ANALOG DEVICES ADRF6702 Service Manual

1200 MHz to 2400 MHz Quadrature Modulator with
V
V
V
V
V
V
V
1550 MHz to 2150 MHz Frac-N PLL and Integrated VCO
Data Sheet

FEATURES

IQ modulator with integrated fractional-N PLL Output frequency range: 1200 MHz to 2400 MHz Internal LO frequency range: 1550 MHz to 2150 MHz Output P1dB: 13.1 dBm @ 2140 MHz Output IP3: 29.1 dBm @ 2140 MHz Noise floor: −159.6 dBm/Hz @ 1960 MHz Baseband bandwidth: 750 MHz (3 dB) SPI serial interface for PLL programming Integrated LDOs and LO buffer Power supply: 5 V/240 mA 40-lead 6 mm × 6 mm LFCSP

APPLICATIONS

Cellular communications systems
GSM/EDGE, CDMA2000, W-CDMA, TD-SCDMA, LTE Broadband wireless access systems Satellite modems

GENERAL DESCRIPTION

The ADRF6702 provides a quadrature modulator and synthesizer solution within a small 6 mm × 6 mm footprint while requiring minimal external components.
The ADRF6702 is designed for RF outputs from 1200 MHz to 2400 MHz. The low phase noise VCO and high performance quadrature modulator make the ADRF6702 suitable for next generation communication systems requiring high signal dynamic range and linearity. The integration of the IQ modulator, PLL, and VCO provides for significant board savings and reduces the BOM and design complexity.
ADRF6702
The integrated fractional-N PLL/synthesizer generates a 2× f input to the IQ modulator. The phase detector together with an external loop filter is used to control the VCO output. The VCO output is applied to a quadrature divider. To reduce spurious components, a sigma-delta (Σ-) modulator controls the programmable PLL divider.
The IQ modulator has wideband differential I and Q inputs, which support baseband as well as complex IF architectures. The single-ended modulator output is designed to drive a 50 Ω load impedance and can be disabled.
The ADRF6702 is fabricated using an advanced silicon­germanium BiCMOS process. It is available in a 40-lead, exposed-paddle, Pb-free, 6 mm × 6 mm LFCSP package. Performance is specified from −40°C to +85°C. A lead-free evaluation board is available.
Table 1.
Part No. Internal LO Range ±3 dB RF
Balun Range
OUT
ADRF6701 750 MHz 400 MHz
1150 MHz 1250 MHz
ADRF6702 1550 MHz 1200 MHz
2150 MHz 2400 MHz
ADRF6703 2100 MHz 1550 MHz
2600 MHz 2650 MHz
ADRF6704 2500 MHz 2050 MHz
290 MHz 3000 MHz
LO

FUNCTIONAL BLOCK DIAGRAM

CC5
CC6
CC7
29
34
36
LOSEL
LON
37
38
LOP
12
DATA
13
CLK
14
LE
6
REFIN
8
MUXOUT
NOTES
1. NC = NO CONNECT. DO NOT CO NNECT TO THIS PI N.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
SPI
INTERFACE
×2
MUX
÷2
÷4
27 17 10 122
FRACTION
SENSOR
7 11 15 20 21 23 2425 28 30 31 35
MODULUS
REG
THIRD-ORDER
FRACTIONAL
INTERPOL ATOR
TEMP
GND
CC4
N COUNTER
PHASE
+
FREQUENCY
DETECTOR
CC3
INTEGER
REG
21 TO 123
CC1
CC2
PRESCALER
÷2
CHARGE PUMP 250µA, 500µA (DEFAULT ), 750µA, 1000µA
RSET CP VTUNE
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
BUFFER
BUFFER
2:1
MUX
VCO
CORE
DIVIDER
÷2
ENOP
ADRF6702
261639354
RFOUTNC
0/90
40
DECL3
9
DECL2
2
DECL1
18
QP
19
QN
÷2
32
IN
33
IP
08568-001
ADRF6702 Data Sheet

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Timing Characteristics ................................................................ 6
Absolute Maximum Ratings............................................................ 7
ESD Caution.................................................................................. 7
Pin Configuration and Function Descriptions............................. 8
Typical Performance Characteristics ........................................... 10
Theory of Operation ...................................................................... 16
PLL + VCO.................................................................................. 16
Basic Connections for Operation............................................. 16
External LO ................................................................................. 16
Loop Filter ................................................................................... 17
DAC-to-IQ Modulator Interfacing ..........................................18
Adding a Swing-Limiting Resistor ........................................... 18
IQ Filtering.................................................................................. 19
Baseband Bandwidth ................................................................. 19
Device Programming and Register Sequencing..................... 19
Register Summary .......................................................................... 20
Register Description....................................................................... 21
Register 0—Integer Divide Control (Default: 0x0001C0) .... 21
Register 1—Modulus Divide Control (Default: 0x003001).. 22
Register 2—Fractional Divide Control (Default: 0x001802) 22
Register 3—Σ- Modulator Dither Control (Default:
0x10000B).................................................................................... 23
Register 4—PLL Charge Pump, PFD, and Reference Path
Control (Default: 0x0AA7E4)................................................... 24
Register 5—LO Path and Modulator Control (Default:
0x0000D5)................................................................................... 26
Register 6—VCO Control and VCO Enable (Default:
0x1E2106).................................................................................... 27
Register 7—External VCO Enable........................................... 27
Characterization Setups................................................................. 28
Evaluation Board............................................................................ 30
Evaluation Board Control Software......................................... 30
Outline Dimensions....................................................................... 35
Ordering Guide .......................................................................... 35

REVISION HISTORY

10/11—Rev. A to Rev. B
Changes Table 1 ................................................................................ 1
7/11—Rev. 0 to Rev. A
Changes to Noise Floor in Features Section and Table 1 ............ 1
Changes to Specifications Section.................................................. 2
Changes to Figure 16, Figure 17, and Figure 18 ......................... 12
Changes to Figure 28...................................................................... 14
Changes to Figure 32 and Figure 34............................................. 15
Added Figure 34, Renumbered Sequentially .............................. 15
Changes to Figure 35...................................................................... 17
Added Figure 40.............................................................................. 19
Changes to Figure 52...................................................................... 31
4/11—Revision 0: Initial Version
Rev. B | Page 2 of 36
Data Sheet ADRF6702

SPECIFICATIONS

VS = 5 V; TA = 25°C; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a 500 mV dc bias; baseband I/Q frequency (f
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
OPERATING FREQUENCY RANGE IQ modulator (±3 dB RF output range) 1200 2400 MHz PLL LO range 1550 2150 MHz RF OUTPUT = 1850 MHz RFOUT pin
Nominal Output Power Baseband VIQ = 1 V p-p differential 4 dBm
IQ Modulator Voltage Gain RF output divided by baseband input voltage 0 dB
OP1dB 13.5 dBm
Carrier Feedthrough −41.2 dBm
Sideband Suppression −43.7 dBc
Quadrature Error ±1 Degrees
I/Q Amplitude Balance 0.02 dB
Second Harmonic P
Third Harmonic P
Output IP2 f1BB = 3.5 MHz, f2BB = 4.5 MHz, P
Output IP3 f1BB = 3.5 MHz, f2BB = 4.5 MHz, P
Noise Floor I/Q inputs = 0 V differential with 500 mV dc bias, 20 MHz carrier offset −158.9 dBm/Hz
RF OUTPUT = 1960 MHz RFOUT pin
Nominal Output Power Baseband VIQ = 1 V p-p differential 4.1 dBm
IQ Modulator Voltage Gain RF output divided by baseband input voltage 0.1 dB
OP1dB 13.6 dBm
Carrier Feedthrough −40.6 dBm
Sideband Suppression −53.9 dBc
Quadrature Error +0.7/−1.7 Degrees
I/Q Amplitude Balance 0.03 dB
Second Harmonic P
Third Harmonic P
Output IP2 f1BB = 3.5 MHz, f2BB = 4.5 MHz, P
Output IP3 f1BB = 3.5 MHz, f2BB = 4.5 MHz, P
Noise Floor I/Q inputs = 0 V differential with 500 mV dc bias, 20 MHz carrier offset −159.6 dBm/Hz
RF OUTPUT = 2140 MHz RFOUT pin
Nominal Output Power Baseband VIQ = 1 V p-p differential 3.8 dBm
IQ Modulator Voltage Gain RF output divided by baseband input voltage −0.2 dB
OP1dB 13.1 dBm
Carrier Feedthrough −46.8 dBm
Sideband Suppression −44.4 dBc
Quadrature Error ±1 Degrees
I/Q Amplitude Balance 0.02 dB
Second Harmonic P
Third Harmonic P
Output IP2 f1BB = 3.5 MHz, f2BB = 4.5 MHz, P
Output IP3 f1BB = 3.5 MHz, f2BB = 4.5 MHz, P
Noise Floor I/Q inputs = 0 V differential with 500 mV dc bias, 20 MHz carrier offset −158.1 dBm/Hz
SYNTHESIZER SPECIFICATIONS Synthesizer specifications referenced to the modulator output
Internal LO Range 1550 2150 MHz
Figure of Merit (FOM)1 −220.5 dBc/Hz/Hz
) = 1 MHz; f
BB
= 38.4 MHz; f
PFD
OUT
OUT
OUT
OUT
OUT
OUT
= 153.6 MHz at +4 dBm Re:50  (1 V p-p); 130 kHz loop filter, unless otherwise noted.
REF
− P (fLO ± (2 × fBB)) −62.2 dBc
− P (fLO ± (3 × fBB)) −50.6 dBc ≈ −2 dBm per tone 56 dBm
OUT
≈ −2 dBm per tone 31 dBm
OUT
− P (fLO ± (2 × fBB)) −74.6 dBc
− P (fLO ± (3 × fBB)) −54.1 dBc ≈ −2 dBm per tone 66.4 dBm
OUT
≈ −2 dBm per tone 30.1 dBm
OUT
− P (fLO ± (2 × fBB)) −71.8 dBc
− P (fLO ± (3 × fBB)) −57.3 dBc ≈ −2 dBm per tone 70.4 dBm
OUT
≈ −2 dBm per tone) 29.1 dBm
OUT
Rev. B | Page 3 of 36
ADRF6702 Data Sheet
Parameter Test Conditions/Comments Min Typ Max Unit
REFERENCE CHARACTERISTICS REFIN, MUXOUT pins
REFIN Input Frequency 12 160 MHz REFIN Input Capacitance 4 pF Phase Detector Frequency 20 40 MHz MUXOUT Output Level Low (lock detect output selected) 0.25 V
High (lock detect output selected) 2.7 V
MUXOUT Duty Cycle 50 %
CHARGE PUMP
Charge Pump Current Programmable to 250 µA, 500 µA, 750 µA, 1000 µA 500 µA Output Compliance Range 1 2.8 V
PHASE NOISE (FREQUENCY =
1850 MHz, f
= 38.4 MHz)
PFD
Closed loop operation (see
Figure 35 for loop filter design)
10 kHz offset −110.8 dBc/Hz 100 kHz offset −105.8 dBc/Hz 1 MHz offset −124.6 dBc/Hz 10 MHz offset −150 dBc/Hz Integrated Phase Noise 1 kHz to 10 MHz integration bandwidth 0.27
Reference Spurs f f f f f
PHASE NOISE (FREQUENCY =
1960 MHz, f
= 38.4 MHz)
PFD
/2 −112 dBc
PFD
−84 dBc
PFD
× 2 −87 dBc
PFD
× 3 −93 dBc
PFD
× 4 −90 dBc
PFD
Closed loop operation (see Figure 35 for loop filter design)
10 kHz offset −108.5 dBc/Hz 100 kHz offset −104.2 dBc/Hz 1 MHz offset −125.1 dBc/Hz 10 MHz offset −149.9 dBc/Hz Integrated Phase Noise 1 kHz to 10 MHz integration bandwidth 0.25
Reference Spurs f f f f f
PHASE NOISE (FREQUENCY =
2140 MHz, f
= 38.4 MHz)
PFD
/2 −110 dBc
PFD
−83 dBc
PFD
× 2 −97 dBc
PFD
× 3 −91 dBc
PFD
× 4 −97 dBc
PFD
Closed loop operation (see Figure 35 for loop filter design)
10 kHz offset −107.5 dBc/Hz 100 kHz offset −102.7 dBc/Hz 1 MHz offset −126.1 dBc/Hz 10 MHz offset −150.4 dBc/Hz Integrated Phase Noise 1 kHz to 10 MHz integration bandwidth 0.25
Reference Spurs f f f f f
/2 −111 dBc
PFD
−86 dBc
PFD
× 2 −88 dBc
PFD
× 3 −91 dBc
PFD
× 4 −99 dBc
PFD
RF OUTPUT HARMONICS Measured at RFOUT, frequency = 2140 MHz Second harmonic −47 dBc
Third harmonic −74 dBc
LO INPUT/OUTPUT LOP, LON
Output Frequency Range Divide by 2 circuit in LO path enabled 1550 2150 MHz Divide by 2 circuit in LO path disabled 3100 4300 MHz LO Output Level at 1960 MHz 2× LO or 1× LO mode, into a 50 Ω load, LO buffer enabled 1 dBm LO Input Level Externally applied 2× LO, PLL disabled 0 dBm LO Input Impedance Externally applied 2× LO, PLL disabled 50
Rev. B | Page 4 of 36
°rms
°rms
°rms
Data Sheet ADRF6702
Parameter Test Conditions/Comments Min Typ Max Unit
BASEBAND INPUTS IP, IN, QP, QN pins
I and Q Input DC Bias Level 400 500 600 mV Bandwidth P
0.5 dB 350 MHz 3 dB 750 MHz Differential Input Impedance 920 Ω Differential Input Capacitance 1 pF
LOGIC INPUTS CLK, DATA, LE, ENOP, LOSEL
Input High Voltage, V Input Low Voltage, V Input Current, I
1.4 3.3 V
INH
0 0.7 V
INL
0.1 µA
INH/IINL
Input Capacitance, CIN 5 pF
TEMPERATURE SENSOR VPTAT voltage measured at MUXOUT
Output Voltage Temperature Coefficient
POWER SUPPLIES VCC1, VCC2, VCC3, VCC4, VCC5, VCC6, VCC7
Voltage Range 4.75 5 5.25 V Supply Current Normal Tx mode (PLL and IQMOD enabled, LO buffer disabled) 240 mA Tx mode using external LO input (internal VCO/PLL disabled) 130 mA Tx mode with LO buffer enabled 290 mA Power-down mode 22 µA
1
The figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10log10(f
f
power = 10 dBm (500 V/s slew rate) with a 40 MHz f
REF
≈ −7 dBm, RF flatness of IQ modulator output calibrated out
OUT
= 25°C, RL ≥10 kΩ (LO buffer disabled)
T
A
= −40°C to +85°C, RL ≥10 kΩ
T
A
) – 20log10(fLO/f
. The FOM was computed at 50 kHz offset.
PFD
PFD
). The FOM was measured across the full LO range, with f
PFD
1.64 V
3.9
mV/°C
= 80 MHz,
REF
Rev. B | Page 5 of 36
ADRF6702 Data Sheet
A

TIMING CHARACTERISTICS

Table 3.
Parameter Limit Unit Test Conditions/Comments
t1 20 ns min LE to CLK setup time t2 10 ns min DATA to CLK setup time t3 10 ns min DATA to CLK hold time t4 25 ns min CLK high duration t5 25 ns min CLK low duration t6 10 ns min CLK to LE setup time t7 20 ns min LE pulse width
CLK
t
4
t
5
t
2
D
DB23 (MSB) DB 22
TA
LE
t
3
DB2 DB1
(CONTROL BIT C2)(CONTROL BIT C3)
DB0 (LSB)
(CONTROL BIT C1)
t
t
t
7
6
1
08568-002
Figure 2. Timing Diagram
Rev. B | Page 6 of 36
Data Sheet ADRF6702

ABSOLUTE MAXIMUM RATINGS

Table 4.
Parameter Rating
Supply Voltage (VCC1 to VCC7) 5.5 V Digital I/O, CLK, DATA, LE −0.3 V to +3.6 V LOP, LON 18 dBm IP, IN, QP, QN −0.5 V to +1.5 V REFIN −0.3 V to +3.6 V θJA (Exposed Paddle Soldered Down)1 35°C/W Maximum Junction Temperature 150°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C
1
Per JDEC standard JESD 51-2.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. B | Page 7 of 36
ADRF6702 Data Sheet

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

SEL
ND
CC7
IP
V
G
LO
LON
LOP
VTUNE
DECL3
37
38
39
40
PIN 1
1VCC1
INDICATOR
2DECL1 3CP 4
GND
RSET
REFIN
GND
MUXOUT
DECL2
10
VCC2
NOTES
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A LOW IMPEDANCE GROUND PL ANE.
5 6 7 8 9
ADRF6702
TOP VIEW
(Not to Scale)
11
12
13
14
LE
CLK
GND
DATA
Figure 3. Pin Configuration
Table 5. Pin Function Descriptions
Pin No. Mnemonic Description
1, 10, 17, 22, 27, 29, 34
2 DECL1
VCC1, VCC2, VCC3, VCC4, VCC5, VCC6, VCC7
Power Supply Pins. The power supply voltage range is 4.75 V to 5.25 V. Drive all of these pins from the same power supply voltage. Decouple each pin with 100 pF and
0.1 µF capacitors located close to the pin. Decoupling Node for Internal 3.3 V LDO. Decouple this pin with 100 pF and 0.1 µF
capacitors located close to the pin.
3 CP
Charge Pump Output Pin. Connect VTUNE to this pin through the loop filter. If an external VCO is being used, connect the output of the loop filter to the VCO’s voltage control pin. The PLL control loop should then be closed by routing the VCO’s frequency output back into the ADRF6702 through the LON and LOP pins.
4, 7, 11, 15, 20, 21, 23,
GND Ground. Connect these pins to a low impedance ground plane.
25, 28, 30, 31, 35 24 NC Do not connect to this pin. 5 RSET
Charge Pump Current. The nominal charge pump current can be set to 250 µA, 500 µA, 750 µA, or 1000 µA using DB10 and DB11 of Register 4 and by setting DB18 to 0 (CP reference source).
In this mode, no external RSET is required. If DB18 is set to 1, the four nominal charge pump currents (I equation:
×
4.217
⎛ ⎜
= 8.37
R
SET
I
NOMINAL
where I
is the base charge pump current in microamps. For further details on the
CP
charge pump current, see the Register 4—PLL Charge Pump, PFD, and Reference Path Control section.
6 REFIN
Reference Input. The nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz. This pin has high input impedance and should be ac-coupled. If REFIN is being driven by laboratory test equipment, the pin should be externally terminated with a 50 Ω resistor (place the ac-coupling capacitor between the pin and the resistor). When driven from an 50 Ω RF signal generator, the recommended input level is 4 dBm.
8 MUXOUT
Multiplexer Output. This output allows a digital lock detect signal, a voltage proportional to absolute temperature (VPTAT), or a buffered, frequency-scaled reference signal to be accessed externally. The output is selected by programming DB21 to DB23 in Register 4.
9 DECL2
Decoupling Node for 2.5 V LDO. Connect 100 pF, 0.1 µF, and 10 µF capacitors between this pin and ground.
12 DATA
Serial Data Input. The serial data input is loaded MSB first with the three LSBs being the control bits.
GND
IN
32
31
33
34
35
36
30 GND 29 VCC6 28 GND 27 VCC5
RFOUT
26 25
GND 24 NC 23 GND 22 VCC4 21
GND
15
17
16
20
19
18
QP
QN
GND
GND
VCC3
ENOP
08568-003
) can be externally tweaked according to the following
NOMINAL
I
CP
Ω
⎟ ⎠
Rev. B | Page 8 of 36
Data Sheet ADRF6702
Pin No. Mnemonic Description
13 CLK
14 LE
16 ENOP Modulator Output Enable/Disable. See Table 6. 18, 19, 32, 33 QP, QN, IN, IP
26 RFOUT
36 LOSEL
37, 38 LON, LOP
39 VTUNE
40 DECL3
EP
Serial Clock Input. This serial clock input is used to clock in the serial data to the registers. The data is latched into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz.
Latch Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the six registers, the relevant latch being selected by the first three control bits of the 24-bit word.
Modulator Baseband Inputs. Differential in-phase and quadrature baseband inputs. These inputs should be dc-biased to 0.5 V.
RF Output. Single-ended, 50 Ω internally biased RF output. RFOUT must be ac-coupled to its load.
LO Select. This digital input pin determines whether the LOP and LON pins operate as inputs or outputs. This pin should not be left floating. LOP and LON become inputs if the LOSEL pin is set low and the LDRV bit of Register 5 is set low. External LO drive must be a 2× LO. In addition to setting LOSEL and LDRV low and providing an external 2× LO, the LXL bit of Register 5 (DB4) must be set to 1 to direct the external LO to the IQ modulator. LON and LOP become outputs when LOSEL is high or if the LDRV bit of Register 5 (DB3) is set to 1. A 1× LO or 2× LO output can be selected by setting the LDIV bit of Register 5 (DB5) to 1 or 0 respectively (see Table 7).
Local Oscillator Input/Output. The internally generated 1× LO or 2× LO is available on these pins. When internal LO generation is disabled, an external 1× LO or 2× LO can be applied to these pins.
VCO Control Voltage Input. This pin is driven by the output of the loop filter. Nominal input voltage range on this pin is 1.3 V to 2.5 V. If the external VCO mode is activated, this pin can be left open.
Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 µF capacitor between this pin and ground.
Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.
Table 6. Enabling RFOUT
ENOP Register 5 Bit DB6 RFOUT
X1 0 Disabled 0 X1 Disabled 1 1 Enabled
1
X = don’t care.
Table 7. LO Port Configuration
1, 2
LON/LOP Function LOSEL Register 5 Bit DB5(LDIV) Register 5 Bit DB4(LXL) Register 5 Bit DB3 (LDRV)
Input (2× LO) 0 X 1 0 Output (Disabled) 0 X 0 0 Output (1× LO) 0 0 0 1 Output (1× LO) 1 0 0 0 Output (1× LO) 1 0 0 1 Output (2× LO) 0 1 0 1 Output (2× LO) 1 1 0 0 Output (2× LO) 1 1 0 1
1
X = don’t care.
2
LOSEL should not be left floating.
Rev. B | Page 9 of 36
ADRF6702 Data Sheet
m
m
m
m

TYPICAL PERFORMANCE CHARACTERISTICS

VS = 5 V; TA = 25°C; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a 500 mV dc bias; baseband I/Q frequency (f
) = 1 MHz; f
BB
= 38.4 MHz; f
PFD
= 153.6 MHz at +4 dBm Re:50  (1 V p-p); 130 kHz loop filter, unless otherwise noted.
REF
10
9
8
)
7
6
5
4
3
SSB OUTPUT POWER (dB
2
1
0 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
LO FREQUENCY (MHz)
Figure 4. Single Sideband (SSB) Output Power (P
LO Frequency (f
20
19
)
18
17
16
15
14
13
12
1dB OUTPUT COMPRESSION (dB
11
10
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
) and Temperature; Multiple Devices Shown
LO
LO FREQUENCY (MHz)
TA=–40°C T
=+25°C
A
T
=+85°C
A
) vs.
OUT
TA=–40°C T
=+25°C
A
T
=+85°C
A
Figure 5. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (f
and Temperature; Multiple Devices Shown
0
–10
–20
CARRIER FEEDTHROUGH (dBm)
–30
–40
–50
–60
–70
–80
SIDEBAND SUPPRESSION (dBc)
CARRIER FEEDTHROUGH (dBm),
THIRD-ORDER DISTORTION (dBc),
SECOND-ORDER DISTORTION (dBc),
–90
–100
SIDEBAND
SUPPRESSION (dBc)
0.1 1 10
BASEBAND INPUT VOLTAGE (V p-p Differential)
SSB OUTPUT
POWER (dBm)
SECOND-ORDER
DISTORTION (dBc)
THIRD-ORDER
DISTORTION (dBc)
20
16
12
8
4
0
–4
–8
–12
–16
–20
Figure 6. SSB Output Power, Second- and Third-Order Distortion, Carrier Feedthrough and Sideband Suppression vs. Baseband Differential Input
Voltage (f
= 1960 MHz)
OUT
08568-104
08568-105
)
LO
SSB OUTPUT POWER (dBm)
08568-106
10
9
8
)
7
6
5
VS=5V
4
3
SSB OUTPUT POWER (dB
2
1
0
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
VS=5.25V
LO FREQUENCY (MHz)
Figure 7. Single Sideband (SSB) Output Power (P
LO Frequency (f
20
19
)
18
17
16
15
14
13
12
1dB OUTPUT COMPRESSION (dB
11
10
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
) and Power Supply; Multiple Devices Shown
LO
VS=5.25V
VS=5V
VS=4.75V
LO FREQUENCY (MHz)
Figure 8. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (f
VS=4.75V
) vs.
OUT
08568-107
08568-108
)
LO
and Power Supply
0
–10
–20
–30
–40
–50
–60
–70
–80
SIDEBAND SUPPRESSION (dBc)
CARRIER FEEDTHROUGH (dBm),
THIRD-ORDER DISTORTION (dBc),
SECOND-ORDER DISTORTION (dBc),
–90
–100
0.1 1 10
CARRIER
FEEDTHROUGH (dBm)
BASEBAND INPUT VOLTAGE (V p-p Differential)
SSB OUTPUT
POWER (dBm)
SIDEBAND
SUPPRESSION (dBc)
SECOND-ORDER
DISTORTION (dBc)
THIRD-ORDER
DISTORTION (dBc)
20
16
12
8
4
0
–4
–8
–12
–16
–20
SSB OUTPUT POWER (dBm)
08568-109
Figure 9. SSB Output Power, Second- and Third-Order Distortion, Carrier Feedthrough and Sideband Suppression vs. Baseband Differential Input
Voltage (f
= 2140 MHz)
OUT
Rev. B | Page 10 of 36
Data Sheet ADRF6702
m
m
m
0
–10
)
–20
TA=–40°C T
=+25°C
A
T
=+85°C
A
0
–10
)
–20
TA=–40°C T
=+25°C
A
T
=+85°C
A
–30
–40
–50
–60
CARRIER FEEDTHROUGH (dB
–70
–80
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
LO FREQUENCY (MHz)
Figure 10. Carrier Feedthrough vs. LO Frequency (f
LO
Multiple Devices Shown
0
TA=–40°C T
=+25°C
A
–10
T
=+85°C
A
–20
–30
–40
–50
–60
–70
SIDEBAND SUPPRESSION (dBc)
–80
–90
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
LO FREQUENCY (MHz)
Figure 11. Sideband Suppression vs. LO Frequency (f
LO
Multiple Devices Shown
) and Temperature;
) and Temperature;
–30
–40
–50
–60
CARRIER FEEDTHROUGH (dB
–70
–80
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
08568-110
Figure 13. Carrier Feedthrough vs. LO Frequency (f
LO FREQUENCY (MHz)
) and Temperature After
LO
08568-113
Nulling at 25°C; Multiple Devices Shown
0
–10
–20
–30
–40
–50
–60
–70
SIDEBAND SUPPRESSION (dBc)
–80
–90
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
08568-111
LO FREQUENCY (MHz)
Figure 14. Sideband Suppression vs. LO Frequency (f
TA=–40°C T
=+25°C
A
T
=+85°C
A
) and Temperature
LO
08568-114
After Nulling at 25°C; Multiple Devices Shown
90
80
70
)
60
50
40
30
OUTPUT IP3 AND IP2 (dB
20
10
0
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
Figure 12. OIP3 and OIP2 vs. LO Frequency (f
OIP2
OIP3
TA=–40°C T
=+25°C
A
T
=+85°C
A
LO FREQUENCY (MHz)
≈ −2 dBm per Tone); Multiple Devices Shown
(P
OUT
LO
) and Temperature
08568-112
Figure 15. Second- and Third-Order Distortion vs. LO Frequency (f
Rev. B | Page 11 of 36
20
–25
–30
–35
–40
–45
–50
–55
–60
–65
THIRD-ORDER DISTORTION (dBc),
–70
SECOND-ORDER DISTORTION (dBc)
–75
–80
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
THIRD-ORDER DISTORTION
SECOND-ORDER DISTORTION
LO FREQUENCY (MHz)
TA=–40°C T T
Temperature
=+25°C
A
=+85°C
A
LO
) and
08568-115
Loading...
+ 25 hidden pages