EN
fx-570ES PLUS
fx - 991ES PLUS
(2nd edition / NATURAL-V.P.A. M.)
User’s Guide
CASIO Worldwide Education Website
https://edu.casio.com
Manuals are available in multi languages at
https://world.casio.com/manual/cal c/
Table of Contents
Before Using the Calculator.................................................... 4
About this Manual.................................................................................... 4
Initializing the Calculator..........................................................................4
Precautions..............................................................................................4
Safety Precautions..........................................................................................4
Handling Precautions......................................................................................5
Ge t t i n g St a r t e d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
R em ov i ng t he H ar d C as e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
T ur ni ng P ow er O n and O f f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A dj us t i ng D i s pl ay C ont r as t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
K ey M ar k i ngs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
R eadi ng t he D i s pl ay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
U s i ng M enus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
C a lc u la tio n Mo d e s a n d C a lc u la to r S e tu p ............................. 1 0
Ca l c u l a t i o n M o d e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
Co n f i g u r i n g t h e Ca l c u l a t o r Se t u p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
I ni t i al i z i ng C al c ul at or S et t i ngs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
In p u ttin g E x p r e s s io n s a n d V a lu e s ........................................ 1 6
Ba s i c I n p u t Ru l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
I n p u t t i n g wi t h Na t u r a l Di s p l a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
√
Fo r m Ca l c u l a t i o n Ra n g e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
Us i n g V a l u e s a n d Ex p r e s s i o n s a s Ar g u m e n t s ( Na t u r a l Di s p l a y o n l y ) . . . . 1 8
Ov e r wr i t e I n p u t M o d e ( L i n e a r Di s p l a y o n l y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9
Co r r e c t i n g a n d Cl e a r i n g a n Ex p r e s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9
B a s ic C a lc u la tio n s .................................................................. 2 0
T o g g l i n g Ca l c u l a t i o n Re s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0
Fr a c t i o n Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
Pe r c e n t Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
De g r e e , M i n u t e , Se c o n d ( Se x a g e s i m a l ) Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
M u l t i - St a t e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3
Us i n g En g i n e e r i n g No t a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3
Ca l c u l a t i o n Hi s t o r y a n d Re p l a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4
C al c ul at i on H i s t or y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Replay...........................................................................................................24
Using Memory Functions....................................................................... 25
Answer Memory (Ans)...................................................................................25
Variables (A, B, C, D, E, F, M, X, Y).............................................................. 25
Independent Memory (M)..............................................................................26
Clearing the Contents of All Memories..........................................................26
1
Function Calculations............................................................27
Pi (π ), Natural Logarithm Base e ............................................................ 27
Trigonometric Functions........................................................................ 27
Hyperbolic Functions............................................................................. 27
Angle Unit Conversion........................................................................... 28
Exponential Functions............................................................................28
Logarithmic Functions............................................................................28
Power Functions and Power Root Functions.........................................29
Integration Calculations......................................................................... 30
I nt egr at i on C al c ul at i on P r ec aut i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
T i ps f or S uc c es s f ul I nt egr at i on C al c ul at i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Di f f e r e n t i a l Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2
D i f f er ent i al C al c ul at i on P r ec aut i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Σ Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3
Re c t a n g u l a r - Po l a r Co o r d i n a t e Co n v e r s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4
Fa c t o r i a l Fu n c t i o n ( ! ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5
Ab s o l u t e V a l u e Fu n c t i o n ( Ab s ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5
Ra n d o m Nu m b e r ( Ra n # ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5
Ra n d o m I n t e g e r ( Ra n I n t # ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5
Pe r m u t a t i o n ( n P r ) a n d Co m b i n a t i o n ( n C r ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6
Ro u n d i n g Fu n c t i o n ( Rn d ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6
Us i n g CAL C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7
Us i n g SOL VE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8
S ol ut i on S c r een C ont ent s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C ont i nue S c r een . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Sc i e n t i f i c Co n s t a n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1
M e t r i c Co n v e r s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3
U s in g C a lc u la tio n Mo d e s ....................................................... 4 5
Co m p l e x Nu m b e r Ca l c u l a t i o n s ( CM PL X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5
C M P LX M ode C al c ul at i on E x am pl es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
U s i ng a C om m and t o S pec i f y t he C al c ul at i on R es ul t F or m at . . . . . . . . . . . . . . . . . . . . . . . 46
St a t i s t i c a l Ca l c u l a t i o n s ( ST A T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6
I nput t i ng D at a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
S t at i s t i c s C al c ul at i on S c r een . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
U s i ng t he S t at i s t i c s M enu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C al c ul at i ng E s t i m at ed V al ues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
P er f or m i ng N or m al D i s t r i but i on C al c ul at i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Base-n Calculations (BASE-N).............................................................. 55
Specifying the Number Mode of a Particular Input Value..............................57
Converting a Calculation Result to another Type of Value............................57
Logical and Negation Operations..................................................................57
Equation Calculations (EQN).................................................................59
Changing the Current Equation Type Setting................................................60
EQN Mode Calculation Examples.................................................................60
2
Matrix Calculations (MATRIX)................................................................61
Matrix Answer Memory................................................................................. 63
Assigning and Editing Matrix Variable Data.................................................. 63
Matrix Calculation Examples.........................................................................64
Creating a Numerical Table from a Function (TABLE)...........................65
Vector Calculations (VECTOR)..............................................................67
Vector Answer Memory.................................................................................68
Assigning and Editing Vector Variable Data..................................................68
Vector Calculation Examples........................................................................ 69
T e c h n ic a l In fo r m a tio n ............................................................ 7 1
Er r o r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1
D i s pl ay i ng t he Loc at i on of an E r r or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C l ear i ng t he E r r or M es s age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
E r r or M es s ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Be f o r e As s u m i n g M a l f u n c t i o n o f t h e Ca l c u l a t o r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4
Re p l a c i n g t h e Ba t t e r y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4
Ca l c u l a t i o n Pr i o r i t y Se q u e n c e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5
Ca l c u l a t i o n Ra n g e s , Nu m b e r o f Di g i t s , a n d Pr e c i s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6
C al c ul at i on R ange and P r ec i s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
F unc t i on C al c ul at i on I nput R anges and P r ec i s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Sp e c i f i c a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 9
V e r i f y i n g t h e Au t h e n t i c i t y o f Y o u r Ca l c u l a t o r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 0
F r e q u e n tly A s k e d Qu e s tio n s ................................................. 8 1
Fr e q u e n t l y As k e d Qu e s t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1
3
Before Using the Calculator
About this Manual
• In no event shall CASIO Computer Co., Ltd. be liable to anyone for
special, collateral, incidental, or consequential damages in connection
with or arising out of the purchase or use of this product and items that
c o m e wi t h i t .
• M o r e o v e r , CASI O Co m p u t e r Co . , L t d . s h a l l n o t b e l i a b l e f o r a n y c l a i m o f
a n y k i n d wh a t s o e v e r b y a n y o t h e r p a r t y a r i s i n g o u t o f t h e u s e o f t h i s
p r o d u c t a n d t h e i t e m s t h a t c o m e wi t h i t .
• Un l e s s s p e c i f i c a l l y s t a t e d , a l l s a m p l e o p e r a t i o n s i n t h i s m a n u a l a s s u m e
t h a t t h e c a l c u l a t o r i s i n i t s i n i t i a l d e f a u l t s e t u p . Us e t h e p r o c e d u r e u n d e r
"I n i t i a l i z i n g t h e Ca l c u l a t o r " t o r e t u r n t h e c a l c u l a t o r t o i t s i n i t i a l d e f a u l t
s e t u p .
• Th e c o n t e n t s o f t h i s m a n u a l a r e s u b j e c t t o c h a n g e wi t h o u t n o t i c e .
• Th e d i s p l a y s a n d i l l u s t r a t i o n s ( s u c h a s k e y m a r k i n g s ) s h o wn i n t h i s
m a n u a l a r e f o r i l l u s t r a t i v e p u r p o s e s o n l y , a n d m a y d i f f e r s o m e wh a t f r o m
t h e a c t u a l i t e m s t h e y r e p r e s e n t .
• QR Co d e i s a r e g i s t e r e d t r a d e m a r k o f DENSO W A VE I NCORPORA TED
i n J a p a n a n d i n o t h e r c o u n t r i e s .
• Co m p a n y a n d p r o d u c t n a m e s u s e d i n t h i s m a n u a l m a y b e r e g i s t e r e d
t r a d e m a r k s o r t r a d e m a r k s o f t h e i r r e s p e c t i v e o wn e r s .
I n i t i al i z i n g t h e C al cu l at o r
Pe r f o r m t h e f o l l o wi n g p r o c e d u r e wh e n y o u wa n t t o i n i t i a l i z e t h e c a l c u l a t o r
a n d r e t u r n t h e c a l c u l a t i o n m o d e a n d s e t u p t o t h e i r i n i t i a l d e f a u l t s e t t i n g s .
No t e t h a t t h i s o p e r a t i o n a l s o c l e a r s a l l d a t a c u r r e n t l y i n c a l c u l a t o r m e m o r y .
( CL R) ( Al l ) ( Y e s )
P r ecau t i o n s
Be sure to read the following safety precautions before using the
calculator.
Safety Precautions
Battery
• Keep batteries out of the reach of small children.
4
• Use only the type of battery specified for this calculator in this
manual.
Handling Precautions
• Even if the calculator is operating normally, replace the battery
according to the schedule shown below. Continued use after the
specified number of years may result in abnormal operation. Replace
the battery immediately after display figures become dim.
f x - 5 7 0 ES PL US: Ev e r y 2 y e a r s
f x - 9 9 1 ES PL US: Ev e r y 3 y e a r s
• A d e a d b a t t e r y c a n l e a k , c a u s i n g d a m a g e t o a n d m a l f u n c t i o n o f t h e
c a l c u l a t o r . Ne v e r l e a v e a d e a d b a t t e r y i n t h e c a l c u l a t o r .
• The ba t t e r y t ha t c om e s wi t h t he c a l c ul a t or i s f or f a c t or y t e s t i ng,
a nd i t di s c ha r ge s s l i ght l y dur i ng s hi pm e nt a nd s t or a ge . Be c a us e of
t he s e r e a s ons , i t s ba t t e r y l i f e m a y be s hor t e r t ha n nor m a l .
• Do n o t u s e a n i c k e l - b a s e d p r i m a r y b a t t e r y wi t h t h i s p r o d u c t .
I n c o m p a t i b i l i t y b e t we e n s u c h b a t t e r i e s a n d p r o d u c t s p e c i f i c a t i o n s c a n
r e s u l t i n s h o r t e r b a t t e r y l i f e a n d p r o d u c t m a l f u n c t i o n .
• A v o i d u s e a n d s t o r a g e o f t h e c a l c u l a t o r i n a r e a s s u b j e c t e d t o
t e m p e r a t u r e e x t r e m e s , a n d l a r g e a m o u n t s o f h u m i d i t y a n d d u s t .
• Do n o t s u b j e c t t h e c a l c u l a t o r t o e x c e s s i v e i m p a c t , p r e s s u r e , o r b e n d i n g .
• Ne v e r t r y t o t a k e t h e c a l c u l a t o r a p a r t .
• Us e a s o f t , d r y c l o t h t o c l e a n t h e e x t e r i o r o f t h e c a l c u l a t o r .
• W h e n e v e r d i s c a r d i n g t h e c a l c u l a t o r o r b a t t e r i e s , b e s u r e t o d o s o i n
a c c o r d a n c e wi t h t h e l a ws a n d r e g u l a t i o n s i n y o u r p a r t i c u l a r a r e a .
G et t i n g S t ar t ed
Re m ov i ng t he Ha r d Ca s e
Be f o r e u s i n g t h e c a l c u l a t o r , s l i d e i t s h a r d c a s e d o wn wa r d s t o r e m o v e i t ,
a n d t h e n a f f i x t h e h a r d c a s e t o t h e b a c k o f t h e c a l c u l a t o r a s s h o wn i n t h e
i l l u s t r a t i o n b e l o w .
5
Turning Power On and Off
• Press
to turn on the calculator.
• Press (OFF) to turn off the calculator.
Note
• The calculator also will turn off automatically after approximately 10 minutes of nonuse. Press the
key to turn the calculator back on.
Adj us t i ng Di s pl a y Cont r a s t
1 . Pr e s s
2 . Us e a n d t o a d j u s t d i s p l a y c o n t r a s t .
3 . Af t e r t h e s e t t i n g i s t h e wa y y o u wa n t , p r e s s
( SETUP) ( CONT ) .
.
I m p o rt a n t !
• If a d j u s ti n g d i s p l a y c o n tra s t d o e s n o t i m p ro v e d i s p l a y re a d a b i l i ty , i t p ro b a b l y m e a n s
th a t b a tte ry p o w e r i s l o w . R e p l a c e th e b a tte ry .
Ke y Ma r k i ngs
Pr e s s i n g t h e
a l t e r n a t e f u n c t i o n o f t h e s e c o n d k e y . Th e a l t e r n a t e f u n c t i o n i s i n d i c a t e d b y
t h e t e x t p r i n t e d a b o v e t h e k e y .
o r k e y f o l l o we d b y a s e c o n d k e y p e r f o r m s t h e
( 1 ) Ke y c a p f u n c t i o n ( 2 ) Al t e r n a t e f u n c t i o n
• Characters enclosed in brackets (┌ ┐) that are the same color as i are
used in the CMPLX Mode.
• Characters enclosed in brackets (┌ ┐) that are the same color as DEC,
HEX, BIN, and OCT are used in the BASE-N Mode.
• The following shows an example of how an alternate function operation
is represented in this manual.
6
Example: (sin-1)* 1
* Indicates the function that is accessed by the key operation (
) before it. Note that this is not part of the actual key operation
you perform.
• The following shows an example of how a key operation to select an onscreen menu item is represented in this manual.
Example: (COMP)
* Indicates the menu item that is selected by the number key
operation (
o p e r a t i o n y o u p e r f o r m .
• Th e c u r s o r k e y i s m a r k e d wi t h f o u r a r r o ws , i n d i c a t i n g d i r e c t i o n , a s
s h o wn i n t h e i l l u s t r a t i o n n e a r b y . I n t h i s m a n u a l , c u r s o r k e y o p e r a t i o n i s
i n d i c a t e d a s
) before it. Note that this is not part of the actual key
, , , a n d .
*
Re a di ng t he Di s pl a y
Th e t wo - l i n e d i s p l a y m a k e s i t p o s s i b l e t o v i e w b o t h t h e i n p u t e x p r e s s i o n
a n d i t s r e s u l t a t t h e s a m e t i m e .
( 1 ) I n p u t e x p r e s s i o n
( 2 ) Ca l c u l a t i o n r e s u l t
( 3 ) I n d i c a t o r s
• I f a
m e a n s t h e d i s p l a y e d c a l c u l a t i o n r e s u l t c o n t i n u e s t o t h e r i g h t . Us e
a n d t o s c r o l l t h e c a l c u l a t i o n r e s u l t d i s p l a y .
• I f a i n d i c a t o r a p p e a r s o n t h e r i g h t s i d e o f t h e i n p u t e x p r e s s i o n , i t
m e a n s t h e d i s p l a y e d c a l c u l a t i o n c o n t i n u e s t o t h e r i g h t . Us e
t o s c r o l l t h e i n p u t e x p r e s s i o n d i s p l a y . No t e t h a t i f y o u wa n t t o s c r o l l t h e
i n p u t e x p r e s s i o n wh i l e b o t h t h e a n d i n d i c a t o r s a r e d i s p l a y e d , y o u
will need to press first and then use and to scroll.
i n d i c a t o r a p p e a r s o n t h e r i g h t s i d e o f t h e c a l c u l a t i o n r e s u l t , i t
a n d
7
Display indicators
This indicator: Means this:
The keypad has been shifted by pressing the
key. The keypad will unshift and this indicator will
disappear when you press a key.
The alpha input mode has been entered by
p r e s s i n g t h e
b e e x i t e d a n d t h i s i n d i c a t o r wi l l d i s a p p e a r wh e n
y o u p r e s s a k e y .
M Th e r e i s a v a l u e s t o r e d i n i n d e p e n d e n t m e m o r y .
Th e c a l c u l a t o r i s s t a n d i n g b y f o r i n p u t o f a v a r i a b l e
ST O
RCL
ST A T Th e c a l c u l a t o r i s i n t h e ST A T M o d e .
CM PLX Th e c a l c u l a t o r i s i n t h e CM PL X M o d e .
n a m e t o a s s i g n a v a l u e t o t h e v a r i a b l e . Th i s
i n d i c a t o r a p p e a r s a f t e r y o u p r e s s
Th e c a l c u l a t o r i s s t a n d i n g b y f o r i n p u t o f a v a r i a b l e
n a m e t o r e c a l l t h e v a r i a b l e ' s v a l u e . Th i s i n d i c a t o r
a p p e a r s a f t e r y o u p r e s s
k e y . Th e a l p h a i n p u t m o d e wi l l
.
( ST O) .
M A T Th e c a l c u l a t o r i s i n t h e M A TRI X M o d e .
VCT Th e c a l c u l a t o r i s i n t h e VECT OR M o d e .
Th e d e f a u l t a n g l e u n i t i s d e g r e e s .
Th e d e f a u l t a n g l e u n i t i s r a d i a n s .
Th e d e f a u l t a n g l e u n i t i s g r a d s .
FI X A f i x e d n u m b e r o f d e c i m a l p l a c e s i s i n e f f e c t .
SCI A fixed number of significant digits is in effect.
Math Natural Display is selected as the display format.
8
Calculation history memory data is available and
can be replayed, or there is more data above/
below the current screen.
Disp
The display currently shows an intermediate result
of a multi-statement calculation.
Important!
• Fo r s o m e ty p e o f c a l c u l a ti o n th a t ta k e s a l o n g ti m e to e x e c u te , th e d i s p l a y m a y s h o w
o n l y th e a b o v e i n d i c a to rs (w i th o u t a n y v a l u e ) w h i l e i t p e rfo rm s th e c a l c u l a ti o n
i n te rn a l l y .
Us i ng Me nus
So m e o f t h e c a l c u l a t o r ' s o p e r a t i o n s a r e p e r f o r m e d u s i n g m e n u s . Pr e s s i n g
o r , f o r e x a m p l e , wi l l d i s p l a y a m e n u o f a p p l i c a b l e f u n c t i o n s .
Th e f o l l o wi n g a r e t h e o p e r a t i o n s y o u s h o u l d u s e t o n a v i g a t e b e t we e n
m e n u s .
• Y o u c a n s e l e c t a m e n u i t e m b y p r e s s i n g t h e n u m b e r k e y t h a t
c o r r e s p o n d s t o t h e n u m b e r t o i t s l e f t o n t h e m e n u s c r e e n .
• Th e
a n o t h e r m e n u b e l o w t h e c u r r e n t o n e . Th e i n d i c a t o r m e a n s a n o t h e r
m e n u a b o v e . Us e
• T o c l o s e a m e n u wi t h o u t s e l e c t i n g a n y t h i n g , p r e s s .
i n d i c a t o r i n t h e u p p e r r i g h t c o r n e r o f a m e n u m e a n s t h e r e i s
a n d t o s wi t c h b e t we e n m e n u s .
9
Calculation Modes and
Calculator Setup
Calculation Mode
Before starting a calculation, you must first enter the correct mode as
i n d i c a t e d i n t h e t a b l e b e l o w .
W he n y ou wa nt t o pe r f or m t hi s t y pe of
ope r a t i on:
Ge n e r a l c a l c u l a t i o n s
Co m p l e x n u m b e r c a l c u l a t i o n s
St a t i s t i c a l a n d r e g r e s s i o n c a l c u l a t i o n s
Ca l c u l a t i o n s i n v o l v i n g s p e c i f i c n u m b e r
s y s t e m s ( b i n a r y , o c t a l , d e c i m a l , h e x a d e c i m a l )
Eq u a t i o n s o l u t i o n
M a t r i x c a l c u l a t i o n s
Ge n e r a t i o n o f a n u m e r i c a l t a b l e b a s e d o n a n
e x p r e s s i o n
Pe r f or m t hi s k e y
ope r a t i on:
( COM P)
( CM PL X)
( ST A T)
( BASE- N)
( EQN)
( M A TRI X)
( T ABL E)
V e c t o r c a l c u l a t i o n s
N o t e
• Th e i n i ti a l d e fa u l t c a l c u l a ti o n m o d e i s th e C OM P M o d e .
( VECT OR)
C o n f i g u r i n g t h e C al cu l at o r S et u p
Pressing
control how the calculations are executed and displayed. The setup menu
has two screens, which you can jump between using and .
(SETUP) displays the setup menu, which you can use to
10
Underlined ( ___ ) settings are initial defaults.
Specifying the Display Format
To specify this
di s pl a y f or m a t :
Na t ur a l Di s pl a y
( M t hI O- M a t hO)
Na t ur a l Di s pl a y
( M t hI O- Li ne O)
Li ne a r Di s pl a y
( Li ne I O)
Na t u r a l Di s p l a y ( M t h I O- M a t h O, M t h I O- L i n e O) c a u s e s f r a c t i o n s , i r r a t i o n a l
n u m b e r s , a n d o t h e r e x p r e s s i o n s t o b e d i s p l a y e d a s t h e y a r e wr i t t e n o n
p a p e r .
M t h I O- M a t h O d i s p l a y s i n p u t a n d c a l c u l a t i o n r e s u l t s u s i n g t h e s a m e f o r m a t
a s t h e y a r e wr i t t e n o n p a p e r .
M t h I O- L i n e O d i s p l a y s i n p u t t h e s a m e wa y a s M t h I O- M a t h O, b u t
c a l c u l a t i o n r e s u l t s a r e d i s p l a y e d i n l i n e a r f o r m a t .
L i n e a r Di s p l a y ( L i n e I O) c a u s e s f r a c t i o n s a n d o t h e r e x p r e s s i o n s t o b e
d i s p l a y e d i n a s i n g l e l i n e .
Pe r f or m t hi s k e y ope r a t i on:
( SETUP) ( M t h I O) ( M a t h O)
( SETUP) ( M t h I O) ( L i n e O)
( SETUP) ( L i n e I O)
Ex a m p l e s :
M t h I O- M a t h O
MthIO-LineO
(Number Format: Norm 1)
11
MthIO-LineO
(Number Format: Norm 2)
LineIO
(Number Format: Norm 1)
N o t e
• Th e c a l c u l a to r s w i tc h e s to L i n e a r D i s p l a y a u to m a ti c a l l y w h e n e v e r y o u e n te r th e S T A T ,
B A S E -N , M A TR IX , o r V E C T OR M o d e .
Spe c i f y i ng t he De f a ul t Angl e Uni t
T o s pe c i f y t hi s a s t he
Pe r f or m t hi s k e y ope r a t i on:
de f a ul t a ngl e uni t :
De g r e e s
Ra d i a n s
Gr a d s
( SETUP) ( De g )
( SETUP) ( Ra d )
( SETUP) ( Gr a )
9 0 ° = π / 2 r a d i a n s = 1 0 0 g r a d s
Spe c i f y i ng t he Num be r For m a t
Sp e c i f i e s t h e n u m b e r o f d i g i t s f o r d i s p l a y o f a c a l c u l a t i o n r e s u l t .
T o s pe c i f y t hi s : Pe r f or m t hi s k e y ope r a t i on:
Nu m b e r o f De c i m a l
( SETUP) ( Fi x ) -
Pl a c e s
Number of Significant
Digits
Exponential Display
Range
(SETUP) (Sci) -
(SETUP) (Norm) (Norm 1) or
(Norm 2)
12
Fix: The value you specify (from 0 to 9) controls the number of decimal
places for displayed calculation results. Calculation results are rounded off
to the specified digit before being displayed.
Example: (LineIO) 100 ÷ 7 = 14.286 (Fix 3)
14.29 (Fix 2)
Sci: The value you specify (from 0 to 9) controls the number of significant
digits for displayed calculation results. Calculation results are rounded off
to the specified digit before being displayed.
Example: (LineIO) 1 ÷ 7 = 1.4286 × 10-1 (Sci 5)
1 . 4 2 9 × 1 0 - 1 ( Sc i 4 )
1 . 4 2 8 5 7 1 4 2 9 × 1 0 - 1 ( Sc i 0 )
Nor m : Se l e c t i n g o n e o f t h e t wo a v a i l a b l e s e t t i n g s ( No r m 1 , No r m 2 )
d e t e r m i n e s t h e r a n g e i n wh i c h r e s u l t s wi l l b e d i s p l a y e d i n e x p o n e n t i a l
f o r m a t . Ou t s i d e t h e s p e c i f i e d r a n g e , r e s u l t s a r e d i s p l a y e d u s i n g n o n -
e x p o n e n t i a l f o r m a t .
No r m 1 : 1 0 - 2 > | x | , | x | ≧ 1 0
No r m 2 : 1 0 - 9 > | x | , | x | ≧ 1 0
10
10
Ex a m p l e : ( L i n e I O) 1 ÷ 2 0 0 = 5 × 1 0 - 3 ( No r m 1 )
0 . 0 0 5 ( No r m 2 )
Spe c i f y i ng t he Fr a c t i on Di s pl a y For m a t
T o s pe c i f y t hi s
f r a c t i on di s pl a y
Pe r f or m t hi s k e y ope r a t i on:
f or m a t :
M i x e d
I m p r o p e r
( SETUP) ( a b / c )
( SETUP) ( d / c )
Spe c i f y i ng t he Com pl e x Num be r For m a t
T o s pe c i f y t hi s
c om pl e x num be r
Pe r f or m t hi s k e y ope r a t i on:
f or m a t :
Re c t a n g u l a r
(SETUP) (CMPLX) (a +bi )
Coordinates
Polar Coordinates
(SETUP) (CMPLX) (r∠ θ )
13
Specifying the Stat Format
Specifies whether or not to display a FREQ (frequency) column in the
STAT Mode Statistics Editor.
To specify this: Perform this key operation:
Show FREQ Column
Hide FREQ Column
(SETUP) (STAT) (ON)
(SETUP) (STAT) (OFF)
Spe c i f y i ng t he De c i m a l Poi nt Di s pl a y For m a t
Sp e c i f i e s wh e t h e r t o d i s p l a y a d o t o r a c o m m a f o r t h e c a l c u l a t i o n r e s u l t
d e c i m a l p o i n t . A d o t i s a l wa y s d i s p l a y e d d u r i n g i n p u t .
T o s pe c i f y t hi s
de c i m a l poi nt
Pe r f or m t hi s k e y ope r a t i on:
di s pl a y f or m a t :
Do t ( . )
Co m m a ( , )
N o t e
( SETUP) ( Di s p ) ( Do t )
( SETUP) ( Di s p ) ( Co m m a )
• Wh e n d o t i s s e l e c te d a s th e d e c i m a l p o i n t, th e s e p a ra to r fo r m u l ti p l e re s u l ts i s a
c o m m a (,). Wh e n c o m m a i s s e l e c te d , th e s e p a ra to r i s a s e m i c o l o n (;).
Adj us t i ng Di s pl a y Cont r a s t
( SETUP) ( CONT )
Se e "Ge t t i n g St a r t e d " f o r d e t a i l s .
I ni t i a l i zi ng Ca l c ul a t or S e t t i ngs
Pe r f o r m t h e f o l l o wi n g p r o c e d u r e t o i n i t i a l i z e t h e c a l c u l a t o r , wh i c h r e t u r n s
t h e c a l c u l a t i o n m o d e t o COM P a n d r e t u r n s a l l o t h e r s e t t i n g s , i n c l u d i n g
s e t u p m e n u s e t t i n g s , t o t h e i r i n i t i a l d e f a u l t s .
(CLR) (Setup) (Yes)
This setting: Is initialized to this:
Calculation Mode COMP
Display Format MthIO-MathO
14
Angle Unit Deg
Number Format Norm 1
Fraction Display
Format
Complex Number
Format
St a t Fo r m a t OFF
De c i m a l Po i n t Do t
d/c
a +b i
15
Inputting Expressions and
Values
Basic Input Rules
Calculations can be input in the same form as they are written. When you
p r e s s
a u t o m a t i c a l l y a n d t h e r e s u l t wi l l a p p e a r o n t h e d i s p l a y .
Ex a m pl e 1 : 4 × s i n 3 0 × ( 3 0 + 1 0 × 3 ) = 1 2 0
t h e p r i o r i t y s e q u e n c e o f t h e i n p u t c a l c u l a t i o n wi l l b e e v a l u a t e d
* 1 I n p u t o f t h e c l o s i n g p a r e n t h e s i s i s r e q u i r e d f o r s i n , s i n h , a n d o t h e r
f u n c t i o n s t h a t i n c l u d e p a r e n t h e s e s .
* 2 Th e s e m u l t i p l i c a t i o n s y m b o l s ( × ) c a n b e o m i t t e d . A m u l t i p l i c a t i o n
s y m b o l c a n b e o m i t t e d wh e n i t o c c u r s i m m e d i a t e l y b e f o r e a n o p e n i n g
p a r e n t h e s i s , i m m e d i a t e l y b e f o r e s i n o r o t h e r f u n c t i o n t h a t i n c l u d e s
p a r e n t h e s e s , i m m e d i a t e l y b e f o r e t h e Ra n # ( r a n d o m n u m b e r ) f u n c t i o n ,
o r i m m e d i a t e l y b e f o r e a v a r i a b l e ( A, B, C, D, E, F , M , X, Y) , s c i e n t i f i c
c o n s t a n t s , π o r e .
* 3 Th e c l o s i n g p a r e n t h e s i s i m m e d i a t e l y b e f o r e t h e
o m i t t e d .
Ex a m pl e 2 : I n p u t e x a m p l e o m i t t i n g
a b o v e e x a m p l e .
3 0 3 0 1 0 3
4
*2
a n d
o p e r a t i o n c a n b e
*3
o p e r a t i o n s i n t h e
Note
• If the calculation becomes longer than the screen width during input, the screen will
scroll automatically to the right and the
this happens, you can scroll back to the left by using
• When Linear Display is selected, pressing
beginning of the calculation, while will jump to the end.
indicator will appear on the display. When
and to move the cursor.
will cause the cursor to jump to the
16
• When Natural Display is selected, pressing while the cursor is at the end of the
input calculation will cause it to jump to the beginning, while pressing
cursor is at the beginning will cause it to jump to the end.
• You can input up to 99 bytes for a calculation. Each numeral, symbol, or function
normally uses one byte. Some functions require three to 13 bytes.
• The cursor will change shape to
remaining. If this happens, end calculation input and then press
when there are 10 bytes or less of allowed input
while the
.
Inputting with Natural Display
Se l e c t i n g Na t u r a l Di s p l a y m a k e s i t p o s s i b l e t o i n p u t a n d d i s p l a y f r a c t i o n s
a n d c e r t a i n f u n c t i o n s ( l o g ,
Ab s ) j u s t a s t h e y a r e wr i t t e n i n y o u r t e x t b o o k .
, , , , , , , , , ∫ , d / d x , Σ ,
Ex a m pl e :
1 + √
( M t h I O- M a t h O)
2
2 2 1 2
I m p o rt a n t !
• C e rta i n ty p e s o f e x p re s s i o n s c a n c a u s e th e h e i g h t o f a n i n p u t e x p re s s i o n to b e g re a te r
th a n o n e d i s p l a y l i n e . Th e m a x i m u m a l l o w a b l e h e i g h t o f a n i n p u t e x p re s s i o n i s tw o
d i s p l a y s c re e n s (3 1 d o ts × 2 ). Fu rth e r i n p u t w i l l b e c o m e i m p o s s i b l e i f th e h e i g h t o f th e
c a l c u l a ti o n y o u a re i n p u tti n g e x c e e d s th e a l l o w a b l e l i m i t.
• N e s ti n g o f fu n c ti o n s a n d p a re n th e s e s i s a l l o w e d . Fu rth e r i n p u t w i l l b e c o m e i m p o s s i b l e
i f y o u n e s t to o m a n y fu n c ti o n s a n d /o r p a re n th e s e s . If th i s h a p p e n s , d i v i d e th e
c a l c u l a ti o n i n to m u l ti p l e p a rts a n d c a l c u l a te e a c h p a rt s e p a ra te l y .
N o t e
2 + √ 2
• Wh e n y o u p re s s a n d o b ta i n a c a l c u l a ti o n re s u l t u s i n g N a tu ra l D i s p l a y , p a rt o f th e
e x p re s s i o n y o u i n p u t m a y b e c u t o f f. If y o u n e e d to v i e w th e e n ti re i n p u t e x p re s s i o n
a g a i n , p re s s
Form Calculation Range
√
a n d th e n u s e a n d to s c ro l l th e i n p u t e x p re s s i o n .
Results that include square root symbols can have up to two terms (an
integer term is also counted as a term).
*
d √e
, √ form calculation
f
When a calculation result takes the form ±
a √b
±
c
results are displayed using formats like those shown below.
17
± a √b , ± d ± a √b ,
*
The ranges of the coefficients (a , b , c , d , e , f ) are as shown below.
1 ≦ a < 100, 1 < b < 1000, 1 ≦ c < 100
0 ≦ d < 100, 0 ≦ e < 1000, 1 ≦ f < 100
(a , b , c , d , e , f are integers)
Example:
1 0 √ 2 + 1 5 × 3 √ 3 = 4 5 √ 3 + 1 0 √ 2 √ f o r m
9 9 √
9 9 9 = 3 1 2 9 . 0 8 9 1 6 5 ( = 2 9 7 √ 1 1 1 ) d e c i m a l f o r m
± a' √b ± d' √e
c'
U si n g V al u es an d E xp r essi o n s as
A r g u m en t s ( N at u r al D i sp l ay o n l y)
A v a l u e o r a n e x p r e s s i o n t h a t y o u h a v e a l r e a d y i n p u t c a n b e u s e d a s t h e
7
a r g u m e n t o f a f u n c t i o n . Af t e r y o u h a v e i n p u t
m a k e i t t h e a r g u m e n t o f √
Ex a m pl e : T o i n p u t 1 +
As s h o wn a b o v e , t h e v a l u e o r e x p r e s s i o n t o t h e r i g h t o f t h e c u r s o r a f t e r
( I NS) a r e p r e s s e d b e c o m e s t h e a r g u m e n t o f t h e f u n c t i o n t h a t i s
specified next. The range encompassed as the argument is everything up
to the first open parenthesis to the right, if there is one, or everything up to
the first function to the right (sin(30), log2(4), etc.)
This capability can be used with the following functions:
( ), , , ( ), ( ), ( ),
( ), ( ), , , ( ), (Abs).
, r e s u l t i n g i n
7
a n d t h e n c h a n g e i t t o 1 +
6
√
1
, f o r e x a m p l e , y o u c a n
6
7
.
6
7
( M t h I O- M a t h O)
√
6
7 6
( I NS)
,
18
Overwrite Input Mode (Linear
Display only)
You can select either insert or overwrite as the input mode, but only while
Linear Display is selected. In the overwrite mode, text you input replaces
the text at the current cursor location. You can toggle between the insert
and overwrite modes by performing the operations:
cursor appears as " " in the insert mode and as " " in the overwrite
m o d e .
N o t e
• N a tu ra l D i s p l a y a l w a y s u s e s th e i n s e rt m o d e , s o c h a n g i n g d i s p l a y fo rm a t fro m L i n e a r
D i s p l a y to N a tu ra l D i s p l a y w i l l a u to m a ti c a l l y s w i tc h to th e i n s e rt m o d e .
(INS). The
C o r r ect i n g an d C l ear i n g an
E xp r essi o n
T o de l e t e a s i ngl e c ha r a c t e r or f unc t i on:
M o v e t h e c u r s o r s o i t i s d i r e c t l y t o t h e r i g h t o f t h e c h a r a c t e r o r f u n c t i o n y o u
wa n t t o d e l e t e , a n d t h e n p r e s s
I n t h e o v e r wr i t e m o d e , m o v e t h e c u r s o r s o i t i s d i r e c t l y u n d e r t h e c h a r a c t e r
o r f u n c t i o n y o u wa n t t o d e l e t e , a n d t h e n p r e s s
T o i ns e r t a c ha r a c t e r or f unc t i on i nt o a c a l c ul a t i on:
Us e
i n s e r t t h e c h a r a c t e r o r f u n c t i o n a n d t h e n i n p u t i t . Be s u r e a l wa y s t o u s e t h e
i n s e r t m o d e i f L i n e a r Di s p l a y i s s e l e c t e d .
T o c l e a r a l l of t he c a l c ul a t i on y ou a r e i nput t i ng:
Pr e s s
a n d t o m o v e t h e c u r s o r t o t h e l o c a t i o n wh e r e y o u wa n t t o
.
.
.
19
Basic Calculations
Use the
basic calculations.
key to enter the COMP Mode when you want to perform
(COMP)
T o g g l i n g C al cu l at i o n R esu l t s
W h i l e Na t u r a l Di s p l a y i s s e l e c t e d , e a c h p r e s s o f wi l l t o g g l e t h e
c u r r e n t l y d i s p l a y e d c a l c u l a t i o n r e s u l t b e t we e n i t s f r a c t i o n f o r m a n d d e c i m a l
f o r m , i t s √ f o r m a n d d e c i m a l f o r m , o r i t s π f o r m a n d d e c i m a l f o r m .
1
Ex a m pl e 1 : π ÷ 6 =
π = 0 . 5 2 3 5 9 8 7 7 5 6 ( M t h I O- M a t h O)
6
1
( π ) 6
Ex a m pl e 2 : ( √ 2 + 2 ) × √ 3 = √ 6 + 2 √ 3 = 5 . 9 1 3 5 9 1 3 5 8 ( M t h I O- M a t h O)
2 2 3
W h i l e L i n e a r Di s p l a y i s s e l e c t e d , e a c h p r e s s o f
c u r r e n t l y d i s p l a y e d c a l c u l a t i o n r e s u l t b e t we e n i t s d e c i m a l f o r m a n d f r a c t i o n
f o r m .
1
Ex a m pl e 3 : 1 ÷ 5 = 0 . 2 =
4
1
=
Example 4: 1 -
= 0.2 (LineIO)
5
5
( L i n e I O)
5
1
5
π
6
√ 6 + 2 √ 3 5 . 9 1 3 5 9 1 3 5 8
wi l l t o g g l e t h e
0 . 5 2 3 5 9 8 7 7 5 6
0 . 2 1 5
4 5
1
20
1 5 0.2
Important!
• Depending on the type of calculation result that is on the display when you press the
key, the conversion process may take some time to perform.
• With certain calculation results, pressing the
value.
• You cannot switch from decimal form to mixed fraction form if the total number of digits
used in the mixed fraction (including integer, numerator, denominator, and separator
symbols) is greater than 10.
N o t e
• Wi th N a tu ra l D i s p l a y (M a th O), i n p u tti n g o n e o f th e fo l l o w i n g c a l c u l a ti o n s a n d th e n
p re s s i n g
c a l c u l a ti o n th a t re s u l ts i n a √
P re s s i n g
re s u l t. Th e √
i n s te a d o f w i l l d i s p l a y th e c a l c u l a ti o n re s u l t i n d e c i m a l fo rm : a
fo rm o r π fo rm e x p re s s i o n , a d i v i s i o n c a l c u l a ti o n .
a fte r th a t w i l l s w i tc h to th e fra c ti o n fo rm o r π fo rm o f th e c a l c u l a ti o n
fo rm o f th e re s u l t w i l l n o t a p p e a r i n th i s c a s e .
key will not convert the displayed
F r act i o n C al cu l at i o n s
No t e t h a t t h e i n p u t m e t h o d f o r f r a c t i o n s i s d i f f e r e n t , d e p e n d i n g u p o n
wh e t h e r y o u a r e u s i n g Na t u r a l Di s p l a y o r L i n e a r Di s p l a y .
2
1
Ex a m pl e 1 :
+
3
( M t h I O- M a t h O) 2
Ex a m pl e 2 : 4 - 3
( M t h I O- M a t h O) 4
7
=
2
6
o r
( L i n e I O) 2
1
1
=
2
2
3 1 2
2 3 1 2
3 1 2 7 6
( ) 3 1 2
7
6
7
6
1
2
(LineIO) 4
Note
• Mixing fractions and decimal values in a calculation while Linear Display is selected
will cause the result to be displayed as a decimal value.
• Results of calculations that mix fraction and decimal values are always decimal.
3 1 2 1 2
21
• Fractions in calculation results are displayed after being reduced to their lowest terms.
To switch a calculation result between improper fraction and mixed
fraction form:
Perform the following key operation:
To switch a calculation result between fraction and decimal form:
Press
.
(a
bcd
)
c
Percent Calculations
I n p u t t i n g a v a l u e a n d p r e s s i n g
b e c o m e a p e r c e n t .
Ex a m pl e 1 : 1 5 0 × 2 0 % = 3 0
1 5 0
Ex a m pl e 2 : Ca l c u l a t e wh a t p e r c e n t a g e o f 8 8 0 i s 6 6 0 ( 7 5 % )
6 6 0
Ex a m pl e 3 : I n c r e a s e 2 5 0 0 b y 1 5 % ( 2 8 7 5 )
2 5 0 0
Ex a m pl e 4 : De c r e a s e 3 5 0 0 b y 2 5 % ( 2 6 2 5 )
3 5 0 0
2 5 0 0 1 5 ( % ) 2 8 7 5
3 5 0 0 2 5 ( % ) 2 6 2 5
2 0 ( % ) 3 0
8 8 0 ( % ) 7 5
( % ) c a u s e s t h e i n p u t v a l u e t o
D eg r ee, M i n u t e, S eco n d
( S exag esi m al ) C al cu l at i o n s
Y o u c a n p e r f o r m c a l c u l a t i o n s u s i n g s e x a g e s i m a l v a l u e s , a n d c o n v e r t
v a l u e s b e t we e n s e x a g e s i m a l a n d d e c i m a l .
Pe r f o r m i n g a n a d d i t i o n o r s u b t r a c t i o n o p e r a t i o n b e t we e n s e x a g e s i m a l
values, or a multiplication or division operation between a sexagesimal
value and a decimal value will cause the result to be displayed as a
sexagesimal value.
You also can convert between sexagesimal and decimal.
The following is the input format for a sexagesimal value: {degrees}
{minutes} {seconds} .
22
Note
• You must always input something for the degrees and minutes, even if they are zero.
Example 1: 2°20’30” + 39’30” = 3°00’00”
2
20 30 0 39 30 3°0’0”
Example 2: Convert 2°15’18” to its decimal equivalent.
2
15 18 2°15’18”
( Co n v e r t s s e x a g e s i m a l t o d e c i m a l . )
( Co n v e r t s d e c i m a l t o s e x a g e s i m a l . )
2 . 2 5 5
2 ° 1 5 ’ 1 8 ”
M u l t i - S t at em en t s
Y o u c a n u s e t h e c o l o n c h a r a c t e r ( : ) t o c o n n e c t t wo o r m o r e e x p r e s s i o n s
a n d e x e c u t e t h e m i n s e q u e n c e f r o m l e f t t o r i g h t wh e n y o u p r e s s
Ex a m pl e : 3 + 3 : 3 × 3
3 ( : ) 3 3 6
3
.
U si n g E n g i n eer i n g N o t at i o n
A s i m p l e k e y o p e r a t i o n t r a n s f o r m s a d i s p l a y e d v a l u e t o e n g i n e e r i n g
n o t a t i o n .
9
Ex a m pl e 1 : T r a n s f o r m t h e v a l u e 1 2 3 4 t o e n g i n e e r i n g n o t a t i o n , s h i f t i n g t h e
d e c i m a l p o i n t t o t h e r i g h t .
1 2 3 4
Example 2: Transform the value 123 to engineering notation, shifting the
decimal point to the left.
123
(←) 0.123×10
23
1 2 3 4
1 . 2 3 4 × 1 0
1 2 3 4 × 1 0
123
3
0
3
(←) 0.000123×10
Calculation History and Replay
Calculation History
In the COMP, CMPLX, or BASE-N Mode, the calculator remembers up to
a p p r o x i m a t e l y 2 0 0 b y t e s o f d a t a f o r t h e n e we s t c a l c u l a t i o n .
Y o u c a n s c r o l l t h r o u g h c a l c u l a t i o n h i s t o r y c o n t e n t s u s i n g
Ex a m pl e :
a n d .
6
1 + 1 = 2
2 + 2 = 4
3 + 3 = 6
( Sc r o l l s b a c k . )
( Sc r o l l s b a c k a g a i n . )
N o t e
• C a l c u l a ti o n h i s to ry d a ta i s a l l c l e a re d w h e n e v e r y o u p re s s , w h e n y o u c h a n g e to a
d i f fe re n t c a l c u l a ti o n m o d e , w h e n y o u c h a n g e th e d i s p l a y fo rm a t, o r w h e n e v e r y o u
p e rfo rm th e fo l l o w i n g o p e ra ti o n s :
(C L R ) (A l l ) (Y e s ).
1 1 2
2
2 4
3
3 6
(C L R ) (S e tu p ) (Y e s ),
Re pl a y
W h i l e a c a l c u l a t i o n r e s u l t i s o n t h e d i s p l a y , y o u c a n p r e s s
e d i t t h e e x p r e s s i o n y o u u s e d f o r t h e p r e v i o u s c a l c u l a t i o n .
o r t o
4
2
Ex a m pl e : 4 × 3 + 2 = 1 4
4 × 3 - 7 = 5
(Continuing)
4
3 2 1 4
7 5
24
Using Memory Functions
Answer Memory (Ans)
The last calculation result obtained is stored in Ans (answer) memory.
Ans memory contents are updated whenever a new calculation result is
displayed.
Answer Memory contents are updated whenever you execute a calculation
u s i n g a n y o n e o f t h e f o l l o wi n g k e y s : , , , ( M - ) , ,
( ST O) .
An s we r M e m o r y c a n h o l d u p t o 1 5 d i g i t s .
Ex a m pl e 1 : T o d i v i d e t h e r e s u l t o f 3 × 4 b y 3 0 ( L i n e I O)
4 1 2
3
( Co n t i n u i n g )
Ex a m pl e 2 : T o p e r f o r m t h e c a l c u l a t i o n s s h o wn b e l o w:
1 2 3 4 5 6 5 7 9
( Co n t i n u i n g ) 7 8 9
3 0
V a r i a bl e s ( A, B, C, D, E , F , M, X , Y )
Y o u r c a l c u l a t o r h a s n i n e p r e s e t v a r i a b l e s n a m e d A, B, C, D, E, F , M , X,
a n d Y .
Y o u c a n a s s i g n v a l u e s t o v a r i a b l e s a n d u s e t h e v a r i a b l e s i n c a l c u l a t i o n s .
Example:
To assign the result of 3 + 5 to variable A
3
5 (STO) (A) 8
To multiply the contents of variable A by 10
(Continuing)
(A) 10 80
25
To recall the contents of variable A
(Continuing)
To clear the contents of variable A
0 (STO) (A) 0
(A) 8
Independent Memory (M)
You can add calculation results to or subtract results from independent
m e m o r y .
Th e "M " i n d i c a t o r a p p e a r s o n t h e d i s p l a y wh e n t h e r e i s a n y v a l u e o t h e r
t h a n z e r o s t o r e d i n i n d e p e n d e n t m e m o r y .
Ex a m pl e :
T o c l e a r t h e c o n t e n t s o f M
0
T o a d d t h e r e s u l t o f 1 0 × 5 t o M
( Co n t i n u i n g ) 1 0 5 5 0
( ST O) ( M ) 0
T o s u b t r a c t t h e r e s u l t o f 1 0 + 5 f r o m M
( Co n t i n u i n g ) 1 0 5 ( M - ) 1 5
T o r e c a l l t h e c o n t e n t s o f M
( Co n t i n u i n g ) ( M ) 3 5
N o t e
• V a ri a b l e M i s u s e d fo r i n d e p e n d e n t m e m o ry .
Cl e a r i ng t he Cont e nt s of Al l Me m or i e s
An s m e m o r y , i n d e p e n d e n t m e m o r y , a n d v a r i a b l e c o n t e n t s a r e r e t a i n e d
e v e n i f y o u p r e s s
c a l c u l a t o r .
Pe r f o r m t h e f o l l o wi n g p r o c e d u r e wh e n y o u wa n t t o c l e a r t h e c o n t e n t s o f a l l
memories.
, c h a n g e t h e c a l c u l a t i o n m o d e , o r t u r n o f f t h e
(CLR) (Memory) (Yes)
26
Function Calculations
Use the
function calculations.
No t e : Us i n g f u n c t i o n s c a n s l o w d o wn a c a l c u l a t i o n , wh i c h m a y d e l a y
d i s p l a y o f t h e r e s u l t . Do n o t p e r f o r m a n y s u b s e q u e n t o p e r a t i o n wh i l e
wa i t i n g f o r t h e c a l c u l a t i o n r e s u l t t o a p p e a r . T o i n t e r r u p t a n o n g o i n g
c a l c u l a t i o n b e f o r e i t s r e s u l t a p p e a r s , p r e s s
key to enter the COMP Mode when you want to perform
(COMP)
.
P i ( π ) , N at u r al L o g ar i t h m B ase e
π i s d i s p l a y e d a s 3 . 1 4 1 5 9 2 6 5 4 , b u t π = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 8 0 i s u s e d f o r
i n t e r n a l c a l c u l a t i o n s .
e i s d i s p l a y e d a s 2 . 7 1 8 2 8 1 8 2 8 , b u t e = 2 . 7 1 8 2 8 1 8 2 8 4 5 9 0 4 i s u s e d f o r
i n t e r n a l c a l c u l a t i o n s .
T r i g o n o m et r i c F u n ct i o n s
Sp e c i f y t h e a n g l e u n i t b e f o r e p e r f o r m i n g c a l c u l a t i o n s .
Ex a m pl e 1 : s i n 3 0 ° = 0 . 5 ( L i n e I O) ( An g l e u n i t : De g )
3 0 0 . 5
Ex a m pl e 2 : s i n - 1 0 . 5 = 3 0 ° ( L i n e I O) ( An g l e u n i t : De g )
( s i n - 1 ) 0 5 3 0
Hyperbolic Functions
Input a function from the menu that appears when you press
The angle unit setting does not affect calculations.
.
Example 1: sinh 1 = 1.175201194
27
(sinh) 1 1.175201194
Example 2: cosh -1 1 = 0
(cosh-1) 1 0
Angle Unit Conversion
°, r, g : These functions specify the angle unit. ° specifies degrees,
r a d i a n s , a n d g g r a d s .
I n p u t a f u n c t i o n f r o m t h e m e n u t h a t a p p e a r s wh e n y o u p e r f o r m t h e
f o l l o wi n g k e y o p e r a t i o n :
Ex a m pl e : π / 2 r a d i a n s = 9 0 ° , 5 0 g r a d s = 4 5 ° ( An g l e u n i t : De g )
( π ) 2 ( DRG ) ( r )
5 0
( DRG ) .
( DRG ) ( g ) 4 5
r
E xp o n en t i al F u n ct i o n s
No t e t h a t t h e i n p u t m e t h o d i s d i f f e r e n t d e p e n d i n g u p o n wh e t h e r y o u a r e
u s i n g Na t u r a l Di s p l a y o r L i n e a r Di s p l a y .
Ex a m pl e : T o c a l c u l a t e e 5 × 2 t o t h r e e s i g n i f i c a n t d i g i t s ( Sc i 3 )
( SETUP) ( Sc i )
9 0
( M t h l O- M a t h O) ( ) 5 2 2 . 9 7 × 1 0
( L i n e l O)
( ) 5 2 2 . 9 7 × 1 0
L o g ar i t h m i c F u n ct i o n s
Us e t h e
Ba s e 1 0 i s t h e d e f a u l t s e t t i n g i f y o u d o n o t i n p u t a n y t h i n g f o r a .
Th e
selected. In this case, you must input a value for the base.
Example 1: log 10 1000 = log 1000 = 3
Example 2: log 2 16 = 4
k e y t o i n p u t l o g a b a s l o g ( a , b ) .
k e y a l s o c a n b e u s e d f o r i n p u t , b u t o n l y wh i l e Na t u r a l Di s p l a y i s
1000 3
2
2
28
2 (,) 16 4
(MthIO-MathO, MthIO-LineO)
Example 3: log 2(43) = 6 (MthIO-MathO, MthIO-LineO)
2 (x 3)
Example 4: log 2(4)3 = 8 (MthIO-MathO, MthIO-LineO)
2 4 (x 3)
Ex a m pl e 5 : T o c a l c u l a t e l n 9 0 ( = l o g e 9 0 ) t o t h r e e s i g n i f i c a n t d i g i t s ( Sc i 3 )
( SETUP) ( Sc i )
2 16 4
9 0
4 . 5 0 × 1 0
P o w er F u n ct i o n s an d P o w er R o o t
F u n ct i o n s
6
8
0
No t e t h a t t h e i n p u t m e t h o d s f o r
d e p e n d i n g u p o n wh e t h e r y o u a r e u s i n g Na t u r a l Di s p l a y o r L i n e a r Di s p l a y .
Ex a m pl e 1 : 1 . 2 × 1 0 3 = 1 2 0 0 ( M t h I O- M a t h O)
Ex a m pl e 2 : ( 1 + 1 )
Ex a m pl e 3 : ( 5 2 ) 3 = 1 5 6 2 5
Ex a m pl e 4 : 5 √ 3 2 = 2
( M t h l O- M a t h O)
2+ 2
= 1 6 ( M t h I O- M a t h O)
1 1 2 2 1 6
5 ( x 3 )
, , , a n d a r e d i f f e r e n t
2 1 0 3 1 2 0 0
1
( ) 5 3 2 2
1 5 6 2 5
(LinelO) 5
Example 5: To calculate √2 × 3 (= 3√2 = 4.242640687...) to three decimal
places (Fix 3)
( ) 32 2
(SETUP) (Fix)
29
(MthIO-MathO) 2 3√2
4.243
(LineIO)
2 3 4.243
Example 6: 3√5 + 3√-27 = -1.290024053
(LineIO)
( ) 5
( ) 27
-1.290024053
1
Ex a m pl e 7 :
N o t e
• Th e fo l l o w i n g fu n c ti o n s c a n n o t b e i n p u t i n c o n s e c u ti v e s e q u e n c e : x 2 , x 3 , , x - 1 . If y o u
i n p u t 2
p re s s th e
• x 2 , x 3 , x - 1 c a n b e u s e d i n c o m p l e x n u m b e r c a l c u l a ti o n s .
= 1 2
1
1
-
3
4
( L i n e I O)
, fo r e x a m p l e , th e fi n a l w i l l b e i g n o re d . T o i n p u t 2
k e y , a n d th e n p re s s (M th IO-M a th O).
3 4 1 2
2
2
, i n p u t 2 ,
I n t eg r at i o n C al cu l at i o n s
Fu n c t i o n f o r p e r f o r m i n g n u m e r i c a l i n t e g r a t i o n u s i n g t h e Ga u s s - Kr o n r o d
m e t h o d .
Na t u r a l Di s p l a y i n p u t s y n t a x i s ∫
i s ∫ ( f ( x ) , a , b , t o l ) .
t o l s p e c i f i e s t o l e r a n c e , wh i c h b e c o m e s 1 × 1 0 - 5 wh e n n o t h i n g i s i n p u t f o r
t o l .
e
Ex a m pl e 1 : ∫
l n ( x ) = 1
1
( M t h I O- M a t h O)
( X) 1 ( e )
(LineIO)
(X) (,) 1 (,)
b
f ( x ) d x , wh i l e L i n e a r Di s p l a y i n p u t s y n t a x
a
(e )
1
1
30
Example 2: ∫(
1
, 1, 5, 1 × 10-7) = 0.8 (LineIO)
2
x
1 (X) (,) 1 (,) 5
(,)
Example 3: ∫
1
π
(sin x + cos x )2 dx = π (tol : Not specified) (MthIO-MathO)
0
7
(Angle unit: Rad)
( X) ( X)
0
( π )
I nt e gr a t i on Ca l c ul a t i on P r e c a ut i ons
• I n t e g r a t i o n c a l c u l a t i o n c a n b e p e r f o r m e d i n t h e COM P M o d e o n l y .
• Th e f o l l o wi n g c a n n o t b e u s e d i n f ( x ) , a , b , o r t o l : Po l , Re c , ∫ , d / d x , Σ .
• W h e n u s i n g a t r i g o n o m e t r i c f u n c t i o n i n f ( x ) , s p e c i f y Ra d a s t h e a n g l e
u n i t .
• A s m a l l e r t o l v a l u e i n c r e a s e s p r e c i s i o n , b u t i t a l s o i n c r e a s e s c a l c u l a t i o n
t i m e . W h e n s p e c i f y i n g t o l , u s e v a l u e t h a t i s 1 × 1 0
• I n t e g r a t i o n n o r m a l l y r e q u i r e s c o n s i d e r a b l e t i m e t o p e r f o r m .
• De p e n d i n g o n t h e c o n t e n t o f f ( x ) a n d t h e r e g i o n o f i n t e g r a t i o n ,
c a l c u l a t i o n e r r o r t h a t e x c e e d s t h e t o l e r a n c e m a y b e g e n e r a t e d , c a u s i n g
t h e c a l c u l a t o r t o d i s p l a y a n e r r o r m e s s a g e .
• Th e c o n t e n t o f f ( x ) , p o s i t i v e / n e g a t i v e v a l u e s wi t h i n t h e i n t e g r a t i o n
i n t e r v a l , a n d t h e i n t e r v a l t o b e i n t e g r a t e d c a n c a u s e l a r g e e r r o r i n t h e
r e s u l t i n g i n t e g r a t i o n v a l u e s . ( Ex a m p l e s : W h e n t h e r e a r e p a r t s wi t h
d i s c o n t i n u o u s p o i n t s o r a b r u p t c h a n g e . W h e n t h e i n t e g r a t i o n i n t e r v a l i s
t o o wi d e . ) I n s u c h c a s e s d i v i d i n g t h e i n t e g r a t i o n i n t e r v a l i n t o p a r t s a n d
p e r f o r m i n g t h e c a l c u l a t i o n m a y i m p r o v e c a l c u l a t i o n a c c u r a c y .
- 14
o r g r e a t e r .
0.8
π
T i ps f or S uc c e s s f ul I nt e gr a t i on Ca l c ul a t i ons
W he n a pe r i odi c f unc t i on or i nt e gr a t i on i nt e r v a l r e s ul t s i n pos i t i v e
a nd ne ga t i v e f ( x ) f unc t i on v a l ue s
Perform separate integrations for each cycle, or for the positive part and
the negative part, and then combine the results.
31
(1) Positive Part
(2) Negative Part
When integration values fluctuate widely due to minute shifts in the
integration interval
Divide the integration interval into multiple parts (in a way that breaks
areas of wide fluctuation into small parts), perform integration on each
part, and then combine the results.
D i f f er en t i al C al cu l at i o n s
Fu n c t i o n f o r a p p r o x i m a t i o n o f t h e d e r i v a t i v e b a s e d o n t h e c e n t r a l
d i f f e r e n c e m e t h o d .
d
Na t u r a l Di s p l a y i n p u t s y n t a x i s
( f ( x ) ) |
d x
, wh i l e L i n e a r Di s p l a y i n p u t
x = a
d
s y n t a x i s
( f ( x ) , a , t o l ) .
d x
t o l s p e c i f i e s t o l e r a n c e , wh i c h b e c o m e s 1 × 1 0
- 10
wh e n n o t h i n g i s i n p u t f o r
t o l .
Ex a m pl e 1 : T o o b t a i n t h e d e r i v a t i v e a t p o i n t x = π / 2 f o r t h e f u n c t i o n y =
s i n ( x ) ( An g l e u n i t : Ra d )
( M t h I O- M a t h O)
( ) ( X)
( π ) 2
( L i n e I O)
( ) ( X) ( , )
( π ) 2
0
0
Example 2:
( ) 3 (X) 5 (X)
d
(3 x2 - 5 x + 2, 2, 1 × 10
dx
2
(,) 1 12
-12
) = 7 (LineIO)
2 (,)
32
7
Differential Calculation Precautions
• Differential calculation can be performed in the COMP Mode only.
• The following cannot be used in f (x ), a , b , or tol : Pol, Rec, ∫ , d/dx , Σ .
• When using a trigonometric function in f (x ), specify Rad as the angle
unit.
• A smaller tol value increases precision, but it also increases calculation
time. When specifying tol , use value that is 1 × 10
• If convergence to a solution cannot be found when tol input is omitted,
t h e t o l v a l u e wi l l b e a d j u s t e d a u t o m a t i c a l l y t o d e t e r m i n e t h e s o l u t i o n .
• No n - c o n s e c u t i v e p o i n t s , a b r u p t f l u c t u a t i o n , e x t r e m e l y l a r g e o r s m a l l
p o i n t s , i n f l e c t i o n p o i n t s , a n d t h e i n c l u s i o n o f p o i n t s t h a t c a n n o t b e
d i f f e r e n t i a t e d , o r a d i f f e r e n t i a l p o i n t o r d i f f e r e n t i a l c a l c u l a t i o n r e s u l t t h a t
a p p r o a c h e s z e r o c a n c a u s e p o o r p r e c i s i o n o r e r r o r .
-14
or greater.
Σ C al cu l at i o n s
Fu n c t i o n t h a t , f o r a s p e c i f i e d r a n g e o f f ( x ) , d e t e r m i n e s s u m
( f ( x ) ) = f ( a ) + f ( a + 1 ) + f ( a + 2 ) + ⋯ + f ( b ) .
Na t u r a l Di s p l a y i n p u t s y n t a x i s
i s ∑ ( f ( x ) , a , b ) .
a a n d b a r e i n t e g e r s t h a t c a n b e s p e c i f i e d wi t h i n t h e r a n g e o f - 1 × 1 0 10 < a
≦ b < 1 × 1 0 10 .
Ex a m pl e : ( x + 1 ) = 2 0
( M t h I O- M a t h O)
( ) ( X) 1 1 5 2 0
( L i n e I O)
( ) ( X) 1 ( , ) 1
( f ( x ) ) , wh i l e L i n e a r Di s p l a y i n p u t s y n t a x
( , ) 5
2 0
Note
• The following cannot be used in f (x ), a , or b : Pol, Rec, ∫ , d/dx , Σ .
33
Rectangular-Polar Coordinate
Conversion
Pol converts rectangular coordinates to polar coordinates, while Rec
converts polar coordinates to rectangular coordinates.
( 1 ) Re c t a n g u l a r Co o r d i n a t e s ( Re c )
( 2 ) Po l a r Co o r d i n a t e s ( Po l )
Sp e c i f y t h e a n g l e u n i t b e f o r e p e r f o r m i n g c a l c u l a t i o n s .
Th e c a l c u l a t i o n r e s u l t f o r r a n d θ a n d f o r x a n d y a r e e a c h a s s i g n e d
r e s p e c t i v e l y t o v a r i a b l e s X a n d Y .
Ca l c u l a t i o n r e s u l t θ i s d i s p l a y e d i n t h e r a n g e o f - 1 8 0 ° < θ ≦ 1 8 0 ° .
Ex a m pl e 1 : T o c o n v e r t r e c t a n g u l a r c o o r d i n a t e s ( √ 2 , √ 2 ) t o p o l a r
c o o r d i n a t e s ( An g l e u n i t : De g )
( M t h I O- M a t h O)
( Po l ) 2 ( , ) 2
( L i n e I O)
( Po l ) 2 ( , ) 2
r = 2 , θ = 4 5
r = 2
θ = 4 5
Ex a m pl e 2 : T o c o n v e r t p o l a r c o o r d i n a t e s ( √ 2 , 4 5 ° ) t o r e c t a n g u l a r
coordinates (Angle unit: Deg)
(MthIO-MathO)
(Rec) 2 (,) 45 X = 1, Y = 1
34
Factorial Function (!)
Ge n e r a t e t h r e e 3 - d i g i t r a n d o m n u m b e r s .
Th e r a n d o m 3 - d i g i t d e c i m a l v a l u e s a r e c o n v e r t e d t o 3 - d i g i t
i n t e g e r v a l u e s b y m u l t i p l y i n g b y 1 0 0 0 .
Example: (5 + 3)! = 40320
5 3 (x !)
40320
Absolute Value Function (Abs)
No t e t h a t t h e i n p u t m e t h o d i s d i f f e r e n t d e p e n d i n g u p o n wh e t h e r y o u a r e
u s i n g Na t u r a l Di s p l a y o r L i n e a r Di s p l a y .
Ex a m pl e : | 2 - 7 | × 2 = 1 0
( M t h I O- M a t h O)
( Ab s ) 2 7 2 1 0
( L i n e I O)
( Ab s ) 2 7 2 1 0
R an d o m N u m b er ( R an #)
Fu n c t i o n t h a t g e n e r a t e s a p s e u d o r a n d o m n u m b e r i n t h e r a n g e o f 0 . 0 0 0 t o
0 . 9 9 9 .
Th e r e s u l t i s d i s p l a y e d a s a f r a c t i o n wh e n Na t u r a l Di s p l a y i s s e l e c t e d .
Ex a m pl e :
1 0 0 0 ( Ra n # ) 6 3 4
9 2
1 7 5
( Re s u l t s s h o wn h e r e a r e f o r i l l u s t r a t i v e p u r p o s e s o n l y . Ac t u a l r e s u l t s wi l l
d i f f e r . )
Random Integer (RanInt#)
For input of the function of the form RanInt#(a , b ), which generates a
random integer within the range of a to b .
Example:
To generate random integers in the range of 1 to 6
35
(RanInt) 1 (,) 6 2
(Results shown here are for illustrative purposes only. Actual results will
differ.)
P er m u t at i o n ( n P r ) an d C o m b i n at i o n
( n C r )
Ex a m pl e : T o d e t e r m i n e t h e n u m b e r o f p e r m u t a t i o n s a n d c o m b i n a t i o n s
p o s s i b l e wh e n s e l e c t i n g f o u r p e o p l e f r o m a g r o u p o f 1 0 .
6
1
Pe r m u t a t i o n s : 1 0
Co m b i n a t i o n s : 1 0
( n P r ) 4
( n C r ) 4
5 0 4 0
2 1 0
R o u n d i n g F u n ct i o n ( R n d )
Th e a r g u m e n t o f t h i s f u n c t i o n i s m a d e a d e c i m a l v a l u e a n d t h e n r o u n d e d
i n a c c o r d a n c e wi t h t h e c u r r e n t n u m b e r o f d i s p l a y d i g i t s s e t t i n g ( No r m , Fi x ,
o r Sc i ) .
W i t h No r m 1 o r No r m 2 , t h e a r g u m e n t i s r o u n d e d o f f t o 1 0 d i g i t s .
W i t h Fi x a n d Sc i , t h e a r g u m e n t i s r o u n d e d o f f t o t h e s p e c i f i e d d i g i t .
W h e n Fi x 3 i s t h e d i s p l a y d i g i t s s e t t i n g , f o r e x a m p l e , t h e r e s u l t o f 1 0 ÷ 3 i s
d i s p l a y e d a s 3 . 3 3 3 , wh i l e t h e c a l c u l a t o r m a i n t a i n s a v a l u e o f
3 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ( 1 5 d i g i t s ) i n t e r n a l l y f o r c a l c u l a t i o n .
I n t h e c a s e o f Rn d ( 1 0 ÷ 3 ) = 3 . 3 3 3 ( wi t h Fi x 3 ) , b o t h t h e d i s p l a y e d v a l u e
a n d t h e c a l c u l a t o r ’ s i n t e r n a l v a l u e b e c o m e 3 . 3 3 3 .
Be c a u s e o f t h i s a s e r i e s o f c a l c u l a t i o n s wi l l p r o d u c e d i f f e r e n t r e s u l t s
d e p e n d i n g o n wh e t h e r Rn d i s u s e d ( Rn d ( 1 0 ÷ 3 ) × 3 = 9 . 9 9 9 ) o r n o t u s e d
( 1 0 ÷ 3 × 3 = 1 0 . 0 0 0 ) .
Ex a m pl e : T o p e r f o r m t h e f o l l o wi n g c a l c u l a t i o n s wh e n Fi x 3 i s s e l e c t e d f o r
the number of display digits: 10 ÷ 3 × 3 and Rnd(10 ÷ 3) × 3 (LineIO)
(SETUP) (Fix)
10 3 3 10.000
(Rnd) 10 3 3 9.999
36
Using CALC
CALC lets you save calculation expressions that contain variables, which
you can then recall and execute in the COMP Mode and the CMPLX
Mode.
The following describes the types of expressions you can save with CALC.
• Expressions: 2X + 3Y, 2AX + 3BX + C, A + Bi
• Multi-statements: X + Y : X(X + Y)
• Eq u a t i o n s wi t h a s i n g l e v a r i a b l e o n t h e l e f t a n d a n e x p r e s s i o n i n c l u d i n g
v a r i a b l e s o n t h e r i g h t : A = B + C, Y = X 2 + X + 3
( Us e
T o s t a r t a CAL C o p e r a t i o n a f t e r i n p u t t i n g a n e x p r e s s i o n , p r e s s t h e
k e y .
Ex a m pl e 1 : T o s t o r e 3 A + B a n d t h e n s u b s t i t u t e t h e f o l l o wi n g v a l u e s t o
p e r f o r m t h e c a l c u l a t i o n : ( A, B) = ( 5 , 1 0 ) , ( 7 , 2 0 )
( = ) t o i n p u t t h e e q u a l s s i g n o f t h e e q u a l i t y . )
3
( A) ( B)
( 1 ) Pr o m p t s f o r i n p u t o f a v a l u e f o r A
1 0
5
( o r )
( 2 ) Cu r r e n t v a l u e o f A
7 20
To exit CALC:
Example 2: To store A+Bi and then determine √3 + i , 1 + √3i using polar
coordinates (r∠ θ ) (Angle Unit: Deg)
37
(CMPLX)
(A) (B) (i )
(CMPLX) ( r∠ θ )
3 1 2∠ 30
(or ) 1 3 2∠ 60
T o e x i t CAL C:
N o t e
• D u ri n g th e ti m e fro m w h e n y o u p re s s u n ti l y o u e x i t C A L C b y p re s s i n g , y o u
s h o u l d u s e L i n e a r D i s p l a y i n p u t p ro c e d u re s fo r i n p u t.
U si n g S O L V E
SOL VE u s e s Ne wt o n ' s m e t h o d t o a p p r o x i m a t e t h e s o l u t i o n o f e q u a t i o n s .
No t e t h a t SOL VE c a n b e u s e d i n t h e COM P M o d e o n l y .
Th e f o l l o wi n g d e s c r i b e s t h e t y p e s o f e q u a t i o n s wh o s e s o l u t i o n s c a n b e
o b t a i n e d u s i n g SOL VE.
• Equa t i ons t ha t i nc l ude v a r i a bl e X: X 2 + 2 X - 2 , Y = X + 5 , X = s i n( M ) ,
X + 3 = B + C
SOL VE s o l v e s f o r X. An e x p r e s s i o n l i k e X 2 + 2 X - 2 i s t r e a t e d a s X 2 + 2 X
- 2 = 0 .
• Equa t i ons i nput us i ng t he f ol l owi ng s y nt a x : { e qua t i on} , { s ol ut i on
v a r i a bl e }
SOL VE s o l v e s f o r Y , f o r e x a m p l e , wh e n a n e q u a t i o n i s i n p u t a s : Y = X +
5 , Y
I m p o rt a n t !
• If a n e q u a ti o n c o n ta i n s i n p u t fu n c ti o n s th a t i n c l u d e a n o p e n p a re n th e s i s (s u c h a s s i n
a n d l o g ), d o n o t o m i t th e c l o s i n g p a re n th e s i s .
• Th e fo l l o w i n g fu n c ti o n s a re n o t a l l o w e d i n s i d e o f a n e q u a ti o n : ∫ , d /d x , Σ , P o l , R e c .
Example: To solve y = ax 2 + b for x when y = 0, a = 1, and b = -2
(Y) (=)
(A) (X) (B)
38
(1) Prompts for input of a value for Y
1 2
0
I n p u t a n i n i t i a l v a l u e f o r X ( He r e , i n p u t 1 ) :
(SOLVE)
(2) Current value of Y
( 3 ) Cu r r e n t v a l u e o f X
1
So l u t i o n Sc r e e n
T o e x i t SOL VE:
N o t e
• D u ri n g th e ti m e fro m w h e n y o u p re s s (S OL V E ) u n ti l y o u e x i t S OL V E b y
p re s s i n g
I m p o rt a n t !
• D e p e n d i n g o n w h a t y o u i n p u t fo r th e i n i ti a l v a l u e fo r X (s o l u ti o n v a ri a b l e ), S OL V E m a y
n o t b e a b l e to o b ta i n s o l u ti o n s . If th i s h a p p e n s , try c h a n g i n g th e i n i ti a l v a l u e s o th e y
a re c l o s e r to th e s o l u ti o n .
• S OL V E m a y n o t b e a b l e to d e te rm i n e th e c o rre c t s o l u ti o n , e v e n w h e n o n e e x i s ts .
• S OL V E u s e s N e w to n ' s m e th o d , s o e v e n i f th e re a re m u l ti p l e s o l u ti o n s , o n l y o n e o f
th e m w i l l b e re tu rn e d .
• D u e to l i m i ta ti o n s i n N e w to n ' s m e th o d , s o l u ti o n s te n d to b e d i f fi c u l t to o b ta i n fo r
equations like the following: y = sin(x ), y = e x, y = √x .
, y o u s h o u l d u s e L i n e a r D i s p l a y i n p u t p ro c e d u re s fo r i n p u t.
Solution Screen Contents
Solutions are always displayed in decimal form.
39
( 1 ) Eq u a t i o n ( Th e e q u a t i o n y o u i n p u t . )
( 2 ) V a r i a b l e s o l v e d f o r
( 3 ) So l u t i o n
( 4 ) ( L e f t Si d e ) - ( Ri g h t Si d e ) r e s u l t
"( L e f t Si d e ) - ( Ri g h t Si d e ) r e s u l t " s h o ws t h e r e s u l t wh e n t h e r i g h t s i d e o f
t h e e q u a t i o n i s s u b t r a c t e d f r o m t h e l e f t s i d e , a f t e r a s s i g n i n g t h e o b t a i n e d
v a l u e t o t h e v a r i a b l e b e i n g s o l v e d f o r . Th e c l o s e r t h i s r e s u l t i s t o z e r o , t h e
h i g h e r t h e a c c u r a c y o f t h e s o l u t i o n .
Cont i nue S c r e e n
SOL VE p e r f o r m s c o n v e r g e n c e a p r e s e t n u m b e r o f t i m e s . I f i t c a n n o t f i n d a
s o l u t i o n , i t d i s p l a y s a c o n f i r m a t i o n s c r e e n t h a t s h o ws "Co n t i n u e : [ = ] ",
a s k i n g i f y o u wa n t t o c o n t i n u e .
Pr e s s
Ex a m pl e : T o s o l v e y = x 2 - x + 1 f o r x wh e n y = 3 , 7 , a n d 1 3 .
t o c o n t i n u e o r t o c a n c e l t h e SOL VE o p e r a t i o n .
( Y) ( = )
( X) ( X) 1
Input an initial value for X (Here, input 1):
( SOL VE)
3
1
40
7
13
Scientific Constants
Y o u r c a l c u l a t o r c o m e s wi t h 4 0 b u i l t - i n s c i e n t i f i c c o n s t a n t s t h a t c a n b e u s e d
i n a n y m o d e b e s i d e s BASE- N.
Ea c h s c i e n t i f i c c o n s t a n t i s d i s p l a y e d a s a u n i q u e s y m b o l ( s u c h a s π ) ,
wh i c h c a n b e u s e d i n s i d e o f c a l c u l a t i o n s .
T o i n p u t a s c i e n t i f i c c o n s t a n t i n t o a c a l c u l a t i o n , p r e s s
a n d t h e n i n p u t t h e t wo - d i g i t n u m b e r t h a t c o r r e s p o n d s t o t h e c o n s t a n t y o u
wa n t .
( CONST)
Ex a m pl e 1 : T o i n p u t t h e s c i e n t i f i c c o n s t a n t C 0 ( s p e e d o f l i g h t i n a
v a c u u m ) , a n d d i s p l a y i t s v a l u e
( CONST)
( C 0 )
Ex a m pl e 2 : T o c a l c u l a t e C 0 =
1 ( CONST) ( ε 0 )
( CONST) ( μ 0 )
1
( M t h I O- M a t h O)
√
ε 0 μ
0
Th e f o l l o wi n g s h o ws t h e t wo - d i g i t n u m b e r s f o r e a c h o f t h e s c i e n t i f i c
constants.
01: (mp) proton mass 02: (mn) neutron mass
03: (me) electron mass
05: (a0) Bohr radius 06: (h) Planck constant
04: (mμ ) muon mass
41
07: (μ N) nuclear magneton 08: (μ B) Bohr magneton
09: (
) Planck
10: (α ) fine-structure constant
constant, rationalized
11: (re) classical electron radius
12: (λ C) Compton wavelength
14: (λ Cp) proton Compton
13: (γ p) proton gyromagnetic ratio
wavelength
1 5 : ( λ C n ) n e u t r o n Co m p t o n
1 6 : ( R ∞ ) Ry d b e r g c o n s t a n t
wa v e l e n g t h
1 7 : ( u ) a t o m i c m a s s u n i t
1 8 : ( μ p ) p r o t o n m a g n e t i c m o m e n t
1 9 : ( μ e ) e l e c t r o n m a g n e t i c
2 0 : ( μ n ) n e u t r o n m a g n e t i c m o m e n t
m o m e n t
2 1 : ( μ μ ) m u o n m a g n e t i c m o m e n t
2 2 : ( F) Fa r a d a y c o n s t a n t
2 3 : ( e ) e l e m e n t a r y c h a r g e 2 4 : ( NA) A v o g a d r o c o n s t a n t
2 5 : ( k ) Bo l t z m a n n c o n s t a n t
2 6 : ( Vm ) m o l a r v o l u m e o f i d e a l
g a s ( 2 3 7 . 1 5 K, 1 0 0 k Pa )
2 7 : ( R) m o l a r g a s c o n s t a n t 2 8 : ( C 0 ) s p e e d o f l i g h t i n v a c u u m
2 9 : ( C 1 ) f i r s t r a d i a t i o n c o n s t a n t 3 0 : ( C 2 ) s e c o n d r a d i a t i o n c o n s t a n t
3 1 : ( σ ) St e f a n - Bo l t z m a n n c o n s t a n t 3 2 : ( ε 0 ) e l e c t r i c c o n s t a n t
3 3 : ( μ 0 ) m a g n e t i c c o n s t a n t 3 4 : ( Φ 0 ) m a g n e t i c f l u x q u a n t u m
3 5 : ( g ) s t a n d a r d a c c e l e r a t i o n o f
3 6 : ( G 0 ) c o n d u c t a n c e q u a n t u m
g r a v i t y
3 7 : ( Z 0 ) c h a r a c t e r i s t i c i m p e d a n c e
3 8 : ( t ) Ce l s i u s t e m p e r a t u r e
o f v a c u u m
39: (G) Newtonian constant of
40: (atm) standard atmosphere
gravitation
• The values are based on CODATA (2014) recommended values.
42
Metric Conversion
The calculator's built-in metric conversion commands make it simple to
convert values from one unit to another. You can use the metric
conversion commands in any calculation mode except for BASE-N and
TABLE.
To input a metric conversion command into a calculation, press
(CONV) and then input the two-digit number that corresponds to the
c o m m a n d y o u wa n t .
Ex a m pl e 1 : T o c o n v e r t 5 c m i n t o i n c h e s ( L i n e I O)
5 ( CONV)
( c m i n )
Ex a m pl e 2 : T o c o n v e r t 1 0 0 g i n t o o u n c e s ( L i n e I O)
1 0 0 ( CONV) ( g o z )
Ex a m pl e 3 : T o c o n v e r t - 3 1 ° C i n t o Fa h r e n h e i t ( L i n e I O)
3 1 ( CONV) ( ° C ° F)
Th e f o l l o wi n g s h o ws t h e t wo - d i g i t n u m b e r s f o r e a c h o f t h e m e t r i c
c o n v e r s i o n c o m m a n d s .
0 1 : i n
05: yd
c m 0 2 : c m i n 0 3 : f t m 0 4 : m f t
m 06: m yd 07: mile km 08: km mile
09: n mile
13: gal (US)
m 10: m n mile 11: acre m
ℓ 14: ℓ gal (US) 15: gal (UK) ℓ 16: ℓ gal (UK)
43
2
12: m2acre
17: pc km 18: km pc 19: km/h m/s 20: m/s km/h
21: oz
25: atm
29: hp
33: kgf • m
3 7 : ° F
g 22: g oz 23: lb kg 24: kg lb
Pa 26: Pa atm 27: mmHg Pa 28: Pa mmHg
kW 30: kW hp 31: kgf/cm2Pa 32: Pa kgf/cm
J 34: J kgf • m 35: lbf/in2kPa 36: kPa lbf/in
° C 3 8 : ° C ° F 3 9 : J c a l 4 0 : c a l J
Co n v e r s i o n f o r m u l a d a t a i s b a s e d o n t h e "NI ST Sp e c i a l Pu b l i c a t i o n 8 1 1
( 2 0 0 8 ) ".
N o t e
• Th e J c a l c o m m a n d p e rfo rm s c o n v e rs i o n fo r v a l u e s a t a te m p e ra tu re o f 1 5 ° C .
2
2
44
Using Calculation Modes
Complex Number Calculations
(CMPLX)
To perform complex number calculations, first press
e n t e r t h e CM PL X M o d e .
Y o u c a n u s e e i t h e r r e c t a n g u l a r c o o r d i n a t e s ( a + b i ) o r p o l a r c o o r d i n a t e s
( r ∠ θ ) t o i n p u t c o m p l e x n u m b e r s .
Co m p l e x n u m b e r c a l c u l a t i o n r e s u l t s a r e d i s p l a y e d i n a c c o r d a n c e wi t h t h e
c o m p l e x n u m b e r f o r m a t s e t t i n g o n t h e s e t u p m e n u .
Ex a m pl e 1 : ( 2 + 6 i ) ÷ ( 2 i ) = 3 - i ( Co m p l e x n u m b e r f o r m a t : a + b i )
2 6 ( i ) 2 ( i ) 3 - i
Ex a m pl e 2 : 2 ∠ 4 5 = √ 2 + √ 2 i ( M t h I O- M a t h O) ( An g l e u n i t : De g )
( Co m p l e x n u m b e r f o r m a t : a + b i )
(CMPLX) to
2
Ex a m pl e 3 : √ 2 + √ 2 i = 2 ∠ 4 5 ( M t h I O- M a t h O) ( An g l e u n i t : De g )
( Co m p l e x n u m b e r f o r m a t : r ∠ θ )
2 2 ( i )
N o t e
• If y o u a re p l a n n i n g to p e rfo rm i n p u t a n d d i s p l a y o f th e c a l c u l a ti o n re s u l t i n p o l a r
c o o rd i n a te fo rm a t, s p e c i fy th e a n g l e u n i t b e fo re s ta rti n g th e c a l c u l a ti o n .
• The θ value of the calculation result is displayed in the range of -180° < θ ≦ 180°.
• Display of the calculation result while Linear Display is selected will show a and bi (or r
and θ ) on separate lines.
( ∠ ) 4 5
√ 2 + √ 2 i
2 ∠ 4 5
45
CMPLX Mode Calculation Examples
1
Example 1: (1 - i ) -1 =
+bi )
Example 2: (1 + i ) 2 + (1 - i )2 = 0 (MthIO-MathO)
1
+
i (MthIO-MathO) (Complex number format: a
2
2
1 (i )
1
1
+
i
2
2
1 ( i ) 1 ( i )
Ex a m pl e 3 : T o o b t a i n t h e c o n j u g a t e c o m p l e x n u m b e r o f 2 + 3 i
( Co m p l e x n u m b e r f o r m a t : a + b i )
( CM PL X) ( Co n j g ) 2 3 ( i ) 2 - 3 i
Ex a m pl e 4 : T o o b t a i n t h e a b s o l u t e v a l u e a n d a r g u m e n t o f 1 + i ( M t h I O-
M a t h O) ( An g l e u n i t : De g )
Ab s o l u t e V a l u e ( Ab s ) :
( Ab s ) 1 ( i )
Ar g u m e n t ( a r g ) :
( CM PL X) ( a r g ) 1 ( i )
Us i ng a Com m a nd t o S pe c i f y t he Ca l c ul a t i on
Re s ul t For m a t
0
√ 2
4 5
Ei t h e r o f t wo s p e c i a l c o m m a n d s (
o f a c a l c u l a t i o n t o s p e c i f y t h e d i s p l a y f o r m a t o f t h e c a l c u l a t i o n r e s u l t s .
Th e c o m m a n d o v e r r i d e s t h e c a l c u l a t o r ' s c o m p l e x n u m b e r f o r m a t s e t t i n g .
Ex a m pl e : √ 2 + √ 2 i = 2 ∠ 4 5 , 2 ∠ 4 5 = √ 2 + √ 2 i ( M t h I O- M a t h O) ( An g l e u n i t :
De g )
2 2 ( i ) ( CM PL X)
2
( ∠ ) 4 5 ( CM PL X) ( a + b i ) √ 2 + √ 2 i
r ∠ θ o r a + b i ) c a n b e i n p u t a t t h e e n d
( r ∠ θ )
2 ∠ 4 5
Statistical Calculations (STAT)
To start a statistical calculation, perform the key operation
to enter the STAT Mode and then use the screen that appears to select the
type of calculation you want to perform.
(STAT)
46
To select this type of statistical calculation:
(Regression formula shown in parentheses)
Press this key:
Si n g l e - v a r i a b l e ( X)
Pa i r e d - v a r i a b l e ( X, Y) , l i n e a r r e g r e s s i o n
( y = A + B x )
Pa i r e d - v a r i a b l e ( X, Y) , q u a d r a t i c r e g r e s s i o n
( y = A + B x + C x 2 )
Pa i r e d - v a r i a b l e ( X, Y) , l o g a r i t h m i c r e g r e s s i o n
( y = A + Bl n x )
Pa i r e d - v a r i a b l e ( X, Y) , e e x p o n e n t i a l
r e g r e s s i o n
( y = A e B x )
Pa i r e d - v a r i a b l e ( X, Y) , a b e x p o n e n t i a l
r e g r e s s i o n
( y = AB x )
( 1 - V AR)
( A+ BX)
( _ + CX 2 )
( l n X)
( e ∧ X)
( A• B ∧ X)
Pa i r e d - v a r i a b l e ( X, Y) , p o we r r e g r e s s i o n
( A• X ∧ B)
( y = A x B )
Pa i r e d - v a r i a b l e ( X, Y) , i n v e r s e r e g r e s s i o n
( 1 / X)
( y = A + B/ x )
Pr e s s i n g a n y o f t h e a b o v e k e y s (
N o t e
• When you want to change the calculation type after entering the STAT Mode, perform
the key operation
screen.
(STAT) (Type) to display the calculation type selection
t o ) d i s p l a y s t h e St a t i s t i c s Ed i t o r .
Inputting Data
Use the Statistics Editor to input data. Perform the following key operation
to display the Statistics Editor:
(STAT) (Data).
47
The Statistics Editor provides 80 rows for data input when there is an X
column only, 40 rows when there are X and FREQ columns or X and Y
columns, or 26 rows when there are X, Y, and FREQ columns.
Note
• Use the FREQ (frequency) column to input the quantity (frequency) of identical data
items. Display of the FREQ column can be turned on (displayed) or off (not displayed)
using the Stat Format setting on the setup menu.
Ex a m pl e 1 : T o s e l e c t l i n e a r r e g r e s s i o n a n d i n p u t t h e f o l l o wi n g d a t a :
( 1 7 0 , 6 6 ) , ( 1 7 3 , 6 8 ) , ( 1 7 9 , 7 5 )
( ST A T) ( A+ BX)
1 7 0 1 7 3 1 7 9
6 6 6 8 7 5
I m p o rt a n t !
• A l l d a ta c u rre n tl y i n p u t i n th e S ta ti s ti c s E d i to r i s d e l e te d w h e n e v e r y o u e x i t th e S T A T
M o d e , s w i tc h b e tw e e n th e s i n g l e -v a ri a b l e a n d a p a i re d -v a ri a b l e s ta ti s ti c a l c a l c u l a ti o n
ty p e , o r c h a n g e th e S ta t Fo rm a t s e tti n g o n th e s e tu p m e n u .
• Th e fo l l o w i n g o p e ra ti o n s a re n o t s u p p o rte d b y th e S ta ti s ti c s E d i to r:
(M -), (S T O). P o l , R e c , a n d m u l ti -s ta te m e n ts a l s o c a n n o t b e i n p u t w i th th e
S ta ti s ti c s E d i to r .
,
T o c ha nge t he da t a i n a c e l l :
I n t h e St a t i s t i c s Ed i t o r , m o v e t h e c u r s o r t o t h e c e l l t h a t c o n t a i n s t h e d a t a
y o u wa n t t o c h a n g e , i n p u t t h e n e w d a t a , a n d t h e n p r e s s
.
T o de l e t e a l i ne :
I n t h e St a t i s t i c s Ed i t o r , m o v e t h e c u r s o r t o t h e l i n e t h a t y o u wa n t t o d e l e t e
and then press
.
To insert a line:
In the Statistics Editor, move the cursor to the location where you want to
insert the line and then perform the following key operation:
(STAT) (Edit) (Ins).
48
To delete all Statistics Editor contents:
Si n g l e - v a r i a b l e St a t i s t i c s
Pa i r e d - v a r i a b l e s St a t i s t i c s
In the Statistics Editor, perform the following key operation:
(STAT) (Edit) (Del-A).
Statistics Calculation Screen
The Statistics Calculation Screen is for performing statistical calculations
with the data you input with the Statistics Editor. Pressing the key
while the Statistics Editor is displayed switches to the Statistics Calculation
Sc r e e n .
Us i ng t he S t a t i s t i c s Me nu
W h i l e t h e St a t i s t i c s Ca l c u l a t i o n Sc r e e n i s o n t h e d i s p l a y , p r e s s
( ST A T) t o d i s p l a y t h e St a t i s t i c s M e n u .
Th e c o n t e n t t o t h e St a t i s t i c s M e n u d e p e n d s o n wh e t h e r t h e c u r r e n t l y
s e l e c t e d s t a t i s t i c a l o p e r a t i o n t y p e u s e s a s i n g l e v a r i a b l e o r p a i r e d
v a r i a b l e s .
St a t i s t i c s M e nu I t e m s
Com m on I t e m s
Se l e c t t hi s m e nu
i t e m :
(Type) Display the calculation type selection screen
(Data) Display the Statistics Editor
(Sum)
W he n y ou wa nt t o obt a i n t hi s :
Display the Sum sub-menu of commands for
calculating sums
49
(Var)
Display the Var sub-menu of commands for
calculating the mean, standard deviation, etc.
Display the Distr sub-menu of commands for
Single-variable:
(Distr)
normal distribution calculations
• For more information, see "Performing
Normal Distribution Calculations".
Display the Reg sub-menu of commands for
r e g r e s s i o n c a l c u l a t i o n s
Pa i r e d - v a r i a b l e :
( Re g )
• Fo r d e t a i l s s e e "Co m m a n d s wh e n L i n e a r
Re g r e s s i o n Ca l c u l a t i o n ( A+ BX) I s Se l e c t e d "
a n d "Co m m a n d s wh e n Qu a d r a t i c Re g r e s s i o n
Ca l c u l a t i o n ( _ + CX 2 ) I s Se l e c t e d ".
Di s p l a y t h e M i n M a x s u b - m e n u o f c o m m a n d s
( M i n M a x )
f o r o b t a i n i n g m a x i m u m a n d m i n i m u m v a l u e s
Si ngl e - v a r i a bl e ( 1 - V AR) St a t i s t i c a l Ca l c ul a t i on Com m a nds
Sum Sub- m e nu (
( ST A T) ( Sum ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( ∑ x 2 )
( ∑ x )
V a r Sub- m e nu (
Su m o f s q u a r e s o f t h e s a m p l e d a t a
Su m o f t h e s a m p l e d a t a
( ST A T) ( V a r ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( n )
Nu m b e r o f s a m p l e s
( x ) M e a n o f t h e s a m p l e d a t a
(σx) Population standard deviation
(sx) Sample standard deviation
50
Distr Sub-menu ( (STAT) (Distr))
(P()
This menu can be used to calculate the
(Q()
probability of standard normal distribution.
(R()
• For details see "Performing Normal
Distribution Calculations".
( t )
M i nM a x Sub- m e nu (
( ST A T) ( M i nM a x ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( m i n X) M i n i m u m v a l u e
( m a x X) M a x i m u m v a l u e
Com m a nds whe n Li ne a r Re gr e s s i on Ca l c ul a t i on ( A+ BX) I s Se l e c t e d
Sum Sub- m e nu (
( ST A T) ( Sum ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( ∑ x 2 )
( ∑ x )
( ∑ y 2 )
( ∑ y )
( ∑ x y )
( ∑ x 3 )
( ∑ x 2 y )
(∑x 4)
Su m o f s q u a r e s o f t h e X- d a t a
Su m o f t h e X- d a t a
Su m o f s q u a r e s o f t h e Y - d a t a
Su m o f t h e Y - d a t a
Su m o f p r o d u c t s o f t h e X- d a t a a n d Y - d a t a
Su m o f c u b e s o f t h e X- d a t a
Su m o f ( X- d a t a s q u a r e s × Y - d a t a )
Sum of biquadrate of the X-data
51
Var Sub-menu ( (STAT) (Var))
Select this menu
When you want to obtain this:
item:
(n )
Number of samples
(x ) Mean of the X-data
(σx ) Population standard deviation of the X-data
( s x ) Sa m p l e s t a n d a r d d e v i a t i o n o f t h e X- d a t a
( y ) M e a n o f t h e Y - d a t a
( σ y ) Po p u l a t i o n s t a n d a r d d e v i a t i o n o f t h e Y - d a t a
( s y ) Sa m p l e s t a n d a r d d e v i a t i o n o f t h e Y - d a t a
Re g Sub- m e nu (
( ST A T) ( Re g) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( A) Re g r e s s i o n c o e f f i c i e n t c o n s t a n t t e r m A
( B) Re g r e s s i o n c o e f f i c i e n t B
( r ) Co r r e l a t i o n c o e f f i c i e n t r
( x ˆ )
( y ˆ )
M i nM a x Sub- m e nu (
Es t i m a t e d v a l u e o f X
Es t i m a t e d v a l u e o f Y
( ST A T) ( M i nM a x ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
(minX) Minimum value of the X-data
(maxX) Maximum value of the X-data
(minY) Minimum value of the Y-data
(maxY) Maximum value of the Y-data
52
Commands when Quadratic Regression Calculation (_+CX2) Is
Mean: 3, Population Standard Deviation: 1.154700538
Selected
Reg Sub-menu ( (STAT) (Reg))
Select this menu
When you want to obtain this:
item:
(A) Regression coefficient constant term A
L i n e a r c o e f f i c i e n t B o f t h e r e g r e s s i o n
( B)
c o e f f i c i e n t s
Qu a d r a t i c c o e f f i c i e n t C o f t h e r e g r e s s i o n
( C)
c o e f f i c i e n t s
( x ˆ 1 ) Es t i m a t e d v a l u e o f x
( x ˆ 2 ) Es t i m a t e d v a l u e o f x
1
2
( y ˆ ) Es t i m a t e d v a l u e o f y
N o t e
• x ˆ , x ˆ 1 , x ˆ 2 a n d y ˆ a re n o t v a ri a b l e s . Th e y a re c o m m a n d s o f th e ty p e th a t ta k e a n
a rg u m e n t i m m e d i a te l y b e fo re th e m . S e e "C a l c u l a ti n g E s ti m a te d V a l u e s " fo r m o re
i n fo rm a ti o n .
Ex a m pl e 2 : T o i n p u t t h e s i n g l e - v a r i a b l e d a t a x = { 1 , 2 , 2 , 3 , 3 , 3 , 4 , 4 ,
5 } , u s i n g t h e FREQ c o l u m n t o s p e c i f y t h e n u m b e r o f r e p e a t s f o r e a c h
i t e m s ( { x n ; f r e q n } = { 1 ; 1 , 2 ; 2 , 3 ; 3 , 4 ; 2 , 5 ; 1 } ) , a n d c a l c u l a t e t h e m e a n a n d
p o p u l a t i o n s t a n d a r d d e v i a t i o n .
( SETUP) ( ST A T) ( ON)
( ST A T) ( 1 - V AR)
1
2 3 4 5
1 2 3 2
( ST A T) ( V a r ) ( x ) 3
(STAT) (Var) (σx)
1.154700538
Results:
Example 3: To calculate the linear regression and logarithmic regression
correlation coefficients for the following paired-variable data and determine
the regression formula for the strongest correlation: (x , y ) = (20, 3150),
53
(110, 7310), (200, 8800), (290, 9310). Specify Fix 3 (three decimal places)
L i n e a r Re g r e s s i o n Co r r e l a t i o n Co e f f i c i e n t : 0 . 9 2 3
L o g a r i t h m i c Re g r e s s i o n Co r r e l a t i o n Co e f f i c i e n t : 0 . 9 9 8
L o g a r i t h m i c Re g r e s s i o n Fo r m u l a : y = - 3 8 5 7 . 9 8 4 + 2 3 5 7 . 5 3 2 l n x
for results.
(SETUP) (STAT) (OFF)
(SETUP) (Fix)
(STAT) (A+BX)
20
110 200 290
3150 7310 8800 9310
(STAT) (Reg) (r )
( ST A T) ( T y p e ) ( l n X)
( ST A T) ( Re g ) ( r )
( ST A T) ( Re g ) ( A) - 3 8 5 7 . 9 8 4
( ST A T) ( Re g ) ( B) 2 3 5 7 . 5 3 2
Re s ul t s :
0.923
0 . 9 9 8
Ca l c ul a t i ng E s t i m a t e d V a l ue s
Ba s e d o n t h e r e g r e s s i o n f o r m u l a o b t a i n e d b y p a i r e d - v a r i a b l e s t a t i s t i c a l
c a l c u l a t i o n , t h e e s t i m a t e d v a l u e o f y c a n b e c a l c u l a t e d f o r a g i v e n x - v a l u e .
Th e c o r r e s p o n d i n g x - v a l u e ( t wo v a l u e s , x 1 a n d x 2 , i n t h e c a s e o f q u a d r a t i c
r e g r e s s i o n ) a l s o c a n b e c a l c u l a t e d f o r a v a l u e o f y i n t h e r e g r e s s i o n
f o r m u l a .
Ex a m pl e 4 : T o d e t e r m i n e t h e e s t i m a t e v a l u e f o r x wh e n y = - 1 3 0 i n t h e
r e g r e s s i o n f o r m u l a p r o d u c e d b y l o g a r i t h m i c r e g r e s s i o n o f t h e d a t a i n
Ex a m p l e 3 . Sp e c i f y Fi x 3 f o r t h e r e s u l t . ( Pe r f o r m t h e f o l l o wi n g o p e r a t i o n
a f t e r c o m p l e t i n g t h e o p e r a t i o n s i n Ex a m p l e 3 . )
1 3 0 ( ST A T) ( Re g ) ( x ˆ )
I m p o rt a n t !
• R e g re s s i o n c o e f fi c i e n t, c o rre l a ti o n c o e f fi c i e n t, a n d e s ti m a te d v a l u e c a l c u l a ti o n s c a n
ta k e c o n s i d e ra b l e ti m e w h e n th e re a re a l a rg e n u m b e r o f d a ta i te m s .
Performing Normal Distribution Calculations
While single-variable statistical calculation is selected, you can perform
normal distribution calculation using the functions shown below from the
54
4 . 8 6 1
menu that appears when you perform the following key operation:
No r m a l i z e d v a r i a t e ( t ) : - 0 . 7 6 2
P( t ) : 0 . 2 2 3
(STAT) (Distr).
P, Q, R: These functions take the argument t and determine a probability
of standard normal distribution as illustrated below.
t : This function is preceded by the argument X, and determines the
n o r m a l i z e d v a r i a t e X
Ex a m pl e 5 : Fo r t h e s i n g l e v a r i a b l e d a t a { x n ; f r e q n } = { 0 ; 1 , 1 ; 2 , 2 ; 1 , 3 ; 2 , 4 ; 2 ,
5 ; 2 , 6 ; 3 , 7 ; 4 , 9 ; 2 , 1 0 ; 1 } , t o d e t e r m i n e t h e n o r m a l i z e d v a r i a t e (
3 , a n d P( t ) a t t h a t p o i n t u p t o t h r e e d e c i m a l p l a c e s ( Fi x 3 ) .
( SETUP) ( ST A T) ( ON)
t =
X - x
.
σ x
t ) wh e n x =
( SETUP) ( Fi x )
( ST A T) ( 1 - V AR)
1 2 3 4 5 6 7 9 1 0
0
1 2 1 2 2 2 3 4 2 1
3 ( ST A T) ( Di s t r ) ( t )
( ST A T) ( Di s t r ) ( P( )
Re s ul t s :
B ase- n C al cu l at i o n s ( B A S E - N )
Pr e s s
perform calculations using decimal, hexadecimal, binary, and/or octal
values.
( BASE- N) t o e n t e r t h e BASE- N M o d e wh e n y o u wa n t t o
55
The initial default number mode when you enter the BASE-N Mode is
0000000000000000 ≦ x ≦ 0111111111111111
1000000000000000 ≦ x ≦ 1111111111111111
00000000000 ≦ x ≦ 17777777777
20000000000 ≦ x ≦ 37777777777
decimal, which means input and calculation results use the decimal
number format.
Press one of the following keys to switch number modes:
(DEC) for
decimal, (HEX) for hexadecimal, (BIN) for binary, or (OCT) for
octal.
Example 1: To enter the BASE-N Mode, switch to the binary mode, and
calculate 112 + 1
2
( BASE- N)
( BI N)
1 1 1
Ex a m pl e 2 : Co n t i n u i n g f r o m a b o v e , s wi t c h t o t h e h e x a d e c i m a l m o d e a n d
c a l c u l a t e 1 F 16 + 1
16
( HEX) 1 ( F) 1
Ex a m pl e 3 : Co n t i n u i n g f r o m a b o v e , s wi t c h t o t h e o c t a l m o d e a n d
c a l c u l a t e 7 8 + 1
8
( OCT) 7 1
N o t e
• U s e th e fo l l o w i n g k e y s to i n p u t th e l e tte rs A th ro u g h F fo r h e x a d e c i m a l v a l u e s :
(A ), (B ), (C ), (D ), (E ), (F).
• In th e B A S E -N M o d e , i n p u t o f fra c ti o n a l (d e c i m a l ) v a l u e s a n d e x p o n e n ts i s n o t
s u p p o rte d . If a c a l c u l a ti o n re s u l t h a s a fra c ti o n a l p a rt, i t i s c u t o f f.
• Th e i n p u t a n d o u tp u t ra n g e s i s 1 6 b i ts fo r b i n a ry v a l u e s , a n d 3 2 b i ts fo r o th e r ty p e s o f •
v a l u e s . Th e fo l l o w i n g s h o w s d e ta i l s a b o u t i n p u t a n d o u tp u t ra n g e s .
Base-n Mode
Binary
Octal
Input/Output Ranges
56
Decimal
Hexadecimal
-2147483648 ≦ x ≦ 2147483647
Specifying the Number Mode of a Particular Input
Value
Y o u c a n i n p u t a s p e c i a l c o m m a n d i m m e d i a t e l y f o l l o wi n g a v a l u e t o s p e c i f y
t h e n u m b e r m o d e o f t h a t v a l u e . Th e s p e c i a l c o m m a n d s a r e : d ( d e c i m a l ) , h
( h e x a d e c i m a l ) , b ( b i n a r y ) , a n d o ( o c t a l ) .
Ex a m pl e : T o c a l c u l a t e 1 0 10 + 1 0 16 + 1 0 2 + 1 0 8 a n d d i s p l a y t h e r e s u l t a s a
d e c i m a l v a l u e
( DEC) ( BASE) ( d ) 1 0
( BASE) ( h ) 1 0
( BASE) ( b ) 1 0
( BASE) ( o ) 1 0 3 6
Conv e r t i ng a Ca l c ul a t i on Re s ul t t o a not he r T y pe of
V a l ue
Y o u c a n u s e a n y o n e o f t h e f o l l o wi n g k e y o p e r a t i o n s t o c o n v e r t t h e
c u r r e n t l y d i s p l a y e d c a l c u l a t i o n r e s u l t t o a n o t h e r t y p e o f v a l u e :
( d e c i m a l ) , ( HEX) ( h e x a d e c i m a l ) , ( BI N) ( b i n a r y ) , ( OCT) ( o c t a l ) .
Ex a m pl e : T o c a l c u l a t e 1 5 10 × 3 7 10 i n t h e d e c i m a l m o d e , a n d t h e n c o n v e r t
t h e r e s u l t t o h e x a d e c i m a l , b i n a r y , a n d o c t a l
( DEC) 1 5 3 7 5 5 5
( HEX) 0 0 0 0 0 2 2 B
( BI N) 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1
( OCT) 0 0 0 0 0 0 0 1 0 5 3
( DEC)
Logical and Negation Operations
Your calculator provides you with logical operators (and, or, xor, xnor) and
functions (Not, Neg) for logical and negation operations on binary values.
Use the menu that appears when you press
logical operators and functions.
57
(BASE) to input these
Press this key: When you want to input this:
(and)
(or)
( x o r )
( x n o r )
( No t )
( Ne g )
Logical operator "and" (logical product),
which returns the result of a bitwise AND
Logical operator "or" (logical sum), which
returns the result of a bitwise OR
L o g i c a l o p e r a t o r "x o r " ( e x c l u s i v e l o g i c a l
s u m ) , wh i c h r e t u r n s t h e r e s u l t o f a b i t wi s e
XOR
L o g i c a l o p e r a t o r "x n o r " ( e x c l u s i v e
n e g a t i v e l o g i c a l s u m ) , wh i c h r e t u r n s t h e
r e s u l t o f a b i t wi s e XNOR
"No t ( " f u n c t i o n , wh i c h r e t u r n s t h e r e s u l t o f
a b i t wi s e c o m p l e m e n t
"Ne g ( " f u n c t i o n , wh i c h r e t u r n s t h e r e s u l t o f
a t wo ' s c o m p l e m e n t
Al l o f t h e f o l l o wi n g e x a m p l e s a r e p e r f o r m e d i n t h e b i n a r y m o d e (
( BI N) ) .
Ex a m pl e 1 : T o d e t e r m i n e t h e l o g i c a l AND o f 1 0 1 0 2 a n d 1 1 0 0 2 ( 1 0 1 0 2 a n d
1 1 0 0 2 )
1 0 1 0 ( BASE) ( a n d ) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Ex a m pl e 2 : T o d e t e r m i n e t h e l o g i c a l OR o f 1 0 1 1 2 a n d 1 1 0 1 0 2 ( 1 0 1 1 2 o r
1 1 0 1 0 2 )
1 0 1 1 ( BASE) ( o r ) 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
Ex a m pl e 3 : T o d e t e r m i n e t h e l o g i c a l XOR o f 1 0 1 0 2 a n d 1 1 0 0 2 ( 1 0 1 0 2 x o r
1 1 0 0 2 )
1 0 1 0 ( BASE) ( x o r ) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
Example 4: To determine the logical XNOR of 1111 2 and 1012 (11112 xnor
1012)
1111 (BASE) (xnor) 101 1111111111110101
Example 5: To determine the bitwise complement of 1010 2 (Not(10102))
58
(BASE) (Not) 1010 1111111111110101
Example 6: To negate (take the two's complement) of 101101
(Neg(1011012))
2
(BASE) (Neg) 101101 1111111111010011
Note
• In th e c a s e o f a n e g a ti v e b i n a ry , o c ta l o r h e x a d e c i m a l v a l u e , th e c a l c u l a to r c o n v e rts
th e v a l u e to b i n a ry , ta k e s th e tw o ' s c o m p l e m e n t, a n d th e n c o n v e rts b a c k to th e o ri g i n a l
n u m b e r b a s e . Fo r d e c i m a l (b a s e -1 0 ) v a l u e s , th e c a l c u l a to r m e re l y a d d s a m i n u s s i g n .
E q u at i o n C al cu l at i o n s ( E Q N )
Y o u c a n u s e t h e f o l l o wi n g p r o c e d u r e i n t h e EQN M o d e t o s o l v e
s i m u l t a n e o u s l i n e a r e q u a t i o n s wi t h t wo o r t h r e e u n k n o wn s , q u a d r a t i c
e q u a t i o n s , a n d c u b i c e q u a t i o n s .
1 . Pr e s s
( EQN) t o e n t e r t h e EQN M o d e .
2 . On t h e m e n u t h a t a p p e a r s , s e l e c t a n e q u a t i o n t y p e .
T o s e l e c t t hi s
Pr e s s t hi s k e y :
c a l c ul a t i on t y pe :
Si m u l t a n e o u s l i n e a r
e q u a t i o n s wi t h t wo
( a n X + b n Y = c n )
u n k n o wn s
Si m u l t a n e o u s l i n e a r
e q u a t i o n s wi t h t h r e e
( a n X + b n Y + c n Z = d n )
unknowns
Quadratic equation
Cubic equation
(aX2 + bX + c = 0)
(aX3 + bX2 + cX + d = 0)
3. Use the Coefficient Editor that appears to input coefficient values.
59
• To solve 2x 2 + x - 3 = 0, for example, press in step 2, and then
input the following for the coefficients (a = 2, b = 1, c = -3): 2
1
3 .
• To change a coefficient value you already have input, move the cursor
to the appropriate cell, input the new value, and then press .
• Pressing
Important!
• Th e fo l l o w i n g o p e ra ti o n s a re n o t s u p p o rte d b y th e C o e f fi c i e n t E d i to r: ,
(M -), (S T O). P o l , R e c , a n d m u l ti -s ta te m e n ts a l s o c a n n o t b e i n p u t
w i th th e C o e f fi c i e n t E d i to r .
will clear all of the coefficients to zero.
4 . Af t e r a l l t h e v a l u e s a r e t h e wa y y o u wa n t , p r e s s
.
• Th i s wi l l d i s p l a y a s o l u t i o n . Ea c h p r e s s o f wi l l d i s p l a y a n o t h e r
s o l u t i o n . Pr e s s i n g wh i l e t h e f i n a l s o l u t i o n i s d i s p l a y e d wi l l r e t u r n t o
t h e Co e f f i c i e n t Ed i t o r .
• Y o u c a n s c r o l l b e t we e n t h e s o l u t i o n s u s i n g t h e a n d k e y s .
• T o r e t u r n t o t h e Co e f f i c i e n t Ed i t o r wh i l e a n y s o l u t i o n i s d i s p l a y e d ,
p r e s s
N o t e
• E v e n i f N a tu ra l D i s p l a y i s s e l e c te d , th e s o l u ti o n s o f s i m u l ta n e o u s l i n e a r e q u a ti o n s a re
n o t d i s p l a y e d u s i n g a n y fo rm th a t i n c l u d e s √
• V a l u e s c a n n o t b e c o n v e rte d to e n g i n e e ri n g n o ta ti o n o n th e s o l u ti o n s c re e n .
.
.
Cha ngi ng t he Cur r e nt E qua t i on T y pe S e t t i ng
Pr e s s
a p p e a r s . Ch a n g i n g t h e e q u a t i o n t y p e c a u s e s t h e v a l u e s o f a l l Co e f f i c i e n t
Ed i t o r c o e f f i c i e n t s t o c h a n g e t o z e r o .
( EQN) a n d t h e n s e l e c t a n e q u a t i o n t y p e f r o m t h e m e n u t h a t
E Q N Mode Ca l c ul a t i on E x a m pl e s
Ex a m pl e 1 : x + 2 y = 3 , 2 x + 3 y = 4
( EQN) ( a n X + b n Y = c n )
1
2 3
2 3 4
Example 2: x - y + z = 2, x + y - z = 0, -x + y + z = 4
60
(X=) -1
(Y=) 2
(EQN) (anX + bnY + cnZ = dn)
1
1 1 1 0
1 1 2
1 1 1 4
(X=) 1
(Y=) 2
(Z=) 3
Ex a m pl e 3 : x 2 + x +
Ex a m pl e 4 : x 2 - 2 √ 2 x + 2 = 0 ( M t h I O- M a t h O)
Ex a m pl e 5 : x 3 - 2 x 2 - x + 2 = 0
3
= 0 ( M t h I O- M a t h O)
4
( EQN) ( a X 2 + b X + c = 0 )
1
1 3 4
( EQN) ( a X 2 + b X + c = 0 )
1
( EQN) ( a X 3 + b X 2 + c X + d = 0 )
1
2 2 2 ( X= ) √ 2
2 1 2
( X 1 = ) -
( X 2 = ) -
( X 1 = ) - 1
( X 2 = ) 2
( X 3 = ) 1
1
√ 2
+
-
2
√ 2
2
i
i
2
1
2
M at r i x C al cu l at i o n s ( M A T R I X )
Us e t h e M A TRI X M o d e t o p e r f o r m c a l c u l a t i o n s i n v o l v i n g m a t r i c e s o f u p t o
3 r o ws b y 3 c o l u m n s . T o p e r f o r m a m a t r i x c a l c u l a t i o n , y o u f i r s t a s s i g n d a t a
t o s p e c i a l m a t r i x v a r i a b l e s ( M a t A, M a t B, M a t C) , a n d t h e n u s e t h e v a r i a b l e s
i n t h e c a l c u l a t i o n a s s h o wn i n t h e e x a m p l e b e l o w .
Ex a m pl e 1 : T o a s s i g n t o M a t A a n d t o M a t B, a n d t h e n
perform the following calculations:
+ (MatA+MatB)
61
× (MatA×MatB),
1. Press (MATRIX) to enter the MATRIX Mode.
2. Press (MatA) (2×2).
• This will display the Matrix Editor for input of the elements of the 2 × 2
m a t r i x y o u s p e c i f i e d f o r M a t A.
( 1 ) "A" s t a n d s f o r "M a t A".
3 . I n p u t t h e e l e m e n t s o f M a t A: 2
4 . Pe r f o r m t h e f o l l o wi n g k e y o p e r a t i o n :
( M A TRI X) ( Da t a ) ( M a t B) ( 2 × 2 ) .
• Th i s wi l l d i s p l a y t h e M a t r i x Ed i t o r f o r i n p u t o f t h e e l e m e n t s o f t h e 2 × 2
m a t r i x y o u s p e c i f i e d f o r M a t B.
5 . I n p u t t h e e l e m e n t s o f M a t B: 2
6 . Pr e s s t o a d v a n c e t o t h e c a l c u l a t i o n s c r e e n , a n d p e r f o r m t h e f i r s t
c a l c u l a t i o n ( M a t A× M a t B) :
( M A TRI X) ( M a t A) ( M A TRI X) ( M a t B) .
• Th i s wi l l d i s p l a y t h e M a t An s s c r e e n wi t h t h e c a l c u l a t i o n r e s u l t s .
Not e : "M a t An s " s t a n d s f o r "M a t r i x An s we r M e m o r y ". Se e "M a t r i x An s we r
M e m o r y " f o r m o r e i n f o r m a t i o n .
1 1 1 .
1 1 2 .
( 2 ) "An s " s t a n d s f o r "M a t An s ".
7 . Pe r f o r m t h e n e x t c a l c u l a t i o n ( M a t A+ M a t B) :
(MATRIX) (MatA) (MATRIX) (MatB) .
62
Matrix Answer Memory
Whenever the result of a calculation executed in the MATRIX Mode is a
matrix, the MatAns screen will appear with the result. The result also will
be assigned to a variable named "MatAns".
The MatAns variable can be used in calculations as described below.
• To insert the MatAns variable into a calculation, perform the following
key operation: (MATRIX) (MatAns).
• Pressing any one of the following keys while the MatAns screen is
d i s p l a y e d wi l l s wi t c h a u t o m a t i c a l l y t o t h e c a l c u l a t i o n s c r e e n :
, ,
, , , , ( x 3 ) . Th e c a l c u l a t i o n s c r e e n wi l l s h o w t h e
M a t An s v a r i a b l e f o l l o we d b y t h e o p e r a t o r o r f u n c t i o n f o r t h e k e y y o u
p r e s s e d .
As s i gni ng a nd E di t i ng Ma t r i x V a r i a bl e Da t a
I m p o rt a n t !
• Th e fo l l o w i n g o p e ra ti o n s a re n o t s u p p o rte d b y th e M a tri x E d i to r: , (M -),
(S T O). P o l , R e c , a n d m u l ti -s ta te m e n ts a l s o c a n n o t b e i n p u t w i th th e M a tri x
E d i to r .
T o a s s i gn ne w da t a t o a m a t r i x v a r i a bl e :
1 . Pr e s s
( M A TRI X) ( Di m ) , a n d t h e n , o n t h e m e n u t h a t
a p p e a r s , s e l e c t t h e m a t r i x v a r i a b l e t o wh i c h y o u wa n t t o a s s i g n d a t a .
2 . On t h e n e x t m e n u t h a t a p p e a r s , s e l e c t d i m e n s i o n ( m × n ) .
3 . Us e t h e M a t r i x Ed i t o r t h a t a p p e a r s t o i n p u t t h e e l e m e n t s o f t h e m a t r i x .
Ex a m pl e 2 : T o a s s i g n t o M a t C
( M A TRI X)
( Di m ) ( M a t C) ( 2 × 3 )
1
0 1 0 1 1
T o e di t t he e l e m e nt s of a m a t r i x v a r i a bl e :
1 . Pr e s s ( M A TRI X) ( Da t a ) , a n d t h e n , o n t h e m e n u t h a t
a p p e a r s , s e l e c t t h e m a t r i x v a r i a b l e y o u wa n t t o e d i t .
2. Use the Matrix Editor that appears to edit the elements of the matrix.
• Move the cursor to the cell that contains the element you want to
change, input the new value, and then press
.
To copy matrix variable (or MatAns) contents:
1. Use the Matrix Editor to display the matrix you want to copy.
63
• If you want to copy MatA, for example, perform the following key
operation: (MATRIX) (Data) (MatA).
• If you want to copy MatAns contents, perform the following to display
the MatAns screen:
2. Press (STO), and then perform one of the following key
operations to specify the copy destination: (MatA), (MatB), or
(MatC).
• This will display the Matrix Editor with the contents of the copy
destination.
(MATRIX) (MatAns) .
Ma t r i x Ca l c ul a t i on E x a m pl e s
Th e f o l l o wi n g e x a m p l e s u s e M a t A =
Ex a m p l e 1 , a n d M a t C =
Ex a m pl e 3 : 3 × M a t A ( M a t r i x Sc a l a r M u l t i p l i c a t i o n ) .
3 ( M A TRI X) ( M a t A)
Ex a m pl e 4 : Ob t a i n t h e d e t e r m i n a n t o f M a t A ( d e t ( M a t A) ) .
( M A TRI X) ( M a t A)
Ex a m pl e 5 : Ob t a i n t h e t r a n s p o s i t i o n o f M a t C ( T r n ( M a t C) ) .
( M A TRI X) ( M a t C)
Ex a m pl e 6 : Ob t a i n t h e i n v e r s e m a t r i x o f M a t A ( M a t A - 1 ) .
Not e : Y o u c a n n o t u s e f o r t h i s i n p u t . Us e t h e k e y t o i n p u t
f r o m Ex a m p l e 2 .
( M A TRI X) ( d e t )
( M A TRI X) ( T r n )
a n d M a t B = f r o m
"- 1"
1
.
( M A TRI X) ( M a t A)
Ex a m pl e 7 : Ob t a i n t h e a b s o l u t e v a l u e o f e a c h e l e m e n t o f M a t B
( Ab s ( M a t B) ) .
(Abs) (MATRIX) (MatB)
Example 8: Determine the square and cube of MatA (MatA 2, MatA3).
Note: You cannot use
(x 3) to specify cubing.
for this input. Use to specify squaring, and
64
(MATRIX) (MatA)
(MATRIX) (MatA) (x 3)
Creating a Numerical Table from a
Function (TABLE)
T ABL E g e n e r a t e s a n u m e r i c a l t a b l e f o r x a n d f ( x ) u s i n g a n i n p u t f ( x )
f u n c t i o n .
Pe r f o r m t h e f o l l o wi n g s t e p s t o g e n e r a t e a n u m e r i c a l t a b l e .
1 . Pr e s s
2 . I n p u t a f u n c t i o n i n t h e f o r m a t f ( x ) , u s i n g t h e X v a r i a b l e .
• Be s u r e t o i n p u t t h e X v a r i a b l e (
n u m e r i c a l t a b l e . An y v a r i a b l e o t h e r t h a n X i s h a n d l e d a s a c o n s t a n t .
• Th e f o l l o wi n g c a n n o t b e u s e d i n t h e f u n c t i o n : Po l , Re c , ∫ , d / d x , Σ .
3 . I n r e s p o n s e t o t h e p r o m p t s t h a t a p p e a r , i n p u t t h e v a l u e s y o u wa n t t o
u s e , p r e s s i n g
For t hi s pr om pt : I nput t hi s :
St a r t ? I n p u t t h e l o we r l i m i t o f X ( De f a u l t = 1 ) .
( T ABL E) t o e n t e r t h e T ABL E M o d e .
( X) ) wh e n g e n e r a t i n g a
a f t e r e a c h o n e .
En d ?
I n p u t t h e u p p e r l i m i t o f X ( De f a u l t =
5 ) .
Not e : M a k e s u r e t h a t t h e En d v a l u e i s
a l wa y s g r e a t e r t h a n t h e St a r t v a l u e .
65
Input the increment step (Default = 1).
Note: The Step specifies by how
much the Start value should be
sequentially incremented as the
Step?
numerical table is generated. If you
specify Start = 1 and Step = 1, X
sequentially will be assigned the
values 1, 2, 3, 4, and so on to
g e n e r a t e t h e n u m e r i c a l t a b l e u n t i l t h e
En d v a l u e i s r e a c h e d .
• I n p u t t i n g t h e St e p v a l u e a n d p r e s s i n g
g e n e r a t e s a n d d i s p l a y s t h e
n u m e r i c a l t a b l e i n a c c o r d a n c e wi t h t h e p a r a m e t e r s y o u s p e c i f i e d .
• Pr e s s i n g wh i l e t h e n u m e r i c a l t a b l e s c r e e n i s d i s p l a y e d wi l l r e t u r n
t o t h e f u n c t i o n i n p u t s c r e e n i n s t e p 2 .
Ex a m pl e : T o g e n e r a t e a n u m e r i c a l t a b l e f o r t h e f u n c t i o n s f ( x ) = x 2 +
t h e r a n g e - 1 ≦ x ≦ 1 , i n c r e m e n t e d i n s t e p s o f 0 . 5 ( M t h I O- M a t h O)
( T ABL E)
1
2
f o r
( X) 1 2
1 1 0 5
N o t e
• Y o u c a n u s e th e n u m e ri c a l ta b l e s c re e n fo r v i e w i n g v a l u e s o n l y . T a b l e c o n te n ts
c a n n o t b e e d i te d .
• Th e n u m e ri c a l ta b l e g e n e ra ti o n o p e ra ti o n c a u s e s th e c o n te n ts o f v a ri a b l e X to b e
c h a n g e d .
• Th e s p e c i fi e d S ta rt, E n d , a n d S te p v a l u e s s h o u l d p ro d u c e a m a x i m u m o f 3 0 X -
values for the numerical table being generated. Executing a numerical table
generation using a Start, End, and Step value combination that produces more than
30 X-values causes an error.
66
Important!
• The function you input for numerical table generation is deleted whenever you
display the setup menu in the TABLE Mode and switch between Natural Display
and Linear Display.
Vector Calculations (VECTOR)
Us e t h e VECT OR M o d e t o p e r f o r m 2 - d i m e n s i o n a l a n d 3 - d i m e n s i o n a l
v e c t o r c a l c u l a t i o n s . T o p e r f o r m a v e c t o r c a l c u l a t i o n , y o u f i r s t a s s i g n d a t a t o
s p e c i a l v e c t o r v a r i a b l e s ( Vc t A, Vc t B, Vc t C) , a n d t h e n u s e t h e v a r i a b l e s i n
t h e c a l c u l a t i o n a s s h o wn i n t h e e x a m p l e b e l o w .
Ex a m pl e 1 : T o a s s i g n ( 1 , 2 ) t o Vc t A a n d ( 3 , 4 ) t o Vc t B, a n d t h e n p e r f o r m
t h e f o l l o wi n g c a l c u l a t i o n s : ( 1 , 2 ) + ( 3 , 4 )
1 . Pr e s s
( VECT OR) t o e n t e r t h e VECT OR M o d e .
2 . Pr e s s ( Vc t A) ( 2 ) .
• Th i s wi l l d i s p l a y t h e V e c t o r Ed i t o r f o r i n p u t o f t h e 2 - d i m e n s i o n a l v e c t o r
f o r Vc t A.
( 1 ) "A" s t a n d s f o r "Vc t A".
3 . I n p u t t h e e l e m e n t s o f Vc t A: 1
4 . Pe r f o r m t h e f o l l o wi n g k e y o p e r a t i o n :
( VECT OR) ( Da t a ) ( Vc t B) ( 2 ) .
• Th i s wi l l d i s p l a y t h e V e c t o r Ed i t o r f o r i n p u t o f t h e 2 - d i m e n s i o n a l v e c t o r
f o r Vc t B.
5 . I n p u t t h e e l e m e n t s o f Vc t B: 3
6. Press to advance to the calculation screen, and perform the
calculation (VctA+VctB):
(VECTOR) (VctA) (VECTOR) (VctB) .
• This will display the VctAns screen with the calculation results.
2 .
4 .
67
(2) "Ans" stands for "VctAns".
Note: "VctAns" stands for "Vector Answer Memory". See "Vector
Answer Memory" for more information.
Vector Answer Memory
Whenever the result of a calculation executed in the VECTOR Mode is a
vector, the VctAns screen will appear with the result. The result also will be
assigned to a variable named "VctAns".
Th e Vc t An s v a r i a b l e c a n b e u s e d i n c a l c u l a t i o n s a s d e s c r i b e d b e l o w .
• T o i n s e r t t h e Vc t An s v a r i a b l e i n t o a c a l c u l a t i o n , p e r f o r m t h e f o l l o wi n g
k e y o p e r a t i o n :
( VECT OR) ( Vc t An s ) .
• Pr e s s i n g a n y o n e o f t h e f o l l o wi n g k e y s wh i l e t h e Vc t An s s c r e e n i s
d i s p l a y e d wi l l s wi t c h a u t o m a t i c a l l y t o t h e c a l c u l a t i o n s c r e e n : , ,
, . Th e c a l c u l a t i o n s c r e e n wi l l s h o w t h e Vc t An s v a r i a b l e f o l l o we d
b y t h e o p e r a t o r o r f u n c t i o n f o r t h e k e y y o u p r e s s e d .
As s i gni ng a nd E di t i ng V e c t or V a r i a bl e Da t a
I m p o rt a n t !
• Th e fo l l o w i n g o p e ra ti o n s a re n o t s u p p o rte d b y th e V e c to r E d i to r: , (M -),
(S T O). P o l , R e c , a n d m u l ti -s ta te m e n ts a l s o c a n n o t b e i n p u t w i th th e V e c to r
E d i to r .
T o a s s i gn ne w da t a t o a v e c t or v a r i a bl e :
1 . Pr e s s
( VECT OR) ( Di m ) , a n d t h e n , o n t h e m e n u t h a t a p p e a r s ,
s e l e c t t h e v e c t o r v a r i a b l e t o wh i c h y o u wa n t t o a s s i g n d a t a .
2 . On t h e n e x t m e n u t h a t a p p e a r s , s e l e c t d i m e n s i o n ( m ) .
3 . Us e t h e V e c t o r Ed i t o r t h a t a p p e a r s t o i n p u t t h e e l e m e n t s o f t h e v e c t o r .
Ex a m pl e 2 : T o a s s i g n ( 2 , - 1 , 2 ) t o Vc t C
( VECT OR) ( Di m ) ( Vc t C) ( 3 )
2
1 2
T o e di t t he e l e m e nt s of a v e c t or v a r i a bl e :
1 . Pr e s s ( VECT OR) ( Da t a ) , a n d t h e n , o n t h e m e n u t h a t
appears, select the vector variable you want to edit.
2. Use the Vector Editor that appears to edit the elements of the vector.
• Move the cursor to the cell that contains the element you want to
change, input the new value, and then press
.
To copy vector variable (or VctAns) contents:
1. Use the Vector Editor to display the vector you want to copy.
68
• If you want to copy VctA, for example, perform the following key
operation: (VECTOR) (Data) (VctA).
• If you want to copy VctAns contents, perform the following to display
the VctAns screen:
2. Press (STO), and then perform one of the following key
operations to specify the copy destination: (VctA), (VctB), or
(VctC).
• This will display the Vector Editor with the contents of the copy
destination.
(VECTOR) (VctAns) .
V e c t or Ca l c ul a t i on E x a m pl e s
Th e f o l l o wi n g e x a m p l e s u s e Vc t A = ( 1 , 2 ) a n d Vc t B = ( 3 , 4 ) f r o m Ex a m p l e
1 , a n d Vc t C = ( 2 , - 1 , 2 ) f r o m Ex a m p l e 2 .
Ex a m pl e 3 : 3 × Vc t A ( V e c t o r s c a l a r m u l t i p l i c a t i o n ) , 3 × Vc t A - Vc t B
( Ca l c u l a t i o n e x a m p l e u s i n g Vc t An s )
3 ( VECT OR) ( Vc t A)
( VECT OR) ( Vc t B)
Ex a m pl e 4 : Vc t A • Vc t B ( V e c t o r d o t p r o d u c t )
( VECT OR) ( Vc t A)
( VECT OR) ( Do t )
( VECT OR) ( Vc t B)
Ex a m pl e 5 : Vc t A × Vc t B ( V e c t o r c r o s s p r o d u c t )
( VECT OR) ( Vc t A)
( VECT OR) ( Vc t B)
Example 6: Obtain the absolute values of VctC.
(Abs)
(VECTOR) (VctC)
69
Example 7: Determine the angle formed by VctA and VctB to three
decimal places (Fix 3). (Angle unit: Deg)
(cosθ =
(A ∙B )
, which becomes θ = cos
|A ||B |
(A ∙B )
-1
|A ||B |
)
(SETUP) (Fix)
(VECTOR) (VctA)
(VECTOR) (Dot)
(VECTOR) (VctB)
(Abs) (VECTOR) (VctA)
( Ab s ) ( VECT OR) ( Vc t B)
( c o s - 1 )
70
Technical Information
Errors
The calculator will display an error message whenever an error occurs for
any reason during a calculation.
There are two ways to exit an error message display: Pressing
t o d i s p l a y t h e l o c a t i o n o f t h e e r r o r , o r p r e s s i n g t o c l e a r t h e m e s s a g e
a n d c a l c u l a t i o n .
Di s pl a y i ng t he Loc a t i on of a n E r r or
or
W h i l e a n e r r o r m e s s a g e i s d i s p l a y e d , p r e s s
c a l c u l a t i o n s c r e e n . Th e c u r s o r wi l l b e p o s i t i o n e d a t t h e l o c a t i o n wh e r e t h e
e r r o r o c c u r r e d , r e a d y f o r i n p u t . M a k e t h e n e c e s s a r y c o r r e c t i o n s t o t h e
c a l c u l a t i o n a n d e x e c u t e i t a g a i n .
Ex a m pl e : W h e n y o u i n p u t 1 4 ÷ 0 × 2 b y m i s t a k e i n s t e a d o f 1 4 ÷ 1 0 ×
2 ( M t h I O- M a t h O)
1 4
0 2
o r t o r e t u r n t o t h e
( o r )
1
Cl e a r i ng t he E r r or Me s s a ge
W h i l e a n e r r o r m e s s a g e i s d i s p l a y e d , p r e s s
s c r e e n . No t e t h a t t h i s a l s o c l e a r s t h e c a l c u l a t i o n t h a t c o n t a i n e d t h e e r r o r .
t o r e t u r n t o t h e c a l c u l a t i o n
Error Messages
Math ERROR
Cause:
• The intermediate or final result of the calculation you are performing
exceeds the allowable calculation range.
71
• Your input exceeds the allowable input range (particularly when using
functions).
• The calculation you are performing contains an illegal mathematical
operation (such as division by zero).
Action:
• Check the input values, reduce the number of digits, and try again.
• When using independent memory or a variable as the argument of a
function, make sure that the memory or variable value is within the
allowable range for the function.
St ack ER R O R
Ca us e :
• Th e c a l c u l a t i o n y o u a r e p e r f o r m i n g h a s c a u s e d t h e c a p a c i t y o f t h e
n u m e r i c s t a c k o r t h e c o m m a n d s t a c k t o b e e x c e e d e d .
• Th e c a l c u l a t i o n y o u a r e p e r f o r m i n g h a s c a u s e d t h e c a p a c i t y o f t h e
m a t r i x o r v e c t o r s t a c k t o b e e x c e e d e d .
Ac t i on:
• Si m p l i f y t h e c a l c u l a t i o n e x p r e s s i o n s o i t d o e s n o t e x c e e d t h e c a p a c i t y
o f t h e s t a c k .
• T r y s p l i t t i n g t h e c a l c u l a t i o n i n t o t wo o r m o r e p a r t s .
Syn t ax ER R O R
Ca us e :
• Th e r e i s a p r o b l e m wi t h t h e f o r m a t o f t h e c a l c u l a t i o n y o u a r e
p e r f o r m i n g .
Ac t i on:
• M a k e n e c e s s a r y c o r r e c t i o n s .
A rg u m en t ER R O R
Ca us e :
• Th e r e i s a p r o b l e m wi t h t h e a r g u m e n t o f t h e c a l c u l a t i o n y o u a r e
p e r f o r m i n g .
Ac t i on:
• M a k e n e c e s s a r y c o r r e c t i o n s .
Dimension ERROR (MATRIX and VECTOR Modes only)
Cause:
• The matrix or vector you are trying to use in a calculation was input
without specifying its dimension.
72
• You are trying to perform a calculation with matrices or vectors whose
dimensions do not allow that type of calculation.
Action:
• Specify the dimension of the matrix or vector and then perform the
calculation again.
• Check the dimensions specified for the matrices or vectors to see if
they are compatible with the calculation.
Variable ERROR (SOLVE feature only)
Ca us e :
• Y o u d i d n o t s p e c i f y a s o l u t i o n v a r i a b l e , a n d t h e r e i s n o X v a r i a b l e i n
t h e e q u a t i o n y o u i n p u t .
• Th e s o l u t i o n v a r i a b l e t h a t y o u s p e c i f i e d i s n o t i n c l u d e d i n t h e e q u a t i o n
y o u i n p u t .
Ac t i on:
• Th e e q u a t i o n y o u i n p u t m u s t i n c l u d e a n X v a r i a b l e wh e n y o u d o n o t
s p e c i f y t h e s o l u t i o n v a r i a b l e .
• Sp e c i f y a v a r i a b l e t h a t i s i n c l u d e d i n t h e e q u a t i o n y o u i n p u t a s t h e
s o l u t i o n v a r i a b l e .
C an 't So lve Erro r ( SO L VE f eat u re o n ly)
Ca us e :
• Th e c a l c u l a t o r c o u l d n o t o b t a i n a s o l u t i o n .
Ac t i on:
• Ch e c k f o r e r r o r s i n t h e e q u a t i o n t h a t y o u i n p u t .
• I n p u t a v a l u e f o r t h e s o l u t i o n v a r i a b l e t h a t i s c l o s e t o t h e e x p e c t e d
s o l u t i o n a n d t r y a g a i n .
In su f f icien t M EM Erro r
Ca us e :
• Th e c o n f i g u r a t i o n o f T ABL E M o d e p a r a m e t e r s c a u s e d m o r e t h a n 3 0
X- v a l u e s t o b e g e n e r a t e d f o r a t a b l e .
Ac t i on:
• Na r r o w t h e t a b l e c a l c u l a t i o n r a n g e b y c h a n g i n g t h e St a r t , En d , a n d
Step values, and try again.
Time Out Error
Cause:
• The current differential or integration calculation ends without the
ending condition being fulfilled.
73
Action:
• Try increasing the tol value. Note that this also decreases solution
precision.
Before Assuming Malfunction of the
Calculator...
Perform the following steps whenever an error occurs during a calculation
o r wh e n c a l c u l a t i o n r e s u l t s a r e n o t wh a t y o u e x p e c t e d . I f o n e s t e p d o e s
n o t c o r r e c t t h e p r o b l e m , m o v e o n t o t h e n e x t s t e p .
No t e t h a t y o u s h o u l d m a k e s e p a r a t e c o p i e s o f i m p o r t a n t d a t a b e f o r e
p e r f o r m i n g t h e s e s t e p s .
1 . Ch e c k t h e c a l c u l a t i o n e x p r e s s i o n t o m a k e s u r e t h a t i t d o e s n o t c o n t a i n
a n y e r r o r s .
2 . M a k e s u r e t h a t y o u a r e u s i n g t h e c o r r e c t m o d e f o r t h e t y p e o f
c a l c u l a t i o n y o u a r e t r y i n g t o p e r f o r m .
3 . I f t h e a b o v e s t e p s d o n o t c o r r e c t y o u r p r o b l e m , p r e s s t h e
wi l l c a u s e t h e c a l c u l a t o r t o p e r f o r m a r o u t i n e t h a t c h e c k s wh e t h e r
c a l c u l a t i o n f u n c t i o n s a r e o p e r a t i n g c o r r e c t l y . I f t h e c a l c u l a t o r d i s c o v e r s
a n y a b n o r m a l i t y , i t a u t o m a t i c a l l y i n i t i a l i z e s t h e c a l c u l a t i o n m o d e a n d
c l e a r s m e m o r y c o n t e n t s . Fo r d e t a i l s a b o u t i n i t i a l i z e d s e t t i n g s , s e e
"Co n f i g u r i n g t h e Ca l c u l a t o r Se t u p ".
4 . I n i t i a l i z e a l l m o d e s a n d s e t t i n g s b y p e r f o r m i n g t h e f o l l o wi n g
o p e r a t i o n :
( CL R) ( Se t u p ) ( Y e s ) .
k e y . Th i s
R ep l aci n g t h e B at t er y
Th e b a t t e r y n e e d s t o b e r e p l a c e d a f t e r a s p e c i f i c n u m b e r o f y e a r s . Al s o ,
r e p l a c e t h e b a t t e r y i m m e d i a t e l y a f t e r d i s p l a y f i g u r e s b e c o m e d i m .
A l o w b a t t e r y i s i n d i c a t e d b y a d i m d i s p l a y , e v e n i f c o n t r a s t i s a d j u s t e d , o r
b y f a i l u r e o f f i g u r e s t o a p p e a r o n t h e d i s p l a y i m m e d i a t e l y a f t e r y o u t u r n o n
t h e c a l c u l a t o r . I f t h i s h a p p e n s , r e p l a c e t h e b a t t e r y wi t h a n e w o n e .
I m p o rt a n t !
• Removing the battery will cause all of the calculator’s memory contents to be deleted.
1. Press
2. On the back of the calculator, remove the screws and the cover.
(OFF) to turn off the calculator.
74
3 . Re m o v e t h e b a t t e r y , a n d t h e n l o a d a n e w b a t t e r y wi t h i t s p l u s ( + ) a n d
m i n u s ( - ) e n d s f a c i n g c o r r e c t l y .
4 . Re p l a c e t h e c o v e r .
5 . I n i t i a l i z e t h e c a l c u l a t o r : ( CL R) ( Al l ) ( Y e s ) .
• Do n o t s k i p t h e a b o v e s t e p !
C al cu l at i o n P r i o r i t y S eq u en ce
Th e p r i o r i t y s e q u e n c e o f i n p u t c a l c u l a t i o n s i s e v a l u a t e d i n a c c o r d a n c e wi t h
t h e r u l e s b e l o w .
W h e n t h e p r i o r i t y o f t wo e x p r e s s i o n s i s t h e s a m e , t h e c a l c u l a t i o n i s
p e r f o r m e d f r o m l e f t t o r i g h t .
1 Pa r e n t h e t i c a l e x p r e s s i o n s
2
3
4 Fr a c t i o n s
5
6
7 Multiplication where the multiplication sign is omitted
Fu n c t i o n s t h a t r e q u i r e a n a r g u m e n t t o t h e r i g h t a n d a c l o s i n g
p a r e n t h e s i s ") " f o l l o wi n g t h e a r g u m e n t
Fu n c t i o n s t h a t c o m e a f t e r t h e i n p u t v a l u e ( x 2 , x 3 , x - 1 , x ! , ° ’ ” , ° ,
r
, g , % ,
Negative sign ((-)), base-n symbols (d, h, b, o)
Metric conversion commands (cm
estimated values (xˆ, yˆ, xˆ 1, xˆ 2)
t ) , p o we r s ( ) , r o o t s ( )
in, etc.), STAT Mode
75
8
9 Dot product (•)
10 Multiplication (×), division (÷)
11 Addition (+), subtraction (-)
1 2 a n d ( l o g i c a l o p e r a t o r )
1 3 o r , x o r , x n o r ( l o g i c a l o p e r a t o r s )
N o t e
• Wh e n s q u a ri n g a n e g a ti v e v a l u e (s u c h a s -2 ), th e v a l u e b e i n g s q u a re d m u s t b e
e n c l o s e d i n p a re n th e s e s (
th e n e g a ti v e s i g n , i n p u tti n g
a p p e n d i n g a n e g a ti v e s i g n to th e re s u l t.
• A l w a y s k e e p th e p ri o ri ty s e q u e n c e i n m i n d , a n d e n c l o s e n e g a ti v e v a l u e s i n
p a re n th e s e s w h e n re q u i re d .
Permutation (n Pr ), combination (n Cr ), complex number polar
coordinate symbol (∠ )
2 ). S i n c e x 2 h a s a h i g h e r p ri o ri ty th a n
2 w o u l d re s u l t i n th e s q u a ri n g o f 2 a n d th e n
C al cu l at i o n R an g es, N u m b er o f
D i g i t s, an d P r eci si o n
Th e c a l c u l a t i o n r a n g e , n u m b e r o f d i g i t s u s e d f o r i n t e r n a l c a l c u l a t i o n , a n d
c a l c u l a t i o n p r e c i s i o n d e p e n d s o n t h e t y p e o f c a l c u l a t i o n y o u a r e
p e r f o r m i n g .
Ca l c ul a t i on Ra nge a nd P r e c i s i on
Ca l c u l a t i o n Ra n g e ± 1 × 1 0
Nu m b e r o f Di g i t s f o r
I n t e r n a l Ca l c u l a t i o n
Precision
1 5 d i g i t s
In general, ±1 at the 10th digit for a single
calculation. Precision for exponential display is
±1 at the least significant digit. Errors are
- 99
t o ± 9 . 9 9 9 9 9 9 9 9 9 × 1 0 99 o r 0
cumulative in the case of consecutive
calculations.
76
Function Calculation Input Ranges and Precision
Functions Input Range
Deg
0 ≦ |x | < 9 × 10
9
sinx
Rad
0 ≦ |x | < 157079632.7
cosx
Gra
0 ≦ |x | < 1 × 10
10
Sa m e a s s i n x , e x c e p t wh e n | x | = ( 2 n - 1 ) ×
De g
9 0 .
Sa m e a s s i n x , e x c e p t wh e n | x | = ( 2 n - 1 ) ×
t a n x
Ra d
π / 2 .
Sa m e a s s i n x , e x c e p t wh e n | x | = ( 2 n - 1 ) ×
Gr a
1 0 0 .
s i n - 1 x , c o s - 1 x 0 ≦ | x | ≦ 1
t a n - 1 x 0 ≦ | x | ≦ 9 . 9 9 9 9 9 9 9 9 9 × 1 0
99
s i n h x , c o s h x 0 ≦ | x | ≦ 2 3 0 . 2 5 8 5 0 9 2
s i n h - 1 x 0 ≦ | x | ≦ 4 . 9 9 9 9 9 9 9 9 9 × 1 0
c o s h - 1 x 1 ≦ x ≦ 4 . 9 9 9 9 9 9 9 9 9 × 1 0
t a n h x 0 ≦ | x | ≦ 9 . 9 9 9 9 9 9 9 9 9 × 1 0
t a n h - 1 x 0 ≦ | x | ≦ 9 . 9 9 9 9 9 9 9 9 9 × 1 0
l o g x , l n x 0 < x ≦ 9 . 9 9 9 9 9 9 9 9 9 × 1 0
x
1 0
x
e
x 0 ≦ x < 1 × 10
√
2
x
- 9 . 9 9 9 9 9 9 9 9 9 × 1 0 99 ≦ x ≦ 9 9 . 9 9 9 9 9 9 9 9
- 9 . 9 9 9 9 9 9 9 9 9 × 1 0 99 ≦ x ≦ 2 3 0 . 2 5 8 5 0 9 2
100
|x | < 1 × 10
50
99
99
99
99
- 1
-1
x
3
√
x |x | < 1 × 10
|x | < 1 × 10
100
100
77
; x ≠ 0
x! 0 ≦ x ≦ 69 (x is an integer)
nP r
nC r
Po l ( x , y )
Re c ( r , θ )
° ’ ”
←
° ’ ”
0 ≦ n < 1 × 1010, 0 ≦ r ≦ n (n , r are integers)
1 ≦ {n !/(n -r )!} < 1 × 10
100
0 ≦ n < 1 × 1010, 0 ≦ r ≦ n (n , r are integers)
1 ≦ n !/r ! < 1 × 10
100
or 1 ≦ n !/(n -r )! < 1 × 10
|x |, |y | ≦ 9.999999999 × 10
√
x 2 + y 2 ≦ 9 . 9 9 9 9 9 9 9 9 9 × 1 0
0 ≦ r ≦ 9 . 9 9 9 9 9 9 9 9 9 × 1 0
99
99
99
100
θ : Sa m e a s s i n x
a ° b ’ c ” : | a | , b , c < 1 × 1 0
100
; 0 ≦ b , c
Th e d i s p l a y s e c o n d s v a l u e i s s u b j e c t t o a n e r r o r
o f ± 1 a t t h e s e c o n d d e c i m a l p l a c e .
| x | < 1 × 1 0
100
De c i m a l ↔ Se x a g e s i m a l Co n v e r s i o n s
0 ° 0 ’ 0 ” ≦ | x | ≦ 9 9 9 9 9 9 9 ° 5 9 ’ 5 9 ”
x > 0 : - 1 × 1 0
100
< y l o g x < 1 0 0
x = 0 : y > 0
y
x
x < 0 : y = n ,
m
( m , n a r e i n t e g e r s )
2 n + 1
Ho we v e r : - 1 × 1 0
y > 0 : x ≠ 0 , - 1 × 1 0
x
y
√
y = 0 : x > 0
y < 0 : x = 2 n + 1 ,
100
< y l o g | x | < 1 0 0
100
< 1 / x l o g y < 1 0 0
2 n + 1
( m ≠ 0 ; m , n a r e i n t e g e r s )
m
Ho we v e r : - 1 × 1 0
100
< 1 / x l o g | y | < 1 0 0
T o t a l o f i n t e g e r , n u m e r a t o r , a n d d e n o m i n a t o r
a b /
c
m u s t b e 1 0 d i g i t s o r l e s s ( i n c l u d i n g s e p a r a t o r
s y m b o l ) .
RanInt#(a , b ) a < b ; |a |, |b | < 1 × 1010; b - a < 1 × 10
10
• Precision is basically the same as that described under "Calculation
Range and Precision", above.
y, 3√ , x!, nPr, nCr type functions require consecutive internal
• x y, x√
calculation, which can cause accumulation of errors that occur with each
calculation.
78
• Error is cumulative and tends to be large in the vicinity of a function's
singular point and inflection point.
• The range for calculation results that can be displayed in π form when
using Natural Display is |x | < 106. Note, however, that internal calculation
error can make it impossible to display some calculation results in π
form. It also can cause calculation results that should be in decimal form
to appear in π form.
Specifications
f x - 5 7 0 ES PL U S
Powe r Re qui r e m e nt s :
AAA- s i z e b a t t e r y R0 3 ( UM - 4 ) × 1
Appr ox i m a t e Ba t t e r y Li f e :
2 y e a r s ( b a s e d o n o n e h o u r o f o p e r a t i o n p e r d a y )
Powe r Cons um pt i on:
0 . 0 0 0 2 W
Ope r a t i ng T e m pe r a t ur e :
0 ° C t o 4 0 ° C ( 3 2 ° F t o 1 0 4 ° F)
Di m e ns i ons :
1 3 . 8 ( H) × 7 7 ( W ) × 1 6 1 . 5 ( D) m m
1
/ 2 " ( H) × 3 " ( W ) × 6 3 / 8 " ( D)
Appr ox i m a t e W e i ght :
1 0 5 g ( 3 . 7 o z ) i n c l u d i n g t h e b a t t e r y
f x - 9 9 1 ES PL U S
Powe r Re qui r e m e nt s :
Bu i l t - i n s o l a r c e l l ; b u t t o n b a t t e r y L R4 4 × 1
Appr ox i m a t e Ba t t e r y Li f e :
3 y e a r s ( b a s e d o n o n e h o u r o f o p e r a t i o n p e r d a y )
Operating Temperature:
0°C to 40°C (32°F to 104°F)
Dimensions:
11.1 (H) × 77 (W) × 161.5 (D) mm
3
/8" (H) × 3" (W) × 63/8" (D)
79
Approximate Weight:
95 g (3.4 oz) including the battery
Verifying the Authenticity of Your
Calculator
Use the steps below to verify that your calculator is a genuine CASIO
c a l c u l a t o r .
1 . Pr e s s
2 . Pr e s s .
• Th i s d i s p l a y s t h e i n f o r m a t i o n b e l o w .
- Ca l c u l a t o r I D n u m b e r ( 2 4 - c h a r a c t e r s t r i n g )
- QR Co d e f o r a c c e s s i n g t h e W o r l d wi d e Ed u c a t i o n Se r v i c e
( h t t p s : / / we s . c a s i o . c o m / c a l c / )
3 . Ac c e s s t h e a b o v e s i t e .
4 . Fo l l o w t h e i n s t r u c t i o n s o n t h e d i s p l a y t o v e r i f y t h e a u t h e n t i c i t y o f y o u r
c a l c u l a t o r .
Pr e s s
.
t o r e t u r n t o t h e m o d e m e n u .
80
Frequently Asked Questions
Example: (sin 30) + 15 (Angle Unit: Deg)
Frequently Asked Questions
■ How can I perform input and display results the same way I did on
a model that does not have Natural Textbook Format?
→ Perform the following key operation:
"Co n f i g u r i n g t h e Ca l c u l a t o r Se t u p " f o r m o r e i n f o r m a t i o n .
■ How c a n I c ha nge a f r a c t i on f or m r e s ul t t o de c i m a l f or m ?
How c a n I c ha nge a f r a c t i on f or m r e s ul t pr oduc e d by a di v i s i on
ope r a t i on t o de c i m a l f or m ?
→ Se e "T o g g l i n g Ca l c u l a t i o n Re s u l t s " f o r t h e p r o c e d u r e .
■ W ha t i s t he di f f e r e nc e be t we e n Ans m e m or y , i nde pe nde nt m e m or y ,
a nd v a r i a bl e m e m or y ?
→ Ea c h o f t h e s e t y p e s o f m e m o r y a c t s l i k e "c o n t a i n e r s " f o r t e m p o r a r y
s t o r a g e o f a s i n g l e v a l u e .
Ans M e m or y :
St o r e s t h e r e s u l t o f t h e l a s t c a l c u l a t i o n p e r f o r m e d . Us e t h i s m e m o r y t o
c a r r y t h e r e s u l t o f o n e c a l c u l a t i o n o n t o t h e n e x t .
I nde pe nde nt M e m or y :
Us e t h i s m e m o r y t o t o t a l i z e t h e r e s u l t s o f m u l t i p l e c a l c u l a t i o n s .
V a r i a bl e s :
Th i s m e m o r y i s h e l p f u l wh e n y o u n e e d t o u s e s t h e s a m e v a l u e m u l t i p l e
t i m e s i n o n e o r m o r e c a l c u l a t i o n s .
(SETUP) (LineIO). See
■ W ha t i s t he k e y ope r a t i on t o t a k e m e f r om t he ST A T M ode or T ABLE
M ode t o a m ode whe r e I c a n pe r f or m a r i t hm e t i c c a l c ul a t i ons ?
→ Pr e s s
■ How c a n I r e t ur n t he c a l c ul a t or t o i t s i ni t i a l de f a ul t s e t t i ngs ?
→ Pe r f o r m t h e f o l l o wi n g k e y o p e r a t i o n :
■ W he n I e x e c ut e a f unc t i on c a l c ul a t i on, why do I ge t a c a l c ul a t i on
r e s ul t t ha t i s c om pl e t e l y di f f e r e nt f r om ol de r CASI O c a l c ul a t or
models?
→ With a Natural Textbook Display model, the argument of a function that
uses parentheses must be followed by a closing parenthesis. Failing to
press
unwanted values or expressions to be included as part of the argument.
( COM P) .
( CL R) ( Se t u p ) ( Y e s ) .
after the argument to close the parentheses may cause
81
Older (S-V.P.A.M.) Model: 30 15 15.5
Natural Textbook Display Model:
Failure to press here as shown below will result in calculation of sin
45.
(LineIO) 30 15 15.5
82
© 2019 CASIO COMPUTER CO., LTD.