Bally Refrigerated Boxes BVC007 Installation Manual

Page 1
BVC Direct Drive Air-Cooled Condenser
PRODUCT DATA & INSTALLATION
Bulletin B50-BVC-PDI-10
1068833
Model
BVC = Bally Vertical air flow Condenser BCH = Bally Horizontal air flow Condenser
Tubing
1 = 3/8 OD smooth 2 = 1/2 OD smooth
Motor & Fan Type
A = 30” fan with 850 RPM motor (Standard) B = 30” fan with 550 RPM motor C = 30” fan with 1140 RPM motor
Fan Configuration
First number = number of fans wide Second number = number of fans in length 26 = 2 fans wide x 6 fans length (total 12 fans) 11 = 1 fan wide x 1 fan length (total 1 fan)
One to Twelve Fan Motors

NOMENCLATURE

BVC 2 A 26 206 A - T3 C
Generation
C = Latest series (A, B older series)
Electrical Code
S2 = 208-230/1/60 S6 = 200-220/1/50 T3 = 208-230/3/60 T7 = 200-220/3/50 T4 = 460/3/60 T9 = 380-400/3/50 T5 = 575/3/60
Fin Material & Spacing
A = Aluminum 12 FPI (Standard), B = 10, C = 8 D = Gold Coat Alum 12 FPI, E = 10, F = 8 G = Copper 12 FPI, H = 10, J = 8 K = Heresite Coat Alum 12 FPI, L = 10, M = 8
Nominal Capacity (Tons - THR)
Rated at 25 12” FPI, smooth tubing, 0° Subcooling, Sea Level, 60 Hz
o
F (14 oC) TD, 30” Fan / 850 RPM Motor,
CONTENTS
PAGE
SPECIFICATIONS
Nomenclature........................................... Front
850 RPM Data:
Capacity, General Specs, Elec. Specs... 2-5
Dimensional Data...................................... 6, 7
Wiring Data.............................................. 8-11
550 RPM Data:
Capacity, General Specs, Elec. Specs... 12-15
1140 RPM Data:
Capacity, General Specs, Elec. Specs.... 16-19
DESIGN & SELECTION
Condenser Theory..................................... 20
Glossary of Terms..................................... 21, 22
Condenser Selection & Worksheets............ 23-29
Low Ambient Operation.............................. 30-34
INSTALLATION
Inspection, Location & Placement............... 35
Piping & Wiring......................................... 36
System Check & Maintenance................... 37
Service Parts............................................ 38
Project Information.................................... Back
• THERMOSPAN
TM
coil design feature eliminates
tube failure on tube sheets.
• Standard 850 RPM quiet low speed dual voltage (230/460) fan motors with male electrical plug, moisture slinger, and rainshield for complete weather protection.
• Rugged heavy-gauge galvanized steel rail
motor mounts/support.
• All fan sections individually baffled with full height partitions, and clean-out panels.
• Complete selection of electrical fan cycling and speed control options.
• Heavy-gauge galvanized steel cabinet construction assembled with zinc plated huck bolts supported on heavy-duty legs.
Page 2
CAPACITY DATA - 850 RPM MODELS - R22
BVC
MODEL
NUMBER
007 009 010 011 012 013 017 019 022 024 027 029 034 037 041 043 048 056 063 068 079 085 095 103
039 045 049 054 058 067 073 081 086 096 112 126 137 158 172 190 206
TOTAL HEAT OF REJECTION CAPACITY (MBH)
Fan Rows
1°F
(0.56°C)
1 x 1 3.165 31.7 47.5 63.3 95.0 2.912 2.595 7 0.45 1 x 1 4.135 41.4 62.0 82.7 124 3.846 3.515 8 0.52 1 x 1 4.655 46.6 69.8 93.1 140 4.329 3.957 9 0.52 1 x 1 5.365 53.7 80.5 107 161 5.097 4.721 12 0.45 1 x 1 5.875 58.8 88.1 118 176 5.581 5.170 12 0.49
1 x 1 6.465 64.7 97.0 129 194 6.336 5.948 15 0.43 1 x 2 8.265 82.7 124 165 248 7.686 7.025 14 0.59 1 x 2 9.265 92.7 139 185 278 8.616 7.875 18 0.51 1 x 2 10.74 107 161 215 322 10.20 9.447 24 0.45 1 x 2 11.77 118 176 235 353 11.18 10.35 24 0.49 1 x 2 12.94 129 194 259 388 12.68 11.90 30 0.43 1 x 3 13.97 140 209 279 419 12.90 11.87 27 0.52 1 x 3 16.07 161 241 321 482 15.26 14.14 36 0.45 1 x 3 17.64 176 265 353 529 16.75 15.52 36 0.49 1 x 3 19.40 194 291 388 582 19.01 17.85 45 0.43 1 x 3 20.64 206 310 413 619 19.61 18.17 36 0.57 1 x 3 23.01 230 345 460 690 22.55 21.17 45 0.51 1 x 4 26.34 263 395 527 790 24.50 22.39 22 1.20 1 x 4 30.29 303 454 606 909 28.77 26.65 30 1.01 1 x 4 32.55 326 488 651 977 31.90 29.95 37 0.88 1 x 5 37.95 379 569 759 1138 36.05 33.39 30 1.26 1 x 5 40.70 407 610 814 1221 39.88 37.44 37 1.10 1 x 6 45.54 455 683 911 1366 43.26 40.07 30 1.52 1 x 6 48.84 488 733 977 1465 47.85 44.93 37 1.32
2 x 2 18.60 186 279 372 558 17.30 15.81 36 0.52 2 x 2 21.47 215 322 429 644 20.39 18.89 48 0.45 2 x 2 23.50 235 353 470 705 22.33 20.68 48 0.49 2 x 2 25.84 258 388 517 775 25.32 23.77 60 0.43 2 x 3 27.90 279 419 558 837 25.95 23.72 54 0.52 2 x 3 32.17 322 482 643 965 30.56 28.31 72 0.45 2 x 3 35.24 352 529 705 1057 33.47 31.01 72 0.49 2 x 3 38.77 388 581 775 1163 37.99 35.66 90 0.43 2 x 3 41.29 413 619 826 1239 39.22 36.33 72 0.57 2 x 3 46.02 460 690 920 1381 45.10 42.34 90 0.51 2 x 4 53.89 539 808 1078 1617 50.11 45.80 45 1.20 2 x 4 60.57 606 909 1211 1817 57.54 53.30 60 1.01 2 x 4 65.99 660 990 1320 1980 64.67 60.71 75 0.88 2 x 5 75.90 759 1138 1518 2277 72.10 66.79 60 1.26 2 x 5 82.50 825 1237 1650 2475 80.85 75.90 75 1.10 2 x 6 91.08 911 1366 1822 2732 86.52 80.15 60 1.52 2 x 6 98.99 990 1485 1980 2970 97.01 91.07 75 1.32
10°F
(5.56°C)
TEMPERATURE DIFFERENCE (TD)
12 FPI 10 FPI 8 FPI
15°F
(8.3°C)
20°F
(11.1°C)
Single Row Models
Double Row Models
30°F
(16.7°C)
1°F
(0.56°C)
1°F
(0.56°C)
Maximum
No. of Feeds
MBH
@ 1° F TD
Per Feed
(12 FPI)
Correction Factors for Other refrigerants - Use R22 Values Multiplied By
R134a R12 R507 R404A R407A R407B R502 R407C
0.94 0.95 0.97 0.97 0.97 0.97 0.98 1.00
NOTES: (1) Above capacity data based on 0°F subcooling and at sea level.
(2) TD = Condensing temperature - ambient temperature (3) Standard fin spacing is 12 FPI except models 056 and 112 (13 FPI). (4) For High Altitude applications apply the following correction factors:
0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
(5) For 50Hz capacity multiply by 0.92.
- 2 -
Page 3
CAPACITY DATA - 850 RPM MODELS - R404A
TOTAL HEAT OF REJECTION CAPACITY (MBH)
BVC
MODEL
NUMBER
007 009 010
011 012 013 017 019 022 024 027 029 034 037 041 043 048 056 063 068 079 085 095 103
039 045 049 054 058 067 073 081 086 096 2 x 3 44.64 446 670 893 1339 43.75 41.07 90 0.50 112 126 137 158 172 190 206
Fan Rows
1°F
(0.56°C)
1 x 1 3.070 30.7 46.1 61.4 92.1 2.825 2.517 7 0.44 1 x 1 4.011 40.1 60.2 80.2 120 3.731 3.410 8 0.50 1 x 1 4.515 45.2 67.7 90.3 135 4.199 3.838 9 0.50 1 x 1 5.204 52.0 78.1 104 156 4.944 4.579 12 0.43 1 x 1 5.699 57.0 85.5 114 171 5.414 5.015 12 0.47 1 x 1 6.271 62.7 94.1 125 188 6.146 5.770 15 0.42 1 x 2 8.017 80.2 120 160 241 7.455 6.814 14 0.57 1 x 2 8.987 89.9 135 180 270 8.358 7.639 18 0.50 1 x 2 10.41 104 156 208 312 9.892 9.164 24 0.43 1 x 2 11.41 114 171 228 342 10.84 10.04 24 0.48 1 x 2 12.55 125 188 251 376 12.30 11.54 30 0.42 1 x 3 13.55 135 203 271 406 12.51 11.51 27 0.50 1 x 3 15.58 156 234 312 467 14.80 13.71 36 0.43 1 x 3 17.11 171 257 342 513 16.25 15.05 36 0.48 1 x 3 18.82 188 282 376 565 18.44 17.31 45 0.42 1 x 3 20.02 200 300 400 601 19.02 17.62 36 0.56 1 x 3 22.32 223 335 446 670 21.87 20.53 45 0.50 1 x 4 25.55 256 383 511 767 23.77 21.72 22 1.16 1 x 4 29.38 294 441 588 881 27.91 25.85 30 0.98 1 x 4 31.58 316 474 632 947 30.94 29.05 37 0.85 1 x 5 36.81 368 552 736 1104 34.97 32.39 30 1.23 1 x 5 39.48 395 592 790 1184 38.69 36.32 37 1.07 1 x 6 44.17 442 663 883 1325 41.96 38.87 30 1.47 1 x 6 47.37 474 711 947 1421 46.41 43.58 37 1.28
2 x 2 18.04 180 271 361 541 16.78 15.34 36 0.50 2 x 2 20.82 208 312 416 625 19.78 18.32 48 0.43 2 x 2 22.80 228 342 456 684 21.66 20.06 48 0.47 2 x 2 25.06 251 376 501 752 24.56 23.05 60 0.42 2 x 3 27.06 271 406 541 812 25.17 23.00 54 0.50 2 x 3 31.20 312 468 624 936 29.64 27.46 72 0.43 2 x 3 34.18 342 513 684 1025 32.47 30.08 72 0.47 2 x 3 37.60 376 564 752 1128 36.85 34.59 90 0.42 2 x 3 40.05 400 601 801 1201 38.04 35.24 72 0.56
2 x 4 52.27 523 784 1045 1568 48.61 44.43 45 1.16 2 x 4 58.75 588 881 1175 1763 55.82 51.70 60 0.98 2 x 4 64.01 640 960 1280 1920 62.73 58.88 75 0.85 2 x 5 73.62 736 1104 1472 2209 69.94 64.78 60 1.23 2 x 5 80.02 800 1200 1600 2401 78.42 73.62 75 1.07 2 x 6 88.34 883 1325 1767 2650 83.93 77.74 60 1.47 2 x 6 96.02 960 1440 1920 2881 94.10 88.34 75 1.28
10°F
(5.56°C)
TEMPERATURE DIFFERENCE (TD)
12 FPI 10 FPI 8 FPI
15°F
(8.3°C)
Single Row Models
Double Row Models
20°F
(11.1°C)
30°F
(16.7°C)
1°F
(0.56°C)
1°F
(0.56°C)
Maximum
No. of Feeds
MBH
@ 1° F TD
Per Feed
(12 FPI)
To calculate capacities with other refrigerants, multiply the R22 capacity by the appropriate correction factor. Refer to the table accompanying each of the R22 tables.
NOTES: (1) Above capacity data based on 0°F subcooling and at sea level.
(2) TD = Condensing temperature - ambient temperature (3) Standard fin spacing is 12 FPI except models 056 and 112 (13 FPI). (4) For High Altitude applications apply the following correction factors:
0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
(5) For 50Hz capacity multiply by 0.92.
- 3 -
Page 4
GENERAL SPECIFICATIONS - 850 RPM MODELS
BVC
MODEL
NUMBER
Total No. of Feeds
R22 Refrigerant Charge
(2)
Normal
lbs kg lbs kg CFM m3/h dBA lbs kg
(1)
90% FULL
Sound
(3)
Air Flow Rate
(4)
Level
Piping Connections
(5)
Inlet
Qty - OD
Outlet
Qty - OD
Condenser
Weight
(6)
Single Row Models
1A11007 7 1.7 0.8 11.0 5.2 7150 12200 63.5 1 - 1 1/8 1 - 7/8 360 163 1A11009 8 2.2 1.0 17.0 7.5 6280 10700 63.5 1 - 1 3/8 1 - 7/8 375 170 1A11010 9 2.8 1.3 21.0 9.5 7150 12200 63.5 1 - 1 3/8 1 - 7/8 420 191
1A11011 12 3.9 1.8 27.0 12.0 6880 11700 63.5 1 - 1 3/8 1 - 1 1/8 440 200 1A11012 12 4.3 2.0 31.0 14.0 7200 12200 63.5 1 - 1 3/8 1 - 1 1/8 480 218 1A11013 15 5.2 2.4 39.0 18.0 6930 11800 63.5 1 - 1 5/8 1 - 1 1/8 505 229 1A12017 14 4.1 1.9 31.0 14.0 12500 21300 66.5 1 - 1 5/8 1 - 1 1/8 565 256 1A12019 18 6.1 2.8 44.0 20.0 14300 24300 66.5 1 - 2 1/8 1 - 1 3/8 630 286 1A12022 24 7.4 3.4 55.0 25.0 13700 23300 66.5 1 - 2 1/8 1 - 1 3/8 675 306 1A12024 24 8.3 3.8 62.0 28.0 14400 24500 66.5 1 - 2 1/8 1 - 1 3/8 740 336 1A12027 30 10.0 4.5 75.0 34.0 13900 23600 66.5 1 - 2 1/8 1 - 1 3/8 790 358 1A13029 27 9.0 4.1 61.0 28.0 21400 36400 67.7 1 - 2 1/8 1 - 1 5/8 840 381 1A13034 36 10.0 4.5 78.0 35.0 20600 35000 67.7 1 - 2 1/8 1 - 1 5/8 905 410 1A13037 36 12.0 5.4 94.0 42.0 21600 36700 67.7 1 - 2 5/8 1 - 1 5/8 1000 454 1A13041 45 14.0 6.4 113 51.0 20800 35400 67.7 1 - 2 5/8 1 - 1 5/8 1070 485 1A13043 36 17.5 7.9 128 57.8 26500 45100 67.7 1 - 2 5/8 1 - 1 5/8 1055 479 1A13048 45 20.5 9.3 152 68.9 25800 43800 67.7 1 - 2 5/8 1 - 1 5/8 1150 522
2A14056 22 25.9 11.8 183 83.2 35900 61000 69 1 - 2 5/8 1 - 2 1/8 1600 726 2A14063 30 32.5 14.7 239 108 35300 59900 69 1 - 2 5/8 1 - 2 1/8 1650 748 2A14068 37 38.0 17.2 286 130 34300 58300 69 1 - 2 5/8 1 - 2 1/8 1750 794 2A15079 30 38.5 17.5 290 131 44100 74900 70.3 1 - 2 5/8 1 - 2 1/8 2063 936 2A15085 37 48.8 22.2 356 161 42900 72900 70.3 1 - 2 5/8 1 - 2 5/8 2188 992 2A16095 30 53.5 24.3 365 165 52900 89900 71 1 - 3 1/8 1 - 3 1/8 2475 1123 2A16103 37 61.2 27.7 436 198 51500 87500 71 1 - 3 1/8 1 - 3 1/8 2625 1191
Double Row Models
1A22039 36 16.0 7.3 104 47.0 28600 48600 69.5 2 - 2 1/8 2 - 1 3/8 1060 481 1A22045 48 19.0 8.6 126 57.0 27500 46800 69.5 2 - 2 1/8 2 - 1 3/8 1145 519 1A22049 48 21.0 9.5 141 64.0 28800 49000 69.5 2 - 2 1/8 2 - 1 3/8 1255 569 1A22054 60 23.0 10.0 167 76.0 27700 47100 69.5 2 - 2 1/8 2 - 1 3/8 1350 612 1A23058 54 22.0 10.0 141 64.0 42800 72800 71 2 - 2 1/8 2 - 1 5/8 1420 644 1A23067 72 26.0 12.0 174 79.0 41200 70000 71 2 - 2 1/8 2 - 1 5/8 1550 703 1A23073 72 30.0 14.0 212 96.0 43200 73400 71 2 - 2 5/8 2 - 1 5/8 1710 776 1A23081 90 35.0 16.0 251 114 41600 70700 71 2 - 2 5/8 2 - 1 5/8 1865 846 1A23086 72 35.0 16.0 255 116 53000 90100 71 2 - 2 5/8 2 - 1 5/8 2110 957 1A23096 90 41.0 19.0 304 138 51500 87600 71 2 - 2 5/8 2 - 1 5/8 2300 1043 2A24112 45 53.0 24.0 375 170 71800 122100 72.5 2 - 2 5/8 2 - 2 1/8 3200 1451
2A24126 60 65.0 30.0 477 217 70500 119900 72.5 2 - 2 5/8 2 - 2 1/8 3300 1497 2A24137 75 77.0 35.0 579 263 68600 116600 72.5 2 - 2 5/8 2 - 2 1/8 3500 1588 2A25158 60 77.0 35.0 579 263 88100 149800 73.3 2 - 2 5/8 2 - 2 1/8 4125 1871 2A25172 75 99.0 45.0 721 327 85800 145800 73.3 2 - 2 5/8 2 - 2 5/8 4375 1984 2A26190 60 107.0 49.0 729 331 106000 179800 74 2 - 3 1/8 2 - 3 1/8 4950 2245 2A26206 75 124.0 56.0 883 401 102900 174900 74 2 - 3 1/8 2 - 3 1/8 5250 2381
(1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97. For R134a and R502 use R22 Charge. For R12 use R22 Charge X 1.1. (2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient or winter charge with flooded head pressure control and fan cycling see Page 33 and Page 34. (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY. (4) For 50Hz Fan Data use 60Hz CFM (m3/h) X 0.83. (5) Sound Pressure Level at ten meter distance. (6) Less weight of refrigerant charge.
- 4 -
Page 5
ELECTRICAL DATA - 850 RPM MODELS 60Hz
Not available on 4 and 5 fan single row models
Not available on 4 and 5 fan single row models
NO.
OF
FANS
1 3.4 4.3 15 5.9 7.4 15 2.9 3.6 15 2.3 2.9 15 2 6.8 7.7 15 11.8 13.3 20 5.8 6.5 15 4.6 5.2 15
3 10.2 11.1 15 17.7 19.2 25 8.7 9.4 15 6.9 7.5 15
4 13.6 14.5 20 23.6 25.1 30 11.6 12.3 15 9.2 9.8 15
5 N/A N/A N/A 29.5 35.1 40 14.5 15.2 20 11.5 12.1 15
6 20.4 21.3 30 35.4 36.9 45 17.4 18.1 25 13.8 14.4 20
8 NA NA NA 47.2 48.7 60 23.2 23.9 30 18.4 19.0 25
10 NA NA NA 59 60.5 70 29 29.7 40 23 23.6 30
12 NA NA NA 70.8 72.3 80 34.8 35.5 45 27.6 28.2 40
M.C.A. = Minimum Circuit Ampacity (AMPS) M.O.P. = Maximum Overcurrent Protection (AMPS)
208-230/1/60* 208-230/3/60 460/3/60 575/3/60
TOTAL
FLA
MCA MOP
TOTAL
FLA
MCA MOP
TOTAL
FLA
MCA MOP
TOTAL
*
and 6 fan models 183” and longer.
FLA
MCA MOP
ELECTRICAL DATA - 850 (700) RPM MODELS 50Hz
NO.
OF
FANS
1 3.6 4.5 15 6.5 8.1 15 2.7 3.4 15
2 7.2 8.1 15 13 14.6 20 5.4 6.1 15
3 10.8 11.7 15 19.5 21.1 25 8.1 8.8 15
4 14.4 15.3 20 26 27.6 40 10.8 11.5 15
5 N/A N/A N/A 32.5 34.1 40 13.5 15.1 20
6 21.6 22.5 30 39 40.6 45 16.2 16.9 20
8 NA NA NA 52 53.6 60 21.6 22.3 30
10 NA NA NA 65 66.6 80 27 27.7 40
12 NA NA NA 78 79.6 90 32.4 33.1 45
TOTAL
FLA
M.C.A. = Minimum Circuit Ampacity (AMPS) M.O.P. = Maximum Overcurrent Protection (AMPS)
200-220/1/50 200-220/3/50* 380-400/3/50
MCA MOP
TOTAL
FLA
MCA MOP TOTAL FLA MCA MOP
*
and 6 fan models 183” and longer.
- 5 -
Page 6
DIMENSIONAL DATA - SINGLE ROW BVC MODELS
DIMENSIONS - Inches (mm)

SINGLE ROW

MODEL
11 007 11 009 11 010 48 1/8 (1222) 43 (1092) 41 1/8 (1045) 36 (914) - -
11 011 11 012 11 013 48 1/8 (1222) 50 (127) 41 1/8 (1045) 43 (1092) - ­12 017 12 019 12 022 12 024 12 027 48 1/8 (1222) 97 1/8 (2467) 41 1/8 (1045) 90 1/8 (2289) - ­13 029 13 034 13 037
13 041 48 1/8 (1222) 144 1/4 (3664) 41 1/8 (1045) 137 1/4 (3486) - ­13 043 13 048 14 056 48 1/8 (1222) 243 (6172) 41 1/8 (1045) 236 5/16 ( 6002) 116 3/16 (2951) ­14 063 14 068 15 079 15 085 48 1/8 (1222) 303 (7696) 41 1/8 (1045) 296 5/16 (7526) 116 3/16 (2951) 176 3/16 (4475) 16 095 16 103
WIDTH
W
38 1/8 (968) 43 (1092) 31 1/8 (791) 36 (914) - ­38 1/8 (968) 43 (1092) 31 1/8 (791) 36 (914) - -
48 1/8 (1222) 43 (1092) 41 1/8 (1045) 36 (914) - ­48 1/8 (1222) 50 (127) 41 1/8 (1045) 43 (1092) - -
38 1/8 (968) 83 1/8 (2111) 31 1/8 (791) 76 1/8 (1934) - ­48 1/8 (1222) 83 1/8 (2111) 41 1/8 (1045) 76 1/8 (1934) - ­48 1/8 (1222) 83 1/8 (2111) 41 1/8 (1045) 76 1/8 (1934) - ­48 1/8 (1222) 97 1/8 (2467) 41 1/8 (1045) 90 1/8 (2289) - -
48 1/8 (1222) 123 1/4 (3131) 41 1/8 (1045) 116 1/4 (2953) - ­48 1/8 (1222) 123 1/4 (3131) 41 1/8 (1045) 116 1/4 (2953) - ­48 1/8 (1222) 144 1/4 (3664) 41 1/8 (1045) 137 1/4 (3486) - -
48 1/8 (1222) 183 (4648) 41 1/8 (1045) 176 1/4 (4477) - ­48 1/8 (1222) 183 (4648) 41 1/8 (1045) 176 1/4 (4477) - -
48 1/8 (1222) 243 (6172) 41 1/8 (1045) 236 5/16 ( 6002) 116 3/16 (2951) ­48 1/8 (1222) 243 (6172) 41 1/8 (1045) 236 5/16 ( 6002) 116 3/16 (2951) ­48 1/8 (1222) 303 (7696) 41 1/8 (1045) 296 5/16 (7526) 116 3/16 (2951) 176 3/16 (4475)
48 1/8 (1222) 363 (9220) 41 1/8 (1045) 356 5/16 (9050) 116 3/16 (2951) 236 3/16 ( 5999) 48 1/8 (1222) 363 (9220) 41 1/8 (1045) 356 5/16 (9050) 116 3/16 (2951) 236 3/16 ( 5999)
LENGTH
L
M1 M2 M3 M4
MOUNTING LEG CENTRES
- 6 -
Page 7
DIMENSIONAL DATA - DOUBLE ROW BVC MODELS
DIMENSIONS - Inches (mm)

DOUBLE ROW

MODEL
22 039 22 045 22 049 97 1/8 (2467) 86 1/8 (2188) 90 1/8 (2289) - ­22 054 23 058 23 067 23 073 23 081 23 086 23 096 24 112 243 (6172) 86 7/16 (2196) 236 5/16 ( 6002) 116 3/16 (2951) ­24 126 24 137 25 158 25 172 303 (7696) 86 7/16 (2196) 296 5/16 (7526) 116 3/16 (2951) 176 3/16 (4475) 26 190 26 206
LENGTH
L
83 1/8 (2111) 86 1/8 (2188) 76 1/8 (1934) - ­83 1/8 (2111) 86 1/8 (2188) 76 1/8 (1934) - -
97 1/8 (2467) 86 1/8 (2188) 90 1/8 (2289) - ­123 1/4 (3131) 86 1/8 (2188) 116 1/4 (2953) - ­123 1/4 (3131) 86 1/8 (2188) 116 1/4 (2953) - ­144 1/4 (3664) 86 1/8 (2188) 137 1/4 (3486) - ­144 1/4 (3664) 86 1/8 (2188) 137 1/4 (3486) - -
183 (4648) 86 7/16 (2196) 176 1/4 (4477) - ­183 (4648) 86 7/16 (2196) 176 1/4 (4477) - -
243 (6172) 86 7/16 (2196) 236 5/16 ( 6002) 116 3/16 (2951) ­243 (6172) 86 7/16 (2196) 236 5/16 ( 6002) 116 3/16 (2951) ­303 (7696) 86 7/16 (2196) 296 5/16 (7526) 116 3/16 (2951) 176 3/16 (4475)
363 (9220) 86 7/16 (2196) 356 5/16 (9050) 116 3/16 (2951) 236 3/16 ( 5999) 363 (9220) 86 7/16 (2196) 356 5/16 (9050) 116 3/16 (2951) 236 3/16 ( 5999)
M1 M2 M3 M4
MOUNTING LEG CENTRES
- 7 -
Page 8

WIRING DIAGRAMS

(SINGLE ROW MODELS)
Note: 1∅ Motors not available
on 183” long models.
- 8 -
Page 9
WIRING DIAGRAMS
(SINGLE ROW MODELS)
- 9 -
Page 10
WIRING DIAGRAMS
(DOUBLE ROW MODELS)
- 10 -
Page 11
WIRING DIAGRAMS
(DOUBLE ROW MODELS)
- 11 -
Page 12
CAPACITY DATA - 550 RPM MODELS - R22
BVC
MODEL
NUMBER
007 009 010
011 012 013 017 019 022 024 027 029 034 037
041 043 048 056 063 068 079 085 095
103
039 045 049 054 058 067 073
081 086 096
112
126
137
158
172
190 206
TOTAL HEAT OF REJECTION CAPACITY (MBH)
Fan Rows
1°F
(0.56°C)
1 x 1 2.540 25.4 38.1 50.8 76.2 2.324 2.059 4 0.63 1 x 1 3.162 31.6 47.4 63.2 94.8 3.011 2.760 8 0.40 1 x 1 3.523 35.2 52.8 70.5 106 3.312 3.014 9 0.39 1 x 1 3.949 39.5 59.2 79.0 118 3.822 3.568 8 0.49 1 x 1 4.298 43.0 64.5 86.0 129 4.104 3.835 8 0.54
1 x 1 4.580 45.8 68.7 91.6 137 4.503 4.288 10 0.46 1 x 2 6.316 63.2 94.7 126 189 6.015 5.514 14 0.45 1 x 2 7.008 70.1 105 140 210 6.589 5.997 18 0.39 1 x 2 7.898 79.0 118 158 237 7.644 7.136 18 0.44 1 x 2 8.603 86.0 129 172 258 8.215 7.677 18 0.48 1 x 2 9.159 91.6 137 183 275 9.006 8.575 18 0.51 1 x 3 10.56 106 158 211 317 9.930 9.037 18 0.59 1 x 3 11.82 118 177 236 355 11.44 10.68 24 0.49 1 x 3 12.89 129 193 258 387 12.31 11.51 24 0.54 1 x 3 13.73 137 206 275 412 13.50 12.86 30 0.46 1 x 3 15.24 152 229 305 457 14.17 13.32 36 0.42 1 x 3 16.20 162 243 324 486 15.59 14.92 45 0.36 1 x 4 20.23 202 303 405 607 19.02 17.32 15 1.35 1 x 4 22.53 225 338 451 676 21.52 20.10 20 1.13 1 x 4 23.66 237 355 473 710 23.26 22.15 25 0.95 1 x 5 28.24 282 424 565 847 26.97 25.19 30 0.94 1 x 5 29.18 292 438 592 887 28.69 27.32 37 0.79 1 x 6 33.88 339 508 678 1017 32.36 30.23 30 1.13 1 x 6 35.02 350 525 710 1065 34.42 32.78 37 0.95
2 x 2 14.06 141 211 281 422 13.22 12.03 27 0.52 2 x 2 15.79 158 237 316 474 15.28 14.27 36 0.44 2 x 2 17.18 172 258 344 515 16.40 15.33 36 0.48 2 x 2 18.29 183 274 366 549 17.98 17.12 45 0.41 2 x 3 21.09 211 316 422 633 19.83 18.05 36 0.59 2 x 3 23.66 237 355 473 710 22.90 21.37 48 0.49 2 x 3 25.76 258 386 515 773 24.60 22.99 48 0.54 2 x 3 27.44 274 412 549 823 26.98 25.69 60 0.46 2 x 3 30.48 305 457 610 914 28.34 26.63 72 0.42 2 x 3 32.39 324 486 648 972 31.18 29.85 90 0.36 2 x 4 40.46 405 607 809 1214 38.03 34.63 30 1.35 2 x 4 45.07 451 676 901 1352 43.04 40.20 40 1.13 2 x 4 47.32 473 710 946 1420 46.52 44.29 50 0.95 2 x 5 56.47 565 847 1129 1694 53.93 50.38 60 0.94 2 x 5 59.16 592 887 1183 1775 58.15 55.37 75 0.79 2 x 6 67.77 678 1017 1355 2033 64.72 60.45 60 1.13 2 x 6 70.98 710 1065 1420 2129 69.78 66.44 75 0.95
10°F
(5.56°C)
TEMPERATURE DIFFERENCE (TD)
12 FPI 10 FPI 8 FPI
15°F
(8.3°C)
Double Row Models
20°F
(11.1°C)
Single Row Models
30°F
(16.7°C)
1°F
(0.56°C)
1°F
(0.56°C)
Maximum
No. of Feeds
MBH
@ 1° F TD
Per Feed
(12 FPI)
Correction Factors for Other refrigerants - Use R22 Values Multiplied By
R134a R12 R507 R404A R407A R407B R502 R407C
0.94 0.95 0.97 0.97 0.97 0.97 0.98 1.00
NOTES: (1) Above capacity data based on 0°F subcooling and at sea level.
(2) TD = Condensing temperature - ambient temperature (3) Standard fin spacing is 12 FPI except models 056 and 112 (13 FPI). (4) For High Altitude applications apply the following correction factors:
0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
(5) For 50Hz capacity multiply by 0.92.
- 12 -
Page 13
CAPACITY DATA - 550 RPM MODELS - R404A
BVC
MODEL
NUMBER
007 009 010
011 012 013 017 019 022 024 027 029 034 037
041 043 048 056 063 068 079 085 095 103
039 045 049 054 058 067 073
081 086 096
112 126 137 158 172 190 206
TOTAL HEAT OF REJECTION CAPACITY (MBH)
Fan Rows
1°F
(0.56°C)
1 x 1 2.464 24.6 37.0 49.3 73.9 2.254 1.998 4 0.62 1 x 1 3.067 30.7 46.0 61.3 92.0 2.921 2.677 8 0.38 1 x 1 3.417 34.2 51.3 68.3 103 3.213 2.924 9 0.38 1 x 1 3.830 38.3 57.5 76.6 115 3.707 3.461 8 0.48 1 x 1 4.169 41.7 62.5 83.4 125 3.981 3.720 8 0.52
1 x 1 4.442 44.4 66.6 88.8 133 4.368 4.159 10 0.44 1 x 2 6.126 61.3 91.9 123 184 5.834 5.348 14 0.44 1 x 2 6.798 68.0 102 136 204 6.391 5.817 18 0.38 1 x 2 7.661 76.6 115 153 230 7.415 6.922 18 0.43 1 x 2 8.345 83.5 125 167 250 7.969 7.447 18 0.46 1 x 2 8.885 88.8 133 178 267 8.736 8.318 18 0.49 1 x 3 10.24 102 154 205 307 9.632 8.766 18 0.57 1 x 3 11.46 115 172 229 344 11.09 10.36 24 0.48 1 x 3 12.51 125 188 250 375 11.94 11.16 24 0.52 1 x 3 13.32 133 200 266 400 13.10 12.47 30 0.44 1 x 3 14.78 148 222 296 443 13.75 12.92 36 0.41 1 x 3 15.71 157 236 314 471 15.12 14.48 45 0.35 1 x 4 19.19 192 288 392 589 18.44 16.80 15 1.28 1 x 4 21.86 219 328 437 656 20.87 19.50 20 1.09 1 x 4 22.64 226 340 459 689 22.56 21.48 25 0.91 1 x 5 27.39 274 411 548 822 26.16 24.43 30 0.91 1 x 5 28.31 283 425 574 861 27.82 26.50 37 0.77 1 x 6 32.87 329 493 657 986 31.39 29.32 30 1.10 1 x 6 33.97 340 510 689 1033 33.39 31.80 37 0.92
2 x 2 13.64 136 205 273 409 12.82 11.67 27 0.51 2 x 2 15.31 153 230 306 459 14.82 13.84 36 0.43 2 x 2 16.66 167 250 333 500 15.91 14.87 36 0.46 2 x 2 17.74 177 266 355 532 17.44 16.61 45 0.39 2 x 3 20.46 205 307 409 614 19.24 17.51 36 0.57 2 x 3 22.95 229 344 459 688 22.21 20.73 48 0.48 2 x 3 24.99 250 375 500 750 23.86 22.30 48 0.52 2 x 3 26.62 266 399 532 799 26.17 24.92 60 0.44 2 x 3 29.57 296 443 591 887 27.49 25.83 72 0.41 2 x 3 31.42 314 471 628 943 30.24 28.95 90 0.35 2 x 4 39.24 392 589 785 1177 36.89 33.59 30 1.31 2 x 4 43.72 437 656 874 1311 41.75 38.99 40 1.09 2 x 4 45.90 459 689 918 1377 45.12 42.96 50 0.92 2 x 5 54.78 548 822 1096 1643 52.32 48.86 60 0.91 2 x 5 57.38 574 861 1148 1722 56.41 53.71 75 0.77 2 x 6 65.74 657 986 1315 1972 62.78 58.64 60 1.10 2 x 6 68.85 689 1033 1377 2066 67.68 64.45 75 0.92
10°F
(5.56°C)
TEMPERATURE DIFFERENCE (TD)
12 FPI 10 FPI 8 FPI
15°F
(8.3°C)
20°F
(11.1°C)
Single Row Models
Double Row Models
30°F
(16.7°C)
1°F
(0.56°C)
1°F
(0.56°C)
Maximum
No. of Feeds
MBH
@ 1° F TD
Per Feed
(12 FPI)
To calculate capacities with other refrigerants, multiply the R22 capacity by the appropriate correction factor. Refer to the table accompanying each of the R22 tables.
NOTES: (1) Above capacity data based on 0°F subcooling and at sea level.
(2) TD = Condensing temperature - ambient temperature (3) Standard fin spacing is 12 FPI except models 056 and 112 (13 FPI). (4) For High Altitude applications apply the following correction factors:
0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
(5) For 50Hz capacity multiply by 0.92.
- 13 -
Page 14
GENERAL SPECIFICATIONS - 550 RPM MODELS - R22
BVC
MODEL
NUMBER
1B11007 4 1.7 0.8 11.0 5.2 4630 7900 1 - 1 1/8 1 - 7/8 360 163 1B11009 8 2.2 1.0 17.0 7.5 4060 6900 1 - 1 3/8 1 - 7/8 375 170 1B11010 9 2.8 1.3 21.0 9.5 4630 7900 1 - 1 3/8 1 - 7/8 420 191 1B11011 8 3.9 1.8 27.0 12.0 4450 7600 1 - 1 3/8 1 - 1 1/8 440 200 1B11012 8 4.3 2.0 31.0 14.0 4660 7900 1 - 1 3/8 1 - 1 1/8 480 218 1B11013 10 5.2 2.4 39.0 18.0 4480 7600 1 - 1 5/8 1 - 1 1/8 505 229 1B12017 14 4.1 1.9 31.0 14.0 8100 13800 1 - 1 5/8 1 - 1 1/8 565 256 1B12019 18 6.1 2.8 44.0 20.0 9300 15700 1 - 2 1/8 1 - 1 3/8 630 286 1B12022 18 7.4 3.4 55.0 25.0 8900 15100 1 - 2 1/8 1 - 1 3/8 675 306 1B12024 18 8.3 3.8 62.0 28.0 9300 15800 1 - 2 1/8 1 - 1 3/8 740 336 1B12027 18 10.0 4.5 75.0 34.0 9000 15300 1 - 2 1/8 1 - 1 3/8 790 358 1B13029 18 9.0 4.1 61.0 28.0 13800 23500 1 - 2 1/8 1 - 1 5/8 840 381 1B13034 24 10.0 4.5 78.0 35.0 13300 22700 1 - 2 1/8 1 - 1 5/8 905 410 1B13037 24 12.0 5.4 94.0 42.0 14000 23800 1 - 2 5/8 1 - 1 5/8 1000 454 1B13041 30 14.0 6.4 113 51.0 13500 22900 1 - 2 5/8 1 - 1 5/8 1070 485 1B13043 36 17.5 7.9 128 57.8 17100 29200 1 - 2 5/8 1 - 1 5/8 1055 479
1B13048 45 20.5 9.3 152 68.9 16700 28300 1 - 2 5/8 1 - 1 5/8 1150 522 2B14056 15 25.9 11.8 183 83.2 23200 39500 1 - 2 5/8 1 - 2 1/8 1600 726 2B14063 20 32.5 14.7 239 108 22800 38800 1 - 2 5/8 1 - 2 1/8 1650 748 2B14068 25 38.0 17.2 286 130 22200 37700 1 - 2 5/8 1 - 2 1/8 1750 794 2B15079 30 38.5 17.5 290 131 28500 48500 1 - 2 5/8 1 - 2 1/8 2063 936 2B15085 37 48.8 22.2 356 161 27700 47200 1 - 2 5/8 1 - 2 5/8 2188 992 2B16095 30 53.5 24.3 365 165 34200 58200 1 - 3 1/8 1 - 3 1/8 2475 1123 2B16103 37 61.2 27.7 436 198 33300 56600 1 - 3 1/8 1 - 3 1/8 2625 1191
1B22039 27 16.0 7.3 104 47.0 18500 31500 2 - 2 1/8 2 - 1 3/8 1060 481 1B22045 36 19.0 8.6 126 57.0 17800 30300 2 - 2 1/8 2 - 1 3/8 1145 519 1B22049 36 21.0 9.5 141 64.0 18600 31700 2 - 2 1/8 2 - 1 3/8 1255 569 1B22054 45 23.0 10.0 167 76.0 17900 30500 2 - 2 1/8 2 - 1 3/8 1350 612 1B23058 36 22.0 10.0 141 64.0 27700 47100 2 - 2 1/8 2 - 1 5/8 1420 644 1B23067 48 26.0 12.0 174 79.0 26700 45300 2 - 2 1/8 2 - 1 5/8 1550 703 1B23073 48 30.0 14.0 212 96.0 28000 47500 2 - 2 5/8 2 - 1 5/8 1710 776
1B23081 60 35.0 16.0 251 114 26900 45800 2 - 2 5/8 2 - 1 5/8 1865 846 1B23086 72 35.0 16.0 255 116 34300 58300 2 - 2 5/8 2 - 1 5/8 2110 957 1B23096 90 41.0 19.0 304 138 33300 56700 2 - 2 5/8 2 - 1 5/8 2300 1043 2B24112 30 53.0 24.0 375 170 46500 79000 2 - 2 5/8 2 - 2 1/8 3200 1451 2B24126 40 65.0 30.0 477 217 45600 77600 2 - 2 5/8 2 - 2 1/8 3300 1497 2B24137 50 77.0 35.0 579 263 44400 75500 2 - 2 5/8 2 - 2 1/8 3500 1588 2B25158 60 77.0 35.0 579 263 57000 96900 2 - 2 5/8 2 - 2 1/8 4125 1871 2B25172 75 99.0 45.0 721 327 55500 94300 2 - 2 5/8 2 - 2 5/8 4375 1984 2B26190 60 107.0 49.0 729 331 68400 116300 2 - 3 1/8 2 - 3 1/8 4950 2245 2B26206 75 124.0 56.0 883 401 66600 113200 2 - 3 1/8 2 - 3 1/8 5250 2381
Total No. of Feeds
R22 Refrigerant Charge
(2)
Normal
lbs kg lbs kg CFM m3/h lbs kg
(1)
90% FULL
(3)
Single Row Models
Double Row Models
Air Flow Rate
Piping Connections
(4)
Inlet
Qty - OD
Outlet
Condenser Weight
Qty - OD
(5)
NOTES: (1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97.
For R134a and R502 use R22 Charge. For R12 use R22 Charge x 1.1.
(2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient
or winter charge with flooded head pressure control and fan cycling see Page 33 and Page 34. (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY. (4) For 50Hz Fan data use 60Hz CFM (m3/h) x 0.83.capacity multiply by 0.92. (5) Less weight pf refrigerant charge.
- 14 -
Page 15
ELECTRICAL DATA - 550 RPM MODELS 60Hz
NO.
OF
FANS
1
2 3
4 5
6 8
10 12
TOTAL
FLA
208-230/3/60 460/3/60 575/3/60
MCA MOP
2.8 3.5 15 1.3 1.6 15 1.1 1.4 15
5.6 6.3 15 2.6 2.9 15 2.2 2.5 15
8.4 9.1 15 3.9 4.2 15 3.3 3.6 15
11.2 11.9 15 5.2 5.5 15 4.4 4.7 15
14.0 16 20 6.5 6.8 15 5.5 5.8 15
16.8 21 25 7.8 8.1 15 6.6 6.9 15
22.4 26 30 10.4 10.7 15 8.8 9.1 15
28.0 31 35 13 16 20 11 11.3 15
33.6 41 45 15.6 15.9 20 13.2 16 20
M.C.A. = Minimum Circuit Ampacity (AMPS) M.O.P. = Maximum Overcurrent Protection (AMPS)
ELECTRICAL DATA - 550 (450) RPM MODELS 50Hz
NO.
OF
FANS
1
2 3
4 5
6 8
10 12
TOTAL
FLA
2.2 2.7 15 1 1.2 15
4.4 4.9 15 2 2.2 15
6.5 7.1 15 2.9 3.2 15
8.7 9.3 15 3.9 4.2 15
10.9 11.4 15 4.9 5.1 15
13.1 16 20 5.9 6.1 15
17.4 21 25 7.8 8.1 15
17.4 21 25 7.8 8.1 15
26.2 31 35 11.8 12 15
200-220/3/50 380-400/3/50
MCA MOP
TOTAL
FLA
MCA MOP
TOTAL
FLA
TOTAL
FLA
MCA MOP
MCA MOP
M.C.A. = Minimum Circuit Ampacity (AMPS) M.O.P. = Maximum Overcurrent Protection (AMPS)
- 15 -
Page 16
CAPACITY DATA - 1140 RPM MODELS - R22
BVC
MODEL
NUMBER
007 009 010
011 012 013 017 019 022 024 027 029 034 037
041 043 048 056 063 068 079 085 095
103
039 045 049 054 058 067 073
081 086 096
112
126
137
158
172
190 206
TOTAL HEAT OF REJECTION CAPACITY (MBH)
Fan Rows
1°F
(0.56°C)
1 x 1 3.627 36.3 54.4 72.5 109 3.303 2.911 7 0.52 1 x 1 4.989 49.9 74.8 100 150 4.677 4.220 8 0.62 1 x 1 5.516 55.2 82.7 110 165 5.094 4.572 9 0.61 1 x 1 6.446 64.5 96.7 129 193 6.118 5.589 12 0.54 1 x 1 7.157 71.6 107 143 215 6.710 6.114 12 0.60
1 x 1 7.985 79.9 120 160 240 7.678 7.095 15 0.53 1 x 2 9.971 100 150 199 299 9.348 8.434 14 0.71 1 x 2 10.98 110 165 220 329 10.14 9.100 18 0.61 1 x 2 12.90 129 194 258 387 12.25 11.19 24 0.54 1 x 2 14.34 143 215 287 430 13.44 12.25 24 0.60 1 x 2 15.98 160 240 320 479 15.37 14.20 30 0.53 1 x 3 16.55 166 248 331 497 15.29 13.72 27 0.61 1 x 3 19.31 193 290 386 579 18.33 16.74 36 0.54 1 x 3 21.49 215 322 430 645 20.15 18.36 36 0.60 1 x 3 23.96 240 359 479 719 23.04 21.29 45 0.53 1 x 3 25.40 254 381 508 762 24.03 21.94 36 0.71 1 x 3 28.48 285 427 570 854 27.14 25.19 45 0.63 1 x 4 31.01 310 465 620 930 28.64 25.71 22 1.41 1 x 4 36.76 368 551 735 1103 34.77 31.76 30 1.23 1 x 4 40.34 403 605 807 1210 38.44 35.67 37 1.09 1 x 5 46.06 461 691 921 1382 43.57 39.79 30 1.54 1 x 5 50.43 504 756 1009 1513 48.06 44.59 37 1.36 1 x 6 55.27 553 829 1105 1658 52.29 47.75 30 1.84 1 x 6 60.51 605 908 1210 1815 57.66 53.51 37 1.64
2 x 2 22.04 220 331 441 661 20.35 18.27 36 0.61 2 x 2 25.79 258 387 516 774 24.48 22.37 48 0.54 2 x 2 28.63 286 429 573 859 26.84 24.45 48 0.60 2 x 2 31.92 319 479 638 957 30.69 28.36 60 0.53 2 x 3 33.06 331 496 661 992 30.53 27.40 54 0.61 2 x 3 38.65 386 580 773 1159 36.69 33.52 72 0.54 2 x 3 42.93 429 644 859 1288 40.25 36.67 72 0.60 2 x 3 47.89 479 718 958 1437 46.05 42.55 90 0.53 2 x 3 50.80 508 762 1016 1524 48.06 43.89 72 0.71 2 x 3 56.97 570 854 1139 1709 54.29 50.38 90 0.63 2 x 4 63.44 634 952 1269 1903 58.58 52.58 45 1.41 2 x 4 73.52 735 1103 1470 2205 69.55 63.51 60 1.23 2 x 4 81.76 818 1226 1635 2453 77.92 72.30 75 1.09 2 x 5 92.12 921 1382 1842 2764 87.15 79.59 60 1.54 2 x 5 102.2 1022 1533 2044 3067 97.41 90.39 75 1.36 2 x 6 110.5 1105 1658 2211 3316 104.6 95.50 60 1.84 2 x 6 122.7 1227 1840 2453 3680 116.9 108.5 75 1.64
10°F
(5.56°C)
TEMPERATURE DIFFERENCE (TD)
12 FPI 10 FPI 8 FPI
15°F
(8.3°C)
20°F
(11.1°C)
Single Row Models
Double Row Models
30°F
(16.7°C)
1°F
(0.56°C)
1°F
(0.56°C)
Maximum
No. of Feeds
MBH
@ 1° F TD
Per Feed
(12 FPI)
Correction Factors for Other refrigerants - Use R22 Values Multiplied By
R134a R12 R507 R404A R407A R407B R502 R407C
0.94 0.95 0.97 0.97 0.97 0.97 0.98 1.00
NOTES: (1) Above capacity data based on 0°F subcooling and at sea level.
(2) TD = Condensing temperature - ambient temperature (3) Standard fin spacing is 12 FPI except models 056 and 112 (13 FPI). (4) For High Altitude applications apply the following correction factors:
0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
(5) For 50Hz capacity multiply by 0.92.
- 16 -
Page 17
CAPACITY DATA - 1140 RPM MODELS - R404A
BVC
MODEL
NUMBER
007 009 010
011 012 013 017 019 022 024 027 029 034 037
041 043 048 056 063 068 079 085 095 103
039 045 049 054 058 067 073
081 086 096
112 126 137 158 172 190 206
TOTAL HEAT OF REJECTION CAPACITY (MBH)
TEMPERATURE DIFFERENCE (TD)
Fan Rows
1°F
(0.56°C)
1 x 1 3.518 35.2 52.8 70.4 106 3.204 2.824 7 0.50 1 x 1 4.839 48.4 72.6 96.8 145 4.537 4.093 8 0.60 1 x 1 5.351 53.5 80.3 107 161 4.941 4.435 9 0.59 1 x 1 6.252 62.5 93.8 125 188 5.935 5.422 12 0.52 1 x 1 6.943 69.4 104 139 208 6.509 5.930 12 0.58
1 x 1 7.746 77.5 116 155 232 7.448 6.882 15 0.52 1 x 2 9.672 96.7 145 193 290 9.068 8.181 14 0.69 1 x 2 10.65 106 160 213 319 9.834 8.827 18 0.59 1 x 2 12.52 125 188 250 375 11.88 10.85 24 0.52 1 x 2 13.91 139 209 278 417 13.04 11.88 24 0.58 1 x 2 15.50 155 233 310 465 14.91 13.77 30 0.52 1 x 3 16.06 161 241 321 482 14.83 13.31 27 0.59 1 x 3 18.73 187 281 375 562 17.78 16.24 36 0.52 1 x 3 20.85 208 313 417 625 19.54 17.81 36 0.58 1 x 3 23.24 232 349 465 697 22.35 20.65 45 0.52 1 x 3 24.64 246 370 493 739 23.31 21.29 36 0.68 1 x 3 27.63 276 414 553 829 26.33 24.43 45 0.61 1 x 4 30.08 301 451 602 903 27.78 24.93 22 1.37 1 x 4 35.65 357 535 713 1070 33.73 30.80 30 1.19 1 x 4 39.13 391 587 783 1174 37.29 34.60 37 1.06 1 x 5 44.68 447 670 894 1340 42.27 38.60 30 1.49 1 x 5 48.92 489 734 978 1467 46.61 43.26 37 1.32 1 x 6 53.61 536 804 1072 1608 50.72 46.32 30 1.79 1 x 6 58.69 587 880 1174 1761 55.93 51.90 37 1.59
2 x 2 21.38 214 321 428 641 19.74 17.72 36 0.59 2 x 2 25.02 250 375 500 751 23.75 21.70 48 0.52 2 x 2 27.77 278 417 555 833 26.03 23.72 48 0.58 2 x 2 30.96 310 464 619 929 29.77 27.51 60 0.52 2 x 3 32.07 321 481 641 962 29.61 26.58 54 0.59 2 x 3 37.49 375 562 750 1125 35.59 32.51 72 0.52 2 x 3 41.64 416 625 833 1249 39.04 35.57 72 0.58 2 x 3 46.45 465 697 929 1394 44.66 41.27 90 0.52 2 x 3 49.28 493 739 986 1478 46.62 42.57 72 0.68 2 x 3 55.26 553 829 1105 1658 52.66 48.86 90 0.61 2 x 4 61.53 615 923 1231 1846 56.82 51.00 45 1.37 2 x 4 71.31 713 1070 1426 2139 67.46 61.61 60 1.19 2 x 4 79.31 793 1190 1586 2379 75.58 70.14 75 1.06 2 x 5 89.36 894 1340 1787 2681 84.53 77.20 60 1.49 2 x 5 99.15 992 1487 1983 2975 94.49 87.68 75 1.32 2 x 6 107.2 1072 1608 2145 3217 101.4 92.64 60 1.79 2 x 6 119.0 1190 1785 N/A N/A 113.4 105.2 75 1.59
10°F
(5.56°C)
12 FPI 10 FPI 8 FPI
15°F
(8.3°C)
Double Row Models
20°F
(11.1°C)
Single Row Models
30°F
(16.7°C)
1°F
(0.56°C)
1°F
(0.56°C)
Maximum
No. of Feeds
MBH
@ 1° F TD
Per Feed
(12 FPI)
To calculate capacities with other refrigerants, multiply the R22 capacity by the appropriate correction factor. Refer to the table accompanying each of the R22 tables.
NOTES: (1) Above capacity data based on 0°F subcooling and at sea level.
(2) TD = Condensing temperature - ambient temperature (3) Standard fin spacing is 12 FPI except models 056 and 112 (13 FPI). (4) For High Altitude applications apply the following correction factors:
0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
(5) For 50Hz capacity multiply by 0.92.
- 17 -
Page 18
GENERAL SPECIFICATIONS - 1140 RPM MODELS
BVC
MODEL
NUMBER
1C11007 7 1.7 0.8 11.0 5.2 9590 16300 1 - 1 1/8 1 - 7/8 360 163 1C11009 8 2.2 1.0 17.0 7.5 8420 14300 1 - 1 3/8 1 - 7/8 375 170 1C11010 9 2.8 1.3 21.0 9.5 9590 16300 1 - 1 3/8 1 - 7/8 420 191
1C11011 12 3.9 1.8 27.0 12.0 9230 15700 1 - 1 3/8 1 - 1 1/8 440 200 1C11012 12 4.3 2.0 31.0 14.0 9660 16400 1 - 1 3/8 1 - 1 1/8 480 218 1C11013 15 5.2 2.4 39.0 18.0 9290 15800 1 - 1 5/8 1 - 1 1/8 505 229 1C12017 14 4.1 1.9 31.0 14.0 16800 28500 1 - 1 5/8 1 - 1 1/8 565 256 1C12019 18 6.1 2.8 44.0 20.0 19200 32600 1 - 2 1/8 1 - 1 3/8 630 286 1C12022 24 7.4 3.4 55.0 25.0 18400 31200 1 - 2 1/8 1 - 1 3/8 675 306 1C12024 24 8.3 3.8 62.0 28.0 19300 32800 1 - 2 1/8 1 - 1 3/8 740 336 1C12027 30 10.0 4.5 75.0 34.0 18600 31700 1 - 2 1/8 1 - 1 3/8 790 358 1C13029 27 9.0 4.1 61.0 28.0 28700 48800 1 - 2 1/8 1 - 1 5/8 840 381 1C13034 36 10.0 4.5 78.0 35.0 27600 47000 1 - 2 1/8 1 - 1 5/8 905 410 1C13037 36 12.0 5.4 94.0 42.0 29000 49200 1 - 2 5/8 1 - 1 5/8 1000 454
1C13041 45 14.0 6.4 113 51.0 27900 47400 1 - 2 5/8 1 - 1 5/8 1070 485 1C13043 36 17.5 7.9 128 57.8 35500 60400 1 - 2 5/8 1 - 1 5/8 1055 479 1C13048 45 20.5 9.3 152 68.9 34500 58700 1 - 2 5/8 1 - 1 5/8 1150 522 2C14056 22 25.9 11.8 183 83.2 48100 81900 1 - 2 5/8 1 - 2 1/8 1600 726 2C14063 30 32.5 14.7 239 108 47300 80400 1 - 2 5/8 1 - 2 1/8 1650 748 2C14068 37 38.0 17.2 286 130 46000 78200 1 - 2 5/8 1 - 2 1/8 1750 794 2C15079 30 38.5 17.5 290 131 59100 100500 1 - 2 5/8 1 - 2 1/8 2063 936 2C15085 37 48.8 22.2 356 161 57500 97800 1 - 2 5/8 1 - 2 5/8 2188 992 2C16095 30 53.5 24.3 365 165 70900 120600 1 - 3 1/8 1 - 3 1/8 2475 1123 2C16103 37 61.2 27.7 436 198 69000 117300 1 - 3 1/8 1 - 3 1/8 2625 1191
1C22039 36 16.0 7.3 104 47.0 38400 65200 2 - 2 1/8 2 - 1 3/8 1060 481 1C22045 48 19.0 8.6 126 57.0 36900 62700 2 - 2 1/8 2 - 1 3/8 1145 519 1C22049 48 21.0 9.5 141 64.0 38600 65700 2 - 2 1/8 2 - 1 3/8 1255 569 1C22054 60 23.0 10.0 167 76.0 37200 63200 2 - 2 1/8 2 - 1 3/8 1350 612 1C23058 54 22.0 10.0 141 64.0 57400 97600 2 - 2 1/8 2 - 1 5/8 1420 644 1C23067 72 26.0 12.0 174 79.0 55300 93900 2 - 2 1/8 2 - 1 5/8 1550 703 1C23073 72 30.0 14.0 212 96.0 57900 98500 2 - 2 5/8 2 - 1 5/8 1710 776
1C23081 90 35.0 16.0 251 114 55800 94800 2 - 2 5/8 2 - 1 5/8 1865 846 1C23086 72 35.0 16.0 255 116 71100 120800 2 - 2 5/8 2 - 1 5/8 2110 957 1C23096 90 41.0 19.0 304 138 69100 117400 2 - 2 5/8 2 - 1 5/8 2300 1043 2C24112 45 53.0 24.0 375 170 96300 163700 2 - 2 5/8 2 - 2 1/8 3200 1451 2C24126 60 65.0 30.0 477 217 94600 160700 2 - 2 5/8 2 - 2 1/8 3300 1497 2C24137 75 77.0 35.0 579 263 92000 156400 2 - 2 5/8 2 - 2 1/8 3500 1588 2C25158 60 77.0 35.0 579 263 118200 200900 2 - 2 5/8 2 - 2 1/8 4125 1871 2C25172 75 99.0 45.0 721 327 115000 195500 2 - 2 5/8 2 - 2 5/8 4375 1984 2C26190 60 107.0 49.0 729 331 141800 241100 2 - 3 1/8 2 - 3 1/8 4950 2245 2C26206 75 124.0 56.0 883 401 138000 234600 2 - 3 1/8 2 - 3 1/8 5250 2381
Total No. of Feeds
R22 Refrigerant Charge
(2)
Normal
lbs kg lbs kg CFM m3/h lbs kg
(1)
90% FULL
(3)
Single Row Models
Double Row Models
Air Flow Rate
Piping Connections
(4)
Inlet
Qty - OD
Outlet
Qty - OD
Condenser Weight
(5)
NOTES: (1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97.
For R134a and R502 use R22 Charge. For R12 use R22 Charge x 1.1.
(2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient
or winter charge with flooded head pressure control and fan cycling see Page 33 and Page 34. (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY. (4) For 50Hz Fan data use 60Hz CFM (m3/h) x 0.83.capacity multiply by 0.92. (5) Less weight pf refrigerant charge.
- 18 -
Page 19
ELECTRICAL DATA - 1140 RPM MODELS 60Hz
NO.
OF
FANS
1 2
3 4
5 6
8
10 12
TOTAL
FLA
208-230/3/60 460/3/60 575/3/60
MCA MOP
6.6 8.3 15 3.1 3.9 15 2.5 3.1 15
13.2 14.9 20 6.2 7 15 5 5.6 15
19.8 21.5 25 9.3 10.1 15 7.5 8.1 15
26.4 31 35 12.4 13.2 15 10 10.6 15 33 34.7 40 15.5 16.3 20 12.5 13.1 15
39.6 46 50 18.6 21 25 15 15.6 20
52.8 61 70 24.8 25.6 30 20 20.6 25 66 71 80 31 36 40 25 25.6 30
79.2 91 100 37.2 41 45 30 36 40
M.C.A. = Minimum Circuit Ampacity (AMPS) M.O.P. = Maximum Overcurrent Protection (AMPS)
ELECTRICAL DATA - 1140 (950) RPM MODELS 50Hz
NO.
OF
FANS
1
2 3
4 5
6 8
10 12
TOTAL
FLA
5.9 7.4 15 2.7 3.4 15
11.8 13.3 15 5.4 6 15
17.7 19.1 25 8.0 8.7 15
23.6 25 30 10.7 11.4 15
29.5 36 40 13.4 16 20
35.3 41 45 16.1 16.8 20
47.1 51 60 21.4 26 30
58.9 71 80 26.8 31 35
70.7 81 90 32.2 36 40
M.C.A. = Minimum Circuit Ampacity (AMPS) M.O.P. = Maximum Overcurrent Protection (AMPS)
200-220/3/50 380-400/3/50
MCA MOP
TOTAL
FLA
MCA MOP
TOTAL
FLA
TOTAL
FLA
MCA MOP
MCA MOP
- 19 -
Page 20

CONDENSER THEORY

The purpose of a refrigeration system is to absorb heat from an area where it is not wanted and reject this heat to an area where it is unobjectionable. By referring to the diagram below, it can be seen that only a few components are required to perform this task.
High pressure/high temperature vapor leaves the compressor and is forced into the condenser via the discharge line. The condenser first desuperheats the vapor down to its saturation point. This saturation point can be expressed as the condensing temperature of the refrigerant and varies with condenser size, load and ambient temperature.
Now the condenser must remove the latent heat of condensation from the refrigerant so that it may fully condense. After the refrigerant has fully condensed, it will be subcooled to some extent.
The liquid leaving the condenser is still at a high pressure but at a much lower temperature and drains into the receiver. As the liquid level in the receiver increases, the vapor is allowed to vent back up to the condenser via the condensate line.
Because the dip tube almost reaches the bottom of the receiver, only liquid will enter the liquid line. This liquid now passes through the metering device where its pressure is reduced to the evaporating pressure. The temperature will drop with pressure since the refrigerant will always attempt to meet its saturation point during a change of state.
The condensing temperature decreases as the ambient temperature drops and/or as the condenser surface increases.
THE BASIC REFRIGERATION CYCLE
- 20 -
Page 21

GLOSSARY OF TERMS

Balance point - after a system stabilizes, the heat added to the refrigerant during the refrigeration cycle will equal the heat rejected at the condenser. The balance point usually refers to the actual TD that the system is operating at. The balance point could refer to a low side balance or a high side balance. For example, a system operating with a 120 oF condensing temperature in a 90 oF ambient will have a condenser balance point of 30 oF TD.
Circuit - a circuit can be considered a group of feeds. A condenser may be sized to handle several refrigeration systems at one time. Each system is considered one circuit and the number of feeds required for each circuit depends on the THR for that particular system. Each circuit has its own inlet and outlet header. The number of circuits on a condenser can not exceed the total number of feeds available.
Compression Ratio - Compression ratio equals the discharge pressure in pounds per square inch absolute (psia) divided by the suction pressure in psia. The compression ratio in a compressor increases as suction pressure decreases and as discharge pressure increases. (at sea-level, psia is equal to psig plus 14.7).
Compressor Capacity - can be defined as the actual refrigerating capacity available at the evaporator and suction line after considering the overall system balance point. Compressor capacity is mainly affected by the evaporating and condensing temperatures of the system.
Condensing Temperature (CT) - is the temperature where the refrigerant vapor condenses back to a liquid. This temperature varies with condenser size. Condensing temperature should be kept as low as possible to maintain higher refrigerating capacity and system efficiency
Desuperheat - refers to the lowering of refrigerant superheat. Hot vapor entering a condenser must first be desuperheated before any condensing of the refrigerant can take place.
Evaporating Temperature - the temperature at which heat is absorbed in the evaporator, at this temperature, the refrigerant changes from a liquid to a vapor. This evaporating temperature is dependent on pressure and must be lower than the surrounding temperature for heat transfer to take place.
Feed - a single path for refrigerant flow inside a condenser. This path begins at the inlet header and terminates at the condenser’s outlet header. These feeds can be grouped together to accommodate one or more circuits.
Heat of Compression - heat is added to the refrigerant as it is compressed. Evidence of this can be observed on the pressure-enthalpy diagram for the refrigerant being used. The amount of this heat is dependent on the refrigerant type and compression ratio.
Additional heat from friction also increases the heat of compression. All of this heat along with the heat absorbed in the evaporator, suction line and any motor heat must be rejected by the condenser.
Condensate Line - (also called “Drain Leg”) is a term that describes the refrigerant line between the condenser and the receiver. The condensate line should drop vertically and is typically larger than the liquid line. This is to promote free draining of the refrigerant from the condenser to the receiver.
Condenser Temperature Difference (TD) - is the difference between the condensing temperature of the refrigerant and the temperature of the air entering the condenser.
.
Latent Heat of Vaporization (also Latent Heat of Condensation) - refers to the heat required to fully vaporize or condense a refrigerant. This latent heat varies with temperature and pressure. Latent heat is often referred to as hidden heat since adding heat to a saturated liquid or removing heat from a saturated vapor will result in a change of state and heat content but not a change in temperature.
Liquid Line - is the piping between the receiver and the metering device. On systems without a receiver, the liquid line runs between the condenser and the metering device.
- 21 -
Page 22
GLOSSARY OF TERMS
Open Drive - This term is given to a compressor where its driving motor is separate from the compressor. In this type of compressor, motor heat is not transferred to the refrigerant.
Refrigerating Effect - the total amount of heat absorbed by the evaporator. This heat includes both latent heat and superheat. This value is usually expressed in BTU/Hour, (BTUH), or 1000 BTU/Hour (MBH)
Saturation - occurs whenever the refrigerant exists in both a vapor and liquid state, example: a cylinder of refrigerant is in a saturated condition or state of equilibrium. Any heat removed from a saturated vapor will result in condensation. Conversely, any heat added to a saturated liquid will result in evaporation of the refrigerant. Temperature pressure charts for the various refrigerants indicate saturation values. For a single component refrigerant, each temperature value can only have one pressure when the refrigerant is either a saturated vapor or saturated liquid. A single component refrigerant can not change state until it approaches its saturation temperature or pressure. For refrigerant blends, the pressure­temperature relationship is more complex. Simply
stated, Dew point temperature (saturation point in evaporator-low side) and Bubble point temperature (saturation point in condenser-high side) are used to define their saturated condition.
Subcool - to reduce a refrigerant’s temperature below its saturation point or bubble point. Subcooling of the refrigerant is necessary in order to maintain a solid column of liquid at the inlet to the metering device. Subcooling can take place naturally (in the condenser) or it can be accomplished by a suction liquid heat exchanger or a mechanical sub-cooler (separate refrigeration system).
Superheat - to heat a refrigerant above its saturation point or dew point. The “amount of superheat” is the difference between the actual refrigerant temperature and its saturation temperature. This value is usually expressed in degrees Fahrenheit or degrees Celsius.
Total Heat of Rejection (THR) is the heat absorbed at the evaporator plus the heat picked up in the suction line plus the heat added to the refrigerant in the compressor. Condensers are sized according to the required THR. Compressor capacity and the heat of compression are usually enough to determine the THR.
- 22 -
Page 23

CONDENSER SELECTION

During a condenser selection process, the application engineer should choose a condenser which is large enough to reject all of the heat added to the refrigerant during the refrigerating cycle. When the condenser is sized to equal the total heat of rejection (THR) at design conditions, enough heat will be rejected to maintain the required condensing temperature. This will ensure that sufficient refrigeration capacity will be maintained at the evaporator during the warm summer period when it is needed the most.
If a condenser is undersized, the condensing temperature (CT) will be driven upwards. This naturally occurs as the system seeks its new balance point. As the CT increases, the operating temperature difference (TD) oF the condenser also increases. Even though the capacity of the condenser increases with the higher TD, the refrigerating capacity of the compressor will decrease due to the higher condensing temperature. An undersized condenser may perform satisfactorily when ambient temperatures are below design, but the overall system capacity will not be high enough during the warmer periods.
Oversizing a condenser increases project costs and can also lead to undesirable operating conditions.
Low ambient control devices such as pressure regulators and fan cycling switches operate to maintain a sufficient pressure in the condenser during low ambient periods. On systems utilizing a receiver and flooding type of head pressure control, more refrigerant will be required to flood the condenser in order to achieve the desired condensing pressure.
Consider an air conditioning system with an oversized condenser which is only used during the summer time and does not have any type of head pressure control. This particular system may experience problems due to a lack of subcooling. Since the condenser was oversized the amount of natural subcooling available is less. The maximum
amount of natural subcooling possible is the differ­ence between the condensing temperature and the
ambient temperature. If this amount of subcooling is
not enough to offset the pressure losses in the liquid line, then flashing is certain to occur.
Flashing produces vapor at the metering device which was designed to meter 100% liquid. One cure for this is to apply head pressure control devices to the system that will increase the head pressure and ensure adequate liquid subcooling.
UNDERSIZED CONDENSER
+30°F
+95°F
- 23 -
PROPERLY SELECTED CONDENSER
+95°F
-15°F
Page 24
CONDENSER SELECTION
PRELIMINARY DATA REQUIREMENTS
There are several factors that influence the size of an air cooled condenser. Before a condenser can be properly selected, this information must be obtained. It may be convenient for you to refer to the calculation worksheets (P. 26 and 27) as you read through the following information.
suction vapor picks up heat as it travels through the warm motor windings. The condenser must be sized to reject this heat along with any other heat absorbed by the refrigerant. It can be observed in Table 2 that hermetic refrigerant cooled compressors have higher heat of rejection factors.
1. What are the Desired Evaporating and Condensing Temperatures?
The evaporating temperature is needed to determine the THR (total heat of rejection) of the condenser. As the evaporating temperature is lowered, the heat of compression increases due to the higher compression ratio. This affects THR.
The required condensing temperature (CT) must be known before the temperature difference can be determined. This is necessary since condenser capacity varies with temperature difference. The required compressor capacity will determine the maximum CT since the compressor can only provide this capacity at certain operating conditions. You could also refer to Table 1 for CT recommendations. The heat of compression varies with compression ratio. Both evaporating and condensing temperatures affect the compression ratio. Often customers may request a specified TD value (i.e 10, 15 etc.). The condensing temperature is then established as being the sum of this TD value and the design ambient temperature. (i.e 10 + 95 = 105 oF)
2. Compressor Capacity Determine the capacity of the compressor at the desired evaporating and condensing conditions. Remember, tons refrigeration does not necessarily equal horsepower. As the evaporating temperature decreases and/or the condensing temperature increases, tons refrigeration per horsepower decreases. One ton refrigeration equals 12000 Btuh.
3.Condenser Ambient Design Temperature
This will be the maximum design temperature of the air entering the condenser. It is typical to add about 5 oF to the maximum outdoor design temperature in some instances to compensate for radiation from a dark surface such as a black roof.
4. Type of Compressor
It is necessary to identify the type of compressor to be utilized in the application so that accurate heat of rejection information may be obtained. For example, open­drive compressors can be belt driven or direct coupled to the motor. Electrical energy from the motor is converted to heat energy which is not transferred to the refrigerant as in a refrigerant cooled compressor. In a hermetic refrigerant cooled compressor, the cool
5. Heat of Compression
As the refrigerant is compressed in the compressor, its heat content increases due to the physical and thermodynamic properties of the refrigerant. Additional heat from friction between moving parts in the compressor also increases the heat content of the refrigerant. The amount of heat added to the refrigerant is dependent on the refrigerant type, the compression ratio and the type of compressor.
Accurate THR or heat of compression factors may be available from the compressor manufacturer. Always attempt to access this information prior to using other methods. If this information is not available, refer to the heat of rejection factors in Table 2.
However, in situations where your application exceeds the limits of this table, such as in compound compression and cascade systems, one of the following calculations may be performed.
For OPEN DRIVE COMPRESSORS:
Total heat of Rejection = Compressor Capacity (Btuh) + (2545 x BHP)
(BHP - Brake Horsepower of the motor)
For SUCTION COOLED COMPRESSORS:
Total heat Rejection = Compressor Capacity (Btuh) + (3413 x KW)
(KW may be obtained from the power input curve for that compressor)
6. What is the Refrigerant Type?
A condenser’s capacity can vary by 8 to 10% due to differences in physical and thermodynamic properties. Refer to the correct refrigerant capacity table or use factor as indicated. (see P. 2)
7. Altitude
The volume of a given mass of air increases as it rises above sea level. As its volume increases, its density decreases. As the air becomes less dense, its heat capacity decreases. Therefore, more air volume would have to be forced through the condenser at 6,000 feet above sea level than at sea level.
Since condenser capacities are based on operation at sea level, an altitude correction factor must be applied to the total heat of rejection. Basically, the load on the condenser will be increased to a point which will compen sate for the higher altitude.
to the maximum outs
- 24 -
Page 25
CONDENSER SELECTION
8.Are you Replacing a Water Cooled Condenser with a Remote Air Cooled Condenser?
If this is the case, it should be remembered that the compressor will operate at a higher discharge pressure after converting to air cooled. To help minimize the resulting loss in capacity, the condenser should be sized generously. In other words, you may consider keeping the balance point of the condenser as low as possible.
9. Is this an application for multiple circuits?
If you wish to utilize the condenser for multiple circuits, then all of the above data must be obtained for EACH circuit. After obtaining this information, proceed to the MULTIPLE CIRCUIT WORKSHEET (P. 27) (for single circuit applications refer to the SINGLE CIRCUIT WORKSHEET (P. 26) ).
TABLE 1 - CONDENSING TEMPERATURE GUIDELINES
Evaporating Temperature
Low Temp Systems
(-40 oF to +9 oF Evap Temps)
Medium Temp Systems
(+10 oF to +34 oF Evap Temps)
High Temp Systems
(+35 oF to +50 oF Evap Temps)
Air Conditioning Systems
(+40 oF to +50 oF Evap Temps)
* TD - Condenser TD guideline
85 oF 90 oF 95 oF 100 oF 105 oF
95-100 oF 100-105 oF 105-110 oF 110-115 oF 115-120 oF 10-15
100-105 oF 105-110 oF 110-115 oF 115-120 oF 120-125 oF 15-20
105-110 oF 110-115 oF 115-120 oF 120-125 oF 125-130 oF 20-25
110-115 oF 115-120 oF 120-125 oF 125-130 oF 130-135 oF 25-30
Condensing Temperature Guidelines
(at 85o to 105o Ambient Temperature)
TD*
TABLE 2 - HEAT OF REJECTION FACTORS
EVAPORATOR
TEMPERATURE
o
-40
-30
-20
-10
10 20 30 40 50
F
0
o
-40
-34
-29
-23
-18
-12
10
90oF (32oC) 100oF (38oC) 105oF (41oC) 110o(43oC) 115oF (46oC) 120oF (49oC) 130oF (55oC) 140oF (60oC)
C OPEN
*
1.37
1.33
1.28 1,24
1.21
-7
1.17
-1
1.14
4
1.12 1,09
HERM
1.66
1.57
1.49
1.42
1.36
1.31
1.26
1.22
1.18
1.14
OPEN
*
1.42
1.37
1.32
1.28
1.24
1.20
1.17
1.15
1.12
HERM
1.73
1.62
1.53
1.46
1.40
1.34
1.29
1.25
1.21
1.17
OPEN
*
1.44
1.39
1.34
1.30
1.26
1.22
1.18
1.16
1.13
OPEN - Direct Drive or Belt Drive open compressors HERM - Hermetic or semi-Hermetic, Refrigerant (suction) cooled motor compressors.
CONDENSING TEMPERATURE
HERM
1.76
1.65
1.55
1.48
1.42
1.36
1.31
1.26
1.23
1.19
OPEN
*
1.47
1.42
1.37
1.32
1.28
1.24
1.20
1.17
1.14
HERM
1.80
1.68
1.58
1.50
1.44
1.38
1.33
1.28
1.24
1.20
OPEN
1.44
1.39
1.34
1.30
1.26
1.22
1.18
1.16
HERM
1.90
*
1.74
*
1.61
1.53
1.47
1.40
1.35
1.30
1.25
1.22
OPEN
* *
1.47
1.42
1.37
1.32
1.28
1.24
1.20
1.17
HERM
2.00
1.80
1.65
1.57
1.50
1.43
1.37
1.32
1.27
1.23
OPEN
* * *
1.47
1.41
1.36
1.32
1.27
1.23
1.20
HERM
* * *
1.64
1.56
1.49
1.43
1.37
1.31
1.26
OPEN
* * * *
1.47
1.42
1.37
1.32
1.28
1.24
HERM
* * * *
1.62
1.55
1.49
1.42
1.35
1.29
- 25 -
Page 26
(REFER TO P. 24 FOR GUIDELINES, SEE SAMPLE SELECTION ON P. 28)
1. SYSTEM DATA REQUIREMENTS
WORKSHEETS - SINGLE CIRCUIT
SINGLE CIRCUIT WORKSHEET
JOB REF:
EVAP TEMP = COMPR. CAPACITY= Btuh / 1000 = MBH COND. DESIGN AMBIENT TEMP= (AT) oF TD= (Cond. Temp. - Ambient Temp) COMPRESSOR TYPE= OPEN HERMETIC (Refrigerant cooled) REFRIGERANT= R REF. FACTOR= (see P. 2) ALTITUDE= AT SEA LEVEL or FEET ALT. FACTOR=
2. THR (Total Heat of Rejection) CALCULATION
COMPR. CAPACITY (MBH) X HR f X ALT f X REF f =THR (MBH)
Where HR f =Heat of rejection factor (see Table 2, P. 25)
o
F COND TEMP=
(See P.2)
X X X =
ALT f = Altitude/elevation factor (Sea level=1, or above factor) REF f = Refrigerant Correction factor (R22 = 1) Alternate refrigerant based on factors from P. 2 R12 = 1/.95 = 1.05, R134a = 1/.94 = 1.06, R502 = 1/.98 = 1.02, R404A/R507/R407A/B = 1/.97 = 1.03 THR = Total Heat of Rejection (MBH, factored in R22) to be rejected by condenser
o
F
3. CONDENSER MODEL SELECTION
Refer to the R22 CAPACITY section (P. 2) and select a condenser at the TD (required above) that will closely match the above calculated THR value. (NOTE: use the R22 capacity Table. The above calculation has already been adjusted for alternate types).
COND. MODEL #
4. ACTUAL CONDENSING TEMP CALCULATION
THR (from sec. 2) / value (B) = ATD (actual Temperature Difference)
/ =
To find the Actual Condensing Temp. (ACT) just add the Actual Temperature Difference (ATD) to the design Ambient Temperature (AT).
ATD + AT = ACT
+ =
NOTE: The Actual Condensing Temp. MUST EQUAL or BE LESS THAN the condensing temp recorded in section 1 above. This ensures the compressor capacity is maintained when operating the condenser at the designed ambient temperature.
For further assistance please contact your local BALLY sales representative.
For the model selected record the THR PER 1oF TD value = (B) (see P. 2)
o
F
- 26 -
Page 27
WORKSHEETS - MULTIPLE CIRCUITS
MULTIPLE CIRCUIT WORKSHEET
(REFER TO P. 24 FOR GUIDELINES & SEE SAMPLE SELECTION ON P. 29)
1. SYSTEM DATA REQUIREMENTS
CONDENSER DESIGN AMBIENT TEMP = (AT ) oF ALTITUDE = SEA LEVEL or FEET FACTOR = (See P. 2)
CIRCUIT INFORMATION
CIRC # 1 CIRC # 2 CIRC # 3 CIRC # 4 OPEN HERMETIC
EVAP. TEMP oF = CONDENSING TEMP = COMPR CAP. (MBH) = REFRIGERANT = TD = (Cond Temp - Amb.)
2. THR (Total Heat of Rejection) CALCULATION
COMPR CAPACITY (MBH) X HRf X ALTf X REFf = THR (MBH) / TD = CL CIRC # 1 X X X = / =
CIRC # 2 X X X = / = CIRC # 3 X X X = / = CIRC # 4 X X X = / =
TOTAL THR Capacity (MBH / 1 oF TD) =
Where HR f =Heat of rejection factor (see Table 2, P. 25)
ALT f = Altitude/elevation factor (Sea level=1, see P. 2 for Higher) REF f = Refrigerant Correction factor (R22 = 1) R12 = 1/.95 = 1.05, R134a = 1/.94 = 1.06, R502 = 1/.98 = 1.02, R404A / R507 / R407A/B = 1/.97 = 1.03 Alternate refrigerant based on factors from P. 2 THR = Total Heat of Rejection (MBH) to be rejected by condenser (R22 capacity) TD = Condensing Temp - Ambient Temperature CL = Circuit loading per 1oF TD
JOB REF:
3. CONDENSER SELECTION
Refer to the R22 CAPACITY selection (P.2) and select a condenser at the 1oF TD that will closely match the above Total THR Capacity (MBH/ 1oF TD).
4. ACTUAL CONDENSING TEMP (per circuit) CALCULATION ATD First calculate the ATD (Actual TD) as follows: { THR (from sec. 2) / NF value} / value (B) = (Actual Temperature Difference)
To find the Actual Condensing Temperature (ACT) just add the Actual Temperature Difference (ATD) to the design ambient (AT)
NOTE: The Actual Condensing Temp. MUST EQUAL or BE LESS THAN the condensing temp recorded in section 1 above.
COND. MODEL # For the model selected, refer to P. 2 and enter...
calculate the number of feeds required for each circuit. CL (MBH / 1o F TD) / (B) value = NF number of feeds required (round off to nearest whole #) CIRC # 1 / = CIRC # 2 / = CIRC # 3 / = CIRC # 4 / =
Total number of feeds required NF =
(must not exceed value (A))
If number of feeds required exceeds number of feeds available then select the next larger size
condenser model that can handle the number and repeat above process.
CIRC # 1 { / } / = CIRC # 2 { / } / = CIRC # 3 { / } / = CIRC # 4 { / } / =
ATD + AT = ACT CIRC # 1 + = CIRC # 2 + = CIRC # 3 + = CIRC # 4 + =
This ensures the compressor capacity is maintained when operating the condenser at the design ambient tremperature. For further assistance please contact your local BALLY sales representative.
Max no. of Feeds = (A) MBH @ 1oF TD per feed = (B)
o
F
o
F
o
F
o
F
- 27 -
Page 28
WORKSHEETS - SAMPLE SELECTION #1
Preliminary Data Given:
1. Evaporating temp = -20 oF
2. Condensing temp = 105 oF
3. Compressor capacity = 300,000 Btuh
4. Design ambient = 90 oF
Use WORKSHEET - SINGLE CIRCUIT (P 26) to complete selection of condenser
JOB REF:
1. SYSTEM DATA REQUIREMENTS
o
EVAP TEMP = COMPR. CAPACITY= Btuh / 1000 = MBH COND. DESIGN AMBIENT TEMP= (AT ) oF TD= (Cond. Temp. - Ambient Temp) COMPRESSOR TYPE= OPEN HERMETIC (Refrigerant cooled) REFRIGERANT= R REF. FACTOR= (see P. 2) ALTITUDE= AT SEA LEVEL or FEET ALT. FACTOR=
2. THR (Total Heat of Rejection) CALCULATION
COMPR. CAPACITY (MBH) X HR f X ALT f X REF f = THR (MBH)
300 1.55
-20
F COND TEMP=
300,000
90
22 1
X X X =
105
o
F
300
(See P.2)
1
15
1
TC 1500
1
465
3. CONDENSER MODEL SELECTION
COND. MODEL #
4. ACTUAL CONDENSING TEMP CALCULATION
THR (from sec. 2) / value (B) = ATD (actual Temperature Difference)
465
To find the Actual Condensing Temp. (ACT) just add the Actual Temperature Difference (ATD) to the design Ambient Temperature (AT).
ATD + AT = ACT
14.5
BVC1A23067
/ =
90
+ =
32.165
104.5
For the model selected record the THR PER 1oF TD value = (B) (see P. 2)
14.5 OF
o
F
32.165
Above selection using condenser model BVC1A23067 ensures condensing temperature will be at 105 oF or below during design ambient conditions. See SAMPLE SELECTION # 2 for multiple circuit selections.
- 28 -
Page 29
WORKSHEETS - SAMPLE SELECTION # 2
Preliminary Data Given:
1. Location at Reno, Nevada, 95 oF design ambient and 4,000 feet elevation.
2. Multiple circuits required with evaporating temperatures, condensing temperatures, compressor capacities and refrigerant types as listed below.
Use WORKSHEET-MULTIPLE CIRCUITS (P. 27) to complete selection of condenser.
1. SYSTEM DATA REQUIREMENTS
CONDENSER DESIGN AMBIENT TEMP = (AT ) oF ALTITUDE = SEA LEVEL or FEET FACTOR =
OPEN HERMETIC
EVAP. TEMP oF = CONDENSING TEMP = COMPR CAP. (MBH) = REFRIGERANT = TD = (Cond Temp - Amb.)
2. THR (Total Heat of Rejection) CALCULATION
COMPR CAPACITY (MBH) X HRf X ALTf X REFf = THR (MBH) / TD = CL
CIRC # 1 X X X = / = CIRC # 2 X X X = / = CIRC # 3 X X X = / = CIRC # 4 X X X = / =
3. CONDENSER SELECTION
Refer to the R22 CAPACITY selection (P. 2) and select a condenser at the 1oF TD that will closely match the above Total THR Capacity (MBH/ 1oF TD).
COND. MODEL # For the model selected, refer to P. 2 and enter...
calculate the number of feeds required for each circuit. CL (MBH / 1o F TD) / (B) value = NF number of feeds required (round off to nearest whole #) CIRC # 1 / = CIRC # 2 / = CIRC # 3 / = CIRC # 4 / =
CIRC # 1 CIRC # 2 CIRC # 3 CIRC # 4
+20 110
13 22 15
13 25
4.6
31.5
1.314
2.622 .799
5.733
95
4,000
(See P. 2)
BVC1A12022
CIRCUIT INFORMATION
+10 110
25 22 15
1.33
1.38
1.48
1.55
Max no. of Feeds = (A) MBH @ 1oF TD per feed = (B)
.447 .447 .447 .447
1.14
1.14
1.14
1.14
TOTAL THR Capacity (MBH / 1 oF TD) =
(2.93) 3 (5.86) 6 (1.78) 2
(12.82) 13
-10 105
4.6
404A
10
1 1
1.03
1.03
JOB REF:
1.14
19.71
39.33
7.99
57.33
24
.447
TC2000
-20 105
31.5
404A
10
15 15 10 10
10.468
1.314
2.622 .799
5.733
Total number of feeds required NF = (must not exceed value (A)) If number of feeds required exceeds number of feeds available then select the next larger size condenser model that can handle the number and repeat above process.
4. ACTUAL CONDENSING TEMP (per circuit) CALCULATION
First calculate the ATD (Actual TD) as follows: {THR (from sec. 2) / NF value} / value (B) = ATD (Actual Temperature Difference)
CIRC # 1 { / } / = CIRC # 2 { / } / = CIRC # 3 { / } / = CIRC # 4 { / } / =
To find the Actual Condensing Temperature (ACT) just add the Actual Temperature Difference (ATD) to the design ambient (AT)
CIRC # 1 + = CIRC # 2 + = CIRC # 3 + = CIRC # 4 + =
19.71
39.33
7.99
57.33
ATD + AT = ACT
14.7
14.7
8.9
9.9
95 95 95 95
3 6 2
13
109.7
109.7
103.9
104.9
o o o o
24
.447 .447 .447 .447
F F F F
14.7
14.7
8.9
9.9
- 29 -
Page 30

LOW AMBIENT OPERATION

GENERAL
When a remote air cooled condenser is installed outdoors, it will be subjected to varying tempera­tures. Within many areas, winter to summer annual temperatures swings can be as high as 120 oF or so, this will have a major impact on the perform­ance of the condenser. As the ambient temperature drops, the condenser capacity increases due to the wider temperature difference between ambient and condensing. As this happens, the condensing temperature also drops as the system finds a new balance point. Although the overall system capacity will be higher at lower condensing temperatures, other problems can occur. The capacity of an expansion valve is affected by both the liquid temperature entering the valve and the pressure drop across it. As the condensing temperature decreases, the pressure drop across the metering device also decreases. A lower pressure drop decreases the capacity of the valve. Although lower liquid temperatures increase the capacity of the metering device, the increase is not large enough to offset the loss due to the lower pressure drop. The following three sections cover the various options used to control condensing temperatures.
(i) Fan Cycling
Cycling of the condenser fans helps control the condensing temperature. With this approach to solving low ambient problems, fans are taken off-line either one at a time, or in pairs. It is not recommended that multiple fan condensers cycle more than two fans per step. The reason for this is that the pressure in the condenser will increase drastically as several fans are taken off-line at the same time. This will result in erratic operation of the refrigeration system and applies additional stress to the condenser tubes. It is preferable to control the condensing temperature as smoothly as possible. Fans should be cycled independently on a condenser where the fans are all in a single row. On two row condensers, the fans should be cycled in pairs.
Ambient temperature sensing controls can be set to bring on certain fans when the outdoor temperature reaches a predetermined setpoint. Pressure sens­ing controls are set to bring on certain fans when the condensing pressure reaches the setpoint on the control. Temperature or pressure setpoints and differentials should be set in such a way as to prevent short cycling of the fans. Constant short cycling will produce a volatile condensing pressure while decreasing the life of the fan motors.
For recommended fan cycling switch settings, refer to Table 4. Differential settings on fan cycling temperature controls should be about 5 oF (2.8 oC). On fan cycling pressure controls, a differential of approximately 35 psig is recommended. On supermarket applications (using 6-12 Fan models) condenser fans may be cycled individually (not in pairs) and therefore lower differential settings may apply and will depend on the specific application.
Fans closest to the inlet header should be permitted to run whenever the compressor is running. If these initial fans are wired through a cycling control, the life of the condenser may be shortened due to the additional stress placed on the tubes and headers. Table 3 shows the fan cycling options available for all condenser models.
(ii) Variable Motor Speed Control
If additional head pressure control is required beyond the last step of fan cycling variable fan motor speed may be used. Variable motor speed is optional on all condenser models. A varying motor speed may be accomplished using a modulating temperature or modulating pressure control. A variable speed controller can be an electronic or solid state device which varies the voltage going to the motor depending on the temperature or pressure of the medium being sensed.
(iii) Refrigerant Regulating Controls
Pressure regulating controls are available from a number of valve manufacturers. The purpose of such a control is to regulate the refrigerant flow in such a way as to maintain a pre-selected condensing pressure. In lower ambient tempera­tures, these valves throttle to maintain the desired pressure and in doing so, flood the condenser with liquid refrigerant. The larger the condenser surface is, the higher its capacity will be. When a condenser is flooded, its useful condensing surface is reduced. This is because the refrigerant occupies the space which would otherwise be used for condensing.
Some control/check valve combinations will regulate refrigerant flow depending on the pressure at the inlet of the condenser.These are often referred to as inlet regulators. As the valve closes, hot gas bypasses the condenser through a differential check valve to increase the pressure at the receiver.
- 30 -
Page 31
LOW AMBIENT OPERATION
DIFFERENTIAL CHECK VALVE
SINGLE VALVE CONDENSER PRESSURE CONTROL
(Regulates inlet pressure or outlet pressure depending on valve design)
This will flood the condenser until the condensing pressure increases to a point which will again open the valve. Other valves regulate the refrigerant at the outlet of the condenser to provide a similar effect. These are commonly referred to as outlet regulators. There are also combination inlet/outlet regulators with a differential check valve or other type of condenser bypass arrangement incorpo­rated within the valve.
Controls which regulate the flow of refrigerant based on condenser inlet pressure are typically used in conjuction with a check valve having a minimum opening differential across the condenser. Outlet regulators typically require a check valve with a fixed pressure differential setting of between 20 and 35 psi. The differential is needed to compensate for pressure drop through the condenser during flood­ing and associated discharge piping.
Systems equipped with a condenser flooding arrangement should always use a receiver having sufficient liquid holding capacity. Additional liquid required for flooding is only required during the winter low ambients and must be stored somewhere in the system at the higher ambients. Failure to use an adequately sized receiver will result in liquid back-up in the condenser during the warmer summer months. This will cause the system to develop very high pressures in the high side resulting in a high pressure safety control trip.
ORI / ORD CONDENSER PRESSURE CONTROL
Determining Additional Flooded Refrigerant Charge
Additional charge will vary with the condenser design TD and the coldest expected ambient temperature. Condensers designed for low TD applications (low temperature evaporators) and operating in colder ambients will require more additional charge than those designed for higher TD applications (high temperature evaporators) and warmer ambients. Refer to Table 5 to determine the required added refrigerant charge at the selected TD and ambient temperatures. These charges are based on condensers using Fan Cycling options with their last fan (Single Row Fan Models) running or last pair of fans running (Double Row Fan models).
WARNING: Do not over charge when charging by a sightglass. Liquid lines feeding the TXV at the evaporator must have a solid column of liquid (no bubbles) however bubbles at the sightglass (located adjacient to the receiver) may be normal due to the result of a higher pressure drop at that point. Bubbles could also appear in the glass whenever the regulating valves start to flood the condenser. Always record the number of drums or the weight of refrigerant that has been added or removed in the system. Overcharged systems may result in compressor failure as well as other serious mechanical damage to the system components.
- 31 -
Page 32
LOW AMBIENT OPERATION
TABLE 3 - FAN CYCLING CONTROL SCHEDULE
TABLE 4 - AMBIENT FAN CYCLING THERMOSTAT SETTINGS
Number of Fans on
Condenser Design
Single Row
Models
2 4
3 6
4 8
5 10
6 12
Double Row
Models
T.D. oF (oC)
30 (16.7) 25 (13.9) 20 (11.1)
15 (8.3) 10 (5.6)
30 (16.7) 25 (13.9) 20 (11.1)
15 (8.3) 10 (5.6)
30 (16.7) 25 (13.9) 20 (11.1)
15 (8.3) 10 (5.6)
30 (16.7) 25 (13.9) 20 (11.1)
15 (8.3) 10 (5.6)
30 (16.7) 25 (13.9) 20 (11.1)
15 (8.3) 10 (5.6)
1st Stage 2nd Stage 3rd Stage 4th Stage 5th Stage
60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)
60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)
60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)
60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)
55 (12.8) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)
* NOTE: These are typical settings. Further adjustments may be necessary to suit actual field conditions.
Thermostat Setting * oF (oC)
40 (4.4) 55 (12.8) 60 (15.6) 65 (18.3) 75 (23.9)
50 (10.0) 55 (12.8) 65 (18.3) 70 (21.1) 75 (23.9)
55 (12.8) 60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9)
50 (10.0) 60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9)
30 (-1.1)
40 (4.4) 50 (10.0) 60 (15.6) 70 (21.1)
45 (7.2) 50 (10.0) 60 (15.6) 65 (18.3) 70 (21.1)
40 (4.4) 55 (12.8) 60 (15.6) 65 (18.3) 70 (21.1)
55 (12.8) 65 (18.3)
50 (10.0) 60 (15.6) 65 (18.3)
30 (-1.1)
35 (1.7) 40 (4.4)
30 (-1.1)
45 (7.2)
25 (-3.9)
35 (1.7)
40 (4.4) 50 (10.0) 60 (15.6)
- 32 -
Page 33
LOW AMBIENT OPERATION
TO DETERMINE WINTER CHARGE, ADD THE SUM OF THE NORMAL CHARGE
AND ADDITIONAL WINTER CHARGE
TABLE 5 R22 WINTER OPERATION CHARGE - Lbs • Deg oF
Flooded Condensers with Fan Cycling
ADDITIONAL CHARGE FOR WINTER OPERATION (LBS)
4.1
4.2
3.0
3.5
3.7
3.9
6.1
6.2
7.8
7.9
10
11
12
12
15
15
14
15
21
23
26
27
29
30
34
36
30
31
36
38
42
45
50
53
61
64
70
75
88
94
110
117
127
136
127
136
160
172
172
186
197
213
57
60
65
69
72
76
82
87
76
81
89
95
104
111
119
127
121
128
140
149
180
192
219
234
258
275
253
271
325
3480095122
344
371
400
43200
4.5
5.8
7.6
8.9 11
6.4
9.4 11
13 15
11
13 15 18 22 26
25 29 32 36
28 32 38 43 44 51
6.4
7.8
9.2
5.2
5.5
6.6
7.1
8.8
9.4
10
11
13
14
9.3
11
14
16
17
20
19
22
22
26
18
22
22
27
26
32
31
37
37
46
43
53
3
46 58 67 48 60 66 76
37 42 46 53
47 55 64 73 74 86
94 115 135
132 154
62 77 89
81 102 113 129
43
50
55
62
57
67
78
89
91 105
126 154
181 161
207 225
261
4 5 0 0 0 0
4.0
5.7
5.9
7.4
7.6
9.8
10
11
12
14
15
12
13
18
20
22
23
24
26
29
31
25
27
30
33
35
38
42
45
51
55
59
64
71
79
89
98
104
114
99
111
125
140
137
154
157
177
48
52
55
60
61
65
69
75
64
70
75
81
88
95
100
109
102
110
118
128
146
161
178
196
210
231
197
221
253
284000095122
274
308
318
35800005766
MODEL
1A 11 007 1A 11 009 1A 11 010
1A 11 011 1A 11 012 1A 11 013
1A 12 017 1A 12 019 1A 12 022 1A 12 024 1A 12 027
1A 13 029 1A 13 034 1A 13 037
1A 13 041 2A 13 043 2A 13 048
2A 14 056 2A 14 063 2A 14 068 2A 15 079 2A 15 085 2A 16 095 2A 16 103
1A 22 039 1A 22 045 1A 22 049 1A 22 054
1A 23 058 1A 23 067 1A 23 073
1A 23 081 1A 23 086 1A 23 096
2A 24 112 2A 24 126 2A 24 137
2A 25 158 2A 25 172
2A 26 190 2A 26 206
TOTAL
No OF
FEEDS
12 12 15
14 18 24 24 30
27 36 36 45 36 45
22 30 37 30 37 30 37
36 48 48 60
54 72 72 90 72 90
45 60 75
60 75
60 75
7 8 9
NORMAL CHARGE
Lbs
1.7
2.2
2.8
3.9
4.3
5.2
4.1
6.1
7.4
8.3 10
8.6 10 12 14 18
21
26 33 38 39 49 54
61
16 19
21
23 22
26 30 35 35 41
53 65 77
77 99
107 124
Design TD = 10 (Deg F) Design TD = 15 (Deg F) Design TD = 20 (Deg F) Design TD = 25 (Deg F)
Ambient (Deg F) Ambient (Deg F) Ambient (Deg F) Ambient (Deg F)
40 20 0 -20 -40 40 20 0 -20 -40 40 20 0 -20 -40 40 20 0 -20 -40
3.5
3.8
5.2
5.7
6.7
7.3
8.9
9.7
10
11
13
14
10
12
15
18
17
21
20
24
23
28
19
24
23
29
27
34
32
40
39
49
45
57
51
69
64
87
74
101
64
97
80
122
66
126
76
145
38
47
44
54
48
59
55
68
49
62
57
72
66
84
76
97
77
98
89
114
104
142
127
173
149
204
127
193
163
248
132
252
154
293
Note: For R134a and R502 use R22 charge For R404A and R507 use R22 charge x 0.87 For R407C use R22 charge x 0.97 For R12 use R22 charge x 1.10 For 90% full volume charge see P. 4
4.0
5.9
7.6 10 12 15
13
20 24 27
31
27 33 39 46 56 65
80
100
116
114 145 154 177
53
61 66 76
70 82 96
110
111
129 164
200 235
228 294
308 358
2.5
3.7
4.8
6.4
7.4
9.3
4.0
6.0
7.0
9.0 12
15 18 19 22
3.1
3.5
3.7
3.8
2.0
2.8
3.2
3.4
4.6
5.1
5.4
5.6
3.0
4.1
6.0
6.6
7.0
7.2
7.9
8.8 10 13
9.4 14 17 19
22
17
20 24 28 35 40
43 54 63 48 60 29 33
37 43 47 53
43
51
59 68 69 80
88 108 127
9.3 11 14
11 16 19 21
25 20
25 29 34 42 49
57
71
82 75 95 88
101
42 49 53
61
53 62 72 82 83 97
116 142 167
149 192
176 205
9.3 12
7.5
11 13 15 18
0
11
0
13
0
15
0
18
0
22
0
26
0
14
0
18
0
20
0
0
0
0
0
0
0
0
30 34 37 43
0
28
0
32
0
38
0
43
0
44
0
51
0
29
0
35
0
41
3.8
9.6
5.1
11
6.0
14
7.4
12
0
17
0
21
0
23
0
28
0
23
0
28
0
33
0
38
0
47
0
55
0
66
0
82
0
95
0
91
0
115
0
116
0
133
0
46
0
53
0
58
0
66
0
59
0
69
0
81
0
92
0
94
0
109
0
135
0
164
0
193
0
181 23300002330
232 270000000
5.3
7.0
8.3 10
5.1
7.6
9.2 10 12
2.6
3.2
3.8
4.4
20 23 25 29
6.8
8.0
9.3
12
11 11
4.7
6.1
8.1
9.5 12
7.6
11 14 15 18
12 15 18
21
6
25
6
29
0
19
0
24
0
27
0
12
0
15
0
0
0
0
30 35 38 43
32 37 43 50 50 58
0
38
0
47
0
55
5.1
6.6
8.7 10 13
9.2 14 14 18 22
17 20 24 28 35 40
42 52 60 55 70 54 62
36 42 45 52
43 51 59 68 69 80
85
103 121
109 141
108 126
3.6
5.4
6.9
9.2 11 13
10 15 18 21
24 20
24 28 33 41 47
53 67 77 75 95 92
105
41 47
51
58
51
60 70 80
81
94
109 133 157
149 192
183 213
- 33 -
Page 34
LOW AMBIENT OPERATION
TO DETERMINE WINTER CHARGE, ADD THE SUM OF THE NORMAL CHARGE
AND ADDITIONAL WINTER CHARGE
TABLE 5A R22 WINTER OPERATION CHARGE - Kg • Deg oC
Flooded Condensers with Fan Cycling
MODEL
1A 11 007 1A 11 009 1A 11 010
1A 11 011 1A 11 012 1A 11 013
1A 12 017 1A 12 019 1A 12 022 1A 12 024 1A 12 027
1A 13 029 1A 13 034 1A 13 037
1A 13 041 2A 13 043 2A 13 048
2A 14 056 2A 14 063 2A 14 068 2A 15 079 2A 15 085 2A 16 095 2A 16 103
1A 22 039 1A 22 045 1A 22 049 1A 22 054
1A 23 058 1A 23 067 1A 23 073
1A 23 081 1A 23 086 1A 23 096
2A 24 112 2A 24 126 2A 24 137
2A 25 158 2A 25 1726075
2A 26 190 2A 26 2066075
TOTAL
No OF
FEEDS
12 12 15
14 18 24 24 30
27 36 36 45 36 45
22 30 37 30 37 30 37
36 48 48 60
54 72 72 90 72 90
45 60 75
7 8 9
NORMAL CHARGE
Kg
0.8
1.0
1.3
1.8
1.9
2.4
1.9
2.8
3.4
3.8
4.4
3.9
4.8
5.6
6.6
8.0
9.0
11.8
14.8
17.3
17.5
22.2
24.3
27.8
7.4
8.5
9.3 11
10 12 14 16 16 19
24 30 35
35 45
48 56
Design TD = 5.6 (Deg C) Design TD = 8.3 (Deg C) Design TD = 11.1 (Deg C) Design TD = 13.9 (Deg C)
Ambient (Deg C) Ambient (Deg C) Ambient (Deg C) Ambient (Deg C)
4.4 -6.7 -17.8 -28.9 -40.0 4.4 -6.7 -17.8 -28.9 -40.0 4.4 -6.7 -17.8 -28.9 -40.0 4.4 -6.7 -17.8 -28.9 -40.0
1.6
1.7
1.8
2.4
2.6
3.0
3.3
4.0
4.4
4.7
5.1
5.9
6.4
4.4
5.4
6.6
8.0
7.9
9.7
8.9 10
13
8.5 10
13
12
15
14
18
18
22
20
26
23
32
29
39
33
46
29
44
37
56
30
57
35
66
17
21
20
25
22
27
25
31
22
28
26
33
30
38
34
44
35
44
40
52
47
64
58
78
68
92
587488
113
6070114
133
11
11
2.7
3.5
4.6
5.4
6.7
6.1
9.0 11
12 14
12 15 18 21 25 29
36
46
53 52 66 70 80
24 28 30 34
32 37
44
50 50 59
75 91
107 104
133 140
162
1.9
2.8
3.5
4.7
5.5
6.9
6.6
9.7 12 13 15
13 16 19
23 28 32
40 50 58 58 73 78 90
26 30 32 37
35
41
47 54 55 64
82 99
117 115
147 156
182
ADDITIONAL CHARGE FOR WINTER OPERATION (Kg)
1.9
1.4
1.6
1.7
1.8
2.8
2.0
2.3
3.6
2.6
4.8
3.5
5.6
4.1
7.0
5.1
6.9
2.9
10
4.3
12
5.1
14
5.8
16
6.8
14
4.9
17
5.9
20
6.9
24
8.2
29
10
34
12
43
1.4
53
1.8
62
2.1
62
0
78
0
84
0
97
0
27
11
31
13
34
14
39
16
37
13
43
15
50
17
58
20
58
20
68
23
87
2.9
106
3.5
125
4.2
123 158004355739489115
169 196006070
3.0
4.0
4.7
5.8
4.2
6.3
7.5
8.4
9.9
8.2 10 12 14 17 20
21 26 30 22 27 30 35
17 19 21 24
21 25 29 33 34 39
43
52 61
2.5
3.2
4.3
5.0
6.3
5.0
7.4
8.9 10 12
10 12 14 17 21
24 28
35
41
37 46
51
59 20
23 25 28
26 30 35
41 41
48 57
70 82
102
119
1.8
2.6
2.7
3.4
3.4
4.5
4.6
5.2
5.4
6.5
6.7
5.5
6.0
8.2
8.9
9.9
11
11
12
13
14
11
12
14
15
16
17
19
21
23
25
27
29
32
36
41
45
47
52
45
50
57
64
62
70
71
80
22
24
25
27
27
30
31
34
29
32
34
37
40
43
46
49
46
50
54
58
66
73
81
89
95
105 100
129000043556887821060000111450646887
124
140
145
162000026308093
1.1
1.7
2.2
2.9
3.4
4.2
1.8
2.7
3.2
4.1
5.3
6.8
8.2
8.6 10
1.4
1.6
1.7
1.7
0.9
1.3
1.4
1.6
2.1
2.3
2.5
2.6
1.4
1.9
2.7
3.0
3.2
3.3
3.6
4.0
4.7
5.8
4.3
6.3
7.6
8.5 10
7.6
9.3 13
16 18
20 25 29 22 27 13 15
17 19 21 24
20 23 27 31 31 36
40 49
58
11
4.2
4.9
6.2
4.9
7.2
8.7
9.7 11
9.2 11
13 16 19 22
26 32 37
34 43 40 46
19
22
24
28
24
28
33
37
38 44
53
64
76
4.2
5.3
3.4
5.1
6.1
6.8
8.0
0
4.9
0
5.9
0
6.9
0
8.2
0
10
0
12
0
6.4
0
8.0
0
9.2
0
0
0
0
0
0
0
0
13 15 17 19
0
13
0
15
0
17
0
20
0
20
0
23
0
13
0
16
0
19
1.7
4.4
2.3
5.1
2.7
6.4
3.4
5.3
0
7.9
0
9.5
0
11
0
13
0
10
0
13
0
15
0
17
0
21
0
25
0
30
0
37
0
43
0
41
0
52
0
53
0
61
0
21
0
24
0
26
0
30
0
27
0
31
0
37
0
42
0
43
0
49
0
61
0
74
0
88
0
105 12300000049578397
2.4
3.2
3.7
4.7
2.3
3.5
4.2
4.7
5.5
1.2
1.5
1.7
2.0
2.5
2.7
9.2 11
12 13
3.1
3.6
4.2
4.8
4.9
5.7
2.1
2.8
3.7
4.3
5.4
3.5
5.1
6.2
6.9
8.1
5.6
6.8
8.0
9.4 11
13
0
8.4
0
11
0
12
0
5.2
0
6.7
0
0
0
0
14 16 17
20
14
17 20 23 23 26
0
17
0
21
0
25
2.3
3.0
4.0
4.6
5.8
4.2
6.2
7.4
8.3
9.8
7.6
9.3 11 13 16 18
19
23 27 25 32 25 28
16 19 21
24 20
23 27
31 31
36 38
47 55
1.6
2.4
3.1
4.2
4.9
6.1
4.7
6.9
8.4
9.3 11
9.0 11
13 15 18
21
24 30 35 34 43 42 48
18
21 23 27
23 27 32 36 37 43
50 60
71
Note: For R134a and R502 use R22 charge For R404A and R507 use R22 charge x 0.87 For R407C use R22 charge x 0.97 For R12 use R22 charge x 1.10 For 90% full volume charge see P. 4
- 34 -
Page 35

INSTALLATION

INSPECTION
A thorough inspection of the equipment, including all com­ponent parts and accessories, should be made immediately upon delivery. Any damage caused in transit, or missing parts, should be reported to the carrier at once. The con­signee is responsible for making any claim for losses or damage. Electrical characteristics should also be checked at this time to ensure that they are correct.
LOCATION
Before handling and placing the unit into position a review of the most suitable location must be made. This condenser is designed for outdoor installation. A number of factors must be taken into consideration
when selecting a location. Most important is the provision for a supply of ambient air to the condenser, and removal of heated air from the condenser area. Higher condensing temperatures, decreased performance, and the possibility of equipment failure may result from inadequate air supply. Other considerations include:
1. Customer requests
2. Loading capacity of the roof or floor.
3. Distance to suitable electrical supply.
4. Accessibility for maintenance.
5. Local building codes.
6. Adjacent buildings relative to noise levels.
WALLS OR OBSTRUCTIONS
All sides of the unit must be a minimum of 4 feet (1.25 m) away from any wall or obstruction. Overhead obstructions are not permitted. If enclosed by three walls, the condenser must be installed as indicated for units in a pit.
4 ft
(1.25 m)
min.
UNITS IN PITS
The top of the condenser must be level with, or above the top of the pit. In addition, a minimum of 8 feet (2.5 m) is required between the unit and the pit walls.
8 ft
(2.5 m)
min
8 ft
(2.5 m)
min
MULTIPLE UNITS
A minimum of 8 feet (2.5 m) is required between multiple units placed side by side. If placed end to end, the minimum distance between units is 4 feet (1.25 m).
8 ft
(2.5 m)
min
LOUVERS/FENCES
Louvers/fences must have a minimum of 80% free area and 4 feet (1.25 m) minimum clearance between the unit and louvers/fence. Height of louver/fence must not exceed top of unit.
4 ft
(1.25 m)
min.
4 ft
(1.25 m)
min.
PLACEMENT
Once a suitable location is selected ensure all the remote mounting parts (legs and hardware) are available. Refer to Fig.1 (P. 36) and the dimensional data on pages 6 and 7
for the leg mounting locations. On 8, 10 and 12 fan models a 90” (2.3 m) channel is also included for maximum support. Single row 4, 5 and 6 fan models use a 45” (1.15m) channel.
- 35 -
Page 36
LEG INSTALLATION INSTRUCTIONS
INSTALLATION
Fig. 1
CORNER LEG
CENTRE LEG WITH SUPPORT CHANNEL
(RIGHT HAND SIDE SHOWN) USED ON CONDENSERS LONGER THAN 177” 4500 mm)
Air cooled condensers are large, heavy mechanical equip­ment and must be handled as such. A fully qualified and properly equipped crew with necessary rigging should be engaged to set the condenser into position. Lifting brackets or holes have been provided at the corners for attaching lifting slings. Spreader bars must be used when lifting so that the lifting force must be applied vertically. See Fig. 2. Under no circumstances should
the coil headers or return bends be used in lifting or moving the condenser.
Fig. 2
1) Assemble R.H. center leg L.H. center leg and 90” (or 45” on single row) channel as shown. Remove 2 bolts from bottom flange of unit side panels that match the hole pattern on the top flanges of both legs. Attach center leg and channel assembly using hardware provided at divider panel locations required for applicable model as shown in dimensional data. Replace bolts that were removed from side panels to secure leg assembly to bottom flanges of side panels.
2) Assemble four corner legs to bottom flanges on unit side panels and end panels using hardware provided, at matching mounting hole patterns. All corner legs are the same.
to standard refrigeration tubing.These connections may not be the same as the actual line sizes required for the field installation. Refer to a recognized source (ASHRAE charts, manufacturer’s engineering manuals etc.) for line sizing.
DISCHARGE LINES
The proper design of discharge lines involves following objective: (1) to minimize refrigerant pressure drop, since high
pressure losses increase the required compressor horsepower per ton of refrigeration.
Discharge lines must be pitched away from the compressor to ensure proper drainage of oil being carried in the line. A discharge check-valve at the bottom of a vertical riser will prevent oil (and liquid refrigerant) from draining back to the compressor during the off-cycle. When the vertical lift exceeds 30 feet (9 m), insert close-coupled traps in the riser at 30 feet (9 m) intervals.
Ensure the unit is placed in a level position (to ensure proper drainage of liquid refrigerant and oil). The legs should be securely anchored to the building structure, sleeper or concrete pad. The weight of the condenser is not enough to hold in place during a strong wind, the
legs must be anchored.
REFRIGERANT PIPING
All refrigeration piping must be installed by a qualified refrigeration mechanic. The importance of correct refrigerant pipe sizing and layout cannot be over­emphasized. Failure to observe proper refrigerant piping practices can result in equipment failure which may not be covered under warranty. All air cooled condensers are supplied complete with headers and refrigerant connections sized for connecting
An alternate method of handling the oil problem would be the addition of an oil separator see Figure 4 (b).
A reverse trap should be installed at the top of all vertical risers. The top of the reverse trap should be the highest point in the discharge line and should have an access valve installed to allow the reclaimation of non-condensible gas from the system.
Pulsation of the hot gas in the discharge line is an inherent characteristic of systems utilizing reciprocating compressors. The discharge line must be rigidly supported along its entire length to prevent transmission of vibration and movement of the line.
CONDENSATE LINES
The condensate line must be designed to allow free drainage of refrigerant from the condenser coil to the receiver. Refer to Fig. 5 for typical condensate line piping when utilizing head pressure regulating valves.
- 36 -
Page 37
INSTALLATION
Fig. 3 - 6
Figure 3 - Single Circuit
Figure 5 - Single circuit regulator valve
head pressure control
BVC TYPICAL SYSTEM PIPING
Figure 4(a) - Single circuit with
double discharge riser (may be required with capacity control)
Figure 6 - Multiple circuits
Figure 4(b) - Single circuit with
Oil Separator (may be required with capacity control)
15
LEGEND
1 - Compressor 2 - Air Cooled Condenser 3 - Receiver 4 - Condensate Line 5 - Discharge Line 6 - Trap-minimum 18” (157 mm) 7 - Reverse Trap-minimum
6” (152 mm) 8 - Access Schrader Valve 9 - Double Discharge Riser
10 - Head Pressure Regulator
(open on rise of inlet)
11 - Receiver Pressure Regulator
Valve (opens on rise of
differential)
12 - Check Valve “A” 13 - Check Valve “B” 14 - Receiver Relief Valve 15 - Oil Separator
ELECTRICAL WIRING
All wiring and connections to the air cooled condenser must be made in accordance with the National Electrical Code and all local codes and regulations. Any wiring diagrams shown are basic and do not necessarily include electrical components which must be field supplied. (see pages 8-11 for typical wiring diagrams). Refer to the Electrical Specifications table on pages 5, 15 and 19 for voltage availability and entering service requirements.
SYSTEM START-UP CHECKS
1. Check the electrical characteristics of all components to be sure they agree with the power supply.
2. Check tightness of all fans and motor mounts.
3. Check tightness of all electrical connections.
4. Upon start-up, check fans for correct rotation. Air is drawn through the condenser coil. To change rotation on 3 phase units reverse any two (2) fan motor leads.
5. All system piping must be thoroughly leak checked before a refrigerant charge is introduced.
MAINTENANCE
A semi annual inspection should be carried out by a qualified refrigeration service mechanic. The main power supply must be disconnected.
1. Check electrical components. Tighten any loose connections.
2. Check control capillary tubes and lines for signs of wear due to excessive vibration or rubbing on metal parts. Secure if necessary.
3. Check tightness of all fans and motor mounts. Remove any deposits which could effect fan balance. Note: Fan motors are permanently lubricated and require only visual inspection.
4. Clean the condenser coil using a soft brush or by flushing with cool water or coil cleansers available through NRP (National Refrigeration Products Inc.)
5. Update service log information (back page of service manual)
- 37 -
Page 38

SERVICE PARTS LIST

PART DESCRIPTION MODELS PART NUMBER
FAN MOTORS-60 Hz
850 RPM Models
208/230-1-60 850 RPM ( 3/4 HP) 1048725-001 208/230-3-60 850 RPM ( 1 HP) 1048726-001
460-3-60 850 RPM ( 1 HP ) 1048727-001 575-3-60 850 RPM (1 HP) 1048728-001 208/230/460 -3-60 850 RPM ( 1 HP ) 1062967-001
550 RPM Models
208/230/460 -3-60 550 RPM ( 1/2 HP ) 1068176-001 575-3-60 550 RPM ( 1/2 HP ) 1068177-001
1140 RPM Models
208/230/460 -3-60 1140 RPM ( 2 HP ) 1067454-001 575-3-60 1140 RPM ( 2 HP ) 1068175-001
FAN MOTORS-50 Hz
850 RPM Models
200/220-1-50 700 RPM ( 3/4 HP) 1048725-001 200/220-3-50 700 RPM ( 1 HP) 1048726-001 380-3-50 700 RPM ( 1 HP) 1048727-001 200/220/380 -3-50 700 RPM ( 1 HP) 1062967-001
550 RPM Models
200/220/380 -3-50 450 RPM ( 1/2 HP ) 1068176-001
1140 RPM Models
200/220/380 -3-50 950 RPM ( 2 HP ) 1067454-001
MOTOR MOUNT RAIL (2 REQ'D)
MOTOR RAIN SHIELD* MOTOR RAIN SLINGER* FAN BLADES
30" 22o 4 BLADE 30" 28o 4 BLADE
FAN GUARD - 35" DIA. MOUNTING LEGS
20" CORNER LEG 20" LEFT HAND CENTRE LEG 20" RIGHT HAND CENTRE LEG 90" SUPPORT RAIL - DOUBLE ROW
45" SUPPORT RAIL - SINGLE ROW
35" WIDE FAN SECTION 45" WIDE FAN SECTION
ALL 1043295 ALL 106098
UP TO 144" LONG MODELS
138" LONG AND OVER MODELS
ALL 1048603
ALL 144" LONG AND OVER MODELS 144" LONG AND OVER MODELS 144" LONG AND OVER MODELS 144" LONG AND OVER MODELS
* Fan motor service kit part number with - 001 suffix includes a rain shield and slinger.
1046500 1046502
1048739 1048738
106025 107024-001 107024-002
107025
1065906
- 38 -
Page 39
NOTES
- 39 -
Page 40
SERVICE PARTS LIST
01/06/2001
Service Parts List
Label
To Be Attached
HERE
PROJECT INFORMATION
System
Model Number Date of Start-Up
Serial Number Service Contractor
Refrigerant Phone
Electrical Supply Fax
General Sales, Parts & ServiceGeneral Sales, Parts & Service Manufacturing & EngineeringManufacturing & Engineering 11 35 Little Nine Drive, Morehead City, NC 2855735 Little Nine Drive, Morehead City, NC 28557 252252-240-2829 • FAX: -240-2829 • FAX: 252252-240-0384-240-0384
61 BROADWAY • SUITE 1900 • NEW YORK, NY 10006-2701 PHONE: 212-898-9699 • 212-514-9230 Fax: 212-514-9234 • Alt. Fax: 212-898-9634 e-mail: bmil@bmil.com • www.bmil.com
A Division of Balmac International Inc.
Due to Manufacturer’s policy of continuous product improvement, the Manufacturer reserves the right to make changes without notice.
MEA
Loading...