ANALOG DEVICES ADA4000-1, ADA4000-2, ADA4000-4 Service Manual

Low Cost, Precision JFET
O
www.BDTIC.com/ADI

FEATURES

High slew rate: 20 V/μs Fast settling time Low offset voltage: 1.70 mV maximum Bias current: 40 pA maximum ±4 V to
±18 V operation
Low voltage noise: 16 nV/Hz Unity gain stable Common-mode voltage includes +V Wide bandwidth: 5 MHz

APPLICATIONS

Reference gain/buffers Level shift/driving Active filters Power line monitoring/control Current/voltage sense or monitoring Data acquisition Sample-and-hold circuits Integrators

GENERAL DESCRIPTION

The ADA4000-1/ADA4000-2/ADA4000-4 are JFET input operational amplifiers featuring precision, very low bias current, and low power. Combining high input impedance, low input bias current, wide bandwidth, fast slew rate, and fast settling time, the ADA4000-1/ADA4000-2/ADA4000-4 are ideal amplifiers for driving analog-to-digital inputs and buffering digital-to-analog converter outputs. The input common-mode voltage includes the positive power supply, which makes the part an excellent choice for high-side signal conditioning.
Additional applications for the ADA4000-1/ADA4000-2/
A4000-4 include electronic instruments, ATE amplification,
AD buffering, integrator circuits, instrumentation-quality photodiode amplification, and fast precision filters (including PLL filters). The parts also include utility functions, such as reference buffering, level shifting, control I/O interface, power supply control, and monitoring functions.
S
Input Operational Amplifiers
ADA4000-1/ADA4000-2/ADA4000-4

PIN CONFIGURATIONS

UT
1
ADA4000-1
TOP VIEW
V–
2
(Not to Scale)
+IN
3
Figure 1. 5-Lead TSOT (UJ-5)
NC
1
–IN
2
ADA4000-1
TOP VIEW
3
+IN
(Not to Scale)
V–
4
NC = NO CON NECT
Figure 2. 8-Lead SOIC (R-8)
1
OUT A
–IN A
2
ADA4000-2
–V
TOP VIEW
3
(Not to Scale)
4
+IN A
Figure 3. 8-Lead SOIC (R-8)
OUT A
1
2
–IN A
+IN A
–V
ADA4000-2
TOP VIEW
3
(Not to Scale)
4
Figure 4. 8-Lead MSOP (RM-8)
1
OUT A
–IN A
2
+IN A
3
ADA4000-4
4
+V
TOP VIEW
+IN B
–IN B
OUT B
(Not to Scale)
5
6
7
Figure 5. 14-Lead SOIC (R-14)
1
OUT A
2
–IN A
3
+IN A
+IN B
–IN B
OUT B
+V
ADA4000-4
TOP VIEW
4
(Not to S cale)
5
6
7
Figure 6. 14-Lead TSSOP (RU-14)
8
7
6
5
5
4
8
7
6
5
8
7
6
5
14
13
12
11
10
14
13
12
11
10
9
8
9
8
V+
–IN
NC
V+
OUT
NC
+V
OUT B
–IN B
+IN B
+V
OUT B
–IN B
+IN B
OUT D
–IN D
+IN D
–V
+IN C
–IN C
OUT C
OUT D
–IN D
+IN D
–V
+IN C
–IN C
OUT C
05791-001
05791-002
05791-027
05791-028
05791-029
05791-030
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description ......................................................................... 1
Pin Configurations ........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings............................................................ 5
Thermal Resistance ...................................................................... 5

REVISION HISTORY

5/07—Revision 0: Initial Version
Power Sequencing.........................................................................5
ESD Caution...................................................................................5
Typical Performance Characteristics..............................................6
Applications..................................................................................... 10
Output Phase Reversal and Input Noise ................................. 10
Capacitive Load Drive ............................................................... 10
Settling Time............................................................................... 11
Outline Dimensions....................................................................... 12
Ordering Guide .......................................................................... 14
Rev. 0 | Page 2 of 16
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

VS = ±15.0 V, VCM = VS/2 V, TA = 25°C, unless otherwise specified.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 0.2 1.70 mV
−40°C TA ≤ +125°C 3.0 mV Input Bias Current IB 5 40 pA
−40°C TA ≤ +85°C 170 pA
−40°C TA ≤ +125°C 4.5 nA Input Offset Current IOS 2 40 pA
−40°C TA ≤ +85°C 80 pA
−40°C TA ≤ +125°C 500 pA Input Voltage Range IVR −11 +15 V Common-Mode Rejection Ratio CMRR −11 V ≤ VCM ≤ +15 V 80 100 dB
−40°C TA ≤ +125°C 100 dB Open-Loop Gain AVO R Offset Voltage Drift ΔVOS/ΔT −40°C TA ≤ +125°C 2 μV/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH R
−40°C TA ≤ +125°C 13.40 V Output Voltage Low VOL R
−40°C TA ≤ +125°C −12.80 V Short-Circuit Current ISC ±28 mA
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±4.0 V to ±18.0 V 82 92 dB Supply Current/Amplifier ISY 1.35 1.65 mA
−40°C TA ≤ +125°C 1.80 mA DYNAMIC PERFORMANCE
Slew Rate SR VI = 10 V, RL = 2 kΩ 20 V/μs Gain Bandwidth Product GBP 5 MHz Phase Margin ΦM 60 Degrees
NOISE PERFORMANCE
Voltage Noise e Voltage Noise Density en f = 1 kHz 16 nV/√Hz Current Noise Density in f = 1 kHz 0.01 pA/√Hz
INPUT IMPEDANCE
Differential Mode (R||C) Common Mode (R||C)
0.1 Hz to 10 Hz 1 μV p-p
n p-p
IN-DIFF
INCM
= 2 kΩ, VO = ±10 V 100 110 dB
L
= 2 kΩ to ground 13.60 13.90 V
L
= 2 kΩ to ground −13.4 −13.0 V
L
10||4 GΩ||pF 103||5.5 GΩ||pF
Rev. 0 | Page 3 of 16
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI
VS = ±5 V, VCM = VS/2 V, TA = 25°C, unless otherwise specified.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 0.20 1.70 mV
−40°C TA ≤ +125°C 3.0 mV Input Bias Current IB 5 40 pA
−40°C TA ≤ +85°C 170 pA
−40°C TA ≤ +125°C 3 nA Input Offset Current IOS 2 40 pA
−40°C TA ≤ +85°C 80 pA
−40°C TA ≤ +125°C 500 pA Input Voltage Range IVR −1.5 +5.0 V Common-Mode Rejection Ratio CMRR −1.5 V ≤ VCM ≤ +3.5 V 72 80 dB
−40°C TA ≤ +125°C 80 dB Open-Loop Gain AVO R Offset Voltage Drift ΔVOS/ΔT −40°C TA ≤ +125°C 2 μV/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH R
−40°C TA ≤ +125°C 3.80 V Output Voltage Low VOL R
−40°C TA ≤ +125°C −3.00 V Short-Circuit Current ISC ±28 mA
POWER SUPPLY
Supply Current/Amplifier ISY 1.25 1.65 mA
−40°C TA ≤ +125°C 1.80 mA DYNAMIC PERFORMANCE
Slew Rate SR VI = 10 V, RL = 2 kΩ 20 V/μs Gain Bandwidth Product GBP 5 MHz Phase Margin ΦM 55 Degrees
NOISE PERFORMANCE
Voltage Noise e Voltage Noise Density en f = 1 kHz 16
Current Noise Density in f = 1 kHz 0.01
INPUT IMPEDANCE
Differential Mode (R||C) Common Mode (R||C)
0.1 Hz to 10 Hz 1 μV p-p
n p-p
IN-DIFF
INCM
= 2 kΩ, VO = ±2.5 V 106 114 dB
L
= 2 kΩ to ground 4.0 4.20 V
L
= 2 kΩ to ground −3.45 −3.20 V
L
nV/Hz pA/Hz
10||4 GΩ||pF 103||5.5 GΩ||pF
Rev. 0 | Page 4 of 16
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage ±18 V Input Voltage ±V supply Differential Input Voltage ±V supply Output Short-Circuit Duration to GND Indefinite Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type θJA θJC Unit
5-Lead TSOT (UJ-5) 172.92 61.76 °C/W 8-Lead SOIC (R-8) 112.38 61.6 °C/W 8-Lead MSOP (RM-8) 141.9 43.7 °C/W 14-Lead SOIC (R-14) 88.2 56.3 °C/W 14-Lead TSSOP (RU-14) 114 23.3 °C/W

POWER SEQUENCING

The op amp supply voltages must be established simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA.

ESD CAUTION

Rev. 0 | Page 5 of 16
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

50
VS = ±15V
45
T
= 25°C
A
V
= 0V
CM
40
35
30
25
20
15
NUMBER OF AMPLIF IERS
10
5
0
–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2. 0
Figure 7. Input Offset Voltage Distribution, V
OFFSET VOLTAGE (mV)
= ±15 V
S
05791-003
50
VS = ±5V
45
T
= 25°C
A
V
= 0V
CM
40
35
30
25
20
15
NUMBER OF AMPLI FIERS
10
5
0
–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
Figure 10. Input Offset Voltage Distribution, V
OFFSET VOLTAGE (mV)
= ±5 V
S
05791-018
18
16
14
12
10
8
6
NUMBER OF AMPLIFIERS
4
2
0
024 68101214161820
Figure 8. Offset Voltage Drift Distribution, V
80
60
40
GAIN (dB)
20
0
TCVOS (µV/°C)
60°
= ±15 V
S
VS = ±15V
T
A
C
L
VS = ±15V
= 25°C = 35pF
180
135
90
45
0
14
12
10
8
6
4
NUMBER OF AMPLIFIERS
2
0
05791-004
024 68101214161820
TCVOS (µV/°C)
Figure 11. Offset Voltage Drift Distribution, V
80
60
40
GAIN (dB)
20
PHASE MARGIN (Degrees)
0
55°
VS = ±5V
= ±5 V
S
VS = ±5V
= 25°C
T
A
= 35pF
C
L
180
135
90
45
0
05791-019
PHASE MARGIN (Deg rees)
–20
1k 100M
10k 100k 1M 10M
FREQUENCY (Hz)
Figure 9. Open-Loop Gain and Phase Margin vs. Frequency, V
–45
= ±15 V
S
05791-010
Rev. 0 | Page 6 of 16
–20
1k 100M
10k 100k 1M 10M
FREQUENCY (Hz)
Figure 12. Open-Loop Gain and Phase Margin vs. Temperature, V
–45
= ±5 V
S
05791-020
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI
120
100
80
CMRR (dB)
60
VS = ±15V T
= 25°C
A
100
VS = ±5V T
= 25°C
A
80
60
CMRR (dB)
40
20
100 10M
1k 10k 100k 1M
FREQUENCY (Hz)
Figure 13. Common-Mode Rejection Ratio vs. Frequency, V
15
10
5
0
VOLTAGE (V)
–5
–10
–15
TIME (1µs/DIV)
Figure 14. Large Signal Transient Response, V
VS = ±15V A
V
R
L
T
A
= ±15 V
S
VS = ±15V C
= 300pF
L
A
= +1
V
T
= 25°C
A
= ±15 V
S
= +1 = 2k = 25°C
40
20
1k 10M
05791-013
Figure 16. Common-Mode Rejection Ratio vs. Frequency, V
4
3
2
1
0
VOLTAGE (V)
–1
–2
–3
05791-015
–4
Figure 17. Large Signal Transient Response, V
10k 100k 1M
FREQUENCY (Hz)
VS = ±5V
= –1
A
V
= 2k
R
L
T
= 25°C
A
TIME (1µs/DIV)
= ±5 V
S
VS = ±5V C
= 300pF
L
A
= +1
V
T
= 25°C
A
= ±5 V
S
05791-021
05791-023
VOLTAGE (20mV/DIV)
TIME (2µs/DIV)
Figure 15. Small Signal Transient Response, V
= ±15 V
S
05791-016
Rev. 0 | Page 7 of 16
VOLTAGE (20mV/DIV)
TIME (2µs/DIV)
Figure 18. Small Signal Transient Response, V
= ±5 V
S
05791-024
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI
3.5
3.0
TA = 25°C
1.40
1.35
TA = 25°C NO LOA D
2.5
2.0
INPUT BIAS CURRENT (pA)
1.5
1.0 ±5 ±15
±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13 ±14
SUPPLY VOLTAGE (V)
Figure 19. Input Bias Current vs. Supply Voltage
10000
1000
100
10
INPUT BIAS CURRENT (pA)
1
0.1 –40
VS = ±15V
VS = ±5V
–25 –10 5 20 35 50 65 80 95 110 125
TEMPERATURE ( °C)
Figure 20. Input Bias Current vs. Temperature
1.30
1.25
1.20
SUPPLY CURRENT (mA)
1.15
1.10 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13 ±14 ±15
05791-006
SUPPLY VOLTAGE (V)
05791-008
Figure 22. Supply Current vs. Supply Voltage
16
VS = ±15V
14
12
10
8
6
OUTPUT VOLTAGE (V)
4
2
0
0 25.0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
05791-005
LOAD CURRENT (mA)
|VOL|
V
OH
|VOL|
V
OH
VS = ±5V
05791-009
Figure 23. Output Voltage vs. Load Current
1.44
1.40
1.36
1.32
1.28
SUPPLY CURRENT (mA)
1.24
1.20 –25 –10 5 20 35 50 65 80 95 110
–40 125
TEMPERATURE (° C)
VS = ±15V
VS = ±5V
Figure 21. Supply Current vs. Temperature
05791-012
Rev. 0 | Page 8 of 16
120
100
80
60
40
PSRR (dB)
20
0
–20
100 10M
PSRR+
1k 10k 100k 1M
FREQUENCY (Hz)
PSRR–
VS = ±5V, ±15V
Figure 24. PSRR vs. Frequency
05791-014
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI
100
VS = ±5V, ±15V T
= 25°C
A
0.6
VS = ±5V, ±15V
0.4
0.2
10
VOLTAGE NOISE DENSITY (nV/Hz)
1
1 10k
10 100 1k
FREQUENCY (Hz)
Figure 25. Voltage Noise Density vs. Frequency
120
100
80
(Ω)
60
OUT
Z
40
Av = +100
20
0
1k 100M
Figure 26. Output Imped
60
VIN = 100mV p-p
= ±5V, ±15V
V
S
50
= 0
R
L
= +1
A
V
40
30
OVERSHOOT (%)
20
Av = +10 Av = +1
10k 100k 1M 10M
FREQUENCY (Hz)
ance vs. Frequency
+OVERSHOOT
–OVERSHOOT
VS = ±15V T
= 25°C
A
0
V p-p (µV)
–0.2
–0.4
–0.6
–4 –3 –2 –1 0 1 2 3 4
–5
05791-026
TIME (S econds)
5
05791-025
Figure 28. 0.1 Hz to 10 Hz Input Voltage Noise
50
AV = +100
40
30
AV = +10
20
10
AV = +1
0
CLOSED-LOOP GAIN (dB)
–10
–20
–30
100 1k 100M
05791-017
10k 100k 1M 10M
FREQUENCY (Hz)
VS = ±5V, ±15V
05791-011
Figure 29. Closed-Loop Gain vs. Frequency
10
0
0600400200
Figure 27. Overshoot v
LOAD CAPACITANCE (pF)
s. Load Capacitance
800 1000
05791-022
Rev. 0 | Page 9 of 16
ADA4000-1/ADA4000-2/ADA4000-4
V
www.BDTIC.com/ADI

APPLICATIONS

OUTPUT PHASE REVERSAL AND INPUT NOISE

Phase reversal is a change of polarity in the transfer function of the amplifier. This can occur when the voltage applied at the input of the amplifier exceeds the maximum common-mode voltage. Phase reversal happens when the part is configured in the gain of 1.
Most JFET amplifiers invert the phase of the input signal if the
put exceeds the common-mode input. Phase reversal is a
in temporary behavior of the ADA4000-x family. Each part returns to normal operation by bringing back the common­mode voltage. The cause of this effect is saturation of the input stage, which leads to the forward-biasing of a drain-gate diode. In noninverting applications, a simple fix for this is to insert a series resistor between the input signal and the noninverting terminal of the amplifier. The value of the resistor depends on the application, because adding a resistor adds to the total input noise of the amplifier. The total noise density of the circuit is
nTOTAL
2
2
()
nn
kTRRiee 4
++=
SS
The advantage of this compensation method is that the swing at the output is not reduced because R
is out of the feedback
S
network, and the gain accuracy does not change. Depending on the capacitive loading of the circuit, the values of R
and CS
S
change, and the optimum value can be determined empirically. In
Figure 31, the oscilloscope image shows the output of the
A4000-x family in response to a 400 mV pulse. The circuit is
AD configured in the unity gain configuration with 500 pF in parallel with 10 kΩ of load capacitive.
INPUT SIGNAL
VOLTAGE (200mV/DIV)
OUTPUT SIGNAL
where:
is the input voltage noise density of the part.
e
n
i
is the input current noise density of the part.
n
is the source resistance at the noninverting terminal.
R
S
k is Boltzmann’s constant (1.38 × 10
−23
J/K).
T is the ambient temperature in Kelvin (T = 273 + °C).
In general, it is good practice to limit the input current to less t
han 5 mA to avoid driving a great deal of current into the
amplifier inputs.

CAPACITIVE LOAD DRIVE

The ADA4000-1/ADA4000-2/ADA4000-4 are stable at all gains in both inverting and noninverting configurations. The parts are capable of driving up to 1000 pF of capacitive loads without oscillations in unity gain configurations.
However, as with most amplifiers, driving larger capacitive loads in a u
nity gain configuration can cause excessive overshoot and ringing. A simple solution to this problem is to use a snubber network (see
400mV p-p
Figure 30).
3
V1
ADA4000-1
2
0
+15
V+
V–
–15V
SNUBBER NETWORK
U1
1
R
S
C
S
C
L
500pF
R
L
10k
TIME (1µs/DIV)
Figure 31. Capacitive Load Drive Without Snubber Network
05791-032
When the snubber circuit is used, the overshoot is reduced from 30% to 6% with the same load capacitance. Ringing is virtually eliminated, as shown in Figure 32. In this circuit, R C
is 10 nF.
S
INPUT SIGNAL
VOLTAGE (200mV/DIV)
Figure 32. Capacitive Load with Snubber Network
OUTPUT SI GNAL
TIME (1µs/DIV)
is 41 Ω and
S
05791-033
0
Figure 30. Snubber Network Configuration
05791-031
Rev. 0 | Page 10 of 16
ADA4000-1/ADA4000-2/ADA4000-4
V
p
www.BDTIC.com/ADI

SETTLING TIME

Settling time is the amount of time it takes the amplifier output to reach and remain within a percentage of its final value. This is an important parameter in data acquisition systems. Because most bipolar DAC converters have current output, an external op amp is required to convert the current to voltage. Therefore, the amplifier settling time plays a role in the total settling time of the output signal. A good approximation for the total settling time is
22
()(
+=
The ADA4000-1/ADA4000-2/ADA4000-4 settle to within 0.1% o
f their final value in less than 1.2 μs. The settling time has been
tested by using the configuration circuit in
10V p-
AMPtDACtTotalt
SSS
V1
)
Figure 34.
3
0
ADA4000-1
10k
2
+15
V+
V–
–15V
10k
1
Figure 34. Settling Time Test Circuit
10k
10k
The input signal is a 10 V pulse and the output is the error
gnal for the settling time shown in
si
200ns/DIV
Figure 33. Settling Time Measurement Using the False Summing Node Method
+15V
8
V+
AD828
V–
4
–15V
1k
20k
Figure 33.
V
OUT
05791-034
5V/DIV
200mV/DIV
05791-035
Rev. 0 | Page 11 of 16
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLL ING DIMENSI ONS ARE IN MILLIM ETERS; INCH DI MENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRI ATE FOR USE IN DES IGN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-A A
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 35. 8-Lead Standard Small Outline Package [SOIC_N]
row Body
Nar
(R-8)
Dimensions shown in millimeters and (inches)
2.90 BSC
54
1.60 BSC
123
PIN 1
*
0.90
0.87
0.84
0.10 MAX
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
1.90
BSC
Figure 36. 5-Lead Thin Small Outline Transistor Package [TSOT]
Dim
2.80 BSC
0.95 BSC
*
0.50
0.30
1.00 MAX
SEATING PLANE
0.20
0.08
(UJ-5)
ensions shown in millimeters
8° 4° 0°
0.60
0.45
0.30
Rev. 0 | Page 12 of 16
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI
0.95
0.85
0.75
0.15
0.00
COPLANARITY
3.20
3.00
2.80
8
5
4
SEATING PLANE
5.15
4.90
4.65
1.10 MAX
0.23
0.08
3.20
3.00
1
2.80
PIN 1
0.65 BSC
0.38
0.22
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
8° 0°
0.80
0.60
0.40
Figure 37. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dim
ensions shown in millimeters
5.10
5.00
4.90
14
4.50
4.40
4.30
PIN 1
1.05
1.00
0.80
0.65 BSC
0.15
0.05
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 38. 14-Lead Standard Small Outline Package [TSSOP]
8
6.40 BSC
71
0.20
1.20
0.09
MAX
0.30 SEATING
0.19 PLANE
COPLANARITY
0.10
(R
U-14)
Dimensions shown in millimeters
8° 0°
0.75
0.60
0.45
8.75 (0.3445)
8.55 (0.3366)
BSC
8
6.20 (0.2441)
5.80 (0.2283)
7
1.75 (0.0689)
1.35 (0.0531)
SEATING PLANE
4.00 (0.1575)
3.80 (0.1496)
0.25 (0.0098)
0.10 (0.0039)
COPLANARIT Y
0.10
CONTROLL ING DIMENSIONS ARE IN MILLI METERS; INCH DIMENSI ONS (IN PARENTHESES) ARE ROUNDED-OFF MI LLIMETER EQUIVALENTS FOR REFERENCE ON LY AND ARE NOT APPROP RIATE FOR USE I N DESIGN.
14
1
1.27 (0.0500)
0.51 (0.0201)
0.31 (0.0122)
COMPLIANT TO JEDEC STANDARDS MS-012-AB
Figure 39. 14-Lead Standard Small Outline Package [SOIC_N]
Dimensions shown in millimeters
Rev. 0 | Page 13 of 16
0.50 (0.0197)
0.25 (0.0098)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
-14)
(R
1.27 (0.0500)
0.40 (0.0157)
45°
060606-A
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI

ORDERING GUIDE

Model Temperature Range Package Description Package Option Branding
ADA4000-1ARZ ADA4000-1ARZ-R7 ADA4000-1ARZ-RL ADA4000-1AUJZ-R21 −40°C to +125°C 5-Lead TSOT UJ-5 A14 ADA4000-1AUJZ-R7 ADA4000-1AUJZ-RL ADA4000-2ARZ ADA4000-2ARZ-R7 ADA4000-2ARZ-RL ADA4000-2ARMZ-R2 ADA4000-2ARMZ-RL ADA4000-4ARZ ADA4000-4ARZ-R7 ADA4000-4ARZ-RL ADA4000-4ARUZ1 −40°C to +125°C 14-Lead TSSOP RU-14 ADA4000-4ARUZ-RL
1
Z = RoHS Compliant Part.
1
1
1
1
1
1
1
1
1
1
1
1
−40°C to +125°C 8-Lead SOIC_N R-8
−40°C to +125°C 8-Lead SOIC_N R-8
−40°C to +125°C 8-Lead SOIC_N R-8
−40°C to +125°C 5-Lead TSOT UJ-5 A14
−40°C to +125°C 5-Lead TSOT UJ-5 A14
−40°C to +125°C 8-Lead SOIC_N R-8
−40°C to +125°C 8-Lead SOIC_N R-8
−40°C to +125°C 8-Lead SOIC_N R-8
1
−40°C to +125°C 8-Lead MSOP RM-8 A1H
1
−40°C to +125°C 8-Lead MSOP RM-8 A1H
−40°C to +125°C 14-Lead SOIC_N R-14
−40°C to +125°C 14-Lead SOIC_N R-14
−40°C to +125°C 14-Lead SOIC_N R-14
−40°C to +125°C 14-Lead TSSOP RU-14
Rev. 0 | Page 14 of 16
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI
NOTES
Rev. 0 | Page 15 of 16
ADA4000-1/ADA4000-2/ADA4000-4
www.BDTIC.com/ADI
NOTES
©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05791-0-5/07(0)
Rev. 0 | Page 16 of 16
Loading...