audio outputs, AOUTxx, are clamped to VQ which is initially low. Additionally, the interpolation and decimation filters, delta-sigma modulators and control port registers are all reset and the internal voltage reference, multi-bit digital-to-analog and analog-to-digital converters and low-pass filters are powered down. The device remains in the reset state until the
Once
RST is brought high, the control port address is latched after 2 ms + (3000/MCLK). Until this latching
transition is complete, the device will not respond to I²C reads or writes, but the I²C bus may still be used during this time. Once the latching transition is complete, the address is latched and the control port is accessible. At this point and the desired register settings can be loaded per the interface descriptions de­tailed in the Section 4.3 I²C Control Port. To ensure specified performance and timing, the VA_SEL must be set to “0” for VA = 3.3 VDC and “1” for VA = 5.0 VDC before audio output begins.
After the nominal quiescent voltage. VQ will charge to VA/2 upon initial power up. The time that it takes to charge up to VA/2 is governed by the size of the capacitor attached to the VQ pin. With the capacitor value shown in the typical connection diagram, the charge time will be approximately 250 ms. The gradual voltage ramping allows time for the external DC-blocking capacitors to charge to VQ, effectively blocking the qui­escent DC voltage. Once FS/LRCK is valid, MCLK occurrences are counted over one F mine the MCLK/F references will transition to their nominal voltage. Power is applied to the D/A converters and filters, and the analog outputs are unclamped from the quiescent voltage, VQ. Afterwards, normal operation begins.
RST pin is brought high and MCLK is applied, the outputs begin to ramp with VQ towards the
RST line is pulled low. Power Down is defined as all lines (excluding MCLK)
RST pin is brought high.
period to deter-
ratio. With MCLK valid and any of the PDNx bits cleared, the internal voltage
S
S
DS899F1 21
CS4234

4.2.2 Power-down

To prevent audio transients at power-down, the DC-blocking capacitors must fully discharge before turn­ing off the power. In order to do this in a controlled manner, it is recommended that all the converters be muted to start the sequence. Next, set PDNx for all converters to 1 to power them down internally. Then, FS/LRCK and SCLK can be removed if desired. Finally, the “VQ RAMP” bit in the "DAC Control 4" register must be set to ‘1’ for a period of 50 ms before applying reset or removing power or MCLK. During this time, voltage on VQ and the audio outputs discharge gradually to GND. If power is removed before this 50 ms time period has passed, a transient will occur and a slight click or pop may be heard. There is no minimum time for a power cycle. Power may be reapplied at any time.
It is important to note that all clocks should be applied and removed in the order specified in Figure 9. If MCLK is removed or applied before result. If either SCLK or FS/LRCK is removed or applied before all PDNx bits are set to “1”, audible pops, clicks and/or distortion can result.
Note: Timings are approximate and based upon the nominal value of the passive components specified in the
“Typical Connection Diagram” on page 8. See Section 4.6.6.2 for volume ramp behavior.
RST has been pulled low, audible pops, clicks and/or distortion can
DS899F1 22
System
Operational
System
Unpowered
DAC1-4 Fully
Operational
ADC D ata
Available on
SDOUT1
50 ms
Apply VL, VA, and MCLK
Clear PDN DACx & ADCx bits
Apply logic level high to Mute Pin
and RC network on Standby Pin
Clear MUTE_CHx bits
Start SCLK, FS/LRCK, SDINx
Write all required configuration
settings to Control Port
Clear reset to SMPS controller
Clear Mute DAC1-4 bits
Run Speaker Diagnostics by
setting the RUN DIAG bit
(if de sired)
Ramp SMPS rails to +/- 4V
Write VA_SEL bit (in 0Fh)
appr opriat ely for VA
Clear Mute ADCx bits
Apply lo gic level low to Mute Pin and RC network on Standby Pin
Ramp SMPS rails to +/- 4V
Set Mute ADCx bits
Set all PDN DAC & ADC bits
Stop SC LK, FS/L RCK, SDINx
Set VQ_RAM P bit
Remove VL, VA, and MCLK
Set Mute DAC1-4 bits
Set reset to SMPS controller
CS4234 C ontrol
CS44417 C ontrol
SMPS Control
CS4234 and CS 44417 Cont rol
Clear PDN_CHx bits
delay dependent on RAM P_D IAG
pin capac itor
delay depend ent on
STBY pi n RC fi lter
delay dependent on
STBY pi n RC fi lter
VQ Ready
(> 90% of Typical)
I2C Add ress
Captured & Contr ol
Port Ready
250 ms
delay dependent
on DAC mute /
unmute beha vior
delay dependent
on DAC mute /
unmute behav ior
2 ms + (3000 /M CLK)
2 ms +
(3000 /MC LK)
250m s
DAC5 Fully Operational
Clear Mute DAC5 (to SMPS)
delay dep endent
on DAC mute/
unmute behav ior
Set Mute DAC5 (to SMPS)
delay dependent
on DAC mute /
unmute behav ior
Set MUTE_CHx bits
Set PDN_CHx bits
Write all required configuration
settings to Control Port
Set RST
Set RST
Clear RST
CS4234
DS899F1 23
Figure 9. System Level Initialization and Power-up / Power-down Sequence

4.2.3 DAC DC Loading

~140k
VA
VQ
NET
~140k
S1±
RL
1+
CL
1+
AOUT1+
RL
1-
CL
1-
AOUT1-
S2±
RL
2+
CL
2+
AOUT2+
RL
2-
CL
2-
AOUT2-
S3±
RL
3+
CL
3+
AOUT3+
RL
3-
CL
3-
AOUT3-
S4±
RL
4+
CL
4+
AOUT4+
RL
4-
CL
4-
AOUT4-
S5±
RL
5+
CL
5+
AOUT5+
RL
5-
CL
5-
AOUT5-
External VQ
capacitor
Figure 10. DAC DC Loading
Figure 10 shows the analog output configuration during power-up, with the AOUTx± pins clamped to VQ
to prevent pops and clicks. Thus any DC loads (RL es are closed. These DC loads will pull the VQ voltage down towards ground. If the parallel combination of all DC loads exceeds the specification shown in the Analog Output Characteristics table, the VQ voltage will never rise to its minimum operating voltage. If the VQ voltage never rises above this minimum oper­ating voltage, the device will not finish the power-up sequence and normal operation will not begin.
Also note that any AOUTx± pin(s) with a DC load must remain powered up (PDN DACx = 0) to keep the VQ net at its nominal voltage during normal operation, otherwise clipping may occur on the outputs.
CS4234
) on the output pins will be in parallel when the switch-
x
Note that the load capacitors (CL
) are also in parallel during power-up. The amount of total capacitance
x
on the VQ net during power-up will affect the amount of time it takes for the VQ voltage to rise to its nom­inal operating voltage after VA power is applied. The time period can be calculated using the time constant given by the internal series resistor and the load capacitors.
DS899F1 24
Loading...
+ 55 hidden pages