Carrier 48MA User Manual

Page 1
Number One AirConditbning Maker
Carrier Parkway • Syracuse, N Y 13201
Packaged Rooftop Multizone Units

DX Cooling/Natural or LP Gas, Electric or Hot Water/Glycol Heat

CONTENTS

INTRODUCTION I PHYSICAL DATA 2 CONSTRUCTION 3
General 3 Electrical - 3 Refrigeration System 3 Heating 5
i-x
....
Page

INTRODUCTION

The Carrier 48MA/50ME modular multizone differs markedly from the traditional hot deck/ cold deck reheat multizone. Carrier’s packaged rooftop units do not employ the hot deck/cold deck principle or the zoning dampers associated with conventional units.
Carrier’s distinctive design — individual modules for heating and/or cooling with constant module airflow, is a true innovation to the multizone market. The modular units heat, cool or de­humidify in each module simultaneously and independently of all other modules. Modules can serve individual zones or be grouped together to serve larger zones.
The modular multizones are available in 6 sizes based on cooling capacity.
SYSTEM SELECTION AND OPERATION 7 APPLICATION 10
Diversity 10 Limitations 10
Reheat Applications 11 Economizer 11 Economizer and Exhaust Performance 14 Economizer Economics 15 Night Setback 16
MISCELLANEOUS 19
Sound and Vibration 19 ■; Thermostat Usage and Control 20
Return Air Systems 20
RATING TABLES 30-41 FAN PERFORMANCE 42
Pulley Selection 42
Balancing Dampers 42
Performance Table 43
HEATING PERFORMANCE 46
Electric 46 Gas 46 Hot Water/Glycol 47
ELECTRICAL DATA 48-52
Power Wiring 52
Capacity
(tons) Modules
15 20 25 28 5 30 37
No. of Unit
8
8 48MA/50ME024 10 48MA/50ME028 10 48MA/50ME030 12 48MA/50ME034 12 48MA/50ME040
Designation
48MA/50ME016
LP or natural gas, electric resistance or hot water/glycol heating options are available to maxi mize efficient use of local energy resources. Econo­mizers, power exhaust, roll filters and high-efficiency filters are also available as factory installed options - all providing a greater flexibility in applying the modular multizone to specific job requirements.
A recent multizone energy study compared the energy usage of the Carrier modular units with 3 competitive designs. The study simulated (by computer) the operation of the units for one year in a typical building in each of 14 major U.S. cities. The cities represented complete coverage of the
climatic conditions experienced throughout the country. Study results showed the Carrier multi zone consumed less energy than the others in each case considered under all climatic conditions. Details of the energy study are contained in the
Carrier brochure, The Modular Multizone Versus
the Others.
© Carrier Corporation 1976
Form 50ME-1XA
Page 2

Table 1 — Physical Data

UNIT 48MA OR SOME
Zone Modules
OPERATING WT (lb)
Bose Unit 48MA Bose Unit SOME (with heat)
Roof Curb
REFRIG CHARGE (lb, R-22) COMPRESSOR
No. 1 Type
Cylinders ... Unloaders
No. 2 Type
Cylinders (has no unloaders)
System Oil Charge (pts) Unlaader Settings (psig)
Left Bank
Right Bank
Loads
Unloads
Loads
Unloads
Capacity Steps (%)
OUTDOOR AIR FANS
Mtr Hp ... Rpm ... Frame (NEMA)
No. 1 No. 2 No. 3
INDOOR AIR FANS
No. ... Size (in.)
Cfm (Norn)
Motor Hp ... Rpm Std
Opt
Fan Pulley
Outside Diameter (in.) Bore (in..)
Fan Belt No. ... Size w/Std Mtr
w/Opt Mtr
Motor Pulley A
Outside Diam (in.) w/Std Mtr
w/Opt Mtr
Bore (in.)
Resulting Fan Rpm w/Std Mtr
w/Opt Mtr - - - -
Motor Pulley B
Outside Diam (in.) w/Std Mtr 6.0
w/Opt Mtr
Resulting Fan Rpm w/Std Mtr 995
w/Opt Mtr
HEATING SECTION (48MA)
Rise Range
Input (1000 Btuh) Min-Max Total
Each Module
Bonnet Cap. (1000 Btuh) Total
Stage 1/Stoge 1 ± 2
HEATING SECTION (SOME ELEC) HEATING SECTION (SOME, GLY.)
Max allowable inlet temperature Max allowable flow, each coil Solution mixture Max allowable working pressure Total internol volume (gals)
PRESSURE SWITCHES
, _ Cutout Low-Pressure r. ^ .
Cut-in
High-Pressure ^ul^n
Indoor Air Flow Switch (AFS 1)
Factory Setting (cfm) Adjustment Range (cfm)
INDOOR AIR FILTERS
Std No. ... Size (in.)
High Efficiency (optional)
No. ... Size (in.)
Roll Media (optionol)
0T6
8
3385 2985
_506
28 "
024
8
3805 3405
506
~~32
028
10
4075 3665
506
43
030
10
4080 3670
506 43
Reciprocating Hermetic, 1725 Rpm
06DE537
6 2
06 DE 824
6 .. 2
06DA824
6
22
06DE537
6 . 2
06DA824
6
22
06DE537
6 . . 2
06DA537
6
22
Compressor No. 1 Only
71.0 ± 1 5
57.5 ±25 76 0 + 1 5 62 5 ± 2.5
100,67,33
100,83,67
50,33,17
100,80,60
40,20
100,80,60
40,20
Propeller, Direct Drive
1 . 1075 1 ... 1140
2 ... 15x15
2 . 15x15 2 . 15x15 2 . 15x15
6000 8000 10,000
5 . . 1725
- - - -
10.6 Р/!б
1 3V630 1 ... 3V630 2 ... 3VS60 2 . 3V560
7/2 ... 1725
10.6
10 ... 1725
8 0 8 0
56 (1-phase) 56 (3-phase)
10,000
10 ... 1725
P/16
- - - -
Instai led
Factory
5.3 _ - - -
iVe
880
6.0 1%
995
6 9
-
1145
- -
5 0
1%
1095
Shippec
5.6
1230
'5 0
1%
1095
With Unit
5 6
1230
2-Stage Furnace Assembly in Each Zone Module
25 F to 55 F at 0 75 in. v^g ESP
240-480
60
360
22.5/45.0
240-480
60
360
22.5/45.0
300-600 I 300-600 I 360-720
60 60 60
450 450 540
22.5/45.0 I 22.5/45.0 j 22.5/45.0
See Electrical Data Table for Electric Heat Data
1 Heating Coil in each Zone Module
ZOO F
6 gpm
20% glycol
30 psig
2.61
2.61
3.15 ] 3.15 1
29 ± 5 psig
39 ± 5 psig 400 ± 5 psig 300 ± 5 psig
6000
4000-6000
12 ... 20x25x2
Same but with 36.5% efficiency (NBS Dust Spot Test)
65 ft of 2-in. media
034
040
12
4800 4400
5700 5250
630 57
06DE537
6 ... 2
06DA537
"65 “■
06EE250
4 . . 1
06EA250
6
21
31
75.5 ± 1 5
58.0 ±25
100,83,67
50,33,17
100,75,
50,25
I 1 1140 . 56 (3-ph)
3 ... 15x9 3 . 15x9
12,000
15 ... 1725
20 ... 1725
12,000 15 ... 1725 20 ... 1725
8 0 1“/б 1‘Мб
2 3V630
3 . 3V670
2 ... 3V630 3 . . 3V670
5 0 5.0
6.0 1% 1%
1095 1320
1095 1320
5 6 5.6
6.5 6.5
1230 1230 1425 1 1425
360-720
22.5/45.0
3 76
3.76
9000
6000-9000
12
630
4
8.0
6.0
60
540
О
Page 3

CONSTRUCTION

General — Carrier Modular multizones are sturdy
and lightweight. The units are ideal for rooftop applications where low silhouettes are required.
^|p Maximum height of any 48MA/50ME unit
mounted on a matching roof curb is less than 5 feet. Each unit is of one-piece design with extruded aluminum frame and 26 ga steel top and side panel construction. Panels are easily removed for access to unit interior. Assembled, the insulated unit will not sweat at 77 E wet-bulb on cooling days. The unit insulation conserves heat energy in the winter, keeping energy costs to a minimum.
The unit roof curb, constructed of 14 ga galvanized steel, is National Roofing Con tractors Association (NRCA) approved. A condenser run-off sheet is built into the curb and is insulated to prevent heat transfer. The curb is designed to be flashed to the roof and includes wood nailers to aid installation. All duct and utility connections are inside the curb perimeter.
Service access on side panels is accomplished by removing latches on each side of panel. The side panel gaskets provide complete perimeter sealing when compressed against the base unit frame. Each 48MA/50ME unit has large, waterproof condensate pans to prevent moisture leakage into the con ditioned space. Galvanneal steel panel surfaces are bonderized and finished with Carrier Weather Armor, a baked enamel finish.
Enters are 2-in. throwaway fiberglass with an NBS efficiency of 10%. High efficiency (36.5% NBS) throwaway filters are available as a factory­installed option. With 41.5 square feet of zone
filter area standard, both the low- and high-
efficiency filters are extremely effective. With this large area, filter velocity is low — 335 fpm in the 48MA/50ME040 and 145 fpm in the 48MA/
50ME016. A roll filter package is available as a
factory-installed option.
The package consists of 65 ft of 2-in. filter media, automatic media advance switch, advance motor and a runout switch. Outside air is drawn into the unit thru louvered side panels and pre filtered by cleanable outdoor air filters in the panels.
Electrical — The Carrier Modular multizones
include factory-installed power and control circuit breakers which are suitable for use as disconnect switches where local codes permit. A 350-va,
115-volt convenience outlet on the main control
panel allows use of a trouble light or small power
tools.
Etched solid copper circuit panels with inter changeable plug-in relays and marked terminal boards are used in all units to improve reliability and simplify the modular design. Conventional commercial 24-volt, 2-stage heat/2-stage cool
thermostats are readily wired to marked terminals on the zone control board. Modules combined to make a single, large zone are controlled by a single thermostat by wiring the zone module control terminals as illustrated in thermostat usage section using factory-supplied jumpers.
Refrigeration System — The modular multizone
units incorporate individual zone evaporator coils plus an outdoor air (Humidry®) evaporator coil (see Eig. 1). The zone coils are controlled by room thermostats thru a liquid line solenoid valve. The metering device for the zone evaporators is a capillary tube.
The outdoor air evaporator coil cools and dehumidifies the outside air drawn into the unit. This coil is a “free floating” coil; that is, after the first zone cooling coil is activated by cooling demand, the outdoor air coil is controlled by suction pressure only. Since the outdoor air evap
orator coil handles a varying load, a thermal
expansion valve is used to meter the correct
amount of liquid refrigerant to this coil.
The load on unit compressors varies depending on outdoor air coil load and the number of zone coils in operation simultaneously. Compressor unloaders and hot gas bypass valves are employed
to compensate for the variation. The 15-ton unit
unloads to 1/3 or 5 tons, the 20-ton unit to 1/6 or
3.3 tons, the 25-ton unit to 1/5 or 5 tons, the 28-ton unit to 1/6 or 4.7 tons, the 30-ton unit to
1/6 or 5 tons, and the 37-ton unit to 1/4 or 9.3 tons. The unloaders operate from suction pressure to maintain system suction temperature between 32 and 45 E. If the load is less than the minimum step indicated above, a hot gas bypass valve meters
hot gas into the outdoor air coil to provide an
additional load to the system. This keeps the compressor on the line and prevents the coils from
icing up due to low suction temperature.
Since the outdoor air coil would become a condenser when the ambient temperature is below the suction temperature, a thermostat closes the outdoor air damper if the ambient drops below 32 E and compressors are operating. If there is no airflow across the outdoor coil, there is no heat transfer and the coil becomes an extension of the refrigerant piping.
Head pressure is maintained by cycling one or 2 condenser fans with a condensing pressure switch and modulating the remaining fan with a Motor­master® solid state speed controller, permitting operation of the refrigerant system to -20
ambient. The Carrier modular design is not de
pendent on an economizer cycle for cooling at low
outdoor temperatures. (A factory-installed econo
mizer option is available.)
All multizone units function satisfactorily in
the full cooling or full heating mode. However, at
Page 4
Fig. 1 — Refrigerant Piping Schematic (10-Zone Units Shown, 8- and 12-Zone Units Similar)
partial load operation, difficulties arise in conven tional hot deck/cold deck units. When some zones are at full heat, some at partial heat, some at partial cooling, conventional multizones must operate the hot and cold decks simultaneously at high energy cost. The Carrier Modular design satisfies each zone’s demand by a discrete module(s). There are no hot decks, cold decks or zone air mixing dampers to waste energy. The only energy expended is that required to heat or cool the individual zone. Since there is no mixing, energy is saved and operating costs are significantly lowered. In addition, the control system provides excellent humidity and temperature control. Multi stage cooling is available on larger zones where 2 or more modules are used for efficient control of zone space requirements.
The following features and safety devices are
provided on the refrigerant cycle:
1. Suction line accumulator
2. Crankcase heaters
3. High- and low-pressure switches
4. Discharge line thermostat
5. Time Guard® circuit
6. Airflow switch for indoor fan motor
7. Internal motor protection thermostats em bedded in compressor motor windings
8. Hot gas bypass capability
9. Compressor unloading capability
10. Filter-driers
PSYCHROMETRICS ^ The 48MA/50ME units differ psychrometrically from the conventional multizones due to the operation of the outdoor air coil. The coil in the Carrier units cools and dehumidifies the outdoor air entering the unit thus assuring that raw outdoor air is not passed along to the zones. This air treatment by the outdoor air coil (and also by the zone module evaporator coils) provides excellent low load performance and precise temperature control to the conditioned space. The only large load variation occurs on the outdoor air coil where a thermal expansion valve is used. This allows the use of simple capillary tube expansion devices on the zone coils. The zone coils cool and dehumidify a mixture of return air and outdoor air — outdoor air at the approximate dew point temperature of the return air.
The psychrometric chart (Figure 2) illustrates this air treatment for a typical set of conditions. As an example: 1000 cfm of outdoor air at 95 F/75 F having 99 grains moisture content enters the outdoor air coil and is cooled and treated so that the air leaving the coil has 68 grains of moisture content. The outdoor air coil under these con ditions has a capacity of 60,000 Btuh of which 39,000 Btuh is sensible. This is a coil sensible heat factor of 0.65. By examining the room conditions, it is evident that the outdoor air coil is very effective in removing the latent load. At 75 F/50%, the room content is 64 grains of moisture. The percent moisture removed with respect to room conditions is:
Page 5
GRAINS OF MOISTURE/
LBS OF DRY AIR
% removed
99 - 68 99 - 64
100 =
88.5%
The 1000 cfm of outdoor air at 68 grains is mixed with 8000 cfm of return air at 75 F/50% room conditions (64 grains). This mixture then enters the zone modules and is cooled and dehumidified by the zone coil.
Heating (General) — The 48MA/50ME modular
multizone units offer a wide range of factory­installed heating options.
In all cases, the modular design provides a
number of small heating steps to maintain very close discharge temperature control without wide variation. Conventional multizones cycle a few large increments to maintain the necessary hot
deck temperatures and, thus, cannot control dis
charge temperature as well as the modular units.
Another feature of the modular design is the reduced impact of heater malfunction. Any unit can have a malfunction — such as an open coil in a relay or contactor or gas valve failure in a gas-fired unit. The Carrier 48MA/50ME units, with 8, 10 or
12 independent heating sections, would experience heat failure in one module only and all others would operate normally. Conventional multizones could lose a large percentage of heating capacity or
the entire heat source in the hot deck could become inactive.
The Carrier modular multizone units are de signed to provide reliability, serviceability, oper ating economy and comfort control — features difficult to match with conventional hot deck/cold deck reheat multizone units.
GAS HEATING SYSTEM (48MA) Each module has a 2-stage burner, with one pilot per pair of modules. The first-stage gas valve (115-v) controls gas flow to the main orifice and to the second-stage valve. A 24-v solenoid valve provides gas to the second stage when open (see Eig. 3). Both heating stages are contained in one valve body.
The gas heating section has standing pilots and continuous forced draft combustion. The pilots have automatic spark relight for dependable ignition.
The 48MA modular multizone has individual 18 ga Chromized steel heat exchangers and stainless steel main burners in each module.
Safety features on the heating system include:
1. A.G.A. certification of the entire unit design as ' well as the furnace section.
2. Airflow switch for indoor fan motor.
3. Airflow switch for forced draft fan motors.
4. Door switch for combustion compartment.
5. Pilot switch to ensure a pilot flame
Page 6
GV - Gas Vaive (Zone Module)
MOTSS:
t
MS ~ Main Burner
Pirst stage of gas valve is a 115-vott sok-noid; second stage is a 24-voit soienoid with .60% gas bvpess. Gnits 48MA034 ano 040 fi ave one pilot shotoff valve feeding all pilot burners.
Unit is eouipped with a forced-draft blower and: the foiiowing

Fig. 3 — Gas Piping Schematic (10-Zone 48MA Unit Shown, 8- and 12-Zone Units Similar)

MGV ­PS -
Main Gas Vaive Pilot Sorrier
safety devices: forced-draft airfiow switcfi, tiame rcll-oot pro tection switch, combustion dtarnbet access door switch, heating lirrtt switches, and soark-ignitecl automatic pilots. Al! of these switches are iccateci in the heating section and rrtust. be in safe condition before tfie inain burners can ignite.
PV ~ Pilot Valve (shutoff;
6. Heating limit switches.
7. Flame rollout protection switch. In special applications where natural gas supply
is limited, units must be modified to operate under derated input/output conditions. The 48MA modu lar multizones can be derated by changing the zone module burner spuds and gas valve orifices as follows:
NATURAL GAS FIRED UNITS
TOTAL MODULE
DERATED INPUT (%) High F ire/Low Fire
90/45
80/40 70/35
SPUD SIZE
No 36 No 38 No 41 No 43
GAS VALVE
ORIFICE SIZE
No 36 No. 38 No. 41 No 43
Under these conditions, the units still have 2 stages of derated heat input. Derating below these limits is not approved. If single-stage heat is acceptable, disconnect high fire stage to permit each module low fire input only (% as shown under low fire).
Contact Carrier Service Department before de
rating to the above limits. ELECTRIC HEATING SYSTEM (SOME) - The
SOME electric heating system contains single-phase Nichrome wire coils (see Fig. 4), wired and phase balanced to provide 2 or 3 steps of heat control. Each zone has 2 or 3 steps of strip heat available, controlled simultaneously by the zone thermostat and the outdoor air thermostat. When heat is required, the first stage of zone thermostat ener gizes the first step of zone heating. The second step (on 3-step units) of heating is controlled by the second stage of the zone thermostat. The second
(on 2-stage units) and third step of heating is controlled by the outside air thermostat (OAT.) and operates simultaneously with the second stage of the thermostat (on 3-stage units) when the outside air temperatures are below OAT. setpoint. The setpoint on the outside air thermostat is adjustable from 0 to 55 F.
Safety features include:
1. UL certification on entire unit, as well as electric heat section
2. Manual reset circuit breakers
3. Klixon high-temperature protection
4. Airflow safety for indoor fan motor
5. Fusible links in each heater phase
6. Two-pole contactors on each element
Fig. 4 — Electric Heating Unit (50ME)
Page 7
нот WATER/GLYCOL HEATING SYSTEM -
Hot water is a frequent selection for heating due to simplicity of the piping system, the ease in maintaining uniform temperature control and quieter operation. In addition, when renovating an existing building, a hot water heating plant is usually available.
Carrier’s hot water/glycol heating option
(Fig. 5) is ideally suited for these renovations. Each
zone module has its own high capacity heating coil.
All controls, solenoid operated shutoff valve and
balancing valves are included in the option. There is no internal piping or wiring; only one connection is required for supply and return hot water/glycol. The option does not include internal pressure relief
for partial load operation. External piping to the unit must be in accordance with existing codes. It must include proper relief for water flow (the
maximum allowable hot water/glycol system work ing pressure is 30 psi.) or a modulating control to
compensate for decrease in water flow rate to zone coils under partial load conditions when some coils
are cycled closed. System heater coils are designed
for operation with a water/glycol solution of 20%
minimum glycol for proper freeze-up protection.
Figure 35 located in the Heating Capacity Section,
page 47 portrays an example of selecting and rating
hot water/glycol heating coils for use with SOME
multizone units.
The hot water/glycol option is not intended for use on a steam system. Where steam is the only heating medium available, a steam-to-water con verter or a steam-to-water interchanger should be used.
typical multizone design considerations. Using the Engineering Guide, calculate cooling and heating load estimates for the areas to be served by the multizone unit. Divide each area into zones based on the peak load and control requirements within
the area.
The resulting loads in a typical building have
been calculated as follows: Cooling
Grand Total Load (GTE) .................... 275,000 Btuh
Sensible Load (SL)
..............................
215,000 Btuh
Room Design....................................75 F db/50% Rh
Outdoor Air (OA) Cfm
.......................................
1000
OA Ambient Temperature .... 95 F db/75 F wb
Electric Power Source
у XT Room Total Load* Room Sensible Load zone JNo. (RTL)/Zone (RSL)/Zone
1 19,000 Btuh 16,935 Btuh 2 25,000 Btuh 22,505 Btuh 3 25,000 Btuh 22,505 Btuh 4 70,000 Btuh 59,160 Btuh 5 22,000 Btuh 19,720 Btuh 6 25,000 Btuh 22,505 Btuh 7 40,000 Btuh 33,870 Btuh
Total 226,000 Btuh 197,200 Btuh
*Loads are peak loads.
.................................
460/3/60
Heating (Electric Resistance Heat required)
Zone No
1 34,000 Btuh 10.0 kw
2 3 4 111,000 Btuh 32.5 kw 5 6 7
Total*
*Zone Peak Capacities.
Heating Load/Zone
44,000 Btuh 12.9 kw 44,000 Btuh
42,000 Btuh 12.3 kw 44,000 Btuh 81,000 Btuh
400,000 Btuh
Electric Resistance/Zone
12 9kw
12 9kw
23 7 kw
117 2 kw

Fig. 5 — Hot Water/Glycol Heating (50ME)

SYSTEM SELECTION AND OPERATION

To better understand the actual operation of the modular multizone, a typical design example is provided.
Refer to Carrier’s Engineering Guide for Multi
zone Unit Systems and contents of this booklet for
Selection:
Due to the many heating options and ranges on each 48MA/50ME unit, multizone unit selection is normally based on cooling load requirements. Enter the 48MA/50ME rating tables in the Per formance Data Section and select the unit that meets or exceeds the grand total load at the specified conditions. (Interpolation may be neces sary to obtain unit rating at certain conditions; extrapolations are not advised. Contact Carrier Engineering for performance data at points beyond the range of published tables.) The 024 size unit does not have sufficient capacity to meet load requirements at any cfm. The 028 size exceeds load requirements; however, it is the smallest unit that meets specifications. Thus, the 48MA/“' 50ME028 at: 9000 cfm; 1000 cfm OA; 95 F/75 OA temperature; and 75 F/50% Rh room design has a TC of 282,000 Btuh, SHC of 219,000 Btuh, compressor kw of 27.5 and a RSHF of .835. Calculate the RTC and the RSHC by deducting the outdoor air load from the unit capacity.
Page 8
The outdoor air load with respect to room condi-
as follows:
outdoor ail
total heat (OATH) = 4 5 (hgg:,- Ьго,ошХ (OA cfm)
= 4.5 (38.61 - 28.29) (1000) = 46,440 Btuh
Or, a graph, shown 'in Fig. 6, can be used to find the OA load factor, 4.5 (hoa “ hfoom). for all
conditions illustrated in the 48MA/50ME rating
tables (Performance Rating Section). Thus,
OATH = (OA load factor) (OA cfm)
= (46.5) (1000) = 46,500 Btuh
which agrees with the above calculation.
Outdoor air sensible heat (OASH) = 1.09 (toa ■" boom) (OA cfm)
= 1.09(95 - 75) (1000) = 21,800 Btuh
<
О
2
u.
0
\
1
z>
H
Ш
Q
<
о
<
I-
o
h-
Ш
a
CO
I-
Э
о
OA WET BULB
Fig. 6 — Outdoor Air Load Selection Chart
8
Page 9
The unit capacity available to offset room loads is.
Room TC = Unit TC — outdoor air TC
= 282,000 -46,500 = 235,500 Btuh
Room SHC = Unit SHC — outdoor air sensible heat
= 219,000 -21,800 = 197,200 Btuh
For comparison:
GTL SL RTL RSL
Load
275.000 Btuh
215.000 Btuh
226.000 Btuh 197,200 Btuh
Unit Capacity
TC = 282,000 Btuh
SHC = 219,000 Btuh RTC = 235,500 Btuh RSHC = 197,200 Btuh
The 48MA/50ME size meets or exceeds the total and zone load requirements at the specified conditions. The excess RTC decreases space average relative humidity slightly below the room design of 50%. By increasing air quantity above 9000 cfm, this excess latent capacity can be converted to additional sensible capacity if desired.
Since the modular multizone is a constant
volume machine, the selected supply cfm per zone
must be proportioned to satisfy each zone’s peak load condition.
Room sensible capacities (RSC) are divided equally among the modules if an equal cfm is going to each. In this example, the 48MA/50ME028 has
10 modules and the nominal cfm is 900 cfm per
module.
The cfm to each zone can be varied (with field-supplied manual dampers in zone ducts) to match different zone requirements, but since the
original rating was based on 9000 cfm supply air, all variations must total 9000 cfm. The effects of
changing cfm quantities on room TC and room
SHC in each module are shown in Fig. 7. When the
cfm is changed (by some percent) from the
nominal in a specific module, then the room capacity multipliers in Fig. 7 are used to correct room TC and room SHC. Capacity versus cfm
changes for the example is given in Table 2.
By analyzing each zone’s ratio of deviation from equal sensible heat allocation, the proper cfm change is determined. In the example, if building room SHC is 197,200 Btuh and 10 zones are used, each zone’s normal room SHC is 19,720 Btuh. But
if zone 3 has 22.505 Btuh room SHC, then by ratio of 22,505 : 19,720 or 1.14, the cfm change is
+20% (see Fig. 7). Correspondingly, if zone 1 had
16,935 Btuh room SHC, the cfm change is -20%.
In applications where the zone selection is not an increment of the number of unit modules (i.e. one zone requiring 500 cfm in a 48MA/50ME028 with 10,000 cfm), refer to Module Cfm Limits, page 10, for details on using cfm’s below 600 cfm/module.
Formulas required to use ratings are:
Outdoor Air Total Heat (OATH)
OATH = 4.5 (OA cfm) (hoa-hioom)
Outdoor Air Sensible Heat (OASH)
OASH = 1.09 (OA cfm) (toa ~ troom)
Room Total Capacity (RTC)
RTC = Unit TC-OATH
Room Sensible Heat Capacity (RSHC)
RSHC = Unit SHC - OASH
Room Sensible Heat Factor (RSHF)
portp _ RSHC
Leaving Air Temperature (LAT)
LAT = room temperature
RSHC
1.09 cfm
Determine Heating Capacity:
The specified requirement for electric heat dictates the selection of a 50ME028 unit with a kw option that meets or exceeds the heating load.
Table 9, page 50 indicates that the 028 unit has
heating capacity options of 66, 88 and 132 kw. The 132 kw option is selected as it provides
adequate heat for this application. The kw/zone and number of heat stages available are:
Zone No.
1 2
3 4 5 6 7
Total
Load
10.0 kw kw 13.2 kw
12.9
12.9 kw kw
32.5 kw 13 2
12.3 kw 31.2 kw
12.9
23.7 kw 26 4 kw
117.2 kw 132.0 kw 30
Zone Heating
Capacity
13.2
kw
13.2 kw kw
39.6 kw
Stages
of Heat
3 3 3 9 3 3 6
Stages of heat are controlled individually in the small zones or collectively in large zones to provide flexible and continuous control for each zone.
Table 2 — Capacity vs Cfm Changes
ZONE
*Unit total capacity multiplier is obtained from Fig. 7. Use % change from nominal and read multiplier from graph.
RSHC — Room Sensible Heat Capacity RSL — Room Sensible Load RTC — Room Total Capacity
NO. OF
NO.
MODULES
1 1 16,935 16,935/19,720 = 86 2 3 1 22,505 4 3 59,160 59,160/3 X 19,720 = 1.00 0 2700 1 0 5 1 6 7
1 22,505
1 22,505 22,505/19,720 =1.14 +20 1080 1.1
10 197,200 9000
2
RSL/ZONE
PEAK LOAD
19,720 19,720/19,720 =1.00 0
33,870
% DEVIATION
(RSL/NOM UNIT RSHC)
22,505/19,720 =1.14 22,505/19,720 =1.14
33,870/2 x19,720 = .86
% CFM CHANGE FROM NOMINAL
-20 +20 1080 1 1 +20 1080 1 1
-20 1440 .9
UNIT TOTAL
CFM
CAPACITY
MULTIPLIER*
720
900 1.0
X
9
X X X X X X X
UNIT
NOMINAL
RTC/ZONE
23,550 23,550 23,550
3 X 23,550
23,550 23,550
2 X 23,550
ADJUSTED
UNIT RTC
21,195 25,905 25,905 70,650 23,550 25,905 42,390
235,500
Page 10
LJ
a
z>
2
a:
II
2
O
O
•% CFM CHANGE ■
FROM NOMINAL
I 0
95
90
85
<
a.
<
80
75
Fig. 7 — 48MA/50ME Room Capacity Multipliers
Power Wiring Data — The 50ME028, 460-3-60 unit
with 132 kw of electric resistance heat, has a 75.8 cooling circuit minimum wire ampere and a heating circuit minimum wire ampere of 207.0. If any module is operating on mechanical cooling (com pressor operating), one heating stage in each
module is locked out and cannot be energized.
This, a common feeder can be sized for minimum
wire ampere of 221 (see Fig. 37).

APPLICATION

Diversity — The size, shape and orientation of the
building — as well as the application and location of zones, influence the degree of diversity that may be applied to a multizone system.
Since the normal application of multizone units involves zones where loads are shifting due to solar energy, people, equipment and lights, diversity will exist.
The Carrier modular multizones will be affected by building diversity only on the refrigeration system. When a particular zone (or zones) thermo stats are satisfied, a solenoid shuts off the zone evaporator coil. This enables more refrigerant to
flow to other operating zone coils, creating a larger capacity for that zone. However, the diversity will lower the selected unit total capacities.
The 48MA/50ME ratings do not reflect diver sity but can be converted to diversity ratings by using the capacity correction factors and formulas in Table 3.
Table 3 — Capacity Correction Factor (CCF)
LOAD
TC (Unit)
SHC (Unit)
RTC (with diversity)
RSHC (with diversity)
DIVERSITY FACTOR
1.0
1 0 1 0
90 .80
97 94
[TC (CCF) - OATH]
(Diversity Factor)
[SHC (CCF) - OASH]
Diversity Factor
94 89
This is accomplished by rating the unit assum
ing that no more than 9 of 10 zones would be on
at one time, 90% diversity. The same logic applies to other diversity factors on an average basis, such as 85 or 95%.
A rating with a diversity factor results in a lower room SHF; therefore, a reselection at a higher total unit cfm is advisable to take full
advantage of the building diversity.
Limitations
MODULE CFM LIMITS AND FAN PER FORMANCE — The cfm limits per zone are
1200 cfm maximum and 600 cfm minimum. The
10
Page 11
outboard zones in the 8-, 10- and 12-module units are limited to a maximum of 1000 cfm. The maximum limit is necessary to prevent blow-off to
the heat exchangers and into the ductwork. The minimum limit prevents burner cycling on limit switches and prevents electric heater cycling. At reduced cfm’s, zone evaporator coils overfeed refrigerant, but there is no liquid flood-back to the compressor as it is protected by a suction line accumulator.
For applications below 600 cfm, it is recom
mended that the heating controls be modified as
follows:
Gas fired (300 to 599 cfm) — Use first-stage heat only, deactivate second stage.
Electric Resistance (450 to 599 cfm) — Use first- and second-stage heat on 3-stage units.
Electric Resistance (300 to 449 cfm) — Use first-stage heat on 2- or 3-stage heat units.
Optimum performance is delivered in the 800 to
1000 cfm range. Extremely low cfm requirements
reduce unit cooling capacity. Low zone cfm
applications may also be handled by sizing the zone for a higher cfm (to increase unit efficiency)
and diverting the extra air into the return air
system or a larger interior space. Extra air should
not be diverted into spaces with different perimeter wall orientations.
Fan performance data. Table 4 and Fig. 32, 33 and 34, (Fan Curves) are located in the Fan Performance Section and are based on 15% out door air. When the outdoor air dampers are closed and there is no outdoor ventilation air into the unit, unit cfm is reduced by 2 to 6%. This reduction is due to the static pressure drops existing in the separate airflows thru the unit. This reduction should be considered in special applica tions where little or no ventilation is required and cfm requirements are critically designed.
MAXIMUM VENTILATION LIMITS Under normal mechanical cooling, the amount of ventila tion air that can be introduced is a function of the outdoor air damper setting and negative static
pressure at the return air intake of the unit. Figures
8 thru 11 show ventilation air versus negative static
pressure at various settings of the outdoor air
damper. A 5.5 setting of the ventilation control dial is the maximum opening of the dampers. The
ventilation dial can be set in any position from 0 to
5.5 to obtain the desired cfm of outdoor air. The
ventilation dial is located on the control panel
adjacent to the heating section.
Reheat Applications — A space with a high latent
load and a very low sensible load may require
reheat capability for dehumidification. Typical spaces of this type are conference rooms or visual aids rooms where people congregate with the lights out.
Reheat control is achieved on the 48MA/50ME unit by wiring a humidistat (Fig. 12) in parallel with the cooling thermostat on any zone requiring reheat capability. This may be done on one module or all modules. When using reheat control on electric resistance heat units, extreme care must be exercised with power wiring as heating and cooling can operate simultaneously in each module.
When the zone’s humidity level reaches the setpoint of the humidistat, mechanical refrigera tion is activated for that zone module and the air is dehumidified and then reheated on thermostat demand before being discharged to the zoned space.
The 48MA/50ME Economizer — The 48MA/50ME
units can be equipped with an economizer control. The control functions as follows: with ambient temperatures above the economizer changeover point, the outdoor air damper is set at the ventilation position, cooling is accomplished by the compressors when the room thermostat calls for cooling. If the zone is not calling for cooling, the mixed air is circulated thru the space. When the ambient temperature drops below the economizer changeover point, the compressors are locked out and the damper motor is under control of a mixed air thermostat to maintain a mixed air temperature low enough to provide cooling when the room thermostat demands it. (See Fig. 13.)
11
Page 12
3,000
100
I 15 2 25 3 .4 5 .6 7 8 9 10
NEGATIVE STATIC PRESSURE AT UNIT RETURN
Fig. 8 — Ventilation Air Chart,
48MA/50ME016
Fig. 9 — Ventilation Air Chart,
48MA/50ME024
Fig. 10 — Ventilation Air Chart,
48MA/50ME028,030
Fig. 11 — Ventilation Air Chart,
48MA/50ME034,040
12
Page 13
If a zone thermostat calls for cooling while in economizer mode, a set of cooling relay (CR) contacts close, energizing the economizer relay (ECR). See Fig. 14. The ECR is a DPDT plug-in relay. For economizer damper control, the ECR locks out the outside air damper adjustable poten tiometer and shifts the damper control to a Mixed Air Thermostat (MAT.). The MAT. sensor, located in the fan section, adjusts the outside air damper to maintain a preset mixed air temperature (see Fig. 15).
The 48MA/50ME economizer operation pro
vides economic use of outdoor air for low-cost
cooling. When all zone cooling thermostats are satisfied, economizer controls are bypassed and the outdoor dampers are modulated to the minimum
ventilation position. The mixed air temperature
increases, minimizing the amount of reheat re quired in other zones that require heating.
Refer to Economizer Economics, page 15 to determine if the addition of an economizer is
justified.
Г
HA — Heat Anticipator S)
Hu - H umidistat TC — Thermostat, Cooling TH — Thermostat, Heating
-------------------
----------------------
~l LI
LEGEND
-------
Fig. 12 — Humidistat Connections
Screw Terminal Printed Circuit
Factory Control Wires
Field Wiring
SEQUENCE;
1 — Ambient temperature decreases 2 — Compressor is locked out by economizer control thermostat 3 — Outside air damper is regulated by mixed air thermostat
to maintain fixed mixed air temperature
Fig. 13 — Economizer Operation
C — Compressor Contactor CCP — Capacity Control Pressurestat CHR — Crankcase Heater Relay CR — Cooling Relay DLT — Discharge Line Thermostat ECR — Economizer Relay ECT — Economizer Thermostat EXC — Exhaust Motor Contactor EXR — Exhaust Relay
FCPS — Ean Cycling Pressurestat HPS — High Pressure Switch HR — Holding Relay IT — Internal Thermostat LPS — Low-Pressure Switch MCR — Master Cooling Relay MHR — Master Heating Relay OFC — Outdoor Fan Contactor TM - Ti mer Motor
LEGEND
Fig. 14 — Economizer Condensing Schematic
13
Page 14
OA damper adjust
MOTOR POT
CHR — Crankcase Heater Relay ECR — Economizer Relay LAT — Low Ambient Thermostat OA — Outside Air
Fig. 15 — Economizer Damper Control Schematic

Economizer And Exhaust Performance — An

MIXED AIR THERMOSTAT
LEGEND
economizer can be readily factory installed on the 48MA/50ME since the damper motor and outdoor air damper are standard equipment. The econo mizer package consists of a return air damper, linkage, plug-in relays, MAT. wiring, and mixed air thermostat.
When the 48MA/50ME unit is on full econo
mizer control, the supply cfm to the space drops
off slightly since the resistance of the outdoor air
intake is generally greater than that of the return
air ductwork. To partially offset this, the return air dampers have a built-in bypass.
With the outdoor air dampers fully open and the return air dampers fully closed, the total cfm drops 15%. The total cfm consists of 70% outdoor air and 30% return air thru the built-in bypass. If, for example, the unit normally operates at
10,000 cfm supply air, the minimum supply cfm when the economizer is operational is 8500. This 8500 cfm consists of 6000 cfm outdoor air and 2500 cfm return air. As the ambient temperature drops from 48 F (recommended economizer set­point), the proportion of outdoor air to the supply air required to maintain mixed air temperature is
less, the outdoor air damper begins to close, and return air damper begins to open (see Fig. 13). As
this happens, total supply cfm progressively increases from 8500 cfm to 10,000 cfm (design).
An exhaust damper option is also available for
use with the economizer. It is located between the
return air plenum and the condenser fans. The option consists of a TPDT plug-in relay (EXR), an exhaust damper, and a plug-in jumper. The damper provides a forced exhaust of indoor air during the economizer operation. The exhaust damper opens when the return air damper is 25% closed. With the damper installed, ECR and EXR are energized simultaneously. The EXR locks out outdoor fan motor (OFM) controls (32LT on OFMl and FCPS on OFM2 and OFM3) and outdoor (condensing) fan motors operate at full speed, discharging excess return air to the atmosphere thru the open exhaust damper (see Fig. 16).
The 48MA/50ME exhaust operation is similar in performance to a relief damper except that the exhaust dampers are mechanically linked to the return air dampers and the condenser fans operate to produce a pressure differential which aids the exhaust cycle. At approximately 0 in. wg at the return air opening, the 48MA/50ME units exhaust between 150 to 200 cfm/ton. With positive return static, more air is exhausted. At -0.40 in. wg (.25 in. wg on the 016 unit) return air static, exhaust capabilities of the units drop to zero.
In the example, the 4000 cfm exhausted at 0 in. return static accounts for all but 1100 cfm outdoor air introduced by the economizer outside air section. In practice, this excess cfm is con sidered a nominal ventilation rate, slightly pres surizing a building to eliminate drafts and unwanted air seepage. This excess air filters out of the building thru doors and window spaces. The
^slight positive pressurization of the building aids
the exhaust fans in removing air. If, however, the balance between the building static and exhaust system leaves the building with unacceptably high positive static pressures, a relief ventilator or roof power exhauster may be used. For extensive or
SEQUENCE:
1 — Return damper closes 25%.
2 — The exhaust damper opens 3 — The OFM (condensing fans) speed controls are bypassed and
fans run full speed, exhausting return air to atmosphere
Fig. 16 — Exhaust Damper Operation
14
Page 15
m
complicated return air duct systems with static pressure greater than -0.2 in. wg at the return air plenum, duct mounted return air exhaust fans can be installed for proper airflow. However, return air
exhaust fans add to the operating cost and increase
noise level. More efficient duct design methods should be investigated to eliminate the need for special return air exhaust fans.
Economizer Economics — Economizer control on a
multizone unit does not necessarily reduce
operating cost as it would on a single zone unit. A
single zone unit either heats or cools; a multizone
unit can do both simultaneously. Therefore, in a
multizone, the economizer operates to maintain a
mixed air temperature low enough to cool a zone
with a high internal load. The remaining zones
requiring less cooling or heating must have heat added to offset cooling capacity available but not needed. This is true of any multizone with any type of control system.
The amount of heat required to neutralize the
overcooling capacity is dependent on:
1. The percent cooling capacity required from the unit, and
2. The mixed air temperature required to satisfy the zone with the highest internal load.
As the ambient temperature drops, the percent
of outdoor air needed to maintain a mixed air
temperature is less. Since the reheat or wasted heat added is a function of the difference between outdoor air introduced and ventilation rate, operating cost is reduced at lower ambients. A high
ventilation rate also reduces the reheat requirement
and associated cost. The following example illus trates the need for a careful analysis of job requirements before arbitrarily selecting on econo mizer control.
Example:
A 48MA/50ME unit is operating with econo
mizer control and supplying 10,000 cfm of 55 F mixed air. The normal ventilation rate is 2000 cfm. Assuming a realistic cooling load of 50%, 5000 cfm
of the 55 F air is used for cooling. Since the
ventilation rate is 2000 cfm, half is sent to the
cooling zones leaving 4000 cfm of low-cost cool
ing. The remaining 5000 cfm of 55 F air, including
1000 cfm of ventilation air, is going to zones with either no load or a heating load and must be neutralized.
Although 4000 cfm or low-cost cooling is ob tained, an extra 4000 cfm of air must be heated to some degree above and beyond that in a unit without economizer controls.
For an identical unit without economizer con trol, only 4000 cfm of the 5000 cfm needed for cooling requires mechanical cooling, since the
1000 cfm of ventilation air is already cooled. Of
the other 5000 cfm, 4000 cfm is return air and is
neutral, and 1000 cfm is ventilation air to be heated. In the final analysis, it must be determined if it is more economical to heat 4000 cfm from
55 F to 75 F, or to cool it from 75 F to 55 F. The answer depends on the efficiency of the cooling and heating source.
An example of economizer economics is illus
trated in Fig. 17. The graph plots percent cooling
load versus relative energy cost (electricity to gas)
and is based on the following typical assumptions: 48MA028 — 10,000 cfm, 15% outdoor air
48 F outdoor changeover temperature
75 F room design 55 F supply air temperature
Compressor changeover point (COP.)
of 3.3 (100 F condensing temperature and unloaded compressor were used to obtain this value)
The relative cost figures are in $/Btu input for
gas and $/kwh electric cost converted to Btu. Example:
$.10/100,000 Btu (input) - gas cost $.015/kwh - electric cost
Convert electric cost-
$.015/kwh X kwh/3413 Btu x |q5qqq
= $.44/100,000 Btu
Cost Ratio:
$.44/100,000 Btu _ , ,
.10/100,000 Btu
Therefore, if cooling load is less than 45% (from graph) at the changeover temperature, the economizer is uneconomical for 48MA units.
For 50ME electric heat units, the cooling load
break-even point is 70%; the internal load must be
greater than 70% to justify economizer control.
Fig. 17 — 48MA/50ME Economizer
Break-Even Point
15
Page 16
The cooling load for this comparison is the internal load (lights and people) minus the negative transmission at the changeover temperature (48 F).
To determine the percent cooling load, compare
this value to the unit design cooling capacity.
Night Setback — Niglit setback control can be
added to a 48MA/50ME unit using field-supplied components. There are 3 sets of terminals on the accessory section of the unit zone control board (see Fig. 18). The terminals are used in combina tion to achieve the system desired. Terminal sets are: cooling lockout (CL), night setback (NS) and “Short To Close Dampers.” Red jumpers are
factory wired across CL and NS; “Short To Close Dampers” are bare (see Fig. 19). If the circuit between CL terminals is broken, 115-v power to the compressor control circuit liquid line solenoids and economizer thermostat (if used) is shut off. If
the circuit between NS terminals is broken, 115-v power to the zone control transformers is shut off. By replacing both jumpers with appropriate switches and connecting proper switch across “Short To Close Dampers,” NS control is attained. Although many versions of NS are possible, the 3 most common methods are detailed here.
METHOD NO. 1 - HEATING NIGHT SETBACK, COOLING LOCKED OUT, AND CONTINUOUS INDOOR EAN OPERATION
This automatic NS system requires a Honeywell
S659A seven-day timer, a Honeywell R8227B fan center (night setback relay) and a Honeywell T822D thermostat (heating type) 24-v service. In
this system (see Eig. 20), when the timer reaches
the “Night” position, the switches are as shown. CL opens, dampers close and NS opens. The fan
continues to operate.
As the temperature falls, the NS thermostat located in the average temperature space energizes the NS relay (fan center) which in turn energizes the zone control transformers. The individual zones then heat until the NS thermostat is satis fied. The dampers remain closed and cooling is still locked out. If a day/niglrt switch is used, the NS thermostat is overridden and heating is controlled by the normal thermostats.
Accessory remote panel assembly and/or ac cessory economizer may be used with this system if desired. Cycling indoor fans with NS thermostat is possible if the accessory remote panel is not used. Connect the field wiring to the MU terminals instead of the NS and the indoor fan contactor will cycle with the heaters. Although this system does not provide a time off delay for the fans after heater shutdown, test experience indicates that this is not a problem on these units.
METHOD NO. 2 - HEATING NIGHT SETBACK, COOLING LOCKED OUT AND CYCLING IN DOOR EANS
This system requires a Carrier remote control panel
assembly 48MA900041, Honeywell S659A seven­day timer, Honeywell R8227B fan center (night setback relay) and a Honeywell T822C thermostat
(cooling type).
The number of candidate systems for NS
increases with the use of the remote accessory panel. A typical system is shown in Eig. 21. The use of the master unit relay (MUR) and the master cooling relay (MCR) requires 24-v wiring only. Installing the timer and the NS relay in proximity to the remote control panel results in all wiring being located inside the building in one area.
16
Page 17
LEGEND
1
AB — Accessory Board AFS - AirfI ow Switch APS — Air Pressure Switch C — Compressor Contactor Cap. — Capacitor CB — Circuit Breaker CCB — Compressor Circuit Breaker CCP — Capacity Control Pressurestat CH — Crankcase Heater
CHR — Crankcase Heater Relay
CL — Switch, Cooling Lockout CO — Convenience Outlet
Compr — Compressor CR — Cooling Relay DLT — Discharge Line Thermostat ECR — Economizer Relay ECT — Economizer Thermostat EXR — Exhaust Relay FCB — Fan Circuit Breaker FCPS — Fan Cycling Pressurestat FL — Fusible Link FRS — Filter Media Runout Switch Fu — Fuse GV - Gas Valve Gnd — Ground HA — Heat Anticipator HC — Heater Contactor
— High Pressure Switch
HPS
— Holding Relay
HR
— Heater
Htr
— Ignitor
I
— Indoor Fan Contactor
IFC
— Indoor Fan Circuit Breaker
I FCB
— Indoor Fan Motor
IFM
— Internal Protector
IP
— Low Ambient Thermostat
LAT
— Liquid Line Solenoid
LLS
— Low-Pressure Switch
LPS
— Limit Switch
LS MCR
— Master Cooling Relay
(MC)
MHR
— Master Heating Relay
(MH) MUR
— Master Unit Relay
(MU)
— Normally Closed
IM.C.
— Normally Open
N.O.
— Night Setback Switch
NS
— Outdoor Air Thermostat
OAT.
Outdoor Fan Contactor
OFC
Outdoor Fan Circuit Breaker
OFCB
— Outdoor Fan Motor
OFM
— Plug
Pig
— Resistor
R
RB
Sw TB TC TH TM T ran
ZB
' o
□□ s
o
A
Relay Board
Switch
Terminal Block
Thermostat, Cooling Thermostat, Heating Timer Motor Transformer Zone Board
Receptacle
<
Plug
Terminal Block
Terminal (marked)
Terminal (unmarked)
Circuit Board Terminal
Splice
Terminal, Circuit Board,
Factory Connected
Terminal, Circuit Board,
Field or Accessory Factory Wiring Accessory or Field Wiring
Circuit Board Run
To indicate common potential only, not to indicate wire.
Page 18
C2-2
OFCI L2 ZB L2 *B
-----------
1
——lF=------------------- --- ---
1
1
1
1
----------­——|F=
1
---------------II
aSlL---- -------------­9 41^ 7
3C*S»i
aSUi
-----------------
-------------------------
^CRI,
-----------------
LLS7
LLS6
LLS9
LLS4
LLS3
LLS*
LLSI
Fig. 19 — Unit As Shipped From The Factory
TO ZONE CONTBOL
SCHEMATIC
Ills zb (• zone only)
Page 19
In this system, the MUR is energized by the NS controls. This opens a set of normally closed contacts and shuts down the unit, including indoor
fans. The outdoor air dampers are also closed by the MUR. Cooling lockout is attained by energizing the MCR. Energizing these relays turns the unit off and the NS system seems to work in reverse.
A cooling thermostat is used on heating NS. When temperature rises, the thermostat, in series
with the night switch, energizes the NS relay. Its contacts close and, in series with the time clock contacts, energize the MUR. As the space tempera ture lowers to the NS setting, the NS thermostat de-energizes the NS relay which de-energizes the MUR, turning on the unit.
Again the day/night switch overrides the NS
clock and heating can occur because the NS relay is de-energized. The factory jumpers remain across CL and NS terminals.
note: 24V WIRING
BETWEEN CONTROLS
*CONNECT HERE INSTEAD OF NS
TO CYCLE INDOOR FANS
CL — Cooling Lockout MUR — Master Unit Relay NS — Night Setback
Fig. 20 — Night Setback, Method #1
SWITCHES SHOWN IN NIGHT POSITION,
rT? m n? m
I A I 1A| I A I I A|
DAY/NIGHT SWITCH
II5V FIELD SOURCE
LEGEND
APS — Air Pressure Switch
FRS — Filter Media Runout
Switch
MCR — Master Cooling Relay MHR — Master Heating Relay MUR — Master Unit Relay
c=iOR(^ Terminal (Circuit Board,
Field or Accessory Conn )
-------------
Accessory or Field Wiring
-------------- Factory Wiring
------
-------
Circuit Board Run
NIGHT SETBACK THERMOSTAT (COOLING TYPE)
, I
--------
T~1
i cb
HI H2
REMOVE JUMPERS BETWEEN NC AND R: C AND W
Fig. 21 — Night Setback, Method #2
ACCESSORY BOARD
ON BASE UNIT
Page 20
This system opens the dampers when the indoor fans start. To keep them closed, short across the W-R terminals on the remote control panel or the “Short To Close Dampers” terminals during the NS period.
METHOD NO. 3 -- USING ACCESSORY RE MOTE PANEL, HEATING AND COOLING NIGHT SETBACK AND INDOOR FAN CYCLING
This system requires a:
Carrier remote control panel assembly
48MA900041
Carrier heating and cooling thermostat
HH07AT074
Carrier subbase HH93AZ070
Night setback relay (Honeywell fan center
R8227A) Seven-day timer (Honeywell S659A)
The system (Fig. 22) is a proposed heating and
cooling niglrt setback with fan cycling. The thermostat is a standard Carrier part with no switches on the subbase. This requires a NS relay with normally closed contacts so an alternate, Honeywell R8227A is required.
Because cooling is not locked out, the clock switches that close at niglit are used to directly close the outdoor air dampers by connecting across R and W on the remote panel accessory. Again the MUR shuts down the unit (including the indoor fans). When the NS thermostats reach their set tings, the NS relay is energized, opening the NC contacts and de-energizing the MUR.
However, if a “wild” zone exists, it is allowed to cool on heating NS or vice versa. This may be an advantage on some applications between zones.
Again when the day/night is switched to “Day,” the NS is overridden and the unit operates normally except the dampers remain closed at night.
SWITCHES SHOWN IN NIGHT POSITION,
LEGEND
APS — Air Pressure Switch
FRS — Filter Media Runout
MCR — Master Cooling Relay MHR — Master Heating Relay MUR — Mastei Unit Relay TC — Thermostat, Cooling TH — Thermostat, Heating
c=.OR® Terminal (Circuit Board,
_______
________
Switch
Field or Accessory Conn )
Accessory or Field Wiring
Factory Wiring
' Circuit Board Run
NIGHT SETBACK RELAY
FILTER
V 'T "V
<3F-ri-]-i-g
NOTE: 24V WIRING
BETWEEN CONTROLS
XI
. .¿XI c 3x2
TO REMOTE PANEL
MHR .
=*=o4
MUR I MUR I
-0==j=O=I
MCR |_MCRj I
O) SHORT TO HI H2 ^ CLOSE DAMPERS
l2j lI_i
0
REMOVE JUMPERS BETWEEN NC ANDR; CANDW
Fig. 22 — Night Setback, Method #3
18
ACCESSORY BOARD
ON BASE UNIT
#
Page 21
Again, 2 jumper wires have to be removed from the back of the remote panel to isolate the day/night switch.
MORNING START-UP — To conserve energy and lower total operating costs, the outdoor dampers may be closed when starting the system in the morning. During a warm-up period, when the system is operated for one or two hours before occupancy, only building return air should be heated. The extra load of cold outdoor air intro duced uses extra heat energy. Ventilation is unnecessary until space is occupied, so the air introduced produces unnecessary heat waste.
The same principle holds true on a cooling day, when outside air transmits heat and moisture to the evaporator coil. This extra load above the return air only load is an unnecessary expense.
This can be offset by wiring a heating or cooling thermostat across the “Short To Close Dampers” terminals on the zone control board.
The thermostat senses return air temperature and
the outdoor air damper does not open until the building is at the required temperature.
A time clock can also be used and set as follows:
1. Occupied cycle: 8 a.m. to 6 p.m. Outdoor air damper is open and the system is controlled by individual zone thermostats.
2. Night setback cycle: 6 p.m. to 6 a.m. Individual zone thermostats are on night setback (NS) cycle. The outdoor air damper is closed, the unit is reset down and controlled by NS thermostat.
3. Warm-up (or cool-down) cycle: 6 a.m. to 8 a.m. Outside air damper is closed by time clock and the system is controlled by indoor zone thermostats.
Using any method, increased economy is
achieved and building requirements are satisfied.

MISCELLANEOUS

Sound and Vibration — All roof mounted air
conditioning equipment produces sound and vibra tion. On light types of roof construction, sound and vibration may be transmitted directly to the occupied space. Accordingly, sound attenuation and vibration isolation are important design con siderations on any rooftop application.
Sound attenuation can be accomplished in
many ways depending on the specific design construction of the building. Roof mounted units can be located over unoccupied space (i.e. storage areas, utility rooms, corridors) where slightly higher sound levels are not objectionable. Supply and return duct systems can be acoustically lined to prevent sound transmission into occupied space. If open plenum return air systems are used, an acoustical trap or fiberglass-lined chamber can be
used to attenuate the sound. Simple return duct
elbows and tees with 5-ft minimum fiberglass lined legs and low static pressure drop should be considered when using open plenum return air
systems. Figure 23 illustrates a procedure for
forming an acoustical trap using the roof curb area under a 48MA unit.
NOTES:
1 Dimension A is approximately 7 in for optimum performance 2 Acoustical lining is 1-in 1-lb density, neoprene-coated fiberglass 3 Return air grille should be located at least 15 ft from return air opening
Fig. 23 — Acoustical Trap Installation
19
Page 22
Roof mounted air conditioning equipment usually has adequate vibration isolation of internal components. However, light roof construction or equipment location displaced from main roof supports may dictate additional isolation to elimi nate vibration.
Special vibration isolating bases and curbs designed for rooftop applications are available from some vibration isolator manufacturers. This equipment virtually eliminates vibration trans
mission on critical applications. However, care
should be exercised when selecting this equipment for use with a multizone. The design and installa tion of vibration rails on a Carrier 48MA/50ME should ensure that the interfacing of the vibration isolator and the curb maintain watertight integrity.
Thermostat Usage and Control
USAGE - The thermostats used with the 48MA/
SOME units are either a 2-step heat/l-step cool or 2-step heat/2-step cool. A single module can have only one step of cooling, but can have 2 steps of
heating. When 2 or more modules are grouped
together, the 2-step heat/2-step cool thermostat can be used. Modules are grouped together by the installation of factory-supplied jumpers on the unit zone control board.
The thermostats are automatic changeover with
a 3 F dead spot between heating and cooling. There is a 1°F differential between the first and second steps of heating or cooling. Two subbases are available for use with the thermostats; one with off-heat-auto.-cool switch and one without switches for tamper-proof installation. The tamper proof subbase has provisions for locking the thermostat cover and temperature selectors.
CONTROL - The thermostat field wiring connec tions are made at the screw-type terminals on the printed circuit board near the heating end of the unit. This is commonly called the zone control board. (See Fig. 24.)
Each module has the following thermostat
terminals: R (24-v power supply), Y (for cooling), W1 (first step heating) and W2 (second step heating). Pairs of modules are combined to form nests: 1 and 2; 3 and 4; 5 and 6; etc. Each nest
forms National Electrical Code (NEC) Class II
circuit powered by its own 40 va transformer. Each
transformer is basically limited in capacity to
operate only the relays within its nest. Therefore,
contacts are provided in the relays to transfer the
signal to another module in an adjacent nest.
By correctly installing jumpers on zone control board terminals, the contacts from a relay in one nest power a relay in the adjacent nest using the transformer of the adjacent nest. This technique is known as multiplexing.
Same Nest Ganging - Figure 25 shows 2 modules (1 and 2) of the same nest ganged together to form
a 2-module zone. Field jumpers are installed on same lettered terminals to energize both control relays simultaneously for cooling or first- and ^
second-stage heating relays or gas valves for heating.
Figure 26 is similar to Fig. 25 except a 2-step cooling thermostat independently powers the Y connections for 2-step cooling in one zone. These 2 examples have not left the particular nest, so no multiplexing has been done.
Adjacent Nest Ganging — Figure 27 shows 2 modules (2 and 3) of adjacent nests ganged together in one zone so multiplexing is in effect. Module 1 is in a zone of its own. When CR2 is energized by the cooling thermostat, terminal 6 is powered thru CR2 contacts 1 and 3 by the transformer of the second nest. Then terminal 6 is
jumpered to 1 and CR3 is energized. Thus, on a
call for cooling, modules 2 and 3 are energized simultaneously. The same principles and pro cedures are followed for the first and second steps of heating.
Multiple Ganging — Figures 28 thru 31 are further examples of ganging and multiplexing zones to provide 2, 3 or 4 modules per zone. These typical examples demonstrate the principles of multi plexing. The same procedures are followed for the ^ remainder of the zones on the unit. Many more ^ combinations are possible. Do not overload a
transformer by powering more than one relay of a different nest in additon to the relays in its own nest.
Multiplexing is done from top to bottom of the
zone control board . . . from module 2 to 3 and 4,
from 4 to 5 and 6, and from 6 to 7 and 8. The contacts of one module are powered by the nest of the next higher numbered module (see Fig. 24).
Return Air Systems
If the ceiling plenum on a top floor is used as a return air plenum, the return air is heated from the time it leaves the room and enters the unit. This is due to roof load or if heat from lighting is added to the plenum.
When considering the top floor, the roof load does not raise the return air temperature signifi cantly and, therefore, its effect is considered negligible when selecting a unit.
Return air light troffers, however, can add considerable heat to the return air. Using a 48MA/50ME unit with a return air light troffer system can impose various design problems since the purpose of the system is to reduce the supply A cfm to the space by reducing the space load. With ^ the 48MA/50ME this may result in a very low
20
Page 23
supply cfm — much lower than the unit was designed for. If the supply cfm is raised to satisfy the unit, the purpose of the return air light troffers
is defeated. As a general rule, a return air tempera
ture rise of 5 to 10 F does not cause a problem, and special ratings can be made available.
In addition, when the supply cfm is reduced, as
above, the outdoor air quantity remains constant.
This results in a higher than normal percentage of
outdoor air which the 48MA/50ME unit may not
be capable of introducing. For return air light
troffer systems, exercise care when using the light
manufacturers’ data concerning the amount of heat
actually returned to the unit because with the
higher return air temperature, a portion of the heat is transmitted back to the space thru the ceiling.
21
Page 24
fR Q-Q MODULE I NEAR SIDE
r O
0
0 o
0
HR2-I
0 0 0
0 0 o
HR3-I
,. CR3
, GV5
0
0 0
0
HR4-I
O 0 o
0 o o
HR5-I
0
O 0
0
HR«-I
wi O—a
[Y
X
'"CW
Y O-io
w*0^
o o o
0 o 0
HR 7-1
o
O 0
o -2
HR8-I
O O 0
0 o O
HCI
HC2
HCZ
HC3
HC3
HC4
HC4
HC5
HC9
HC6
HC6
HC8
-2
•2
-2
-2
-1
•2
*■
0 0 o
0 o o
HR2-2
0 0 o
o o
o o 0
HR3-2
0 0 0
0 O 0
HR4-2
0 0 o
0 o
0 O 0
HR5-2
O O 0
o o o
HR6-2
0 0 0
o o
O o 0
HR7-2
0 O 0
o o o
HR8-2
0 O 0
O 0
0 0 0
CR!
0 o o
o o
0 o o
D O O
O O
0 o o
CR2 CR3
o o o
o o
o o o
0 o o
o o
0 o o
CR4 CRB
0 0 0
o o
o o o
0 o o
o o
o o o
CR6 CRT
o o o
o o
o o o o o o
o o
0 o o
CR8
«(>o
Y
E L 3„„,
, ,CR?^
,(>^
a
'O
lo
0
0
0 o 0
0 O 0
0
0
0 0 o
3 0 0
HR99M
0 0
HRI0,i2-l
HR9.1M
0 0
HRI0.I2-I
HC9
HCII
-1
HC9 HCM
-2
HCIO HCI2
HCIO HCI2
HC9 HCII
-1
HC9 HCII
-2
*•
HCIO
-2
IIUU
HR9. I|.2
0 0 o
0 0 0
HRIO,t2-2
0 0 o
0 o
0 o o
HR9,11-2
0 0 0
0 0 0
HR 10.12-2
0 0 0
0 o
0 0 o
HC9
H^ll
LLS9 LLSII
tU'i
Hao HCI2
-3
CRIO.IS
HC9 CR9.M
HCllI——
|o O o
O O
(boo
O o o
tH,a
O O
HOO
0 0 0
HCI2
ClflO.IZ '
L2
NOTE: See Fig 19 for legend

Fig. 24 — Zone Control Board

22
Page 25

ANTICIPATOR

SETTINGS

LEGEND
CR — Control Relay GV — Gas Valve HA — Heat Anticipator HR — Heating Relay TC — Thermostat, Cooling TH — Thermostat, Heating Tran ~ Transformer
Q) Screw Terminal
I
----
1 Quick-Connect Terminal
-----------
Factory Control Wires
rrr-- ; Printed Circuit
.
---------
Field Wiring
Fig. 25 — Two-Stage Heat, One-State Cool — Same Nest
23
Page 26
LEGEND
CR — Control Relay GV — Gas Valve HA — Heat Anticipator HR — Heating Relay TC — Thermostat, Cooling TH — Thermostat, Heating Tran — Transformer
0 Screw Terminal
Quick-Connect Terminal Factory Control Wires Printed Circuit Field Wiring
Fig. 26 - Two-Stage Heat, Two-Stage Cool - Same IMest
24
Page 27
#
LEGEND
CR — Control Relay
GV — Gas Valve
HA — Heat Anticipator
HR — Heating Relay TC — Thermostat, Cooling TH — Thermostat, Heating Tran — Transformer
0 Screw Terminal
1
----------
1 Quick-Connect Terminal
--------------
Factory Control Wires
-------
— Printed Circuit
---------
Field Wiring
Fig. 27 - Two-Stage Heat, One-Stage Cool - Adjacent IMest
25
Page 28
LEGEND
CR — Control Rela^ GV — Gas Valve HA — Heat Anticipator
HR — Heating Relay TC — Thermostat, Cooling TH — Thermostat, Heating Tran — Transformer
Screw Terminal
0
Quick-Connect Terminal
Factory Control Wires
Printed Circuit
_______
Field Wiring
Fig. 28 - Two-Stage Heat, One-Stage Cool - 3 Modules Per Zone
26
Page 29
LEGEND
CR — Control Relay GV “ Gas Valve HA — Heat Anticipator HR — Heating Relay TC — Thermostat, Cooling TH — Thermostat, Heating Tran — Transformer
0 Screw Terminal
Quick-Connect Terminal
Factory Control Wires
Printed Circuit
---------
Field Wiring
Fig. 29 — Two-Stage Heat, One-Stage Cool — 4 Modules Per Zone
27
Page 30
LEGEND
CR — Control Relay GV — Gas Valve HA — Heat Anticipator HR — Heating Relay TC — Thermostat, Cooling TH — Thermostat, Heating Tran — Transformer
0 Screw Terminal
Quick-Connect Terminal
—- Factory Control Wiies
Printed Circuit
— Field Wiring
Fig. 30 — Two-Stage Heat, Two-Stage Cool — 4 Modules Per Zone
28
i
Page 31
ANTICIPATOR
SETTINGS
HAI
.13
HA2
.57
NOTE:
COOLING
Stage 1 — Module 3 Stage 2 — Module 2 & 4
If thermostat wires are interchanged,
the reverse may be obtained
HEATING
Stage 1 — First Stage of Modules 2,3 & 4 Stage 2 — Second Stage of Modules 2,3 & 4
LEGEND
CR - Control Relay GV -
HA -
HR ­TC - Thermostat, Cooling TH ­Tran —
Gas Valve Heat Anticipator
Heating Relay
Thermostat, Heating T ransformer
Screw Terminal
0
Quick-Connect Terminal
czn
Factory Control Wires
Printed Circuit
_____
Field Wiring
Fig. 31 — Two-Stage Heat, Two-Stage Cool — 3 Modules Per Zone
29
Page 32
PERFORMANCE DATA
Room Design 75 F/50% Rh
COOLING CAPACITIES
48MA/50ME016
OUTDOOR
AlP
TEMP
Db
Wb TC SHC
65 168 118
8 j
70 65 164 116 15 4 169 129 15 7
70 164 73 164 116 75
65 160 70 160
95 75 160
78 160 80
70 156 112 16 5
100 75
78 156 112 16 : 171 120 70 152
105
75 152 110 17 0 164 125
no 78
115 75
OUTDOOR
TEMP
Wb
Db
65
85
70
65
70 200 141 18 8 212 151 73 75
65 70
95
75 78 80
70
100
75 78
'70
105
75
no 78
115 75
0
K w
14 8 174 l26 Is i
168 118
164
160
156 112
14 8
116 15 4 173
15 4
1 16 15 4 114
16 0 165 131
114
16 0 169 126 16 4 114 16 0 173 121 114 16 0 114
16 0
16 5
no 17 C 160 130
109 is 5! 161 124 18 5 171
148 144 107
TC SHC
20.1 204
200 141 18 8 208 155 19 ; 212
200 1 11 200
196 1 96 140 19 5 207 153 20 2 196 140 196 1 10 19 5 196 140 19 5 216 143
T9T 137
19?
192
[187 135
187 135 20 9
178
18 C
0 750 1500
K w
143 18 0 212 153 18 5 143 18 C 217
18 8
141
18 8 19 5
140^
19 5
2Q r-
137
20 2 207 150 21 2
137 20 2 209 147 21 4 221
20 9
iTT 21 6 fsT
22 3
TOTAL UNIT CFM
4,000
Outdoor A r Cfm
750
TC SHC
178
176 121 16 0 183 125 177 119 16 i 186 121
175 118 177 1 16 16 0
164
168
155
Outdoor A
TC SHC
215 148 216 146 19 7 227 148 20 3 210 159 19 3 225 164 20 2
203
212 148 20 5 222
214
202 155
197 157'
201 152 21 9 211
199 150 22 8 i9T 155 23 3
K w
122 15.3
124
15 9
16 2 168
16 6 182 127 17 1 167 126 16 3 178 133 16 8
17 C 170 143 17 3
128
17 2 177 133 17 7
123
17 4 181 127 18 0 17 5 165
17 8 172
Too 18 8 162
5,6o6
r Cfm
K w
149
18 ■
19 5 219 19 6
157 19 9 208 l73 20 2
145 20 6
20 8 230 144 20 ijH
no" ToT 176
1500
K w TC SHC
SHC
TC
134
177 184 124
172 140 179 131
174 137 16 7 167 126 16 3 175
186 189
TC SHC
216 161 224
224
214 164
227
20T 216
15 2 15 6 176
15.8 171 16 2 171 128 15 8 179 16 4 16 5 171
146 16 4 167 126 fl6 3 172
17 4 167 126 16 3 180 130 17 1 190 133 17 6 172 138
121
17 5 167
116
149 17 9 158 139
18 3 158
139 19 ■
19 •;
152
K w TC SHC Kw
18 7 215 161 18 6 222 171 19 0 226 179 19 2 222 178 19 0 229 188
19 ■ 215
152 167 19 4
19 9 210
158 152 20 1
20 6 206 157 20 1 216 171 20 7 222 182 21 1
154
21 1
148 21 4
21 6
ITCT 21 3 20 r 160 21 8 154
22 1 22 i
166
22 6
210 166 23 6
'178' 240
6
Kw
130
176
171 128 15 8 182 133 16 3
163 163 124 16 9 173 136 163 124
154 140 1 19 18 4 159 142 19 1
210
210
206
206 157 20 1 206 157 20 1 206 157 20 1 224 160 21 2 236 162 21 9 212
201 155 20 8 201 155 20 8 217 164 21 9 227 172 22 5
196
196 153 21 5 209 169 22 4 217 184 191 151 22 2 206
186 149 22 9 198 173 23 8 206"
15 2 181 139 15 4 184' 146 15 6 181
130
15.2 15 S 176 141 16 0 179 152 16 2 176 140
128
15 8
128
126 16 3 124 16 9
16 0
123 17 4
17 4
123 121 17 9
0
161
18 6 226 167 19 2 233 170 19 5 222 178 19 0
159
19 3 218 173
159
19 3 221 169
159
19 3
1 57 20 1 213 i'75 '20 5 217
20 8 i
T55"
TsF '21 5 20T 174 22 2
5,000
Dutdoor A r Cfm
750
TC SHC
184
134 15.6
16 2
136
183 131
182
170
175 132 17 6
165 143
168 138 18 1 175 152 18 5 166 137 18 7 - - - 158
TOTAL UNIT CFM
)utdoor Air Cfm
TC SHC
223
220 222
2rr 214
16 4 191 16 6 r74l
143
16 8
138
16 9
128 17,2 - - -
141 17 3
17 5 181
17 9
6,500
750
19 8 20 0
166
20 1 231
166
21 0
163 21 1
J7T 21 5' T88
21 / 223 178 22 2
168
23 3
168
1500 0
TC SHC
Kw
190
185 143 188
180 186 139 17 4 172 138
175
- -
170
Kw
TC SHC
222 185 20 0 217 227 176 20 3 217
234
229 172 21 5 212 233
2^2
215
Kw
15.9
137
16 4 176 140
137 16 6
16 8 176 140
133
16 7 172 n38
'■"158"
149 17 0 172 138
155 17 6 167
146 17 9 167
162
18 2
1500
Kw
170 20 6 217 166 20 7 217
.....
20 8 212
166 21 7 212
U., g..
iW InT' 202
23 0 202
184 24 0
24 4 191
195
6,000
Outdoor Air Cfm
750 1500
SHC Kw
TC
142 15 4'^ 142 15.4 189
181
176
140
172 138
M36 17 2
136 17 2
167 136
134 17 7 169
162
134 17 7 172 149 18 3
162
132 18 2 130 18 7
153
-
6 750 isoo'
TC SHC
17'6 19 7 176 19 7 227 185 20 3 233 193 20 6 176 19 7 229 182 20 4 237 187 20 8 176 19 7 231 181 20 5 239 183 21 0
174 20 5 219 174
212
174 174 20 5 228 174 20 5 229 177 21 5
207 172 21 2 207 172 21 2 207 172 21 2 222 181
169 169
197 167 22 6
165 23 3
TC SHC
h§6
150 15 7 188 146
16 0 181 152 16 3 183 164 16 4 16 0 184 16 0 186 145 16 5 192 149 16 8 16 0 187 143 16 6 194
16 6 176 155 16 6 179 150 17 0 183 16 6 16 6 184 142 16 6 185 140
17 2
Kw TC SHC
20 5 222 20 5
21 9 nn T9T 22T ziT 210 21 9
148
182 145
174
152 17 5 178 177 147 17 7 179 144 17 8
154
169
148
153 19 3
162
8,000
Outdoor Air Cfm
232 183 19 5 239 187 19 9
224 190 20 1
... 187
225 182 21 3 233 189
179
'216 189 '21'8 222 204 22 2 220 184 22 0 227 195 22 5
214
186 22 8
210 185 23 6 - ­202 189
Kw
TC
SHC Kw
158 15 8
194 149 16.1
15.8
16 4
16.8
17 1 17 2 17 3
18 1
18 9
155 16 6
189
145
178 170 17 0
161 17 2
189 151 17 5
_
-
- - - 167
- -
- -
H73 173 18 4
-
- - -
- - -

48MA/50ME024

Kw
TC SHC
19 4 233 196 19 6
202 20 4
228
20 9 223 207 21 2 21 1 227
21 4
22 2
24 1
199
21 4 21 8
- -
- - -
- - -
22 9''
221 201 23 3
- -
16 9
17 8
Kw
*
-
_ „
-
OUTDOOR
AIR
TEMP
Db
Wb
65 265 190 24: 275 203 24 6 280 213
85
70 65 259 188
70
90
73 75
65 254 70
95 75 254 185
78 254 80 254
70
100 75
78 70
105
75 242 180
no
IT
115 75
Kw — Compressor Motor Power Input SHC — Sensible Heat Capacity (1000 Btuh) TC - Total Capacity (1000 Btuh)
SHC
TC
265 190
259 188 259 259
254
248 248 248
242 180
zT
T77
230
1 . , —
0
K W
24 0 24 9 269 206 25 5 273 221 25 7 271 210 25 6 280 229'”’ 26 i 284 244 26 3
24 9 274 24 9
188
24 5 279
188 185 25 8
185 25 8
25 8 185 25 8 185 25 8
182 26 7 182 26 : 182 26.7 269
27 6 254
27 6 259
W4
174
29 2
/ (Mil
Outdoor Air Ctm Outdoor Air Ctm
1000 2000
TC SHC
197 24 8 289 201 25 3 277 213 24 6 291
280
200 25 8
277 196 25 9 287 201 26 5
193
262
208 267 202 26 7 275 273 196 27 0 276 192 27 2 290 196 28 0 279 189 27
261 205
266
198 194
207 201
T?9
256" 246 206 30 4
___ -
K W
TC SHC
282 209
26 ' 291
267 229 26 6
26 4
284 204 27 7
294
127 0
268
27 9 277 212 28 6 258
283
28 1
261
28 ■; 28 8 270
29 9'
268 256 236 31 2
--
K w
24 ? 277
26 2 271
196 26 7 271
217 27 -
190 28 3
225 28 0 258
203 29.0 258
237
28 9
220 29 5 252 202 28 3 267
219 30 8 W: 199'
L,— 1 __ L. . — . . 1
TOTAL UNIT CFM
9.000 11.000
0
TC SHC
271
264^ 264 264 264 264
252 202 28 3 263
239 197
K W
24 6
213
210 25 6
25 6 287
210 210 25 6 289 216 26 6 299 219
26 5
208
26 5
208
26 5
208
26 5 285 214 27 7 297 219 28 4 272
208
26 5 287
208
27 4
205 205 27 4 205 27 4
29 1 29 n253 229 31 C
NOTES: 1. No values are given where unit cannot maintain the assumed room
1000 2000 0
TC sttc K w
287 226
284
273 231 277 282 219 27 5 292
270 ’ 275 277 217
263” 222 3CT
25 2
220
25 -
223 26 3 219 26 5 296 225 27 0
27 6 277 27 3 284
225
27 8
212 228 28 2 276 248 28 6 265
221 28 5 284 235 29 1 265
28 6 29 0 269 255 29 5
230 224
29 3
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction.
30
....
TC SHC
291 236
224 25 8 285 234 25 1 298 242 25 8 305
298
291 232
252 27 2 272 240 227
- - -
- - - 265 226
243 30 0 258 223
276
-
258 31 7 245 218
262
Kw
TC SHC
25 4 285
26 7
27 2
27 7 272 229 28 1 272
234
232
278 278 232
232
278
232 26 0 295 238
278
229
229 26 9 288 240
229 26 9 291
229 26 9 292 233 28 2
272
226 226 27 8 280 243 28 8
223 28 7
258
251 221

48MA/50ME028

. .
-
Outdoor Air
1000
Kw TC SHC
294 248 25 6 298 258 25 8
25 1
26 0 287 250 26 5 291 266 26 7 26 0 291 26 0
26 9 26 9 284 247 27 7
27 8
27 8
28 7 29 6 268' 30 3
244 26 7 241
293
280 252
236
276' 249
239
283 269 252
273 245 29 7
243 30 8
258 250
_ - -
Cfm
Kw
26 9 302 246
27 0 27 4
27 9 28 1
28 6
29 0 29 5 274
31 4
2000
TC SHC
297
304 241 283 273
290
- - -
- - -
282
- -
- - -
- -
- - -
246 26.1
254 27 1
'262 28 0
- -
260
274 29 8
- -
- -
K w
27 3 27 5
27 6
28 9
t
L
Page 33
PERFORMANCE DATA
Room Design 78 F/50% Rh
COOLING CAPACITIES
48MA/50ME016
OUTDOOR
AIR
TEMP
Db
85
90
95
100
105
no
115
AIR
TEMP
Db
Wb
85
90
95
100
105
.1.10
115
Sipop
0
TC
SHC
183
1 32
J83
Ш
131
178
131
178
131
178 178
13]
129
174
129
174
129
174
129
174
229
274
127
169
127
169 ]6?
1?7 125
165
2 25
165
223
160
121
156
0 750 1500
TC SHC
220 158 18 9 220 158
216 156 216 156
156 19 7 228 163 20 4 235
216 216 156 19.7 230
154 20 4 217
21 •
154
21 1
154 20 4
211
154
211
154
211
206 152
152 21 2
206
206 152
150 21 9
201 201 150
148 22.6
196 191 146 23 .3 202
Outdoor Air^Cfm
750
Kw
15 5
15,5
16 1 16 1 16 1 16J
16 7 16 7 16 7 16 7
16.7 17 3
17 3
-17,3
17 8
1J.8
2 8,4_
18 9
Kw TC SHC
18.9 19 7
19 7 226 165 20 2
20 4
20 4
20.4 229 157 21.5 21 2 215
21.2
21.9
SHC
186
141 ]36,
L90 182
143
185
138
137
136 134
188 177
145
180
140
183
136
186
133
187
130 143
175 178
138 135,
J81
145
170
240
]73
139,
l'70 164
144
6,000 7,500
Outdoor Air Cfm Outdoor A
227 167 19 2 230 175
163 19.4 236
231
169 20 0 225
222
161 20.5 238 163 171
220 167 21 0
224 163 21 2 232
160 21 4
227
169 164 22 0
219
161 22 2 231
221
171
210
1 66 22.7
213 210 165 23.6
170 24 1 210 192 24 ^ 197
TOTAL UN IT CFM
. *7.',6,000
Outdoor Air Cfm
IIPP.
Kw
,15
15 7
188
-!5,?,
l?i]
16 3
183
16 5
189
16 6
193
16.6
195 179
16 9
17 0
184
17 2
190
17 4
1 94 1_96
VIA
1~79
’l7 6
17 8
185 188
IL?.
174
18 2
179
18.4, i,78
19.1
169
19 5
Kw
TC SHC
231 172 20 5 223 174 20 1
220 187 21 0 218 172 20 9 224
20 8
226
237 240 159 22.2 218 1 72 20.9
220
21 7
227
22 5 215
221 181 23.2 208 16^ 22,4 219 184 23 1 219
Kw
11?,
15 8
148
1 6,1
13?.
154
16 4 16 7
145
16 9
139
.17,0
1.35
17 0
160
17 3
151
141
17 6 17 7
135
17.8
J31,
1.57
17 8 18 2
148
.LM
Л11
163
18 4
154,
1§,8
1,54
1*9.5
166 19 9
К w
19 4
167 19.7 181 20 t 223 174
167
20 8 233
20.9
21 3
178 169
21 7 218 172 20 9
163 22 0 218 172 20 9 233 177 21 8
184
22 1 213 170 21 6 220 22 5 213 170 21 6
175 169 22 8 2^3 170
190
22 9 208
181 24.2 203 '65 23,'
P
TC
SHC
Kw
144
188
'.44
L§8
183
143
183
143
183
143
183
1.43
141
178
141
178
141
178
141
178
141
178 174
139
174
139
139
174 169
137
169
137
164,
1Ж
159
133
0
TC SHC
176 19 3
228 228 176 19.3
174 174
223
218 172 20 9 227 185 21 4
167
163
.TC,
157
15.-8 16 4 16 4
16 4 ¡.?И
17 0 17 0
1 / 0
17 0
17.,0 17 5
17 5 !7,5
18 I
18.1
1,8,6
19*2
TOTAL UNIT CFM
К w
235 185 238 181
20 1 229 187
233 183
20 1 2.35 180 20 7
20.1 236
231
735 175
225 227 179 22 5
21 6
22 4
216 188
216 183
23 8 207 187
192 19,4
187 189 191
193,
182
184
187
189 l?i
179 182
18 !. 174 177
174 161
TC
75p
S.H.C
"1 б’о
153
J6.J.
148 155
150 1 48 146
157 152 148 145
2,42
155 150 147
157 152
152
15Г
r Cfm
750
SHC
19 6 '9.8
20 4 20 6 238
20.8
178 189 21 2
180 21 6
21.9
187 22 2 182 22 4
22 9
24,0 24 1
Jllw
16 5 16 7 16 8
16.9 17 1
17 3 17 4 17 6 172
17 9 18 0
18J. 18 4 18,6
19.3, 197”
К w TC SHC
SH_C
T_c
19~з' 198
188 193 196 ]98
183 188 193
183 188
177 182
238 243
233
241 185 'H 1 244 181 21.2
228 232 238 242 244 176 22 1
227 202 22 5
232 193
236
22, 226
223 198
214 209 25 ■
1500
Kw
Тб 0
16.3,
1.51 16 6
166 157
16 9 17 0
151
^^.2
148
17 2
172
17 5
163 154
17 8
169
18 1 18 3
160
175
18 6
18.9
166
1500
К w
193 19 8 184 20,1
199
20 6
190 20 9
20 1 21 4
196 21 7
187 22 0
181 22 3
22 8
187 23 1
207 23 3 198 23 6
94.6.
TC
SHC
292
T56
,156,
192
154
187 187
154 154
187 187
154
182 152 182 152 182
152
182
152
182
152
17*7
150
177
150
,177
2,50,
172
148
172
148
]46
iV/
144
162
IC
£HC
334
192
234
192
229
190
190
229
190
229
190
229
188
223
188
223
188
223
188
223
188
223
186
218
186
218
186
218
184
213
21 3
18.£
207
J82,i
202
180
P
0
Outdoor Air
Kw
16 0
16.,0 16 6
16 6 16 6 16,6
17 1 17 1 17 1 17 1
,17 1
17 7 17 7 1,7^7
18 3 18П
18.8 19 4
Outdoor Air Cfm
Kw
J,C„
__
TTo
19,6
20 4 20 4 20 4
20 1
££2
21 2 21 2 21 2 21
21'V
21 9 21 9
22 /
22 7_
23. 24 1
IC
195'
]98 190
193 194 196
185 188 190
192 193
18*2 185 Ш7,
177 170
17
169
243
234 238 240 241
230 232 235 237
239
226 229 231
221
223 .2] 9^
21 1
7,000
Cfm
750
l£w
SHC
'l64'
16 T
160
16.3 Л02
16 7
166 162
16 9
159
16 9 17£
J5?
17 3
168 164
17 5 17 6
159 156
17 7 n 8
2 5£ '160'
18 0
161
18 2
2843
..IJi
168
18 6
163
18.8
*162
19'?
168

48MA/50ME024

9,000
***750
..........
Kw
SHC
202
198
20-1
204
20 7
200
20 9
197
21 0
21.1
195
£ 5
206
301
21 7
197
21 9
194
22 0
192
22 1
2*03
22 5
199
22 7
196
22 8
20.~
2ТЗ 2
2.3 1
201
199,
24.3
204
24 8
TC
197
192 196 199
201 186
191 195
185
180
TC
_4_.
248 238
242 246 24£
233 236
242
231 236
226
229
1500 SHC
171 163
177 169 163 1,59
184 175 165
181
180
jjpo
SHC
'210
201
21 5 207
202
198
221*
213
204
218 209
224 215
Kw
16 2
26.4, 16 8
17 0
17 2 17,,3_
17 4 17 6 17 9
18 2
18 8
jK w
20 Г
20,3 20 9
21 2
21 3 21 5
21 *8*
22 0
22 3
22 8
2i 1
23 6 23 8
.
OUTDOOR
AIR
TEMP
Db Wb,
'б5
85
70
65
70
90
73
75
65
70 75
95
78 80_
*70
100
75 78
70
105
75 78
.1.10
75
115
Kw — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh)
0 1000 2000
SHC Kw TC SHC К w TC
TC
282 205 282 205
276 276 203 25 9 288 215 26 6 276 203 276 203 25.9 293 208
270 200 270 200 270 200 270 200 270 200 26.8
263 197 27 7 263 197 263
257 257
251
244 189
24 9
24.9 295
203 25 9 284 220 26 3
25 9
26 8 26 8 26 8 26 8
27 7
197 27,7 282 195 28 6
195 28.6 272 192 29.5 268
30 3
TC — Total Capacity (1000 Btuh)
8,000
Outdoor Air Cfm
290 218
JJTj
291 21 1 26 7 299
Yj~j
223 27 2 280 281 217 27 5 287 232 27 9 279 286
211 289 207 292 204
274
220 279
213
209 28.9 293 219 267 222 29 3
216
215 258 221
- " - -
-
SHC
294 227
25 4
25.6 302,
26,9 .303 211
27 8 295 219 28 4 28 0 301
28.1 28 4
28 7 288
29.7
30.7 31 4 266 251
216 26.0
287
235
294 224 26 9
216 27 2
243 27 4 279 223
211 28 7
304 205
239
280
227 29 3 272 220
273 247 29 7 265 217 29 2 275 245
28C 235
278
235
TOTAL UNIT CFM
10,000
0
К w
TC SHC Kw
25 6
292
228
292 ,2,28 25,4
26 5
285 225 26 4 285 225 26 4 297 285 225 26 4
27.4
285 225 26 4
223 279 223 27 3 294 234 279 223
28.9 279 223 27,3 299 227 272 220 28 ?
23 8
29. c 27: 220
217 29,2 279
265
30-2
31.5
32 0 25. 212 30 4
258
215 30.1
Outdoor Air Cfm
loop
TC SHC
25 4
300 241 25 9
23.5
304 293 243
238 234
299 301 231
27 3 27 3 289 240
27 3 297 230
28 3
28.3
NOTES: 1
246
285
243 28 9
282
236 29 2
286 289 232
23? 237
274
244
264
Я1

48MA/50ME028

12,000
Outdoor Air Cfm
2000
TC SHC
Kw
303 251 26 0 310
26.1 26 3 296 258
27
302 247 27 4
27 2
301
27.,4
310
27 8 288
295
28 0
302
28 3
306 234 29 0
28 4
28.;5,
- -
287 294
29,4
298
279 270 30 2
29 8
28':, 258
30.1
31 .2 - -
271 271 32 4
31 8
No values are given where unit cannot maintain the assumed room design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
Ratings are gross and do not include fan motor heat deduction
Kw
239
2.Л4 27 0
27 6
240 234 27.8
26g 27 9 255 28 3 242 28 7
29 1
262
29 7
250
3(3,0
242
30.6
0
SHC Kw
298 298
292 292 292 292
285 285
285
285
285 277
277 277
270
270
263
25 8 306
250
25 .„8
250 247 26 8
247
26 8 303 259 27 4 247 26 8 305 256 27 5 247
26.8
.
245 27 7 295 245 27 7 299 256
245 27 7 302 252
27.7
245 242 28 7
242
28 7 242 ,28.7
239 29 6 380 267 30 2 283 284
29.6 2,83 261 30.5 - -
23?,
30.4,
.23c_ *234
31 3
jppp 2000
Kw
.SHC
3LQ
299
301 ,253 27.6
29
.303
287 264 29 3 291 294„
278 268 266 *32 2
26 2 309
262
.25?
2AJ
265 27 2 302 280 27 3
267
28 1
262 28 3 300
28 6 28 7
28.,8
249.
258 39 5
29,7
.254
£59
.31j5
SHC Kw
.T£
272
.26,7 ,
261,
Л1.6
269 37 7
308 312 262 27 9 31,4
.257,
294
288 28 3 277
306 264 29 0
- -
284
29 3
- -
- -
- - -
- - -
26 4
28.0
28 6
29 6
30 5
Page 34

PERFORMANCE DATA

Room Design 80 F/50% Rh

OUTDOOR
AIR
TEMP Db
100
_
Wb
65
188 133 IS 8
70
jas
65 183 131 70
90
95 75 179
183
73
183 131
75
183 .131
65
179 130 17 0
70 179 78
179 130 17 0 189
80
J79 130
70 174 75 174 78
174
70 169 126 75 169 126
no
78 165 124
115 75 160
OUTDOOR
AIR
TEMP
Wb
рь
95
100
no
115 75
TC SHC Kw
227 159
65
227 159
70
222 157 20 0 227
65
222 157
70
222 157 20 0
73
222 157
75
217
65 70
217
75
217
78
217 155 20 8
80
217 155
70
212 153
75 212 153 21 6 224 78 212 153
70 207 151 22 3
207 151
75
202 149
78
197 147
__ (
0
TC
SHC Kw TC SHC Kw TC
133 15,8 194
16 4 186 143 16 4
131
16 4 191 136 16 8 196
16.4 192 134 16.8 198 136 17.1 188 144
130 17 0
17 0 187
130
17.0 191
128 17 5 128 17 5 182 139 128 17.5 184 136
18 1
18.1 177 141 18.6
18.7
19.2
122
0
19 2
19.2 236 164
20 0 231 166
20.0 235
155 20 8 155 20 8 225
155 20 8 229 164 21 5 237 170
20.8 21 6 220 170 22 1 224 185
21.6 226 163 22.5 235
22.3 218
23.0 215 166 23.9
23.7 207 171
5,000
or A
lutdc r Cfm C
750
141
191
189 139 16 7 192 146
181 145 17 1 182 160 17 1 183 184
179
174 145
174
15 9
16.1 197 139
J37
16 5
141 17 3 187 152 17 4 183 137 17 4 193 142 17 7 183 134
17 6 197 136 17 9 183
17.6 199 132
131J 143 17 5
18 0
18.1 18 4
140 19.3 180 155 19.7 168
167 145 19.7 172 167 20.' 164 134 19.5
6lQ00
Outd<
jor A
r Cftn
750
TC SHC Kw TC SHC Kw
232 168 19 5 234 176
233 164 20 6 239
222 172 21 1 225 187 21 3
232 161 21 7 241 164 234
215 172 22 8 219 191
19.7 241 167
170 20 3 229 182
20 5 235 173 20 8 229 175
162 20 7 242
168 21 3
159
21.8
166 22 3 231 176
167 23.1 225 182 23.5 214 169
24.5
TOTAL UNIT CFM
___6,000
)utdoor Air Cfm
146 16 0
193 193 146
144 16 6
188
144 144 16 6
0
TC
196
16.0 199 191
16 6
194 195
1500
192
148
16 0
16.2 1
Kw TC SHC К w
SHC
187 154 16 6
16 8 188
140 17 0 188
16.6 197 147
142 142 142 142
182
18.1 183
158 18 0 178 188 149 18 3 178 140 17 8 186 191 142 18.6 178 140
164
177 182
18 6 173 138 18 4 178
155 18.9 173 138
142
140 17 8
186
17 2 17 2
188 17 2 191 17 2 193 146
17.2 195
183 156
17.8 188 148
18.4
181 153
136 18.9 177
170
IOTA
1500
19 6
234 234
20.0 229
20 4
168 21 0 229 175 20 4 164
21 2 229 175 20 4
224
230 179
244 160
170 23.0 219 171 22.0
223 182 214
193
224
21 6
224
22 0
224
22 2
224
lJ2.4
219 171
22 3
219 171
22 7
23 1 214 169
24.5 208 167 23.5
.25,0 203 165
TC SHC
177 19 6 177 19.6
175 20 4
173 21 2 173 21 2
173 21 2 173 21 2
173 21.2 240
Outd
0
Kw
TC SHC
240 186 19 9 243 182 20.1
235 188 20 7
20 4 238
240 181 21 0 246 186 242 180 21 1
230 19(f 21 6 232 186 21 7 236 197 236 182 21 9 242 188 238 179 22 1 246
22 0 227 22 0
230 183 22 7 236 194 232 181 22.9
22 8 221 190 23 3 226 208
22.8 224 220
24.2 212 189 24.9
COOLING CAPACITIES
750
SHC
153 16 2 149 16.3
156 16 8 151 16 9 149 17 0 200 152 17 2 192 155
1500
Kw
TC SHC Kw TC SHC
197 160 202 152
192 167 197
158
17.1 202 149 17.3 192 155 16.8
17.3 186 173 17 4 187
158 153 17 5 191 164 17 7 149 17 7 196 155 17 9 187 153 17 4
17 8 199 149
144
151
_
17.8 186
18 1
191
18 2
18.4 194
170 161 18 5 182 151 18 0 155
158 18 7 180 176
18.8 185 167
152 19.5 157 19.9
к UN 7,50
ООГ A
750
184
177
188 22 5 231 203
185 184
_ _ _
175 175 20 2
IT CFM
P
ir Cfm
150( 0
Kw
TC SHC
194
242 248 185 20.3 240 194 19.9 249 199 20,4
237
20 9
22.2
23.5
24.3 227 200 24.9 213 184 23.8
200 20 9 235
191
242
248 182 21 5
233 205 21 7 229 190 21 5 235 207 21 9
182 22 5 229 190 21 5 243 196 22 3
249
178
240 188 23 3 224
230 200
219 211 25.4 207
­0 1500^
16 2 197 157 16 2 199 165 16 3 201
16.4 16 8 192 155 16 8
17 1 192 155 16 8 197 163 17 1 200
18 1
_
18 2
18.7 18 8
19.1
157
197
153
187 153 187 153 17 4 196
187 153 17.4 197 155 18.0 182 151 18 0
182 151 176 150 18 6 181
176 150 18.6 183 165 19.0 187 179 19.3 171
148
167 146 19 7 173 169 20 1
Kw
TC SHC
20 0 240 194 19 9 245 203
21 2 235 21 4 235
22 0 229 190 21 5 237 22 3 229 190 21 5
22.7 229
22 8 23 1
23 6
23.9 218 186 23 1 228 202 23 7 234
192 192 192
235 192 20 7
190 21.5
224
188 22 3 231 205 22 8
224
188 22 3 188 22.3
218 "186 23 f
181 24.5
48MA/50ME016
7,000
C
Outdoor Air Cfm
750
К w TC SHC Kw
202 161 16.5 205
16.2 194
167 16 9
16 8 199 160
200 159
17 4 189 169 17 5 17 4 191
194 161
186 167 189 163 190 160 18.5
18.0
19.1
i'79
Dutdoor Air Cfm
Kw
TC SHC
20 7 240 20 7 243 20 7 245 199
246 197
241
244 194 22.4
234 237
226 207"
224 216 206
17 2 202 164 17 4
17.2
17 7 194
165
17 8 199 17 9
158
18 3 189 182 18 4
169
18 8 183 183 19 0
...-4
19.7"
9,000
750
Kw
20 2
205 21 0 201 21 2 247 209
21 3 250 203 21 4 253 199
203
22 0 241 214
199 22 2 347
200 23 0 198 23 1 244
23 6 230
201 24.6
25.2 222
TC
SHC Kw
16 4
172 164 16,6
195 178 17 0
170 17 2
204
161 17.5 184
190
_
_ _ _
193 173 18 7
- - -
_ _ _
17 6
176 17 8
167 18 1
_ _
18 4
- - -

48MA/50ME024

1500
TC SHC
248 211 253
243 216 21 2
238 222
250 199
- _
236 220 240 21 1
20 3
203 20.6
21 4 21 6 21 7
22 0
22 2
205 22 6
22 8
23 1 23 3
205 23.6 225 23 9
217 24.1
Kw
_ _ _
222 25.6
AIR
0
Db
Wb
TC
65
85
70 65
70
90
73 284 204 75 284
65 277
70
95
75 277
78
80
70 271
100
75 271 199
78
70
105
75 264
no 78
115 75 251 191
Kw — Compressor Motor Power I nput
SHC Sensible Heat Capacity (1000 Btuh) TC Total Capacity (1000 Btuh)
SHC Kw
290
207 25 4
290 207
284 204 284 204 26 3
277 201
277 277
271 199 264
258
25.4 26 3 290 221 26 7 292 236 26 8
26 3
204 26.3 201 27 3
27 3
201 27 3 292 212
27 3 295
201 201
27.3
199
28 2 28 2 285 215
28.2
196 29 1
196 29.1 194
30.0 273 30 8 263
8,000
Outdoor Air Cfm
1000
TC SHC Kw TC SHC Kw
297 218 25 7 299 228 25 8 300 230 25 9 306 302 213 26.0 307 217
295 216 26 9 300 225 27 2 293 227 26 8 298 212 300 210 27.2
283
224
288
218
208 28 4
298 206
221
280
211 29.3 298 220 30.0 279 222
288
224 29 7
273
217
278
216 31.2 282 236 223
TOTAL UNIT CFM
10,000
Outdoor A ir C fm
2000 0
TC SHC
26.3 300 230 25.9 293
27 1
305 218 308
27 6 285 244 27 7 286 225 27 8 292 247 27 9
292 233 28 2 301
28 2
306
28.5 309 207 29.2 286 225 27.8 305 229 28.9 285
28 8
29 1
293 228
277 248 30 0 272
30.1 285
31 8 270 252 32 3 258
27 5
212 27.7 293 227
220 28 7
212
241
236 30.6 272 219 29.7
293
286 286 225 27 8
29 0 286 225 27 8 303
29 1 279 222 29 6 279 222
265 217 30.6
31.8
К w
227
26 8
227
26 8 306
26.8 308 233 27.7 315 236
27 8 296
225
28 7 288
28 7 292 238
28.7
219 29 7
214 31 4
1000 2000 ’ 0
TC SHCi К w
242 26 2 309 237 26.4
311
299 244 27 2
303 239 27 4
236 27 6 312
28 1
242
28 4
236
300
295 234 29.8 304 244 30 3 285 281 247 30 3 285 272 30 5 27E
285 280
270
NOTES: 1 No values are given where unit cannot maintain the assumed room
28 6
232 28 8
244 29 3
29 6 299
241
30.5
239 31.6
246 32 3 276 "275 32 8
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2. Ratings are gross and do not include fan motor heat deduction
32

48MA/50ME028

12,666“”
Outdoor Air Cfm
1000
TC SHC Kw TC SHC
26 3
252
316 241 26.7 301 260 27 3 299 249 27 2 305 267 27 5
308 248 27 7 299 249 27 2 309 261 27 7 314 271
241
294
267 28 3 292 ”247 28 2
300
256 28 6 292 244
307
236 29 3 292
312
231 29.5 292 247 28 2
315
264
292
252 30 0 285
291
260 31 0
288 260 32'2‘
306 252 26 2 313 306 252 26.2
27 9 299 249 27 2 312 258 27 9
28.1 299 249
29 1 292 247
29" 6
285
27E 241 30 1
"270 239 31 0
263
К w
27.2 313 255
247
28 2 28 2 305 258 29 0 312 266 29 4
247
28 2
_
29 1 29 1
244 244
29 1
241 30 1
236 31 "8
SHC Kw
TC
264
26 6 315
259 26 8
317
^298
301
308 254 29 1 310 251 29 2
'2941 266 29 7
298 260 300 257 30 1 - - -
2'86 Ш' 290 263
184..262 274
28 0 320
269 28 5 300 289 28 6 264 28 / 306 279 29 0
29 9 304
~30~6
30 9 32 0 32 6
268
2000
TC
SHC
322 308
318
- -
298
296 282 31 3
- -
-
274
26 7
263 27 0 282 '27 7
28 0
264
28 2
259 28.4
- -
286 29 9 274 30 3
290 30 9
.....T.....
Kw
Page 35
PERFORMANCE DATA
Room Design 75 F/50% Rh
COOLING CAPACITIES
48MA/50ME030
TOTAL UNIT CFM
A1K
cMr
Db
Wb
65 298 215 70
65 70 292 212 73 75
65 285 209 31 8 297 234 32 6 303 255 33 0 305 264 33 2 296 232 32 5 70
. 95 75 285 209 31.8
78 285 209 31 8 311 217 33 6 80 285 209 31 8 314
70 279 207 32 8
. TOO 75
78 70
1V 0
75
110 78 266 201 34 6 289 224 36.6 303 244 37.7 115 75
0
TC
298 292
292 292
285
279 207
279 207
273 204 33 7 273 204
261 199
Kw
SHC
"29 T' 311 229 30 5 317 240
215
29 7 317 223 30 9
212
30 7
30 7 309 225 31 9 318 212 30 7 212 30 7
209 31 8 302 228 33 0 311 243 33 6 314
32 8 300 224
32.8
33 7 293 226
35 5
SHC
TC
304
313 222 315 219
306
295 230
303 288
279
OUTDOOR
AIR
TEMP
Db Wb TC
65
85
70 65 307 245 31 8
70
90
73 75 307 245 31.8 328
65 300 70 300 242 32 8
95 75 300
78 300 80 300 242 32.8 325 249
70 293 240 33 8
100
75 78 293 240 33.8 315 253 35.5 327 263
70 286 237 34 8 300 266 35 9 309 290 36 6 311
105
75 286 237 34.8 304 259 36.3 313 278 37.0
110 78 279 115 75
0 1000
Kw TC SHC
SHC
314
248 30 7
314
248 30.7
307
245
307 245 31 8 326 256 33 1 336 261 33 7 339 264 33 9
242 32 8 311 267 33 9
326 263 31 5 332 273 31 8 334 278 31 9 317 259 30 9' 330 273 31 7 335 284 32 0 331 257
319 265 32 5 324 281 32 9
31 8 323 259 32 9 331 269 33 4
315 261 33 9 323 276 34 4 242 32 8 321 242 32 8 323
307
293 240 33 8 312 257 35 3 322 271 36 0 326 277 36 3 296 250 34 1 315 268 35 5
234 35.7
300
273 231 36 6 289
8,000
Outdoor Air Cfm
1000
Kw TC SHC Kw TC
31 6 309 247 31 9 312 254 32 1
231
32 2 324 32 3
222 33 4 320 230 34 2 325
33 8 330 216 34 9 337
215
34 0 303 34 4
34.7 318 229 35.7 324
220 232 34 9
35.4 304
231 37 1
11,000
Outdoor
Kw
31.8
2000 2500 0
326
328
326
312 237 35 3 317 244
297 258 35 7
291
30 9 319
228 31.5
235 32 5 228 222 33.2 333 234
222 34 7 332
250
245 36.3 309 254
260 38 2 296
329
322 240 32 8 303
32 9
328 230
34 6 307 260 34 9 289
300 269 35 9 282 226 34 5 296 255 35 6 305 280 36 3
308
Air Cfm Outdoor Air Cfm
2000
TC SHC Kw TC SHC Kw TC SHC K w
339
32.3 312 264 32.5 317 259
262
326 334
253 33.2 339 256 33.9 343
317
287 34 1 319 297 34 2 303
34 3
255 251
263
330 263 35 0 334 267
34 5 335 255
34.6 - - - - ­34 9
315 283 35 5 318 292 35 7 296 250
325 283 34 6 303 253 33 0 319 272 34 1 326 287 34 6
35 3 _ _ _
36.4 - - -
257 37.4 264
- - - - - -
38 0 300
293 38 9
Kw TC
SHC
245
31 0 309 238 30 4 322
230 31 7 309
33 2 303 235 31 5 323 245
33.5
250 33 8 296 232 32 5 312 234
34 6 35 1
223‘ 216 35 4
35 6 289 229 33 5
234 36.1 289 229 33.5 312
36.6 282 226 34.5 301 249 36.0 311
254
38 1
274
38 6 270 220
TOTAL UNIT CFM
2500
33 1 310 256 32 0 322 275 32 8
288
274 33 6 310 256 32 0 327 257 34.2 310
35 2 303 253
302
36 8 289 247 35 1 303
- -
- - -
10,000
Outdoor Air Cfm
1000 2000
SHC Kw
238 235
303
235
303 235 31 5
296 232 32 5 317 244 34 0 328 253 34 8 332 257 296 232 296 232 32 5 322
229 33.5
276 223 35.4 297 247
0 1000
TC SHC Kw
30 4 327 246 31.5 335 251 32 1 339 31 5 315
31 5
32 5
36 3
252
254
320 248
242
325 307 256 33.3 314 277 33 8 316 286
251
240 34 2 333 244 35.1
320
237 34 4 336
304
253
304 246
242
253 37 8 297 282
287
SHC Kw TC SHC Kw TC
TC
TC
SHC Kw TC
31 2 328 263 31 6
32.3 320 270
32.6
328 258 33 1 332
32.8
33.0 336 245- 33.7 340 246
33 7
319
34 7
312 273
35 0 319 260 35 8 324
324
35.3
- - -
37.2
12,000
32 7
251 33 5 336 253 33 7
266 34 2
35 4
238
35 ¡2 315 282
252 36.2
268 36.8 315 276 37.1
38 7 302 296 39 1
2000 2500
30.9 334 268 32.0 342 272 32.5 345
256 32 0 329 266 33 3
310
256
32.0 331 33 C 314 277 33 9 321
253
33 0 303 253 33 0 303 253 33.0
34 1 296 250
289 282 244 276
34.1
247 35.1 367 270 36.5 316 289 37.2 - -
36.0
241 36 8
270 263 33.4 341
323 265 34 5 333 326 261
258 34.8
328 310 274 35 2 318 294 35 7 321 303 35 9
318 263
276 36 1
302 268 37.6
275
292
338
-
34 7
- - - - - -
324
35.7 - - - - ­311 300 36 8 3T4 312 37 0
-
38 3
328 291
33 1 334
33 1 280 33 6 337 272 33 9 342
34.1
267
34 3 323
298 274
35.1
_
281 36 2
-
- - -
- - - -
2500 SHC
330 267 31 7
253 32.3
322 277 32 8 331
263 33 3
322 273 34.4
-
267 36 1
-
308 291 36 6
SHC Kw
337 289
274
330 298
284 275
345 268 34.3
307 294
328
_
-
34.0 33 9
35 1
_
- -
35 5
- -
32 1
32.7 33 3
33.8
34.1
34 4 34 8
_
-
Kw
-
-
_
Kw — Compressor Motor Power Input SHC — Sensible Heat Capacity (1000 Btuh) TC — Total Capacity (1000 Btuh)
NOTES: 1. No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
33
Page 36
COOLING CAPACITIES
48MA/50ME030
PERFORMANCE DATA
Room Design 78 F/50% Rh
OUTDOOR
AIR
Db
Wb
65 310 217 1з0 5 70 310 217 30.5
65 70 304
90
73 304 75 304
65 297 212 32 6
70 297 212 32 6
95
75
78 297 80 297
70
100 75 291
78 291_ 70 284
105
75
no
78
115 75 272
OUTDOOR
TEMP
Db
Wb TC
65
70 326
65 70 319 249
90
73 319 75
65 312 246 33 6
70
95
75 312 246 33 6 330 258 78 80
70 304 243 34 7 317 267
100
75
78 304 70 297
1ПЧ
75
no
78 290 238 36.7 309 261 38.2 319 282
115 75 284 235 37 6
0
TC
304
297
291
284
278 204 35.6
326
319
319
312 246
312 246 33 6 333 254
312 246
304
297
К w
SHC
215 31 5 314 234
31 5
215
31 5
215
31.5 325 222
215
212 32 6 317 224 34 1 212 32 6 321 212
32.6 324 217 34.5 338 218
209 33 7 304 209
33 7
209 33.7
34 7
206 206
34.7 302 229 36.1 312
201 36 5 288 234 37.9
, -
-
0
Kw
SHC
252 31 4
31.4
252 249 32 6 329 267
32 6 333 262 33 5 249 32 6 336 259 249
32.6 338 256 33.9 348 260
33 6 325
33.6
243 34 7
34.7
243 240 35 7
240 35.7 314 263
Outdoor Air Cfm
1000 2000
TC SHC
321
231 31 2
327 226 31 5 334
319
228
323 224 32 8
307 236 33 3 312
230 33 7
312
220
233 226
310 313 222 35,4 326
297
235
227 37.3
298
- - •" - - -
Ou tdoor Air Cfm
lOPP
TC SHC Kw TC SHC
337
265 32 1 341 276 32 4 260 32.4
342
322 270 34 4 327 290
264
252 35.3 347 253 36.2
335
261 36 0
322 325 257 36.7 335 266 37,0 339
269 36 7 317 294 37 3
31C
299 268 38 9 308
8,000
Kw
TC
325
32 2 318 249 32 5 32 6
327 237 33.1 329 332
33.0 336 225 33.7
319 245 34 2 328 232 34 8
34 3 334
34 7
311
35 1 320
35 7
305 260
310 247 38.3 315 298
11,000
348 265 32.9 351 334
33 2
340
33 7 345 265
332 279 35 1 334
34 6
339
35 0
344
35 2
324
35 7
331
37.0 322
К w
SHC
241 31 4 230 32.0 337
33 5
230
256 33 7
224 35 2 339
35.5
252
35 2 314 35 9 324 246 36 2
240
36.3 331 236
232
36 3
36.9
248
263
38.8 303
2000
Kw
283 33 5 335 272 34 0
34 3
34.5 351 261 34.7 34 7
267 35 6 343 259 35 9 348 261
286 36 2 327 274 36 7 334
282 37.7
39.0
296
39 7
TOTAL UNIT CFM
2500
TC
SHC Kw
327 246
232 32.2
320 256
242 33 3 336 232 33 7 340 226
313 266 321 252 34 3 332 236
226
344
219 262 35 4 301
308 271 36 5 316 256
257 38.7 287 277 39,2
TOTAL U
2500
TC SHC К w
342
280 32 5 329 262~^ 31 7 266 33.0 329 262 31.7
290 33 6 322 342 276 34 1 348 267 34 5
328 299
286 35 2
271 35 8
-
295
281 36 9 271 37 3
320 305 37 5 325
290 37.9 301
- -
312
310 40 C 287
TC SHC Kw TC
31.5
321 241 321 241
32 6
315 315 315
34.0
315 238 32.3
33 8
308 235 33 4 318 259 34 1 323 279 34 4 308 235
35 1
308 235
35 6
308 235
35.9
308 235 33.4 332
301
36.7 301 294
37.2 294
280 224 37 3
NIT CFM
TC SHC Kw
322 260 32 8 337 322 260 32 8 339 322 260 32.8 341 267 34.1
34 8 315
315 257 33 9 315 257 33 9
36 2
315 257 33 9 336 315 257 33.9
36 3 308 254 34 9
308 308 254
301 251
-
294
10,000
Outdoor Air Cfm
0 1000 2000
Kw TC
31 2 333 '254 31 9
31.2 338 249 32.2
238 32 3 325 257 33 0 238 32 3 238 32 3 333
33 4 33 4 327 247 34 7 33 4
232 34 4 232 34 4 232 34.4
229 35 4 306 229 35.4 311
226 36.4
6 1000 2000
32 8
260
257 33 9 325 281 34 6
254
34 9
34.9 328 267 36.4 338 277 37.2 36 0 313 280 36 9 320 304 37 5
251
36.0 248 36.9 312 246
37,8 301
SHC
330 251
248 33 5
335 245
322 253
330
243 241 35,1 345 242
314 256
250 35 8 328 263 36 4 331
319
246 36.0 333
322
258 36 4 252 36.8 320 271
306 250 38.0 316 271
296 257 38.6 305 285
Ou tdoor Air Cfm
TC SHC
340 276 32 4 344 345 271 32,7
332 279 1 33 5 337 294
273 33 7 343 269 33 9 397
328 275
269
333
265 35 4 346 270 36 1 262 35.5 349 264
338 320 277 35.9 327 297 36 4 329
325 271 36 2 333 285 36 8 336 292
317 274 37.2 325
272 279
337 345
329 272 336
33 3
341 253 34 1 344
33.6
345 248 34,3 348
34 4
328 268 34 8 336
34 9 341
321 275 35 9
35 4
314
- -“ —
12,000
К w
TC SHC
351
351 330 301
34 8
335
35 2 342 278 35 8
38.4
321
39 1 310 307 39.9 314 314
Kw
SHC
265 32 2 253 32.6 347 255
261 33 7
256 248 35 7 346
255 36.8 337 283 37 0 316
287 275
283
276 271
290
203 37.9 327 292
TC
338
33 3 331 279
339 265
324 330 275
35 4 340
36,0 350 243
323 284
37.5 323 279
38.8 320 39,5 309
К w.
TC SHC
32 6
346 291
33.1 354 277
33.8 339 34 2
345 287
34.5 350
34.7 354 271 34 9
332
35 3 337 297
345 282
_ _
-
36.3
- -
322
_
39.2
2500 SHC
269
256 250
288
260 250
270 260
294
280
29_9
2500
301
278
309
306
315
301
_
K\^
32 2
32.8
33’4
33 9 34 3
34Л ^
34 5 35 0
35.6 36 0 36J
36 1
36 7
37,J. .
37 2
37.7
39.1_
39.8
Kw
32 7
33,i
33 9 34 3 34 7 34,9
35 0
35 4 36 0
36 6 37 1
37 7
38.1
40.2
Kw — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh)
TC — Total Capacity (1000 Btuh)
NOTES: I No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
34
Page 37
PERFORMANCE DATA
Room Design 80 F/50% Rh
COOLING CAPACITIES
48MA/50ME030
OUTDOOR
AIR
TEMP
pb _
85
90
95
100
105
110
115
OUTDOOR
AIR
pb
85
90
95
100
105
IIP
115
TC
Wb ^
65
319
70
319
65
*312
312
70
312
73
312
75
306
65 70
306
75
306
78
306 306
1P_
299
70 75
299
78
299
70
292
292
75
266
78
75
261
ЛР
Wb
TC SHC
335 252
65
70 335
327 249 33 1
65
70 327 249 33 1
327 249 33 1
73
327 249 33.1 346
75
320 247
65 70 320 247
320 247
75 78 320 80 320 247
70 313 244 35 3 325
313
75
313 Г244 35.3
78 70 306
306
75 78 298
292 236 38 3 306 269
75
^ 8,pop
Outdoor Air Cfm
0
SHC
218 218
215 215 215
_215__
'212'
212
212 212
2] 2
216
210 210
207
207
201
198
Kw
31 0
31.0 32 1*
32 1 32 1
32.1 33 2
33 2 33 2 33 2
33.2_ 34 3
34 3
34.3_ 35 3
35.3
35.6
35^5
TC
329 334_
3*2 f
327 330
331.
315 319 325 328 331
3lT 317
320^
304 30?
305 295
loop
SHC
231 226
233 228 225
122
236 231 225
221
218 233
227 223
235 229
228 234
Kw
31*6
32.0 32 7
33 1 33 3
33;5
33 8 34 2 34 6 34 8
35. P_ 35 2
35.6
35-9
36 2
36.6
37.9
38.5
TC SHC
332 341
325 333 338
34^
318
325
334
340
344
318
326
332
311
318
316
304
11,pop
Outdoor Air Cfm
0 1000 2000*
Kw
TC SHC
344 266 32 6 348 276 32 8 348 280
32 0
252 32.0 349 260
247
244
241 36 4 317 270 241 36.4 321
238 37.3
336 268 33 7 340 341 263 344 259
34 2 329 270 34 2 333 265 35 1 338
34 2
338
34 2 341 255 35 7
34.2 343 253
329 261
35 3
332 258 36.8
316
Kw
TC
32.9 355 265
34 0 347 273 34 4 348 277 34 2
351
257 34.4
259 35 5
267
264 37.6 329 283 38.2 331 291 262
354
34 9 334 290 35 2 335 299 35 3
346 268 36 0 349 350 354
35.8 36 2 331 287 36 6 333
36 5 337 275 37 1 340 282
342
37 3 323
38.8 325 314 297
39 5
TOTAL UNIT CFM
2000
Kw
241
31 8
230
3Z4^ 33 0
249
33 5
238 230
33 9 34,1
225 256
34 1
34.6
245 233
35 2
225
35 6 1,9
Ц9
35*7
253 241
36 3
233
36; 7
36 8
260 248
37; 3
38.8
248_
39I*
26*3~
SHC Kw TC SHC
33.3 357 267 33.4 338 263 32.2
282 34 0 342
34 7 354
265
34.9 357 262 35.1 331 260
260
280 35 5 340 286 35 6 323
36 4
260
36.6
255
37,5 345 272
268 294
37 8 326
282 39.5
40 2
2500
TC SHC
332 343
’32*6
335 341 346
319 327 338 344
ЗЛ9_
320 329 336
313 321
319 308*
354 262 36 6 323 257 358
328 317
Kw
246
31 9
232
32.5 3*3*0
256 242
33 6
233
34 1
227
34.4 34 2
257 252
34 7
237
35 5
227
35 9
220
36,3
262
35 8 36 6
247
137
37.0 37 0
272
37.6
257
39_.l
258
2I
39.7*
TOTAL UNIT CFM
2500
Kw
32 9
34 1
290
34 5
34 9
268
272 36 2 323
255 36.9 323 296 36 8 316 255 35 6 328
37 3 316 255 35 6
37.7 316 255 35.6 335
306 37 9 309 252 36 6 320 280
38.4
292 39.8 301 249
311 40 5 295
TC SHC
330 330
323* 323 323 323
316 316 316 316 316
309 309 309
302
.302
295
Wb
TC
338
331 260 331 260 331 260
323 257
309
10,000
Outdoor Air Cfm
241 241
*238 238 238 238
236 236
236 236 236
'233
233
233
230
230
227
Й5
0
Kw
31 7
31.7 32 9
32 9 32 9
32.9 34*0
34 0 34 0 34 0
34.0 *35*0
35 0
35.0 36 1
36.1 39-L
38 C
1000
TC SHC Kw
255
340
249
345
*257
33*2
252
337
248
340
246
342
259
325 329
254
334
248
337
244 241
339
256
321 326
250
329
246
314
258
318
253
313
251
303
258
32 4
32.7 33 5
33 8 34 0
34; 1
34*6 34 9 35 2 35 4
35.6 35 9
36 3
36.5 37**0*
37.3
38.6 39*2
TC
34*3 35
336 343 348 351
329 335 342 348 351
327 334 339
320 326
322 311
12,000
Outdoor Air Cfm
0
Kw
SHC
32 2
263
33 4 340 279 33 4 33 4 347 270 33 4 349 268
34 5 333 34 5 336 276 35 4 341 291 35 7
257
257 34 5
34 5 343
257 34.5 345
252 36 6
37.6 319 273 39 0
247 38 5
1060
Kw
SHC
TC
348 352 271 33.1 358
344 274 34 2 350 284
340
332 272 36 8 340
324
309
32 8 351 287 331 352 291
277
34 0 344 294 34 2
34 4 354 276 34 6 357 272
337
35 1
281
270 35 7 348 266
35 9 353
264 36.0 356 278 36 4
269 37.0
275
280
334
344
37 5 326 37 8 331
327 294 39 7
39 7 316 308 40 5 319 319
2000
Kw
SH*1
265
32 6
254^
33.1
*33 7
272
34 2
261 254
34 5
34.7
249
34*9
279 269
35 3
257
35 8
249
36 2
36.4
241
36 4
276* 264
36 9
256
37.3 37*5
283
37.9
272
39.3
27 2_ 286
40.0
2000 2500*
TC SHC
Kw TC
276 33.5 360
34 6 34 9 351
301 35 4 338 310
279 36 2 251 283 271 36 5 356 273
36.8
266
36 9 336 307
298 286 37 3 342 293 279 37.6
306
38 0 328 316 38 4 334 302
294
2500
TC jSHC
34/~^*’269*
353 256 337
279
345
266 257
350 354
250 289
3*30
275
336
261
346 351
251
356
?4i
329
28*5* 271
337
261_
343 322
*295*
328
280
326
281
315*
30*0
SHC
278 301
345 352 288
279
357
273
360
343
298
347
283
- -
Kw
32 *6 *
33.2
'3*3*8
34 3 34 7
34.9 35*0
35 4 36 0 36 4
36.7 ^ 36 5
37 1
37.6
*37 7 '
38.2
316
40.3
Kw
33 i
33 6 34 3*
34 7 35 1 35 3
35 5 35 8 36 4 36 8
-
37 0 37 5
37.9 38 2
38 6
'40 7
Kw — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh)
TC — Total Capacity (1000 Btuh)
NOTES: 1 No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
35
Page 38
COOLING CAPACITIES
48MA/50ME034
PERFORMANCE DATA
Room Design 75 F/50% Rh
OUTDOOR
AIR
TEMP
Db
Wb
65 314
70
65 307
70 307
9D
73 307 75 307 228
65 300 225
70
95
75 78 80
70
100
75 293 222 31 8 80
70
1ПЦ
75
no
78
115 75 271
OUTDOOR
AIR
TEMP
Db Wb
65 325 254 29 1
85
70 325
65 318 “зоТ
70
90
73 318 75 318 251 30.2
65 310 247 70
95
75 310 247 31 3 78 80
70
100
75 302 78 302
70 294 241
105
75
no
78 287
115 75 279
-
0
TC
314 231 28.6 332 240 29.5 342
300 225 300 225 300 225
300 225 30.7 329 231
293
293 285 219
285 219 278 215
Kw
^SHC
231 28 6
29 6
228
29 6 324
228 228 29 6
29.6 30 7
30 7 30 7 322 238 32 C 336 247 30 7 326
222 31 8
222
31.8 318 32 8 300
32 8 306 242 34 1 33 8 301 240 35 4 316
212 34 7
1000
TC SHC
246 29 2
326
318 248 30 3 325 264
242 30 6 334
239
32S
236
330 311
250 31 3
316 244
234
246 32 7
308 314
240 236
248
246 36 1
290
Jtdoor
0
30 8
30.9
31 6 326
32 2
32.4
33 1
33.3 33 8 314
Kw
”9,C
00
Air Cfm
11,000
0
__
SHC
254
29 1
251
318
310
310 310 247 31 3
302 244 32 4
294 241 33.4
30 2
251
30 2
31 3
247 31.3
247 31 3
244
32 4
244 32 4
33 4
34 4
238 234
35 4
Kw
Outdoor Air Cfm
1000
TC
336 341
J28
334 337 339
324 325 331 334
337
322 325
308 313
308 296
Kw
SHC
29 7 343 279 30 1 345 285 30 2 329 264 29 3
268 262 30 0 352 268 30 5 355 270 30 7 329 264 29 3
30 8 335
270 264
31 1 31 3
261
31 4 353 262 32 1 358 264 32 4 322 261
256
32 1 332
275 267 32 2 334 282 32 7 338 260 32 5 344 270 256 32 7 253 32 8 354 256 33 8
33 2 326 290
268 262 33 6 335 277
33 8 340 269
258
34 3 322
270
264
34.6
262 35 9
36 6 312 303 37 8
268
...........
2000
Kw
SHC
TC
257 29 6
333
341 345 240
322 275 32 0
343 239 348
318 267 33 3 321 328 334
319 262 35.0 324
306 280 37 3 312
30.0
245
30 6 327 253 31 1 339 245 31 5
31.7 351 242
260 32 2
32 8 342 252
33 2 350 241 233 33.4
254
33 9 333 261 246 34.3 341
34 7
278
261 36 4
TOTAL UNIT CFM
2500
TC
336 262 347
346
325 330 267 32 4
356 234
319 291
- - - 283
Kw
SHC
29 7
247
30.3 320 243
272
30 8 313 240 29 9 31 4
257 248 31 7 313
32.0 313 240 29.9
286
32 2 305 237
33 1 305 33 6
33.9 305
277 33 5
34 2
251
34.7 35 0
271
35 3 290
295 37 8
TOTAL UNIT CFM
TC SHC
320 243 28 9 331
313
240 29 9 329 253 30 9 340 264 31 4 240 29 9 333
305 237
237 31 0
305 237 31 0
237 31.0 333 242 233
298 298 233 32 1
233
298 290
230 230 33.1
227
275 224
- ' -
2000 2500 0
TC SHC
343 275 31 6 347 280 31 8 322 261 349 268
350
Kw
TC SHC
31 1 342 299 31 5 322 261
28/
31 9 354 271
32 5 335
298
33 2
349
262 33 5
- _ _
- - -
33 8 334 304 34 3
340
_
34 7 35 2 326 313 35 4
301 284 35.4
325
- - - - - -
330
- -
Kw
TC SHC
32 1 322 261 30 4 341
32 7 314
308
32 9 314
290 274
33 5 314
34 3 306 255 32 6
284
34.6 306 255 32 6 325 273 33 8
-
-
294
35 7 298 251 33 6 316 275
258 31 5 328 286 32 31 258 258
314
258
314
258
306 255 32 6
251 33 6 311
298
290 248 34 6 31 : 273 36 1
245 35" 6 299
282
10,C
00
tdoor
Ou
0
К w
28.9 337
31 0 319 264 31 8 31 C 321 256 31 9 331 271
32 1 313
32.1 33 1 304
34 1 35 1 293 257 36 4 309 292 37 6
1000 2000
TC SHC
257 251 29.8 348
324 259 30 6 330 276 30 9
250 31.0 345 257 31 7
335 247 31^ 349
327 249 32 3 340 259 33 0 330 245 32 5 347
257 318 251 33 3 331 322 247 33.6 338 258 34.5
259 34 1
253 34.4
310 305 251 35.7 319 272
Air Cfm
Kw 1
TC SHC
29 5 338
328 287 32 3 331 297 32 5
32.6 351 245 33.6 33 C 322
318 290 35 0 323 322 273 35.2
12,000
Outdoor Air Cfm
1000 2000 2500
Kw
TC
340 345
30 T 7337^ 30 4 337 275
343
30 4
Kw
SHC
279 273 30 2 355 279 30_7 359
281 TTT^O 297' 31 3 346 '3TO 31 7 272
269
TC SHC
29 9 347 290
31 3
347 286 31 8 350 291 32 0 31 4 352 279 32 0 357 282 31 6
355 273 32.2 361 275 32 5
336 309 32“" 8
31 5
329 277 31 5 334 31 5
337 267 31 5
340
320
328
32 4 338 293 32 9 32 7 347 280
271
32 9 352 272 33 7
264 33 0 279 33 5
269 281
279
- - - -
329 337
34 0
- - - - - -
34 5 325 312 35 4 329 324 34 8
328
-
К w
TC
29 8
268 257
30.3 352 259
251 31.9 355 253
32 5 335 279
250 33 4 353 253
279 33 6 326
34 1
266
36.6
Kw
30 3
SHC
341 273
338
288 343 269 31 6 350 260 32 0
346 263
_
289 33 8 337 273 344
263 34.9
302 35 2 328 283 35.5
- - -
315 307
TC SHC Kw
349
295 30 4 281
319
338 341
301
351 285 33.6
- - -
337 315 34 4
295
300 288
33 4
34 C 34 5 342
295 35 6 - -
- -
~
-
-
_ _
■ —
- -
2500 W
Kw
30 0
30.5 31 3
32.2
32 7 33 3 1 33 7
34 4
38 0
30 9
32 3
32 9 33 1
34 8
35 6
Kw — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh)
TC — Total Capacity (1000 Btuh)
NOTES: 1 No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
36
Page 39
PERFORMANCE DATA
Room Design 78 F/50% Rh

COOLING CAPACITIES

48MA/50ME034

OUTDOOR
AIR
Db Wb
65
RS
_70 333
65 70 326
9D
73 326 243
_75 326
65 319 70 319
95
75 319 240 31 8 78 319 240 80 319
70 311
100
75 311 78 311
__
_
70 303
105
75 303 234 78 295
-JIL
115
75 287
---
---
OUTDOOR
AIR
TEMP
Db Wb
65 343 269
85
70 343
65 335
70
90
73 335
75 335 266 65 327 263
70
95 75 327
78 327 80
70
100
75 319 259 78 319 259_,
70 311
105
75
110'^
78
115 75 295
0
TC SHC Kw
333 246
246
326
243 243
243 240 31 8 331
240 31 8
240 237
237 237
234
231 228 36 0 304 261
.
--
-
0
TC
SHC
269 266 31 2 344
335 266 31 2
266 31 2
327 263 32 3
263 32 3 263 32 3 349
327 263 32.3 319 259 33 4
256 34 5
311
256
302, 253
250 36 5
_jOi
Jtdoor Air 1
1000
TC
29 6 29,6 349
30 7 30 7 341 30 7 344
_30.7 346
31 8 342
31.8 32 9 324
32 9 329
32.9 333 251 34 0
34.0
35.C 3]5. 255 36.4
SHC
343
260 30 1 254
335 262
257 31 5 253 251 31.8 359
267 32 5 337 333 259 338 253 32 9
249 33 1 356 254 344
246 33.2
261 33 7 331 255 34 0 341
*315 263 34 8
321 257
-
------
--
0
Kw
30 1 352
30.1 358 277
31.2 354
32 3 339
33 4 336
33.4 339
34.5 327 279
35.5 321
1000
TC
SHC
282 30 5 357 293
284 31 6 354
349
279
352 276 32 1
273 32.2 366
289 33 G 346 340 281 33 0 345 275 33 3 356
271 33 5 362 351 269 33.6
332 283 34 1
277
273 34.6 326
288 35 4 335
277
310 283 37 6
10,000
Ifm
2000
Kw
30.4 31 2 340
31 6 355
32 6 341 274
34.2
35.1 331
37 1
Jtdoor Air
Kw
30.8 366 282
31 9
34 4
35.5 337 299
36.8
SHC
TC
349
271 30 3 350 276
357
260 278
349 267 31 9
260 255 32.4 364
289 32.9
350 262 33 5
360 249 34.1
282 34 1 269 34 7
347 261 328 293
277
328 276
295
318
12,000
Zfm
200C
TC SHC
305
357
290 32 3
362 282
278 312 33 3
348 297
285 33 9 277 34 2
366 271 343
308 34 8
347
292 284
352
315 36 C
333
298
323 318
~ -
Kw
30.8 31 4
32 2
33 0
33 9
35.0 352 35 6
35.8 335 286 36.1
37.2 333 38 2 323
--
.
Kw
30 8 359
31.2 369 284 32 1
32 6 366
32.8 370 279 33.0
33 4
34.4
35 0 351 299
35.4
36.2 341
^37.6
38 6 328
TOTAL UNIT CFM
2500
TC
SHC
361
262
347 290 31 S
272 32 1
352 359
263 256 32.7
340 299 33 0 323 344 282
354
266 33 8
362
256 34 2 323
367
250 34.5
339 296 34 6
345 276
266 35.4
331 305
286 37.6
310
-
-
TOTAL UNIT
2500
TC SHC
298 30 9 346
356 312 360 294
285 32 8
348 322 350 304 361 289 367 279
_ _
346 318 35 0 322
357 289 338 328 36 2
309
_
_
328 38 9 297
- ~ -
Kw
30 4
31.0
32 4 331
33 2 323
34 9
35 8 307
38 6 291
0
TC
SHC
338
258
338 258 29 8 353 266 331
255 30 9
331
255 30 9 345 255
331
323 252
32.3 315
315 315
307
299 242
__
30 9 349 265 31 9
255 30.9 351 252 32 1 336
252
32 1 337 270
32 1 342 264 252 32 1 252 32 1
248 33 2
33 2
248 248 33.2 336 262
245 34 2 322 245 34.2 324
35.3 319 266
239 36 3 307
- .
Kw
31.4 32 3 339
32 5
33 5 331 33 6 331 34 1 331 34 5 331
_
35 3
35.7 322
36.4
_
0
TC
SHC
280
346
280 30.2 361 277 31 3 347
339
277 31 3
339
277
3.39
277 31.3 357 284 273
32 5 343 273 32 5 344 273 32 5 273 32 5
331
273
32.5 354
270 33 6 334
322
270
33 6 339
270
314 314
305
33,,6j 342 .284 267 34 7 329
267
34.7
264 35.7
260 36 7 312
- --
Kw
29 8
__
_
Kw
30 2 356 293
31 3 355
'_q
loo'o
TC
SHC
348 271
340 273 31 4
268
262 278 32 7 342
346 260
l348
258
328 272 33 9 335 293 34 4 333 266 34 2 344
277 35 2 331 304 268 35.3 334
272
____
. - ™ ___
1060
TC SHC
288 295 31 8
352 290 32.1
286 32 2 365 293
300 33 2 349
292 349 286 33 5 352 282
279
294 34 3 288
299 35 6
330 290 35 7 323
288 37.0 294
)oo''
Jtdoor
Air (
Kw
TC
30 3 353 282
30.6 362 349
31.7
353 359
32.0 363
32 8 345 33 1
353
33 3 359 266 34 1
33.4
363
34.4
350 273
36.6
330
37 4 321 307
_ 13,000
Outdoor Air Cfm
Kw
TC SHC
30 T 36; 304
31.0 369 293
357 316
360
32.3 368
33 2 351
359
33 6 364
368 282
33.8 346 319
34 6 349
34.8 354 337 326 36 2 341
340
37.8 325 325
2000
Kw
30 6
31.0 365 273 31 9
32 4 363 274
32.6 367 33 1
33 7
34.3
35.2 35 8
36 n 339
37.4 38 4 325 321
_
___
2000
Kw
31 0
31.4 32 3 359
32 7
32.9 33 5 352 333
33 6
34 3
34.5 35 0 349
35.5
38 8
2fm
SHC
271 293
279 32 1 356 283 271 266
301 286 33 2 347 273
260
281 34.9
288 287
300 32 5
288 323
308 295 34 1 363 288
303 35 2 295
310 36.3 343
- -
—-
TC
355 287
351 301 ^
345 311
358 365 370 261
343 307 348 288 35 1
355 335
_
-
----
TC
363 372 295
363 305 369 373 290 33.1
354
_ _
353 310
_
- -
?50ri
SHC
268
293 33 4 278 268 34 4
278 316 36 0
297
-
" 2500
SHC
309 '"311
323 32 4
296 32 9
315 33 8 300
_ _
329
-
338 36 4 319 36 5
_
30 7
31.2 32 0
32 3 32 6
32.8 33 2 '
34 0
34 6 34'8~
35.5
36.3
38 8
31.5
32 6
33 7
34 3
35 2 35 4
Kw
_
_
-
Kw — Compressor Motor Power Input SHC — Sensible Heat Capacity (1000 Btuh) TC — Total Capacity (1000 Btuh)
NOTES: 1. No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving
the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
37
Page 40
COOLING CAPACITIES
PERFORMANCE DATA
48MA/50ME034
AIR
TPL4P
_____
Db Wb
85
90
_
___
_
95
100
105
_ II?
115 75
OUTDOOR
AIR
TEMP
Db
85
90
95
100
105
lis
TC
65 343 70 343
65 336 244 70
336
73 336 75 336 244
65 328 241
70
328 241
75 328 241 78 328 241 80
328 241
70 320 75 320 78
320
70
312 235 34 6
_75
jn
78 зоР
296
TC
65
353 270
70
353
65~
345 267
70
345
73
345 267
75
345 267
65
337 264
70
337 264
75
337
78
337
8^
337
70“
329 261
75
329 261
329
Z® У6"
32b 257'
75
320 257
78
Ш
75~
304*“'
0
Kw
SHC
247 247
244 244
238 33 5 238 238 33.5 341 252
_235 34.6
232 229 36 6 ^Tl
TC SHC
30 1 352 260
30.1 15 7_ 255 31 2 344
31 2
349 257 31 9
31 2
352
31.2
355 252
32 3
339 267 32 3 341 32 3
346 32 3
350 250 33 5 363
32.3
352
332 33 5
337 256
326 266
128_ _258 35.6
J351 123 256
...
- _
SHC
Kv^
TC
361
30 6
270
267
264 264 264
261
254
251
30 6 31 7
31 7 31 7
3.W
32 8 32 8 32 8 32 8 32 8
34 0 34 0
310
35 1 35 1
36 1
3^ 2'
366
353
358
36 I 36_3
34"8
349 354 357
359
345* 345 348
3"34 335
32Ц
317
10,000
Air Cfm
Outdoor
lOOC 2000
Kw
TC
30 5 356
30.8 365
262
31 б1 352 282
254
32 1
32.2 32 9
259
33 0
254
33 3
247
33.7
261
34 2 342 286 34 5
34.7 35 5 '335 293
36.9 1
262 37 7
0
Jtdoor
160c
Kw
SHC
283 31 0 278 31 2 373
285 32 1 361 280 32 3
277
32 5 370 283 33 0
274
32 0 373
290
33 4
282 33 5
276
33 8 363
272
34 0 369
270 34 1 284
34 6 350 278 34 9 274
35 1 359
Г35 9
289 280
36 0 278
37 3 339 284
38 1 330
_26p
357 268 32 3 361 362 26' 366
345 348 357 263
367 250
348 270 35 1 353 263
338 278_ [36.2 345_ 334 325
000
12,
Air Cfm
"Ibob
TC SHC
365
365 291 32 7 369
354
355
373 273
354
342 316 36 5 *■ 347 344
SHC Kw
30 9
271
256 289
275
255 34 3 373
77Л 29^1
111
32 1 355
32 6 369
32.8 33 3
33 4 33 9 365
34.5 378 34 8
35.4 36 0
37.7 343 38 7 ^32
358 370
374 348
352
348 355 363
340
Kw
294
31 2
283 31 6 305 32 o'*! 365
279 33 2 3i2
298 33 9 359 286 278 34 6
309 35 2 356 293 35 5 361
285 35 8 368
300 300 38 6 319
367 378
376 381 282 33 5
33 8
357
34 3
371 378
34 3
J6 6
350
39 1 337
TOTAL UNIT CFM
3000
TC
SHC К w
281 30 8 264 31.4 ¿97
277 32 5 266 32 9 259 33.2
309 33 4 290 33 7 272 260 34 8 252 35.1
^305' "35'
284 35 5
273
318 36 4 297 36.7
298 38.0
325 39 3
TOTAL UNIT CFM
3000
T?
SHC
304 287 31 8
320 32 7 300 32 9 289 33 3
332 33 9 312 34 1 295 283 35 1
-
- ~
328 ^5 6 307 35 9 295 36 3
340 319
-
337 39 6
0
TC SHC
349 259 349 259
32 2 341
341 256 341 256 341 256
333 253' 333 253
34 4
333 253 333 253 333j
325 250 33 7 325 250 33 7 341
36.0 325 250 33 7 317 246
317 246 308
300 240 36 9 314 273
Kw
30 4
30.4
256
31 5 31 5 31 5
31.5 32 6 344
32 6 32 6 32 6 354
253
32.6 356 259
34 8 330
34.8 332
243
35.9 326 268
-
0
Kw
31 3
357 281 357
349 349 349 278 31 9 349 278 31.9
340 275 340 275
34 7
340 275 340 340 275 33 0
332 '271 332 271 332 271
36 8
323
37 0
323 ЗТ5 ' 306* 262
Tcl SHC
30 8
281 30 8
278 31 9 278 31 9
33 0 352 301 33 0 352 293 33 0 357
275 33 0
34 2 34 2 34 2
Ьб8 3ГЗ
268
35 3 338 291
*265* *ЗбТ
WJ
Kw TC*'
Room Design 80 F/50% Rh
11,000
Outdoor Air Cfm
1000
TC SHC
357 272 362 267
274
349 354 269 357 266 359 263 32.4
279 33 2 271
345 350 265 33 6 360
261 33 8
Г3З6 273 '34 4 347
267
345 263 34 9 356
'278 135 7 338
269
^35.8
----
- -
Outdoor
looo
SHC
294 31 2
365
1289
370 356 32 3
361 291 364 287
285
366
287 33 9 366 360 283 34 1 371 362 281 34 2
з4з 295
289
347 350 285
ТГ9 295
"SOfT
_
1З5
ЖТ
17 5
Kw
30 8
31.C 31 0 357
32 1 32 3 366
33 3 352
33.9
34 7
37.1 337 289 37 9 327
13,
Kw
31 4 377
32 5 368 32 7 373 32 8 376
33 6 357 33 7 358
34 8 353 35 1
36 2 346 1 311
38 3
2000
TC SHC
361
283 31 0
369
272
294 32 3
361
279 32 5 365 272 32 8 372
370
267
350 'З0Г
287 275
366
267 261
370
298
351
282 35 3 358 296 274 35 6
305 36 2 344
341
289 36 4
308 38 9 '"ззз
000
Air Cfm
"2006
TC
SHC
369
305
294
*365
ГзТб 12*7 367
302 32 9 295 33 1 376 290
323 34 0 359 309 34 0 297 34 5 289 34 7
375 283 34 9
320 l5 4" 356
356
304 35.6
361
i296 i35 9
__
[ 327' 36 6
14i
liT 18 2
-332
"333
Kw
31.4
33 0 33 5
33 7 34 1 34 4 376
34.7 35 0 352
37.9 345
Kw
31 4 31 7
33 3
i365 [348 339
36 7
3000
TC
SHC
363 374
360
,377 353
356 368
381 264 35.3
365 284 36 2
348
Г Kw
292
276 31.6 309 32 5
289 278 271 33.4
321 [33 7 301 33 9
283 272 35 0
3iZ
329 36 6 308
309 38.4 335 Г39 5
2500
TC
SHC
370
310 31 4
379
296
*324 ^
370 306 33 0
298
380 291
333 34 1
360
316
370
301
376
292 35 0
330
360 311
302 35 2
16*8
321
350
--
-
‘336*^
3З6
31 1
32 8 33 1
34 6
35 4"’ 35 7
36.9
Kw
31 9 32 8
33 3 33 5
34 1 34 7
35 6
35 8
37 0
__
Kw — Compressor Motor Power Input SHC — Sensible Heat Capacity (1000 Btuh) TC — Total Capacity (1 000 Btuh)
NOTES: 1. No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
TQ
Page 41
PERFORMANCE DATA
Room Design 75 F/50% Rh
_
— , ____ -
OUTDOOR
Db Wb TC
95 75
100 75
1 U U
no 78
115 75
OUTDOOR
Db Wb
95 75 367 279 40 0
100
110 78 349 279 44.7 364 302
115
- —“
Outdoor Air Cfm
0
Kw
65 367 262 36 8 70 367 262
65 70 73 75
65 70 361 264 39 8
78 361 264 39 8 402 80 361 264 39 8
70 78
70 351 263 42 8 75 351
SHC^
364 364 364
364 263 361 264
361 264
355 355 355
342 334
.
36,8 410 290 39.5
263 38 3 263 38 3 401 293 263
38 3 408 291 41 4 419 298 42 8
38.3 413 290 41 5 425 293 43 1 39 8 386
39 8
264 41 3 397 294 43 9 264 41 3 383 288 44 6 390 300 46 2 399 264 41 3
263 42.8
44.3 354 280
260 257 45 8
• ‘ —
1000
frc SHC
294
402
394
392 295 42 3 398 309 398
405
387 365
368
336
* - •“
39 0
297 40 4 403
40 9 412
41 8
300
289 43 1 408 296 44 6 416 304 45 6
43 4 413 287 45 2 427
285 282 43 6 418
284 44 9 397 294 45 5 364
287 46.1 373 303
48.2 360 298 50.1 373 319 51 4 347 269 44 6 359 291 48 4 366 309
283 49 4
— -
Outdoor Air Cfm
0
TC s'hc^ Kw
371 273 36 9 409
65 70 371 273 36.9 417 307
369 276
65 70 369 276 38 5 409 312 41 2
369 276
73 75 369 276 38.5 423 312
65 367 279 40 0 395 320 42 1 70 367 279
78 367 80 367 279
70 362 75
362
78
362
70 357
357
75
75 342
38 5 402 315 40 7 415 339 42 0 417
38 5 416 311 41 7 431
40 0 401
279 40 0 412 307 43 7
40.0 415 304 44.0 427 304 41 6
280
41 6
280 280 41.6 397 307 45.3
281 43 1 376 317 45 9 281 43.1 379 310 46.5
46 3 347
278
1000
TC SHC Kw TC
310 39 2
39.8 437
41.8
316
408 311 43 4 418 319
388 317 44 3 394 310 45 0
42 7 410
48 6 371 320 50.5
305 49 9 350 331
11,000 12,000
Kw
13,000

COOLING CAPACITIES

__ .
„ ™
----
2000 3000 0 1000 2000
SHC Kw TC
TC
416 311 40 2 420 426
300 40.8 316 41 6 404
304 42 3 418 314
321
390
381
338
43 1 43 8
45 6
281 313 45 4 384
291 46 7 410 302 47 8
j_,i .
46 9 366
47.8 381 322 48.8 354 271
309 51 3 347 336 52 9
- “ -
- —-
2000 3000
К w
shYI
426
333 40 5 432 345
41.2 446 329
322
423
436 403 345
423 310 45 5 436 315 46 6
393 336 45 7 400 322 46 6 406 314 47.1 417 324
'*375 338 47 3 376
383 325 48.2
42 6
328 321 43 2 439 327 44 0 316 43.4
43 4 401 362 44 2 44 1 414
333
45 0
45,9 442 307
51 7 359 354
TOTAL UNIT CFM
-
Ontdoor Air Cfm
Kw
SHC
322 40 8^
434
305 41.6 330 42 3 366 270 38 4 399 307 40 6 41C 328
427
303 43 7 366 270 38 4 413 303
434
295
388 339 402
323 44 6
292 46 3 284
433
331 46 3 ззГ’ 273 313 47 2 359 273
338 48 0
TOTAL UNIT CFM
------- — -
---
-
TC SHC
368 368 268
43 1 366 270 38 4
44 1
366 270 38 4 419 302 41 8 431 305
364
43 8~i
364
364 364 364
46 7
359 273
354 271 43 0 371 306 45 7 370 327 47 1 371
339
—--“1------- - •
Kw
fc SHC
36 8 406 302 39 1 423 323
268
36 8 414 300 39 7 432 312
406 303 41 1
272
39 9 392 312 42 0
272 39 9
272 39 9 404 301 43 3
272 39 9
272 39 9
269 46 1
----
-----
398
408 411 294 43 8
41 5 384 41 5
389
41 5 393 296 45.1
374 299 46.3 378 314 48.0
43.0
342
----
-
41 7 426
307 42 6
297 43 8 419 299 45 4 433
44 2
306 300 44 8
295 49 7 343 320 51 6
-- --
Outdoor Air Cfm
6
TC SHC Kw
354 42.7
430
338
445 319 44.3
347
427
328 46 0 369 286 40.1
395 353 46 7 364 287 41 7
336 47 6 364 287 41 7
408
359 48 4 359 289 43 2 344
390
341
380
TC SHC
41 1 374
42.0 374 371 282
43 5
371 282 371 282 371 282 38.6 427 322 41.9
369 286 40 1 397 328 42 2 409
45 0 369
369
47.0 369 286 40.1 419 315 44.1 431
48.2 364 287 41.7
49.2 359 289 43.2 384
51.7
352 288
53 3 345 287 46 4
Kw
279 37 1 279 37.1
38 6 405 323 40 8 419 349 38 6 412 321 38 6 419 320
286
40 1 405 326 42 9 416
286
40 1 416 317 43 8
44.8
1000 2000
TC SH?
412 318 39 4 429
315
420
412
Г393
398 402 318
380 328 46 1 380
368 313 48 8 377 352
39.9 442
41 4 41 8
321
43 5 422
44 5
327 321 45 1
45.4
321 46.7 388 335 48.4
316
50 Г

48MA/50ME040

_ -
_
Kw TC
418
397 334 404 414
423 293 45 8 438 296 46 9
387 325 45 6 390 342 396 402
- —
14,000
Kw
TC
429 339 42 8 439 332 440 328 43.5 449
428 321
398 347 405 410 325 47.2
357
Kw
SHC
317 42 5 310 43 0 434 315
322 308 44 9 423 316 45 8
311 46 5 404 303 47 0 414
SHC
342 333
356 43 5 409 345 330 45 2 431 339
315 46.0 445
333
Г 2A9
330 50.7 385 343 51 8
TC
427
40 4 41 0
441
41 8
411 ^343 425 326 43 3
43 4 440 308 44 2 43 3 398 351 44 1
44 0
409
385 333 49 0
37б"
50 3
353 347 53 1
Kw
fc
40 6
438 356 41 3
41.4
451
42 1
422 364 435 349
43 3 443
44 2
418 358
45 7 438 326 46 7
45 9 400 364 46 9 46 8
413 420 334
47 5
382 369 395
365
------
3000
SHC
335 41 0 318 41 9
335 44 8
305 46 4
325 47 4 313
1349
3000 SHC
340 42.2
338 44 2
330
373 44 4
317 47.1
347
355 49.3
351 51.8 362
42 5
43 9
46 5
48.0 48 3
si'5 ‘
——
42 8 43 6
44.5
45 1 46 1
47 7
48.3. 48 6
53 6
К w
Kw
Kw — Compressor Motor Power Input SHC — Sensible Heat Capacity (1000 Btuh) TC — Total Capacity (1000 Btuh)
NOTES: 1 No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
Page 42
COOLING CAPACITIES
PERFORMANCE DATA
48MA/50ME040
OUTDOOR
Db
85
90
95
100
105
110
115
OUTDOOR
TEMP
Db
85
9D
95
100
no
115
.—
AIR
Wb
TC
65 372 262 70 372 262
65 371 266 38 5 403 302 40 8 415
371
70 73 371 266 38 5 75 371 266 38.5 423 298 41.8 439 303 43.5 448
65 370 269 70 370 269 40 2 404 303 42 8 414 320 44 2 416
370 269 40 2 411
75 78 370 269 40 2 416 295 43 8 429 299 45 6 442 80
370 269 40.2 420 292 44.0 364
70
364
75
364 269 41.7 404 295
78 70 359 268 43 2 383 306 46 0 381 328
359
75
352
78
345
75
AIR
¡5
Wb TC
65 378 276 37 2 70 378 276 37.2 424 312
65
377
70
377
73 377 75 377
65 375 284 70 375 284
375 284
75 78
375
80 375 284 40.4 70
370 285 42 0 402 326 44 8 409
75 370 285 42 0 78 370 285
364
70
364
75 78
358 285 45.1 351
75
Room Design 78 F/50% Rh
-
....
11,000
TOTALU
Outdoor Air Cfm Outdoor Air Cfm
0 1000 2000 3000 0 1000 2000
Kw
SHC
266 38 5
269 269
268 267 44.8 372 293 48.8 265
TC
410 298
37 9
417 295 39.8 438
37.9
411 417
40 2 396
41 7
393
41 7 399 299
43.2 386 299 46.6 391 315 48.3 397
46 4
358 298
Kw
SHC
299
298
306 42.2
298
304 44 4
TC SHC
39 3 425 318 40 4 431
41 3 426 314 42 7
41 7 433 307 43 2
405 331
43 4 423 307 45 1 431
434 293
398
407 311 46 7 414 324
45 0
45.4
412 303 47.2 425
379 311 50 6 387
49 9 356 322 51 9 363 347
13,000
Ou
0
К w
SHC
280 38 8 409 320 41 0 280 280 38 8 424 317 42 0 444 331 43 6 280 38.8 431
284
285 43 5 392 285 43.5 397 323
285 46 7 368 322 50 4 368 345 52 3
TC
416
38 8
418 318
40 4 403 325 42 5 416 355 43 8
411
40 4 40 4 420 319 43 8 434 332 45 4
40 4 423 316 44 1 439
427
408
42.0 413
384
tdoor Air C
1000
К w
SHC
314
317
323 43 2 425 345 44 5
314
321 45 4 419 336 47 0 319 45.7
330
318 49.2 389
TC SHC
39 5 434 337
40.0 446 425
41 6
436 336 43 0 442
42.2 450 328 43.9
44.4
443
423 328 47.5
46 3
393 352 47 8 394
46.9 403
Kw
TC SHC Kw
307 41.2 324 41 9
43 4
46.0 448 295
324
45 8 398
47 4
329 41 1
7145
312 41.9 375
417
339 42 6 374 273
431
323 43 4 374 273 38 7 415 310
441 313 44 0 374 273
305 44.4
402
348 333 44 9 374 277 315 46 C 374 277 306 46 7 374
340 46 7
312 48.3 368 277 41.9
381 347
333 330 51 9 355 277 45 0 378 306 49 0 385
JPJ
fm
2000
Kw
40 8 442 352 41 4
328 41.5 456 336 346
42 3 429
323 46 0 451 327
318 46.3 457 319
46 2 411
348
341
48.6 407
334
51.1 397
3o6b“
TC SHC Kw
363 43 ' 379 347 43 8 379
453
338
460 331 44.7
417
373 429 359 442 340 46 4
365
424
348 48 0 372 292 42 1 432 336 48.7
371 48 9
357
353 375 368
1! .T C F M
TC SHC
375 268
374
44 2 374 277
47.2 374 277 40.4 424 368
47 7
368
48 5 362 278 43 4 388 319 46 2 388
362
49.3
53 4 348 275
AL UNIT
. ....
Kw
TC SHC
37 0 414
268 37.0 421
407 312 40 9 421 337 42 2 424
38 7
38 7 422
273 38.7
277 40 4 421 307
277 41 9 277
278
CFM
429 306
40 4 400 317 42 4 40 4 409 315 43 1 420 40 4 417 310 43 7 429 320 45 3 438
398
41 9 405 311 45 2
410 308
43.4 393 312 46 8 399 329 48 4 402 345 49 5
46 6
363 311 50 2 363
-
12,000
Kw
307 39 5 304
308
304 44.3
317 44 6
431 443
39.9
41 5
432 327 42 9 437 336
41 9 439 320 43 4 448 326 44 2
42.1 445 316 411 344
44 0 435
439 306 46.2 454 404
414
45.6 417
14,000
Outdoor Air Cfm
“6 ''
TC SHC
382 283
42.2 382 283
44 4
379 287 379 287
44 7
377
45 3 377 291
377 291 40 5
47 0 377
47.5 377 291 40.5 47 1
372 292 42 1
372 292 42.1 417 367 293 43 6 397
49.6 367 293 43.6
52.2 361 293 53 9 354 294 46 9
37 4
37.4 428 319 40.2 449
287 39 0 412 327 41 1 287 39 0
39 0 427 325 42 1
39.0
291 40 5 405 334 42 6
40 5
291 40 5 426 324 44 2 444 336
45.3 389 329 49.3 393 345
К w
1000 2000
TC SHC
418
421 326 41 7 439 346 43 1
434
414 423 328 43 9 439 344 45.6
430 323 44.5 448 330 406 336 44 9 414 360 46 4
412 331 45 5 423
401
373 333
Kw
321 39 6 437 346
429 356 42 4 434 374
448
50 5
454 420 365
407 352
374
326 42.4
332 43 3 429 356 44 7
329 45.9 429 340 46 5 398
334 47.1
TC SHC
TC SHC Kw
^ ^ ..
-
3000
Kw
TC
SHC Kw
329 40 7 438 342 41 3
41.4
320
334 44 4
311 45 9 447 316 46 9
337 325 46 9 420 337 47 9 315 47.5 429
341
324 334 52 1 369
452 325 42.1
352 42 9
43.8 455 319 44.6 411
43 6
46.0
47 7 387 360 48 7
50 8 392 342 52 1
361 44 5
423 346
328
308 47.3
404
353 47 0
325
358 53 6
3000
TC
SHC
40 9 445
337 41.6 459 347
342
43.7 457
44.0
339
43 9 424
46 1 454 339
46.4
47 2
348 340
47.6
364
480
48.8 411 369
51.3 402
357
52 5
363 41.5
448 359 43 9
349 44.5 344
465
385 44 8 436 371 447 352
459 331 417
377 429
360 48 1 435 348 48.8
399
382
364 52.4 381 377 54 1
-----------------
43 6
45 2 46 2
48.5
Kw
42.4 43 2
44.8
45 5 46 5 47 2
47.6
47 3
49 1
49.8
--
Kw — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh)
TC — Total Capacity (1000 Btuh)
NOTES: 1 No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
40
Page 43
PERFORMANCE DATA
Room Design 80 F/50% Rh
COOLING CAPACITIES
48MA/50ME040
#
OUTDOOR
AIR
TEMP
Wb
Db
65 378
85
70 378 65
70 73 75
65 70
95 75
78
80
70
100 75
78 70 368 263 43 7
75 no 78 115 75
0
TC SHC
377 377 259 377 259 377 259 38.8 431
376 376 262 40 5 376 262 40 5 376 376 262 40.5 429
372 263 42 1 372 263 42 1 412 372 263 42.1 418 295 45.9
368 263 361 262 45.3 394 354 261 46.9
Kw
256
37.1 417
256 37.1 424 288 40.0 259
38 8 38 8 38 8
262 40 5
40 5 426
262
43.7
UU 1DUU K
AIR
TEMP
Wb
Db
65
85
70
65
70
73
75 382 271 39.0
65 380
70 380 274 40 6 420 317 43 5 75 380 274
95
78 80 380 274 40.6 437 309 44.7
70
100 75
78 70 375
75
0 1000 2000
TC SHC
384 384
382 271 39 0 417 312 382 271 382
380 274
377 377 277 42 4 419 317
377
375
Kw TC SHC Kw TC SHC
37 5
268
37.5 431
268
39 0
271
39.0 432 310 42 3 453 328 43 8
274
40 6
40 6 40 6
277 42 4
42.4 427 316 46.3 441 331
277
44 2 402
280 280 44.2 410
no 78 368 279 45.7
115
360
75
47.2 389 325
278
TOTAL UNIT CFM
inooo
Outdoor Air Cfm
1000
Kw TC
SHC
TC
292
39 5
411 297 419 425 292
405 302 42 6 413 421 295
404
395 304 46 3 402 300 47.1 408
377 301
422 305
425 311
436 309 42.4 462 326 412
428 433 311 44 5 455 325 46 3 466 330 47 4 380 278 40 5 437 320
411 321
403 321
41 1
293
41 6
42 0
292
42.2
298 43 1
43 8
292
44 2
290 44.4 450
301 44 7 297
45 4
297 49.3 399 315
50 5
-
13,000
Outdoor Air Cfm
39 7
40.3
304
41 3 41 9 445
42 9 427 352 44 3
318
313
44 1 448
45 0 45 7 433
324
46 6
322 47.4 419 344
49.6 408 339
50.9 389
2000 3000
Kw
SHC
434 314 446 304
425 322 42 3 429 436 445 306 43 5 453 303 43.9 460
416 427 319 44 5 431 438 308 45 5 446 301 46 1 455 305
413 423 431
399 331
376 327 52 4
--
-
441 332 41 1 454
434
436 342
461 424
412
40 8
41.5
312 43 0 444 323 43 8 380
330 43 8 418
295
46.3 463
325
46 2
313 47 1 429
306
47.6 438 315 48.8 375 47 9 399
319
48.8 413
51.1
К w
323
41.8 465
342
42 7 440
332
43 3
44.1 474 332 45.1 383 275 39.0 439
44 8 443 359 45 7 380 278 40 5 423
332
45 8 457
319 46.7 472 322 47.9 380 278 40.5 440 318 44.8 465 331 47.0 476
349
46 6
338 47 5
47.9 449
356
48 3
49.2 423
51.5
352
52.8
SHC Kw TC
TC
327 41 3
440 456 312
454 313 44 4
444 316 46 5 379 269 40 6 425 305
414 343
406 377 351 53 9
TC
448
454 346 44 1 464
432
426 367 47 5 379 284 42 5 414 330 45 2 429 359 46 7 440
412 376 49 4 378 289
415 359 390
42.3 381
338 43 0 380
306
44.8 380
350 44 6 379 269 40 6 409 335 45 3
47 2
297 47.6 379 269 40.6
47 1
326 48 1 375 270
48 9
352 336
49.8
335
52.3 365
TOTAL UNIT CFM
3000 SHC Kw TC SHC
347 41 6 333
42.6 387 278 37.6 435 310
360 43 3
337 44 7 383 275 39 0 435 320
374 45 0
342
46 8 380 278 40 5
351 48 5 379 340 49.1 379 284 42.5 429 325
361
50.2
52.6
374
54.3
0
”Kw
SHC TC SHC
263 37 4
381
263 37.4 427 296 40.1 451 266 39 0 415 305
266 39 0 422 302 266
380
266 39.0 433
269 40 6 417
379
269 40 6 430 302
379
270 42 3
375
270 42.3
272 43 9 399 316 46 4 406
371 371 272
271 45.5 399 310
358 270
0 1000 2000 3000
278 37 6
387
275 39 0
383
275 39 0
383
380 278
284 42 5
289
378
371 287 45.9 408 332
286 47.4 394 337 , 51.0 394 363 52.9
363
421
39.0 429 302 42 1 449 319
434 408
42 3 416 309 45 6 429
424 307
43.9 407 312 47.3 414 332 49.0
47 1 384 314
Kw
TC SHC
422
418 320 429 320
40 5 414 327 42 9
431 321 44 2
422 326
44 4
405 333 46 7
44.4 413 331
12,000
Outdoor
Air Cfm
1000
Kw
TC SHC
39 7
300
302 42.3 459 3n 42 8 ^423
308
300
312
311 39 7 444
316 42.5
326 43 7
438
41 2
431
41 7
442
43 3
433 44 0 444 44 4 452
44.6
456 44 9
419 338
46.2
437 319 47.8
49.5 404
384
50 7
14,000
Outdoor
Air Cfm
Kw
40.5 457 331
41 3
437 351 42 8 444 370 43 4 42 1
448 42 5
456 337
464
430
440
451
44 7
458 335
45 9
438
46.4
446
47.5
49.7
TC
418 425 355
413
2000
Kw
324 41 0 314
334 42 5 323 43 2 450
317 44.0 343
332 322 314 46 2 308 46.5
327 47 4
344
328 340
SHC
340
342 43 4
336 44.2 362
352 45 0 343 45 9
349 47 6 342 48.1 454
367 48 3
351 51.7
445 338
41.7
462 324 436 351 43 1
43 7
44 1
428
44 7
438 348 45 5
45 7 452
46 4
48 1 406 364 49 2
51.4 52 7 384 363 54 1
Kw
41 2
41.9
43 9
44 4
46 4
49.3
3000
TC SHC Kw
460 469 320
462 468 310 47.8
421 435 339 48 3 444
418 410
TC
452 356 468
458 356 467 348 44 9 478
437 385 45 1 448 370 45 8 461 470
432 444 363 48 6
418 428
419 370 52.7
396 385 54.5
41 5
42.5
336 44 0 326 44 6
45.0
364 44 8
46 7
330
47 3
318
356 47 4
328 49.0
349
50.0
347
52.5
SHC К w
41 7
342 42.7
44 2
344
45.2
354 46 9 342 47 5 334
48.0
379 47 7
352 49.2 387 49 6
373 50.3
Kw — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh) TC — Total Capacity (1000 Btuh)
NOTES: 1 No values are given where unit cannot maintain the assumed room
design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content
2 Ratings are gross and do not include fan motor heat deduction
41
Page 44
FAN PERFORMANCE
The procedure for determining required fan speed (rpm) and shaft horsepower for a 48MA (or SOME) unit is described below.
Since the various unit zones operate at different air quantities and different external resistances, it is necessary to identify the zone having the highest static pressure requirement for the supply duct and supply outlet.
Usually, the longest duct run to the last outlet, with the greatest number of offsets and elbows, has the greatest static pressure requirement. Assume that a duct friction analysis has been made and the cfm and static pressure are as follows:
Zone No
1
4 5 6 7 1440 5 2 720
Totals
CFM ESP (in wg) No Modules
2 3
720 1080 1080 5 2700 6
900 4 1 900 1080 4
9000 10
6 8
CFM/Module
1 720 1 1 3
1
1080 1080
900
1080
The total unit cfm is 9000. Zones 4 and 7 have 3
and 2 modules, respectively, “
comply with the limitation
ganged” together to
of 1200 cfm per
module.
The cfm for zone 2 is 1080 with an ESP of
.8 in. wg. This module appears to possess the highest friction loss. Therefore, the main fan static pressure is established at .8 in. wg ESP.
Enter Tabled fan performance at 9000 cfm,
.8 in. wg ESP and read: 1070 rpm and 5.7 bhp. The 028 indoor fan motor data shows the standard
lOhp motor with a maximum bhp of 11.5. Therefore, 5.7 bhp for this selection is satisfactory. Two pulley selections are available with the 028: Pulley A, shipped mounted; Pulley B, shipped in
the blower compartment. Pulley A has a fixed
pitch and at 1095 rpm is close enough to the required cfm and should be used. Pulley B at
1230 rpm allows selection of the unit at higher
cfm’s and static pressures. (See Table 1.)
Pulley Selection — In general, for start-up, the
pulley producing an rpm higher than required but closest to the required speed should be used. If this results in excess air being delivered, a locally supplied pulley that produces lower air quantity should be used. Two pulley selections are provided with each motor and cover most application requirements.
Balancing Dampers — As in any multizone
application, suitable balancing dampers should be provided in each zone duct run. Normally, a 2-bladed damper is preferred to a single blade. For
the selection example, balancing dampers should be adjusted (by the installer) to give the desired airflow and static pressures in each module. Ready access to balancing dampers is a major considera tion when designing a multizone system. In a T-bar ceiling, this is not a problem. In a plastered ceiling, an access door at the damper location is required.
Low Cfm, Long Run Zones — Small zones with
long runs can cause problems in any multizone system. As the cfm decreases at a given duct velocity, the friction loss per 100 ft increases significantly. Also, seam and joint leakage in a small duct of long length can prevent delivery of required cfm at the outlet grille.
Long ducts with low cfm should be oversized to give lower velocities, lower friction rates and reduced leakage rates. Recognition of the charac
teristics of small ducts and proper design of such
runs will avert potential problem areas.
In addition to the fan performance table, fan curves (Fig. 32, 33, 34) have been included for easier interpolation and fan selection at rpm’s and static pressures not shown in the fan performance
table.
42
Page 45
Table 4 — Fan Performance
FAN PERFORMANCE
UNIT 48 M A/ SOME
016 and 024
028 and 030
CFM
5.000
6.000
7.000
8.000
9.000
9,600
7.000
8.000
9.000
10,000
11,000
12,000
7.000
8.000
0.2
740 805
820
3.9
900
-
960
6.4
980
S-Î
1065
6.3
1150 !
' a.o '.]'.
1 " " - ' f
EXTERNAL STATIC PRESSURE (in. wg)
0.4 0.6
705
760 820 900 955
0.8 ] 1.0 ~J 1.2 [ 1.4 1[ 1.6
740 810 880 955
3.2
880
4.4
980
5.9
1030
7.Î
'880
3,8
970
.3.0

1040

1090
7.8
960
4,2
1020
1100
7 2
1150
3.3
I ' 945 I '995 i 1040 |
960.
1040
s.s
1115
7.0
1200
'9,0
r 950
i 1
1015
5.C
1090
6,3
1170
7.7
1240
10.0
1000
' 5.0

1070

5,7
1140
6,9
1210
3.7
1290
u.o

I 930 i '960' i;'990 r 1030, I 1060 I 1100

-L
900 940 975
3.0
1020
4.7
1080^
6,i
1160
7.9
1205
8.9
1050
1120
6,3
T180
7.6
1255
9,7
1
Fan Rpm
Shp
3.0
1020
4,1
1070
1130
5.2
1 145
6.7
1215
3.5
1255
9-5
i.
1100
5.7
1170
6,9
1 230
S.4
I 1300 1 -
rio.s r -
1010 1040
1020
1070 1120
3.0
1070461130
1190
5,S
1200
7.3
1265
4,7
1090
5.2
1150
62
1210
1280
9.3
7 5
.’.250.
1130
5.8
1190
6.9
1250
8.3
1070 ino I 1155 1200-
5.1
6.2
8.0

i ' "1

1.8
1
4,4
1180
5.6
1235
7.0
1300 I
£2 !
1180
6.5
1230
7.5
1295
9.3
1170
4.9
1225
6.2
1280
7.7
1220
7.0
1270
S-Î
I 1220
■i
.......

I 1140

1__=„
2.2
1270
6.S
-■
1260
7,6
9,000
034
and
040
10,000
11,000
12,000
13,000
14,000
NOTES;
1 Italics indicate higher horsepower motor is required Units 016
and 024 are shown in the same table Underlined italicized values apply to 024 only Units 016 and 024 may use 10-hp 215T (NEMA frame size) motor A larger motor may not be installed in units 028 and 030 Optional 20-hp motor for units 034 and 040 has 256T frame Motor drives on units 024, 028 and 030 are interchangeable to permit fan operation above or below standard fan speeds
2 Maximum fan motor bhp is based on conditions of minimum
voltage and 80 F air across motor
3. Fan performance has deductions for unit casing, wet coils, heaters and clean filters.
4. Cfm range per module is 600 to 1200 cfm. Lower flow volumes are permissible if only first stage of heat is operated. Volumes above 1200 cfm may cause water blow-off during cooling.
900
970
-
1045
- 1
1130
11.-2
1210
131511345 !
Ì7J
930
1000 1
1
“ 1
! 1
1080 1
\
1
1160 1 1195
1
1'5.9 i
1
,1.250... I_
34,5
Ji±l
J-
960
1030
1000 1030
!
1070
- 1 -
1115[1150
9,9
30,6
I
1
1230
12,6 33-,2
1
.1.2.00...
T5,2
1370
18,8
t 1
1
1325
1.6,0.
1400
i
1105
i 1
1180
1Î.8\12.3Ì
r 1
1260
1
•4.0
1.350.
i
37.0
1
1435
2‘X:>
±JiÀ.
1070 1105 1145 1190
1 1 145 1
■98
1 1220
!
1295
14.7-
Ì 1
,1.3.80,
T
U.B'
1 1460
UNIT 48 MA/ MAX BHP
SOME
016 5.75 024 028 030 034 040
‘Field Supplied
1180 1 1210
1
\
30.5 \
1250 1 ' 1280
1
V3.0- 1
>
1330 1 1360
1
• ■•••
Î5.8 1
J40G
-i.
1
1485 1 1
f
2Z.8 i
_L
INDOOR AIR FAN MOTOR DATA
MOTOR
Std
8 60 11 50 11 50
22.8 1095 1230 1320 1425
17.25
17.25 22 2 1095 1230 1320
Opt
_ —
\
* *
11.2
33,8
36.2
..1.4.3Q..
39,2
Std Motor
Pulley A
880 995
995 1095 1095
1220
9.9
1250
1
32,1
<■
1320
1
14,5 f 15.3 3
\
1390
1
37.3
r-
1
.1460
26,3
­«
i
FAN SPEED (Rpm)
Pul ley B Pulley A Pulley B
1145
1230 1230
lO.S
1 1280 ! i 33.0 ] 34.0 1 1350 1
1 1420 1
f- .36.2 f
1 1480 1
1 23-6 1
1 - 1
L_.r 1
Opt Motor
_
_ _
1250
r.,3
1320
1380
l6-5
1445
39.6
...
1425
_ _ _
-
43
Page 46
pp
INCHES H20 EXTERNAL STATIC PRESSURE
BRAKE HORSEPOWER
INCHES H20 EXTERNAL STATIC PRESSURE
<jt b
to
CO CO
03
3
T3
(0
3
03
3
o
m
s
i
00
BRAKE HORSEPOWER
^ o> 00 o
>
o m
s
00
o
CO
o
30NviAiaoda3d wvd
Page 47
*
O
<
cc
FAN PERFORMANCE
</>
V)
o
z
6000
8000
10000 12000
CFM-STD AIR
Fig. 34 - Fan Performance, 48MA/50ME034,040
14000
45
Page 48
HEATING PERFORMANCE
Table 5 — Electric Heater Performance
UNIT
48MA
016 024 028 600 030 034 040
Total
UNIT
SOME
016
&
024 028 75
HEAT TO
COOL RATIO
.75 1 53
1
1
1.5 1 106 1 66
& 1 1
030 1.5 1
034 .75 1
& 1 1
040
1 .5
1
Table 6 — Gas Heating Capacities (1000 Btuh)
INPUT BONNET CAPACITY
Each
Zone
Module
480 60 480 60
60 600 60 720 720
60
60
Total
360 360
450
450 540 540
Each Zone Module
HEATER KW
Stage 1 Full
22.5
22.5
45 45
22.5 45 22 5 45
22 5 22 5
45 45
TOTAL
70
88
132
79 106 158
STEPS OF HEAT
PER MODULE
2 2 3
KW/STEP
PER MODULE
3 3
4.4
4.4
2 3.3 2 3
4.4
4.4
2 3.3 2 3
NOTES: 1 Ratings are approved for altitudes to 2000 feet At altitudes over
2000 ft, ratings are 4% less for each 1000 ft above sea level.
2. At altitudes up to 2000 ft, the following formula may be used to calculate air temp rise:
. bonnet capacity
At =
----------------:--------------
3. At altitudes above 2000 ft, the following formula may be used:
4. Maximum allowable gas pressure is 14.0 in wg
5 Unit design is A G A certified
1 09 X air quantity
_
______________
( 24 X specific weight of air x 60) (air quantity)
Minimum allowable gas pressure for full rated input is 5 0 in wg
bonnet capacity
4.4
4.4
_____________
46
Page 49
1 Determine zone module air quantity as described in the
Selection Procedure (1000 cfm)
2 Enter curve at determined zone moduie air quantity Project left
to intersect with entering air temperature curve (70 F)
3 From this intersection, project up to intersect with entering
water temperature (180 F)
4. From this intersection,project right to intersect with Water Flow Rate (4 gpm).
5 From this intersection, project down to read Zone Module
Fleating Capacity (49,500 Btuh)
Fig. 35 — Hot Water/Glycol Heating Capacities (Hot Water with 20% Ethylene Glycol Solution)
When using soiution mixtures above 20% glycol concentration, reduce the capacity using the correction factor
i e If 30% glycol concentration applies to the example, Corrected Zone Module Fleating Capacity
= Zone Module Fleating Capacity x Correction Factor = 49,500 X 0 985 = 48,750 Btuh
See Fig 36 The Ap at 4 gpm is 8 2 psig

Fig. 36 — Module Pressure Drop

47
Page 50
ELECTRICAL DATA
Table 7 — Electrical Data, 48MA
UNIT
MODEL
48MA016
48MA024
48MA028
48MA030
48MA034
48MA040
FLA LRA
CBMTA -
VOLTAGE
V-PH-HZ
200-3-60 230-3-60 207 264 460-3-60 414 575-3-60
200-3-60 180 229 230-3-60 460-3-60 414 528 575-3-60
200-3-60 180 229 230-3-60 207 460-3-60 414
RANGE
Min Max FLA LRA MTA LRA
^ ■ -j
180 229 63.6
57.2 28 6
528
22.8
660
518
44.4
207 264
40.0
19 9
15.7
660
518
63.6
57.2
264
28.6
528
575-3-60 518 660 22 8
CÔMPRES!
186/266 168/240
>6r
NO. 1
44 5*
40.0*
120 40 0
96 32 0
170 153
62 0
56.0 40 0
77 27 8 19.9
22.0
62
266 240 120
89.0 80 0 40 0
40.0 19 9
96 32.0
200-3-60 180 229 63.6 266 89.0 230-3-60
460-3-60 414
575-3-60
200-3-60 180 229 63.6
230-3-60 207 264 57 2
460-3-60 414 528
575-3-60
207
518
518
264 528 660
57 2
28.6 120
22.8 96
240 80.0
41.0 33 0
266
89.0
240 80 0 57 2 240 80 C 6 2 6 0 6 0 1 1
28 6 120 40 0 28 6 120
660
22.8
96 32.0 22 8 96 32.0
coi
1PREÎ
>SOR
NO. 2
CB
MTA
_
-
_
- _
- - - 6 2 24
44 4 170 62.0
153 56 C 6.2
77 27.8 6.2
15.7
62 22.0
170
44.4 153 56 0 6 2
77 27.8 6 2 3.0
15.7
62 22 0 6.2 2 4
63.6
266
57 2
240
120
28.6 96
22.8
63 6 266 89 0 6.2 6 6 6.6 1 1
200-3-60 180 229 80 C 332 112 0 80 0 332 112 0
230-3-60
207 264 77.0 300 109.0 77.0
460-3-60 414 528
575-3-60
-
Part-winding/full-winding start
Full Load Amps Locked Rotor Amps
Circuit Breaker Must Trip Amps
518
660
.
38.5 150 54.0
31 4 120
44 0
, . —
38 5 150 54 0
31 4
109 0
300
120
‘Unit has 2 mechanically interlocked circuit breakers. Values are for each. NOTES:
1 Combustion air fan — 115 volts
2. Outdoor fan motor is a 200/230-1-60 motor on all units.
OUTDOOR FAN
CB
_
MOTOR FLA
No. 1
6.2 6.6
No. 2
6.2 6.0
6 2 3 0
6.2 6.6
6.0 3 0 2 4
6 2
62.C
6.2 6 6
6.0
89 0
6.2 6.6 1 1 80 0 41 C
6.0
6 2 6 2 3 0
33 C 6 2 2 4
6 2
3.0 3.0
2 4
40.0 6 2
6.2 6.6 6 6 1 1
6 2 6.0
6 2 3 0 3 0
44 5
6 2 2 4 2 4
COMBUST
MOTOR
No. 3
_
_
_
_
_
-
-
_
-
-
_
-
2 4 1.1
6 0 1 1
INDOOR
FAN
FLA
1.1 5 0
1 1 5 C
1.1 5 0
1.1 5.0 1 1
FAN
MOTOR
FLA
Hp
16 2
13.2 6 6
5 6
7 5 24 0
1.1 7.5 22.0 1 1 7.5
11.0
1.1 7.5 9.0
n
10.0 29.6~
10.0
25 0
10.0
12 5
10 0
9.5
29 0
10.0
25.0
10 0
12.5
10.0
9 5
15.0
45.0 60 8
20.0
15.0
38.6
20.0
51 4
15.0
19.3
20 C
25.9
15 0
15 4
20 0
20.0
, ______
15 0
4s¥
20 0
60 8
15 0
38.6
20 0
51.4
15.0
19 3
20 0
25 9
15 0
I5I
20 0
20 0
1.1
1.1
1.1
1.1
1 1 10 0
1.1 1 1
1 1
1 1
POWER SUPPLY
Min
Wire
Amps
109 6
99.5
Max
Fuse
Amps
125”
no
49.8
39.8
’b7.5~
124.8
150"'
150
62 2
49 4
'i687r
152.3
■ 200 "
175
76.1 60 4
Ï87 3
169.5 84 2
' 200 ‘
200 100
67.5
tTcTs
224.6
225'
250
18879
200 9
94 5"
100 5
75 6 80 6
2477.7
261.5 233 5
245.5
122.7
250
~ ioo”'
125 ”'90”
100
”'30*0”'
300
300"
300
150
9s7o
100 0
125
60 45
70 60
90 70
90
150”'
125”
48
Page 51
Table 8 — Cooling Electrical Data, 50ME

ELECTRICAL DATA (Contd)

UNIT V-PH-HZ
200-3-60 180
50ME016
230-3-60 207 460-3-60 575-3-60 518 660 22 8 96 32 0
200-3-60 180 229
50ME024
230-3-60 460-3-60
i 575-3-60 518
200-3-60 180
SOME 028
230-3-60
460-3-60
575-3-60 518 200-3-60
SOME 030
230-3-60 207 264 57 2 460-3-60 575-3-60 518 660 22 8
200-3-60
230-3-60 207 264 57 2
S0ME034
460-3-60
575-3-60
200-3-60 180 229 80.0
230-3-60
SOME 040
460-3-60
575-3-60 518
VOLTAGE
RANGE
Min Max
229 63.6
COMPRESSOR
FLA
'Ì86/266
NO. 1
LRA
264 57.2 168/’24G
414
207
414
528 28 6
44.4 40 0
264
19.9
528
Ì20 40 0
170 62 0 153 56.0
77 27.8 19 9
660 15.7 62
229
^ól^ó 207 264 57.2 414
528 28.6 660
22 8
266 240 80 0 40.0 153 56.0 6 2
120 40 0 19 9 77 27 8 6.2 3 0
96 32 0 15 7 62 22 0 6 2
180 229 63 6 266 '
240 80 0
414
528 28 6
120
96 33 0 22 8 228
180
229 63 6
266
240 80 0
~
414
518
28 6 120
528
660 22 8
96 32 0 22 8 96
332 112 0 80 0 332 112 0 6 2
207 264 77.0 300
L. . _
414
582 38 5
660 31 4
150
120 44 0
compressor
NO. 2
.........
CB
MTA FLA LRA
44 5* 40 0*
-
CB
MTA
- -
- - -
44 4 170
40.0 153
22.0 15 7 89 0
44.4 170 62 0 '62"
89 0 63 6 266
57 2
41 0
28 6 120
62 0 56 0
77
27 8 6 2
62 22.0
' 39 0
240 80 0
41 0
33.0
89 0 6 2
57 2
266
240
80 0
89 0 63 6
- ­40 0 28.6
120
40.0
32 0 6 2
109 0 77 0 109 0 6.2
54.0
300
. ------„ -
38 5 54 0 6 2
31 4
-----
150 3 0 3 0
120 44 0
OUTDOOR
FAN MOTOR
No. 1
6 2
6.2 6 2
6.2 6 2
6 2
6.2
6 2 6 6 6 2 6.0 6 2
6.2 2 4
6 2
6.2
6 2
FLA
No. 2 No. 3
6 6 6 0 3 0 2 4
6 6
_
6 0 3 0
2.4
-
6 6
6.0
2.4 —
3 0
6 6
6 6
6 0
6 0
3 0
3 0
2 4
2 4
6.6 6 6
6 u 6 6
_ ..
2 4 2 4
INDOOR ■'
FAN MOTOR
F LA
HP FLA
-
5 0 16 2 109 8 125
-
5 0 13.2
-
5 0 6 6
5 0 5.6
­7 5
7 5
POWER SUPPLY
24.0 138 0 150
22.0 124 0
- 7 5 11.0
7 5 9 0 49 2 60
-
10.0 29.0 168 9 200
-
10.0 25 0 151.7 175
-
-
12.5 75 8 90
10.0
10.0
9.5 60 2 70
10.0 29.0
-
10.0 25.0 168.9 200 10 0
12 5
10 0 9 5 67.3
-
45 0
15 0
60.8
20 0 15 0 38 6
20 0 51 4 “l5 0
25.9 100.5 125
20.C
15.0
15.4
20.0
20 0
15 0 45 0 20 0 60.8 261.5
15 0
38.6
51.4
20.0
- —
15 0
19 3 116 7 150
233 5
245.5 300
20 0 25 9 122 7 150
15.0
20 0
15 4 20 0
100 0
Wire
Amps
89.8
Max Fuse Amps
no
49.5 60
39.6
45
150
61.9 70
188 0 200
84 5
100
90
210 8 225 224 6
188 9
250 200
200 9 250
94.5~ lOO"“"
75.6 80 690100
247 7
300
300 300
--------
95 Ó
125
125
Part-winding/full-winding start
FLA — Full Load Amps
LRA
Locked Rotor Amps
‘Unit has 2 mechanically interlocked circuit breakers. Values are for each.
NOTE:
Outdoor air fan motor is a 200/230-1-60 motor on all units.
49
Page 52
ELECTRICAL DATA (Contd)
Table 9 — Electric Resistance Heater Data
HEATING ELEMENTS PER ZONE
MODULE
„ --------
FULL LOAD AMPS PER
HEATING
ELEMENT
16 5
14.4 7 2
22.0
19.2 9 6
22 0
19.2 9 6 7 7
16 5 14 4
7 2
22 0
19.2
96 45
22 0 19 2
9 6 7 7
16 5 14 4
7 2
22 0 19 2
9 6
22 0
19.2
9.6
7 7
...
CB MTA
EACH AMPS ZONE
MODULE
52 225 52 45 100
52 300 52 45
52 200 52 45 45 150
52 250 52 45
52 350 52
52 250 52 45 225 45
52 52 45
52 52 45
52 300 52 45 45
------
-
--------
MAX FUSE
EACH
CIRCUIT
200
250 125
175
175
225
125
300 175
225
175 300
250
125
200
175 150
250 250 200
MIN WIRE
AMPS
EACH
CIRCUIT
215.0
187.0 94 0
287.0
250 0 125 0
190 4
165.8
165 8
132.5
250 0 218 0 125 0
334.0
292 0
167.0
238 0 207 0 207 0 166 0
286 4 249 6 124 8
190 4 165 8 132 5
285 6 249 6
249.6
199.2
C8 MTA — Circuit Breaker Must Trip Amps
NOTE; Terminal boards provided for heater power wire connections are suitable for use with copper or aluminum wire.
50
Page 53
Where a single feeder is to be used, the cooling power tap may be
sized according to the Cooling Minimum Wire Amps shown in
the Power Wiring Data, Table 1 0, provided the tap is 10 ft or less in length and enclosed in a raceway Similarly, the heating power tap may be sized according to the
Heating Minimum Wire Amps shown in the table provided the
tap is 25 ft or less in length and enclosed in a raceway
If reheat is necessary for humidity control in all or part of the
modules, use caution in sizing common feeder as heating and
cooling can occur simultaneously in each reheat module
3.
For 200/230 volt units, line protection is internal to the unit For 460/575 volt units, overcurrent protection must be provided
in each power tap per NEC

Fig. 37 — Common Feeder Wiring

51
Page 54
ELECTRICAL DATA (Contd)
Table 10 — Power Wiring Data
UNIT
VOLTS
(Nom)
200 53 109 8 215.0 230 53 98 9 187 0 460
200
50ME016
230 460 70 49 5
200 230 460 575
200 53 138 0 230 460
200
50ME024
230 70 124 2 460 70
200 230 460 575
200 230 460 66 75 8 125 0
200
50ME028
230 460
200 230 460 132 75 8 207 0 575
200 66 188 0 230 460 66 84 5 125.0
200 88 188.0 334 0
50ME030
230 460
200 230 460 132 84.5 207 0 575
IFM — Indoor Air Fan Motor
KW
(Unit Total)
53 49 5 94.0
MINIMUM WIRE AMPS
Heating
Cooling
Circuit 1 2 1 2
_
-
-
70 109.8 287.0 70 98.9 250.0
125 0
109 8
106
190 4 190 4
_
-
106 98 9 165.8 165 8 106 49 5 165 8 106
39 6
132 5
215 0 53 124.2 187.0 53 61.9 94.0
70
138.0 287 0 250 0
61 9 125 0
106 106 106
138 0 124 2
190.4 190 4
165.8 165 8
61.9
165.8 176 8
106 49.2 132.5
66 168 9 250.0 66 151 7 218 0
-
-
-
-
-
-
-
-
-
-
-
88 168 9 334.0 88 151 7 292 0 88 75 8
167 0 - 181.0
-
-
132 168 9 238 0 238 0 132 151.7
132 60 2 166 0
207 0
207 0 442 0
-
-
250 0
66 168 9 218 0 277 9
-
-
168 9
88 88
84 5
292 0
167.0
132 188 0 238 0
132 168 9 207 0
132 67 3 166 0
-
-
-
-
1 */ * ' K
11" IVI
1 r IVI
it) np
IFM
20 Hp
15 Hp
IFM
20 Hp
IFM
VOLTS
(Nom)
(Unit
T otal)
200 230
460
200 79 224.6 286 4
460 200
230 106 460
200 106
460 106
9nn 230
460 158
575 158 75.6 200 158
230 460 158 575 158
200 79 230 460
200 230 79 245 5
_ UNIT Lrommon
232 5 202 2
101 6
304 5 265 2 230 79
132.6
398 3
346.8
173.4 138 6
---------— 50ME034
245 5 230 217 7
108.9
312 3
275 3
136 0
406.1
353 6
141.8
293 9 260 7
139 0
366 2 320 0
460 79 122 7
508 2 200 106
221 0
183 0
313 0 50ME040
147 0
366 2 15 Hp 320 0
181.0
508 2 444 9 20 Hp
222 5 IFM
183 0
1 lip
11” M
20 Hp
1 r IVI
IFM
230
460 106
200 106 261 5 230
460
200 158 230 158 233 7 460 158 116 7 575
200 158 230 158 460 158 575 158
KW
79 210 8 286.4
MINIMUM WIRE AMPS
Heating
Cooling
Circuit
_
Common
354.0 79 188 9 249.6 313 7 79 94.5 124.8
200.9
79 100.5
106 210.8 190 4
106
106
249.6
124.8
188 9 165 8
94 5 165 8
224 6
190 4
200.9 165 8
190.4 429 1 165 8 374 8
100 5 165 8
158 158
210 8
285 6 285 6 619 5
188.9
249.6 249 6 541.2
94.5 249 6 199 2
224.6 ^285 6 285.6
158 200 9 249 6 249 6
156.8
-
_
367 8
-
325.7
162.9
-
187 4
-
190.4
442 9
165 8 385.6
192 8
-
-
270 6 216 2
-
633.3 553 2
100 5 249 6 276 6
80 6 199 2
247 7
286 4 79 233 5 249 6 79 116 7 124.8
79 261.5 286 4
249 6
124 8
106
247 7
233.5
190 4
165.8 165 8
116 7 165 8
190 4
245 5 165 8 165 8
106
106 122 7 165 8
247 7 285 6 285 6
249 6 249 6
158
95 0 199 2
261 5 285 6
245.5 249 6 249 6 122 7 249.6
100 0 199 2
221 2
-
_
390 9
358 3
179.1
-
_
404 7
-
370.3
-
185 1
190.4
438 1 399 3
199.6
-
190.4
451.9
411.3
-
205 6
628.5
249 6
566 5
-
283 1
-
227 8
285 6 642 3
578 3
-
289.1
-
232 8
m
Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations.
Tab 6
Form 50ME-1 XA New
Printed in U S A
8-76
PC 111 Catalog No 515-002
Loading...