Analog Devices AD9887A Datasheet

T
Flat Panel Displays
AD9887A
FEATURES Analog Interface 170 MSPS Maximum Conversion Rate Programmable Analog Bandwidth
0.5 V to 1.0 V Analog Input Range 500 ps p-p PLL Clock Jitter at 170 MSPS
3.3 V Power Supply Full Sync Processing Midscale Clamping 4:2:2 Output Format Mode
Digital Interface DVI 1.0 Compatible Interface 170 MHz Operation (2 Pixel/Clock Mode) High Skew Tolerance of 1 Full Input Clock Sync Detect for “Hot Plugging” Supports High Bandwidth Digital Content Protection
APPLICATIONS RGB Graphics Processing LCD Monitors and Projectors Plasma Display Panels Scan Converters Micro Displays Digital TVs

GENERAL DESCRIPTION

The AD9887A offers designers the flexibility of an analog interface and digital visual interface (DVI) receiver integrated on a single chip. Also included is support for High Bandwidth Digital Content Protection (HDCP). The AD9887A is software and pin-to-pin compatible with the AD9887.

Analog Interface

The AD9887A is a complete 8-bit 170 MSPS monolithic analog interface optimized for capturing RGB graphics signals from personal computers and workstations. Its 170 MSPS encode rate capability and full-power analog bandwidth of 330 MHz supports resolutions up to UXGA (1600 × 1200 at 60 Hz).
The analog interface includes a 170 MHz triple ADC with internal 1.25 V reference, a phase-locked loop (PLL), and pro­grammable gain, offset, and clamp control. The user provides only a 3.3 V power supply, analog input, and HSYNC. Three­state CMOS outputs may be powered from 2.5 V to 3.3 V.
The AD9887As on-chip PLL generates a pixel clock from HSYNC. Pixel clock output frequencies range from 12 MHz to 170 MHz. PLL clock jitter is typically 500 ps p-p at 170 MSPS. The AD9887A also offers full sync processing for composite sync and sync-on-green (SOG) applications.
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

FUNCTIONAL BLOCK DIAGRAM

REFIN
R
AIN
G
AIN
B
AIN
HSYNC VSYNC COAST CLAMP
CKINV
CKEXT
FILT
SOGIN
SCL
SDA
Rx0+
Rx0–
Rx1+
Rx1–
Rx2+
Rx2–
RxC+
RxC–
R
TERM
DDCSCL DDCSDA
MCL
MDA
ANALOG INTERFACE
A
1
A
0
CLAMP
CLAMP
CLAMP
SYNC
PROCESSING
AND CLOCK
GENERATION
SERIAL REGISTER
POWER MANAGEMENT

DIGITAL INTERFACE

DVI
RECEIVER
HDCP
A/D
A/D
A/D
AND
REF
R
OUTA
8
8
8
8
8
8
8
2
R
OUTB
8
G
OUTA
8
G
OUTB
8
B
8
OUTA
B
OUTB
8
DATACK
2
HSOUT
VSOUT
SOGOUT
S
CDT
R
OUTA
8
R
8
OUTB
G
OUTA
8
G
8
OUTB
B
8
OUTA
B
8
OUTB
DATACK
DE
HSOUT
VSOUT
REFOUT
8
R
OUTA
8
R
OUTB
8
G
OUTA
8
M
G U X E S
OUTB
8
B
OUTA
8
B
OUTB
2
DATACK
HSOUT
VSOUT
SOGOU
DE
AD9887A
Digital Interface
The AD9887A contains a DVI 1.0 compatible receiver and supports display resolutions up to UXGA (1600 1200 at 60 Hz). The receiver operates with true color (24-bit) panels in 1 or 2 pixel(s)/clock mode and features an intrapair skew tolerance of up to one full clock cycle.
With the inclusion of HDCP, displays may now receive encrypted video content. The AD9887A allows for authentication of a video receiver, decryption of encoded data at the receiver, and renewability of that authentication during transmission as specified by the HDCP v1.0 protocol.
Fabricated in an advanced CMOS process, the AD9887A is provided in a 160-lead MQFP surface-mount plastic package and is specified over the 0°C to 70°C temperature range.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.
AD9887A
TABLE OF CONTENTS
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . 1
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . 1
Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
ANALOG INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
DIGITAL INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . 7
EXPLANATION OF TEST LEVELS . . . . . . . . . . . . . . . . . 7
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DESCRIPTIONS OF PINS SHARED BETWEEN
ANALOG AND DIGITAL INTERFACES . . . . . . . . . . . . 10
Serial Port (2-Wire) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Various . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SCAN Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
PIN FUNCTION DETAILS (ANALOG INTERFACE) . . 11
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THEORY OF OPERATION (INTERFACE DETECTION)13
Active Interface Detection and Selection . . . . . . . . . . . . . 13
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
THEORY OF OPERATION AND DESIGN GUIDE
(ANALOG INTERFACE) . . . . . . . . . . . . . . . . . . . . . . . . . 15
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Input Signal Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
HSYNC, VSYNC Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 15
Serial Control Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output Signal Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
RGB Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
YUV Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Gain and Offset Control . . . . . . . . . . . . . . . . . . . . . . . . . 16
Sync-on-Green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Scan Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Alternate Pixel Sampling Mode . . . . . . . . . . . . . . . . . . . . 19
Timing (Analog Interface) . . . . . . . . . . . . . . . . . . . . . . . . 20
Hsync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Coast Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DIGITAL INTERFACE PIN DESCRIPTIONS . . . . . . . . 25
Digital Video Data Inputs . . . . . . . . . . . . . . . . . . . . . . . . 25
Digital Clock Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Termination Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
THEORY OF OPERATION (DIGITAL INTERFACE) . . 25
Capturing of the Encoded Data . . . . . . . . . . . . . . . . . . . . 25
Data Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Special Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Channel Resynchronization . . . . . . . . . . . . . . . . . . . . . . . 25
Data Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
HDCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
GENERAL TIMING DIAGRAMS
(DIGITAL INTERFACE) . . . . . . . . . . . . . . . . . . . . . . . . . 27
TIMING MODE DIAGRAMS (DIGITAL INTERFACE) 27
2-Wire Serial Register Map . . . . . . . . . . . . . . . . . . . . . . . . . 28
2-WIRE SERIAL CONTROL REGISTER DETAIL . . . . . 32
CHIP IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . 32
PLL DIVIDER CONTROL . . . . . . . . . . . . . . . . . . . . . . . . 32
CLOCK GENERATOR CONTROL . . . . . . . . . . . . . . . . . 32
CLAMP TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INPUT GAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INPUT OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
MODE CONTROL 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
MODE CONTROL 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
SYNC DETECTION AND CONTROL . . . . . . . . . . . . . . 36
DIGITAL CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CONTROL BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2-Wire Serial Control Port . . . . . . . . . . . . . . . . . . . . . . . . 39
Data Transfer via Serial Interface . . . . . . . . . . . . . . . . . . . 39
Serial Interface Read/Write Examples . . . . . . . . . . . . . . . 40
THEORY OF OPERATION (SYNC PROCESSING) . . . . 40
Sync Stripper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Sync Seperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
PCB LAYOUT RECOMMENDATIONS . . . . . . . . . . . . . 41
Analog Interface Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Digital Interface Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . 42
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Outputs (Both Data and Clocks) . . . . . . . . . . . . . . . . . . . 42
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 43
TABLE INDEX
Table I. Complete Pinout List . . . . . . . . . . . . . . . . . . . . . . . . 9
Table II. Analog Interface Pin List . . . . . . . . . . . . . . . . . . . 11
Table III. Interface Selection Controls . . . . . . . . . . . . . . . . 14
Table IV. Power-Down Mode Descriptions . . . . . . . . . . . . . 14
Table V. VCO Frequency Ranges . . . . . . . . . . . . . . . . . . . . 17
Table VI. Charge Pump Current/Control Bits . . . . . . . . . . . 17
Table VII. Recommended VCO Range and Charge Pump
Current Settings for Standard Display Formats . . . . . . . . . . 18
Table VIII. Digital Interface Pin List . . . . . . . . . . . . . . . . . . 24
Table IX. Control Register Map . . . . . . . . . . . . . . . . . . . . . 28
Table X. VCO Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table XI. Charge Pump Currents . . . . . . . . . . . . . . . . . . . . 32
Table XII. Channel Mode Settings . . . . . . . . . . . . . . . . . . . 33
Table XIII. Output Mode Settings . . . . . . . . . . . . . . . . . . . 33
Table XIV. Output Port Settings . . . . . . . . . . . . . . . . . . . . . 33
Table XV. HSYNC Output Polarity Settings . . . . . . . . . . . 34
Table XVI. VSYNC Output Polarity Settings . . . . . . . . . . . 34
Table XVII. HSNYC Input Polarity Settings . . . . . . . . . . . 34
Table XVIII. COAST Input Polarity Settings . . . . . . . . . . . 34
Table XIX. Clamp Input Signal Source Settings . . . . . . . . . 34
Table XX. CLAMP Input Signal Polarity Settings . . . . . . . 34
Table XXI. External Clock Select Settings . . . . . . . . . . . . . 34
Table XXII. Red Clamp Select Settings . . . . . . . . . . . . . . . 35
Table XXIII. Green Clamp Select Settings . . . . . . . . . . . . . 35
Table XXIV. Blue Clamp Select Settings . . . . . . . . . . . . . . 35
Table XXV. Clock Output Invert Settings . . . . . . . . . . . . . . 35
Table XXVI. Pix Select Settings . . . . . . . . . . . . . . . . . . . . . 35
Table XXVII. Output Drive Strength Settings . . . . . . . . . . 35
Table XXVIII. Power-Down Output Settings . . . . . . . . . . . 35
REV. 0–2–
TABLE INDEX (continued)
Table XXIX. Sync Detect Polarity Settings . . . . . . . . . . . . . 35
Table XXX. HSYNC Detection Results . . . . . . . . . . . . . . . 36
Table XXXI. Sync-on-Green Detection Results . . . . . . . . . 36
Table XXXII. VSYNC Detection Results . . . . . . . . . . . . . . 36
Table XXXIII. Digital Interface Clock Detection Results . . 36
Table XXXIV. Active Interface Results . . . . . . . . . . . . . . . . 36
Table XXXV. Active HSYNC Results . . . . . . . . . . . . . . . . . 36
Table XXXVI. Active VSYNC Results . . . . . . . . . . . . . . . . 37
Table XXXVII. Active Interface Override Settings . . . . . . . 37
Table XXXVIII. Active Interface Select Settings . . . . . . . . . 37
Table XXXIX. Active Hsync Override Settings . . . . . . . . . . 37
Table XL. Active HSYNC Select Settings . . . . . . . . . . . . . . 37
Table XLI. Active VSYNC Override Settings . . . . . . . . . . . 37
Table XLII. Active VSYNC Select Settings . . . . . . . . . . . . . 37
Table XLIII. COAST Select Settings . . . . . . . . . . . . . . . . . 37
Table XLIV. Power-Down Settings . . . . . . . . . . . . . . . . . . . 37
Table XLV. Scan Enable Settings . . . . . . . . . . . . . . . . . . . . 38
Table XLVI. Coast Input Polarity Override Settings . . . . . . 38
Table XLVII. HSYNC Input Polarity Override Settings . . . 38 Table XLVIII. Detected HSYNC Input Polarity Status . . . 38
Table XLIX. Detected VSYNC Input Polarity Status . . . . . 38
Table L. Detected Coast Input Polarity Status . . . . . . . . . . 38
Table LI. 4:2:2 Input/Output Configuration . . . . . . . . . . . . 39
Table LII. 4:2:2 Output Mode Select . . . . . . . . . . . . . . . . . 39
Table LIII. Serial Port Addresses . . . . . . . . . . . . . . . . . . . . 39
Table LIV. Control of the Sync Block Muxes via the Serial
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
AD9887A
REV. 0
–3–
AD9887A–SPECIFICATIONS

ANALOG INTERFACE

(VD = 3.3 V, VDD = 3.3 V, ADC Clock = Maximum Conversion Rate, unless otherwise noted.)
Test AD9887AKS-100 AD9887AKS-140 AD9887AKS-170
Parameter Temp Level Min Typ Max Min Typ Max Min Typ Max Unit
RESOLUTION 8 8 8 Bits
DC ACCURACY
Differential Nonlinearity 25°CI ± 0.5 +1.15/–1.0 ±0.5 +1.25/–1.0 ±0.8 +1.25/–1.0 LSB
Full VI +1.15/–1.0 +1.25/–1.0 +1.50/–1.0 LSB
Integral Nonlinearity 25°CI ± 0.5 ±1.40 ± 0.5 ±1.4 ± 1.0 ±2.25 LSB
Full VI ± 1.75 ± 2.5 ± 2.75 LSB
No Missing Codes 25°CI Guaranteed Guaranteed Guaranteed
ANALOG INPUT
Input Voltage Range
Minimum Full VI 0.5 0.5 0.5 V p-p
Maximum Full VI 1.0 1.0 1.0 V p-p Gain Tempco 25°CV 135 150 150 ppm/°C Input Bias Current 25°CIV 111µA
Full IV 1 1 1 µA Input Full-Scale Matching Full VI 8.0 8.0 8.0 % FS Offset Adjustment Range Full VI 43 48 53 43 48 53 43 48 53 % FS
REFERENCE OUTPUT
Output Voltage Full V 1.3 1.3 1.3 V
Temperature Coefficient Full V 90 90 90 ppm/°C
SWITCHING PERFORMANCE
1
Maximum Conversion Rate Full VI 100 140 170 MSPS Minimum Conversion Rate Full IV 10 10 10 MSPS Clock to Data Skew, t
SKEW
Full IV –1.5 +2.5 –1.5 +2.5 –1.5 +2.5 ns Serial Port Timing
t
BUFF
t
STAH
t
DHO
t
DAL
t
DAH
t
DSU
t
STASU
t
STOSU
Full VI 4.7 4.7 4.7 µs
Full VI 4.0 4.0 4.0 µs
Full VI 0 0 0 µs
Full VI 4.7 4.7 4.7 µs
Full VI 4.0 4.0 4.0 µs
Full VI 250 250 250 ns
Full VI 4.7 4.7 4.7 µs
Full VI 4.0 4.0 4.0 µs HSYNC Input Frequency Full IV 15 110 15 110 15 110 kHz Maximum PLL Clock Rate Full VI 100 140 170 MHz Minimum PLL Clock Rate Full IV 12 12 12 MHz PLL Jitter 25°CIV 500 700
Full IV 1000 Sampling Phase Tempco Full IV
10 10 10 ps/°C
2
2
440 650
700
3
3
370 500
700
4
4
ps p-p ps p-p
DIGITAL INPUTS
Input Voltage, High (VIH) Full VI 2.6 2.6 2.6 V Input Voltage, Low (VIL) Full VI 0.8 0.8 0.8 V Input Current, High (V
) Full IV –1.0 –1.0 –1.0 µA
IH
Input Current, Low (VIL) Full IV +1.0 +1.0 +1.0 µA Input Capacitance 25°CV 333pF
DIGITAL OUTPUTS
Output Voltage, High (VOH) Full VI 2.4 2.4 2.4 V Output Voltage, Low (V
) Full VI 0.4 0.4 0.4 V
OL
Duty Cycle
DATACK, DATACK Full IV 45 55 60 45 55 60 45 55 65 %
Output Coding Binary Binary Binary
REV. 0–4–
AD9887A
Test AD9887AKS-100 AD9887AKS-140 AD9887AKS-170
Parameter Temp Level Min Typ Max Min Typ Max Min Typ Max Unit
POWER SUPPLY
VD Supply Voltage Full IV 3.15 3.3 3.45 3.15 3.3 3.45 3.15 3.3 3.45 V V
Supply Voltage Full IV 2.2 3.3 3.45 2.2 3.3 3.45 2.2 3.3 3.45 V
DD
Supply Voltage Full IV 3.15 3.3 3.45 3.15 3.3 3.45 3.15 3.3 3.45 V
P
VD
ID Supply Current (VD)25°CV 140 155 230 mA I
Supply Current (VDD)
DD
Supply Current (PVD)25°CV 15 16 60 mA
IP
VD
Total Supply Current Power-Down Supply Current Full VI 90 120 90 120 90 120 mA
DYNAMIC PERFORMANCE
Analog Bandwidth, Full Power 25°CV 330 330 330 MHz Transient Response 25°CV 222ns Overvoltage Recovery Time 25°CV 1.5 1.5 1.5 ns Signal-to-Noise Ratio (SNR)
= 40.7 MHz
f
IN
Crosstalk Full V 60 60 60 dBc
THERMAL CHARACTERISTICS
θJA Junction-to-Ambient
Thermal Resistance
NOTES
1
Drive Strength = 11.
2
VCO Range = 01, Charge Pump Current = 001, PLL Divider = 1693.
3
VCO Range = 10, Charge Pump Current = 110, PLL Divider = 1600.
4
VCO Range = 11, Charge Pump Current = 110, PLL Divider = 2159.
5
DEMUX = 1, DATACK and DATACK Load = 10 pF, Data Load = 5 pF.
6
Using external pixel clock.
7
Simulated typical performance with package mounted to a 4-layer board.
Specications subject to change without notice.
5
5
7
25°CV 34 48 55 mA
Full VI 300 330 335 360 345 390 mA
6
25°CV 46 46 45 dB
V37 3737°C/W
REV. 0
–5–
AD9887A–SPECIFICATIONS

DIGITAL INTERFACE

(VD = 3.3 V, VDD = 3.3 V, Clock = Maximum.)
Test AD9887AKS
Parameter Conditions Temp Level Min Typ Max Unit
RESOLUTION 8Bits
DC DIGITAL I/O SPECIFICATIONS
High Level Input Voltage (V Low Level Input Voltage (V High Level Output Voltage (V Low Level Output Voltage (V Input Clamp Voltage (V Input Clamp Voltage (V Output Clamp Voltage (V Output Clamp Voltage (V
)
IH
)
IL
)
OH
)
OL
)(I
CINL
)(I
CIPL
)(I
CONL
)(I
COPL
= –18 mA) IV GND – 0.8 V
CL
= +18 mA) IV VDD + 0.8 V
CL
= –18 mA) IV GND – 0.8 V
CL
= +18 mA) IV VDD + 0.8 V
CL
Output Leakage Current (IOL)(High Impedance)
Full Full Full Full
Full
VI 2.6 V VI 0.8 V VI 2.4 V VI 0.4 V
IV –10 +10 µA
DC SPECIFICATIONS
Output High Drive Output Drive = High
) (V
(I
OHD
= VOH) Output Drive = Med
OUT
Output Drive = Low
Output Drive = High
(I
) (V
OLD
= VOL) Output Drive = Med
OUT
Output Drive = Low
Output Drive = High
) (V
(V
OHC
= VOH) Output Drive = Med
OUT
Output Drive = Low
DATACK Low Drive Output Drive = High
) (V
(V
OLC
= VOL) Output Drive = Med
OUT
Output Drive = Low
Differential Input Voltage Single-Ended Amplitude
Full Full Full
Full Full Full
Full Full Full
Full Full Full Full
IV 13 mA IV 8 mA IV 5 mA
IV –9mA IV –7mA IV –5mA
IV 25 mA IV 12 mA IV 8 mA
IV –25 mA IV –19 mA IV –8mA IV 75 800 mV
POWER SUPPLY
V
Supply Voltage
D
Supply Voltage Minimum Value for 2 Pixels per
V
DD
Clock Mode
P
Supply Voltage
VD
Supply Current
I
D
Supply Current
I
DD
IP
Supply Current
VD
Total Supply Current with HDCP
1
1, 2
1
1, 2
AC SPECIFICATIONS
Intrapair (+ to –) Differential Input Skew (T
Channel-to-Channel Differential Input Skew (T
DPS
)
)
CCS
Low-to-High Transition Time for Data and Output Drive = High; C
Controls (D
) Output Drive = Med; CL = 7 pF
LHT
Output Drive = Low; C
Low-to-High Transition Time for DATACK (D
) Output Drive = High; CL = 10 pF
LHT
Output Drive = Med; C Output Drive = Low; C
High-to-Low Transition Time for Data (D
) Output Drive = High; CL = 10 pF
HLT
Output Drive = Med; C Output Drive = Low; CL = 5 pF
= 10 pF
L
= 5 pF
L
= 7 pF
L
= 5 pF
L
= 7 pF
L
Full
Full Full 25°C 25°C 25°C
Full Full
Full Full Full
Full Full Full
Full Full Full
IV 3.15 3.3 3.45 V
IV 2.2 3.3 3.45 V IV 3.15 3.3 3.45 V V 350 mA V40 mA IV 130 mA VI 520 560 mA
IV 360 ps IV 1.0
Clock
Period IV 2.5 ns IV 3.1 ns IV 5.4 ns
IV 1.2 ns IV 1.6 ns IV 2.3 ns
IV 2.6 ns IV 3.0 ns IV 3.7 ns
REV. 0–6–
AD9887A
Test AD9887AKS
Parameter Conditions Temp Level Min Typ Max Unit
AC SPECIFICATIONS (continued)
High-to-Low Transition Time for DATACK (D
Clock to Data Skew, t Duty Cycle, DATACK, DATACK
DATACK Frequency (f DATACK Frequency (f
NOTES
1
The typical pattern contains a gray scale area, Output Drive = High.
2
DATACK and DATACK Load = 10 pF, Data Load = 5 pF, HDCP disabled.
3
Drive Strength = 11
Specifications subject to change without notice.
3
SKEW
) (1 Pixel/Clock)
CIP
) (2 Pixels/Clock)
CIP
3
) Output Drive = High; CL =10 pF
HLT
Output Drive = Med; C Output Drive = Low; C
L
= 5 pF
L
= 7 pF
Full Full Full Full Full
Full Full
IV 1.4 ns IV 1.6 ns IV 2.4 ns IV 0 4.0 ns IV 45 55 % of
Period
High VI 20 140 MHz IV 10 85 MHz

ABSOLUTE MAXIMUM RATINGS*

VD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 V
DD
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
VREF IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
to 0.0 V
D
to 0.0 V
D
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V to 0.0 V
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA
Operating Temperature . . . . . . . . . . . . . . . . . . –25°C to +85°C
Storage Temperature . . . . . . . . . . . . . . . . . . – 65°C to +150°C
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . . 150°C
*Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specication is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
Test Level Explanation
I 100% production tested. II 100% production tested at 25°C and sample
III Sample tested only. IV Parameter is guaranteed by design and charac-
V Parameter is a typical value only. VI 100% production tested at 25°C; guaranteed

EXPLANATION OF TEST LEVELS

tested at specied temperatures.
terization testing.
by design and characterization testing.

ORDERING GUIDE

Max Speed (MHz) Temperature Package Package
Model Analog DVI Range Description Option
AD9887AKS-170 170 170 0°C to 70°CMetric Quad Flatpack S-160 AD9887AKS-140 140 140 0°C to 70°CMetric Quad Flatpack S-160 AD9887AKS-100 100 100 0°C to 70°CMetric Quad Flatpack S-160 AD9887A/PCB 25°CEvaluation Board
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9887A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
REV. 0
–7–
AD9887A
V
GND GREEN A<7> GREEN A<6> GREEN A<5> GREEN A<4> GREEN A<3> GREEN A<2> GREEN A<1> GREEN A<0>
V
GND GREEN B<7> GREEN B<6> GREEN B<5> GREEN B<4> GREEN B<3> GREEN B<2> GREEN B<1> GREEN B<0>
V
GND
BLUE A<7> BLUE A<6> BLUE A<5> BLUE A<4> BLUE A<3> BLUE A<2> BLUE A<1> BLUE A<0>
V
GND
BLUE B<7> BLUE B<6> BLUE B<5> BLUE B<4> BLUE B<3> BLUE B<2> BLUE B<1> BLUE B<0>

PIN CONFIGURATION

D
DD
RED B<0>
RED B<1>
RED B<2>
RED B<3>
RED B<4>
RED B<5>
160
159
158
157
156
155
1
DD
DD
DD
DD
PIN 1
2
IDENTIFIER
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
RED B<6>
RED B<7>
GND
154
153
152
V
RED A<0>
151
150
RED A<1>
RED A<2>
RED A<3>
149
147
148
RED A<4>
RED A<5>
146
145
DD
V
RED A<6>
RED A<7>
GND
144
143
142
141
AD9887A
TOP VIEW
(Not to Scale)
SOGOUT
HSOUT
VSOUT
140
139
138
DE
137
136
CDT
S
DATACK
DATACK
GND
135
133
134
V
132
DD
GND
GND
SCANINGND
131
130
129
128
V
REFOUT
127
126
DVD
V
REFIN
125
124
123
GND
122
GND
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98 97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
R
MIDSC
R
AIN
R
CLAMP
V
D
GND V
D
V
D
GND GND G
MIDSC
G
AIN
G
CLAMP
SOGIN V
D
GND V
D
V
D
GND GND B
MIDSC
B
AIN
B
CLAMP
V
D
GND V
D
GND CKINV CLAMP SDA SCL A0 A1 PV
D
PV
D
GND GND COAST CKEXT HSYNC VSYNC
V
V
V
V
V
V
41
GND
42
GND
434445
DD
V
GND
OUT
SCAN
46
CTL0
47
CTL1
484950
MCL
CTL2
51
V
CLK
SCAN
61
Rx1+
Rx1–
GND
62
Rx0+
636465
GND
Rx0–
RxC+
66
67
V
RxC–
52
535455
56
585960
TERM
VDV
D
Rx2+
57
Rx2–
GND
D
GND
R
686970
DVD
GND
D
V
71
72
MDA
DDCSDA
737475
PV
GND
DDCSCL
76
787980
77
D
D
D
PV
PV
FILT
GND
GND
REV. 0–8–
AD9887A
Table I. Complete Pinout List
Pin Pin Pin Type Mnemonic Function Value Number Interface
Analog Video R Inputs G
AIN
AIN
B
AIN
External HSYNC Horizontal SYNC Input 3.3 V CMOS 82 Analog Sync/Clock VSYNC Vertical SYNC Input 3.3 V CMOS 81 Analog Inputs SOGIN Input for Sync-on-Green 0.0 V to 1.0 V 108 Analog
CLAMP Clamp Input (External CLAMP Signal) 3.3 V CMOS 93 Analog COAST PLL COAST Signal Input 3.3 V CMOS 84 Analog CKEXT External Pixel Clock Input (to Bypass the PLL) to V CKINV ADC Sampling Clock Invert 3.3 V CMOS 94 Analog
Sync Outputs HSOUT HSYNC Output Clock (Phase-Aligned with DATACK) 3.3 V CMOS 139 Both
VSOUT VSYNC Output Clock 3.3 V CMOS 138 Both SOGOUT Composite Sync 3.3 V CMOS 140 Analog
Voltage REFOUT Internal Reference Output (Bypass with 0.1 µF to Ground) 1.25 V 126 Analog Reference REFIN Reference Input (1.25 V ± 10%) 1.25 V ± 10% 125 Analog
Clamp Voltages R
VRed Channel Midscale Clamp Voltage Output 120 Analog
MIDSC
R
VRed Channel Midscale Clamp Voltage Input 0.0 V to 0.75 V 118 Analog
CLAMP
G
VGreen Channel Midscale Clamp Voltage Output 111 Analog
MIDSC
VGreen Channel Midscale Clamp Voltage Input 0.0 V to 0.75 V 109 Analog
G
CLAMP
B
VBlue Channel Midscale Clamp Voltage Output 101 Analog
MIDSC
B
VBlue Channel Midscale Clamp Voltage Input 0.0 V to 0.75 V 99 Analog
CLAMP
PLL Filter FILT Connection for External Filter Components for Internal PLL 78 Analog
Power Supply V
V PV
D
DD
D
GND Ground 0 V Both
Serial Port SDA Serial Port Data I/O 3.3 V CMOS 92 Both (2-Wire SCL Serial Port Data Clock (100 kHz Max) 3.3 V CMOS 91 Both Serial Interface) A0 Serial Port Address Input 1 3.3 V CMOS 90 Both
A1 Serial Port Address Input 2 3.3 V CMOS 89 Both
Data Outputs Red B[7:0] Port B/Odd Outputs of Converter Red,” Bit 7 Is the MSB 3.3 V CMOS 153–160 Both
Green B[7:0] Port B/Odd Outputs of Converter Green,” Bit 7 Is the MSB 3.3 V CMOS 13–20 Both Blue B[7:0] Port B/Odd Outputs of Converter Blue,Bit 7 Is the MSB 3.3 V CMOS 33–40 Both Red A[7:0] Port A/Even Outputs of Converter “Red,” Bit 7 Is the MSB 3.3 V CMOS 143–150 Both Green A[7:0] Port A/Even Outputs of Converter Green,” Bit 7 Is the MSB 3.3 V CMOS 3–10 Both Blue A[7:0] Port A/Even Outputs of Converter “Blue,” Bit 7 Is the MSB 3.3 V CMOS 23–30 Both
Data Clock DATACK Data Output Clock for the Analog and Digital Interface 3.3 V CMOS 134 Both Outputs DATACK Data Output Clock Complement for the Analog Interface Only 3.3 V CMOS 135 Both
Sync Detect S
Scan Function SCAN
CDT
SCAN SCAN
IN
OUT
CLK
Digital Video Rx0+ Digital Input Channel 0 True 62 Digital Data Inputs Rx0– Digital Input Channel 0 Complement 63 Digital
Rx1+ Digital Input Channel 1 True 59 Digital Rx1– Digital Input Channel 1 Complement 60 Digital Rx2+ Digital Input Channel 2 True 56 Digital Rx2– Digital Input Channel 2 Complement 57 Digital
Analog Input for Converter R 0.0 V to 1.0 V 119 Analog Analog Input for Converter G 0.0 V to 1.0 V 110 Analog Analog Input for Converter B 0.0 V to 1.0 V 100 Analog
or Ground 3.3 V CMOS 83 Analog
DD
Analog Power Supply 3.3 V ± 10% Both Output Power Supply 3.3 V ± 10% Both PLL Power Supply 3.3 V ± 10% Both
Sync Detect Output 3.3 V CMOS 136 Both
Input for SCAN Function 3.3 V CMOS 129 Both Output for SCAN Function 3.3 V CMOS 45 Both Clock for SCAN Function 3.3 V CMOS 50 Both
REV. 0
–9–
AD9887A
P
in Pin Pin
Type Mnemonic Function Value Number Interface
Digital Video RxC+ Digital Data Clock True 65 Digital Clock Inputs RxC– Digital Data Clock Complement 66 Digital
Data Enable DE Data Enable 3.3 V CMOS 137 Digital
Control Bits CTL[0:2] Decoded Control Bits 3.3 V CMOS 46–48 Digital
R
TERM
HDCP DDCSCL HDCP Slave Serial Port Data Clock 3.3 V CMOS 73 Digital
R
TERM
DDCSDA HDCP Slave Serial Port Data I/O 3.3 V CMOS 72 Digital MCL HDCP Master Serial Port Data Clock 3.3 V CMOS 49 Digital MDA HDCP Master Serial Port Data I/O 3.3 V CMOS 71 Digital
Sets Internal Termination Resistance 53 Digital

DESCRIPTIONS OF PINS SHARED BETWEEN ANALOG AND DIGITAL INTERFACES

HSOUT Horizontal Sync Output
A reconstructed and phase-aligned version of the video HSYNC. The polarity of this output can be controlled via a serial bus bit. In analog interface mode, the placement and duration are variable. In digital interface mode, the placement and duration are set by the graphics transmitter.
VSOUT Vertical Sync Output
The separated VSYNC from a composite signal or a direct pass through of the VSYNC input. The polarity of this output can be con­trolled via a serial bus bit. The placement and duration in all modes is set by the graphics transmitter.

Serial Port (2-Wire)

SDA Serial Port Data I/O SCL Serial Port Data Clock A0 Serial Port Address Input 1 A1 Serial Port Address Input 2
For a full description of the 2-wire serial regis­ter and how it works, refer to the Control Register section.

Data Outputs

RED A Data Output, Red Channel, Port A/Even RED B Data Output, Red Channel, Port B/Odd GREEN A Data Output, Green Channel, Port A/Even GREEN B Data Output, Green Channel, Port B/Odd BLUE A Data Output, Blue Channel, Port A/Even BLUE B Data Output, Blue Channel, Port B/Odd
The main data outputs. Bit 7 is the MSB. These outputs are shared between the two interfaces and behave according to which interface is active. Refer to the sections on the two interfaces for more information on how these outputs behave.

Data Clock Outputs

DATACK Data Output Clock DATACK Data Output Clock Complement
Just like the data outputs, the data clock outputs are shared between the two interfaces. They also behave differently depending on which interface is active. Refer to the sections on the two interfaces to determine how these pins behave.

Various

S
CDT
Chip Active/Inactive Detect Output
The logic for the S
pin is [analog interface
CDT
HSYNC detection] OR [digital interface DE detection]. So, the S
pin will switch to logic
CDT
LOW under two conditions, when neither interface is active or when the chip is in full chip power-down mode. The data outputs are automatically three-stated when S This pin can be read by a controller in order to determine periods of inactivity.

SCAN Function

SCAN
IN
Data Input for SCAN Function
Data can be loaded serially into the 48-bit SCAN register through this pin, clocking it in with the SCAN
pin. It then comes out of
CLK
the 48 data outputs in parallel. This function is useful for loading known data into a graphics controller chip for testing purposes.
SCAN
OUT
Data Output for SCAN Function
The data in the 48-bit SCAN register can be read through this pin. Data is read on a FIFO basis and is clocked via the SCAN
SCAN
CLK
Data Clock for SCAN Function
This pin clocks the data through the SCAN register. It controls both data input and data output.
is LOW.
CDT
pin.
CLK
REV. 0–10–
AD9887A
Table II. Analog Interface Pin List
Pin Pin Pin Type
Analog Video Inputs R
External HSYNC Horizontal SYNC Input 3.3 V CMOS 82
Sync/Clock SOGIN Sync-on-Green Input 0.0 V to 1.0 V 108 Inputs CLAMP Clamp Input (External CLAMP Signal) 3.3 V CMOS 93
Sync Outputs HSOUT HSYNC Output (Phase-Aligned with DATACK and DATACK) 3.3 V CMOS 139
Voltage Reference REFOUT Internal Reference Output (bypass with 0.1 µF to ground) 1.25 V 126
Clamp Voltages R
PLL Filter FILT Connection for External Filter Components for Internal PLL 78 Power Supply V
Mnemonic
AIN
G
AIN
B
AIN
Function Value Number
Analog Input for Converter R 0.0 V to 1.0 V 119 Analog Input for Converter G 0.0 V to 1.0 V 110 Analog Input for Converter B 0.0 V to 1.0 V 100
VSYNC Vertical SYNC Input 3.3 V CMOS 81
COAST PLL COAST Signal Input 3.3 V CMOS 84 CKEXT External Pixel Clock Input (to Bypass Internal PLL) 3.3 V CMOS 83
or 10 k to V
DD
CKINV ADC Sampling Clock Invert 3.3 V CMOS 94
VSOUT VSYNC Output 3.3 V CMOS 138 SOGOUT Composite Sync 3.3 V CMOS 140
REFIN Reference Input (1.25 V ± 10%) 1.25 V ± 10% 125
V Voltage output equal to the RED converter midscale voltage. 0.5 V ± 50% 120
MIDSC
R
VDuring midscale clamping, the RED Input is clamped to this pin. 0.0 V to 0.75 V 118
CLAMP
V Voltage output equal to the GREEN converter midscale voltage. 0.5 V ± 50% 111
G
MIDSC
G
V During midscale clamping, the GREEN Input is clamped to this pin. 0.0 V to 0.75 V 109
CLAMP
B
V Voltage output equal to the BLUE converter midscale voltage. 0.5 V ± 50% 101
MIDSC
V During midscale clamping, the BLUE Input is clamped to this pin. 0.0 V to 0.75 V 99
B
CLAMP
Main Power Supply 3.3 V ± 5% PLL Power Supply (Nominally 3.3 V) 3.3 V ± 5% Output Power Supply 3.3 V or 2.5 V ± 5%
PV V
D
D
DD
GND Ground 0 V
PIN FUNCTION DETAILS (ANALOG INTERFACE) Inputs
R
AIN
G
AIN
B
AIN
Analog Input for RED Channel
Analog Input for GREEN Channel
Analog Input for BLUE Channel
High-impedance inputs that accept the RED, GREEN, and BLUE channel graphics signals, respectively. For RGB, the three channels identical and can be used for any colors, but colors are assigned for convenient reference. For proper 4:2:2 formatting in a YUV
appli­cation, the Y channel must be connected the G B R
input, U must be connected to the
AIN
input, and V must be connected to the
AIN
input.
AIN
They accommodate input signals ranging from 0.5 V to 1.0 V full scale. Signals should be ac-coupled to these pins to support clamp operation.
HSYNC Horizontal Sync Input
This input receives a logic signal that estab­lishes the horizontal timing reference and provides the frequency reference for pixel clock generation.
The logic sense of this pin is controlled by serial register 0Fh Bit 7 (HSYNC Polarity). Only the leading edge of HSYNC is active, the trailing edge is ignored. When HSYNC
REV. 0
to
are
Polarity = 0, the falling edge of HSYNC is used. When HSYNC Polarity = 1, the rising edge is active.
The input includes a Schmitt trigger for noise immunity, with a nominal input threshold of 1.5 V.
Electrostatic Discharge (ESD) protection diodes will conduct heavily if this pin is driven more than 0.5 V above the maximum toler­ance voltage (3.3 V), or more than 0.5 V below ground.
VSYNC Vertical Sync Input
This is the input for vertical sync.
SOGIN Sync-on-Green Input
This input is provided to assist with processing signals with embedded sync, typically on the GREEN channel. The pin is connected to a high-speed comparator with an internally generated threshold, which is set to 0.15 V above the negative peak of the input signal.
When connected to an ac-coupled graphics signal with embedded sync, it will produce a noninverting digital output on SOGOUT.
When not used, this input should be left unconnected. For more details on this func­tion and how it should be congured, refer to the Sync-on-Green section.
–11–
AD9887A
CLAMP External Clamp Input (Optional)
This logic input may be used to dene the time during which the input signal is clamped to the reference dc level (ground for RGB or midscale for YUV). It should be exercised when the reference dc level is known to be present on the analog input channels, typically during the back porch of the graphics signal. The CLAMP pin is enabled by setting con-
bit EXTCLMP to 1, (the default power-up
trol is 0).
When disabled, this pin is ignored and the clamp timing is determined internally by counting a delay and duration from the trailing edge of the HSYNC input. The logic sense of this pin is controlled by CLAMPOL. When not used, this pin must be grounded and EXTCLMP programmed to 0.
COAST Clock Generator Coast Input (Optional)
This input may be used to cause the pixel clock generator to stop synchronizing with HSYNC and continue producing a clock at its current frequency and phase. This is useful when processing signals from sources that fail to produce horizontal sync pulses when in the vertical interval. The COAST signal is generally not required for PC-generated signals. Appli­cations requiring COAST can do so through the internal COAST found in the SYNC processing engine.
The logic sense of this pin is controlled by COAST Polarity.
When not used, this pin may be grounded and COAST Polarity programmed to 1, or tied HIGH and COAST Polarity programmed to 0. COAST Polarity defaults to 1 at power-up.
CKEXT External Clock Input (Optional)
This pin may be used to provide an external clock to the AD9887A, in place of the clock internally generated from HSYNC.
It is enabled by programming EXTCLK to 1. When an external clock is used, all other inter­nal
functions operate normally. When unused, this pin should be tied to V and EXTCLK programmed to 0. The clock phase adjustment still operates when an external clock source is used.
CKINV Sampling Clock Inversion (Optional)
This pin may be used to invert the pixel sampling clock, which has the effect of shifting the sampling phase 180°. This is in support of Alternate Pixel Sampling mode, wherein higher frequency input signals (up to 340 Mpps) may be captured by rst sam­pling the odd pixels, then capturing the even pixels on the subsequent frame.
or to GROUND,
DD
This pin should be exercised only during blank­ing intervals (typically vertical blanking) as it may produce several samples of corrupted data during the phase shift.
CKINV should be grounded when not used.
Either or both signals may be used, depending on the timing mode and interface design employed.
HSOUT Horizontal Sync Output
A reconstructed and phase-aligned version of the Hsync input. Both the polarity and duration of this output can be programmed via serial bus registers.
By maintaining alignment with DATACK, DATACK, and Data, data timing with respect to horizontal sync can always be determined.
SOGOUT Sync-On-Green Slicer Output
This pin can be programmed to output either the output from the Sync-On-Green slicer comparator or an unprocessed but delayed version of the HSYNC input. See the Sync Block Diagram to view how this pin is connected.
The output from this pin is the Composite Sync without additional processing from the AD9887A.
REFOUT Internal Reference Output
Output from the internal 1.25 V band gap refer­ence. This output is intended to drive relatively light loads. It can drive the AD9887A reference input directly but should be externally buffered if it is used to drive other loads as well.
The absolute accuracy of this output is ±4%, and the temperature coefcient is ±50 ppm, which is adequate for most AD9887A appli­cations. If higher accuracy is required, an external reference may be employed instead.
If an external reference is used, connect this pin to ground through a 0.1 µF capacitor.
REFIN Reference Input
The reference input accepts the master refer­ence voltage for all AD9887A internal circuitry (1.25 V ±10%). It may be driven directly by the REFOUT pin. Its high impedance presents a very light load to the reference source.
This pin should always be bypassed to Ground with a 0.1 µF capacitor.
FILT External Filter Connection
For proper operation, the pixel clock generator PLL requires an external lter. Connect the lter shown in Figure 7 to this pin. For optimal performance, minimize noise and parasitics on this node.
REV. 0–12–
AD9887A

Outputs

RED A Data Output, Red Channel, Port A/EVEN
RED B Data Output, Red Channel, Port B/ODD
GREEN A Data Output, Green Channel, Port A/EVEN
GREEN B Data Output, Green Channel, Port B/ODD
BLUE A Data Output, Blue Channel, Port A/EVEN
BLUE B Data Output, Blue Channel, Port B/ODD
These are the main data outputs. Bit 7 is the MSB.
Each channel has two ports. When the part is operated in single-channel mode (DEMUX = 0), all data are presented to Port A, and Port B is placed in a high impedance state.
Programming DEMUX to 1 established dual­channel mode, wherein alternate pixels are presented to Port A and Port B of each channel. These will appear simultaneously, two pixels presented at the time of every second input pixel, when PAR is set to 1 (parallel mode). When PAR = 0, pixel data appear alternately on the two ports, one new sample with each incoming pixel (interleaved mode).
In dual-channel mode, the rst pixel after HSYNC is routed to Port A. The second pixel goes to Port B, the third to A, etc.
The delay from pixel sampling time to output is xed. When the sampling time is changed by adjusting the PHASE register, the output timing is shifted as well. The DATACK, DATACK, and HSOUT outputs are also moved, so the timing relationship among the signals is maintained.
DATACK Data Output Clock DATACK Data Output Clock Complement
Differential data clock output signals to be used to strobe the output data and HSOUT into external logic.
They are produced by the internal clock gen­erator and are synchronous with the internal pixel sampling clock.
When the AD9887A is operated in single­channel mode, the output frequency is equal to the pixel sampling frequency. When operating in dual-channel mode, the clock frequency is one-half the pixel frequency.
When the sampling time is changed by adjusting the PHASE register, the output timing is as well. The Data, DATACK,
DATACK, and
shifted
HSOUT outputs are all moved, so the timing relationship among the signals is maintained.

Power Supply

V
D
Main Power Supply
These pins supply power to the main elements
to be
of the circuit. It should be ltered quiet
as possible.
V
DD
Digital Output Power Supply
as
These supply pins are identied separately from the V
pins so special care can be taken
D
to minimize output noise transferred into the sensitive analog circuitry.
If the AD9887A is interfacing with lower­voltage logic, V
may be connected to a lower
DD
supply voltage (as low as 2.2 V) for compatibility.
PV
D
Clock Generator Power Supply
The most sensitive portion of the AD9887A is the clock generation circuitry. These pins provide power to the clock PLL and help the user design for optimal performance. The designer should provide noise-free power to these pins.
GND Ground
The ground return for all circuitry on-chip. It is recommended that the application circuit board have a single, solid ground plane.
THEORY OF OPERATION (INTERFACE DETECTION) Active Interface Detection and Selection
The AD9887A includes circuitry to detect whether an interface is active (see Table III).
For detecting the analog interface, the circuitry monitors the presence of HSYNC, VSYNC, and Sync-on-Green. The result of the detection circuitry can be read from the 2-wire serial interface bus at Address 11H Bits 7, 6, and 5, respectively. If one of these sync signals disappears, the maximum time it takes for the circuitry to detect it is 100 ms.
There are two stages for detecting the digital interface. The rst stage searches for the presence of the digital interface clock. The circuitry for detecting the digital interface clock is active even when the digital interface is powered down. The result of this detection stage can be read from the 2-wire serial interface bus at Address 11H Bit 4. If the clock disappears, the maximum time it takes for the circuitry to detect it is 100 ms. Once a digital inter­face clock is detected, the digital interface is powered up and the second stage of detection begins. During the second stage, the circuitry searches for 32 consecutive DEs. Once 32 DEs are found, the detection process is complete.
There is an override for the automatic interface selection. It is the AIO bit (active interface override). When the AIO bit is set to Logic 0, the automatic circuitry will be used. When the AIO bit is set to Logic 1, the AIS bit will be used to determine the active interface rather than the automatic circuitry.
REV. 0
–13–
AD9887A

Power Management

The AD9887A is a dual interface device with shared outputs. Only one interface can be used at a time. For this reason, the chip automatically powers down the unused interface. When the analog interface is being used, most of the digital interface circuitry is powered down and vice versa. This helps to minimize the AD9887A total power dissipation. In addition, if neither interface has activity on it, the chip powers down both interfaces.
The AD9887A uses the activity detect circuits, the active interface bits in the serial registers, the active interface override bits, and the
Table III. Interface Selection Controls
power-down bit to determine the correct power state. In a given power mode not all circuitry in the inactive interface is powered down completely. When the digital interface is active, the band gap reference and HSYNC detect circuitry is not powered down. When the analog interface is active, the digital interface clock detect circuit is not powered down. Table IV summarizes how the AD9887A determines which power mode to be in and what circuitry is powered on/off in each of these modes. The power­down command has priority, followed by the active interface override, and then the automatic circuitry.
Analog Digital Active
AIO Interface Detect Interface Detect AIS Interface Description
1 XX0Analog Force the analog interface active.
1Digital Force the digital interface active.
0 00XNone Neither interface was detected. Both interfaces are
powered down and the SyncDT pin gets set to Logic 0. 01XDigital The digital interface was detected. Power down the analog interface. 10XAnalog The analog interface was detected. Power down the digital interface. 10XAnalog Both interfaces were detected. The analog interface has priority.
1Digital Both interfaces were detected. The digital interface has priority.
Table IV. Power-Down Mode Descriptions
Inputs
Analog Digital Active Active
Power- Interface Interface Interface Interface
Mode Down1Detect2Detect3Override Select Powered On or Comments
Soft Power-Down (Seek Mode) 1 0 0 0 X Serial Bus, Digital Interface Clock Detect,
Analog Interface Activity Detect, SOG, Band Gap Reference
Digital Interface On 1 0 1 0 X Serial Bus, Digital Interface, Analog Interface
Activity Detect, SOG, Outputs, Band Gap Reference
Analog Interface On 1 1 0 0 X Serial Bus, Analog Interface, Digital Interface
Clock Detect, SOG, Outputs, Band Gap
Reference Serial Bus Arbitrated Interface 1 1 1 0 0 Same as Analog Interface On Mode Serial Bus Arbitrated Interface 1 1 1 0 1 Same as Digital Interface On Mode Override to Analog Interface 1 X X 1 0 Same as Analog Interface On Mode Override to Digital Interface 1 X X 1 1 Same as Digital Interface On Mode Absolute Power-Down 0 X X X X Serial Bus
NOTES
1
Power-down is controlled via bit 0 in serial bus Register 12h.
2
Analog Interface Detect is determined by OR-ing Bits 7, 6, and 5 in serial bus Register 11h.
3
Digital Interface Detect is determined by Bit 4 in serial bus Register 11h.
REV. 0–14–
Loading...
+ 30 hidden pages