4 ADCs in 1 package
Coded serial digital outputs with ECC per channel
On-chip temperature sensor
−95 dB channel-to-channel crosstalk
SNR = 65 dBFS with AIN = 85 MHz at 250 MSPS
SFDR = 77 dBc with AIN = 85 MHz at 250 MSPS
Excellent linearity
DNL = ±0.3 LSB (typical)
INL = ±0.7 LSB (typical)
780 MHz full power analog bandwidth
Power dissipation = 380 mW per channel at 250 MSPS
1.25 V p-p input voltage range, adjustable up to 1.5 V p-p
1.8 V supply operation
Clock duty cycle stabilizer
Serial port interface features
Power-down modes
Digital test pattern enable
Programmable header
Programmable pin functions (PGMx, PDWN)
APPLICATIONS
Communication receivers
Cable head end equipment/M-CMTS
Broadband radios
Wireless infrastructure transceivers
Radar/military-aerospace subsystems
Test equipment
Serial Output 1.8 V ADC
AD9239
FUNCTIONAL BLOCK DIAGRAM
VDDPDWNDRVDDDRGND
AD9239
VIN + ADOUT + A
VIN – A
VCM A
VIN + B
VIN – B
VCM B
VIN + CDOUT + C
VIN – C
VCM C
VIN + D
VIN – D
VCM D
RBIAS
TEMPOUT
BUF
BUF
BUF
BUF
REFERENCE
SCLK SDI/
SHA
SHA
SHA
SHA
SDIO
PIPELINE
PIPELINE
PIPELINE
PIPELINE
SERIAL
PORT
ADC
ADC
ADC
ADC
SDO CSB
Figure 1.
12
12
12
12
DATA RATE
MULTIPLIER
CLK+ CLK–
CML DRIVERS
DATA SERIALIZE R, ENCODER, AND
CHANNEL A
CHANNEL B
CHANNEL C
CHANNEL D
DOUT – A
DOUT + B
DOUT – B
DOUT – C
DOUT + D
DOUT – D
PGM3
PGM2
PGM1
PGM0
RESET
06980-001
GENERAL DESCRIPTION
The AD9239 is a quad, 12-bit, 250 MSPS analog-to-digital
converter (ADC) with an on-chip temperature sensor and a
high speed serial interface. It is designed to support digitizing
high frequency, wide dynamic range signals with an input
bandwidth up to 780 MHz. The output data are serialized and
presented in packet format, consisting of channel-specific
information, coded samples, and error correction code.
The ADC requires a single 1.8 V power supply and the input
clock may be driven differentially with a sine wave, LVPECL,
TTL, or LVDS. A clock duty cycle stabilizer allows high
performance at full speed with a wide range of clock duty
cycles. The on-chip reference eliminates the need for external
decoupling and can be adjusted by means of SPI control.
Various power-down and standby modes are supported. The
ADC typically consumes 145 mW per channel with the digital
link still in operation when standby operation is enabled.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
Fabricated on an advanced CMOS process, the AD9239 is available in a Pb-free/RoHS-compliant, 72-lead LFCSP package. It is
specified over the industrial temperature range of −40°C to +85°C.
PRODUCT HIGHLIGHTS
1. Four ADCs are contained in a small, space-saving package.
2. An on-chip PLL allows users to provide a single ADC
sampling clock, and the PLL distributes and multiplies up
to produce the corresponding data rate clock.
3. Coded data rate supports up to 4.0 Gbps per channel.
Coding includes scrambling to ensure proper dc common
mode, embedded clock, and error correction.
4. The AD9239 operates from a single 1.8 V power supply.
5. Flexible synchronization schemes and programmable
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and details on how these tests were completed.
2
Specified for 13 SDI/SDIO pins sharing the same connection.
1
Logic Compliance Full LVPECL/LVDS/CMOS LVPECL/LVDS/CMOS LVPECL/LVDS/CMOS
Differential Input Voltage Full 0.2 6 0.2 6 0.2 6 V p-p
Input Voltage Range Full AVDD −
Internal Common-Mode Bias Full 1.2 1.2 1.2 V
Input Common-Mode Voltage Full 1.1 AVDD 1.1 AVDD 1.1 AVDD V
High Level Input Voltage (VIH) Full 1.2 3.6 1.2 3.6 1.2 3.6 V
Low Level Input Voltage (VIL) Full 0 0.8 0 0.8 0 0.8 V
High Level Input Current (IIH) Full −10 +10 −10 +10 −10 +10 µA
Low Level Input Current (IIL) Full −10 +10 −10 +10 −10 +10 µA
Differential Input Resistance 25°C 16 20 24 16 20 24 16 20 24 kΩ
Input Capacitance 25°C 4 4 4 pF
2
SDIO, SCLK, RESET, PGMx)
Logic 1 Voltage Full 0.8 ×
Logic 0 Voltage Full 0.2 ×
Logic 1 Input Current (CSB) Full 0 0 0 µA
Logic 0 Input Current (CSB) Full −60 −60 −60 µA
Logic 1 Input Current
AVDD to AGND −0.3 V to +2.0 V
DRVDD to DRGND −0.3 V to +2.0 V
AGND to DRGND −0.3 V to +0.3 V
AVDD to DRVDD −2.0 V to +2.0 V
DOUT ± x to DRGND −0.3 V to DRVDD + 0.3 V
SDO, SDI/SDIO, CLK± , VIN ± x,
VCMx, TEMPOUT, RBIAS to AGND
SCLK, CSB, PGMx, RESET,
PDWN to AGND
Environmental
Storage Temperature Range −65°C to +125°C
Operating Temperature Range −40°C to +85°C
Lead Temperature
(Soldering 10 sec)
Junction Temperature 150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
−0.3 V to AVDD + 0.3 V
−0.3 V to AVDD + 0.3 V
300°C
THERMAL RESISTANCE
The exposed paddle must be soldered to the ground plane for
the LFCSP package. Soldering the exposed paddle to the customer
board increases the reliability of the solder joints, maximizing
the thermal capability of the package.
Table 6. Thermal Resistance
Package Type θJA θJB θJC Unit
72-Lead LFCSP (CP-72-3) 16.2 7.9 0.6 °C/W
Typical θJA, θJB, and θJC values are specified for a 4-layer board in
still air. Airflow increases heat dissipation, effectively reducing
θ
. In addition, metal in direct contact with the package leads
JA
from metal traces and through holes, ground, and power planes
reduces the θ
.
JA
ESD CAUTION
Rev. 0 | Page 8 of 40
AD9239
www.BDTIC.com/ADI
PIN CONFIGURATION AND FUNCTION DESCRIPTION
NC
AVDD
VCM C
AVDD
VIN – C
VIN + C
AVDD
AVDD
AVDDNCAVDD
AVDD
AVDD
VIN + B
VIN – B
AVDD
VCM B
AVDD
NC
TEMPOUT
RBIAS
AVDD
NC
NC
AVDD
VCM D
AVDD
VIN – D
VIN + D
AVDD
AVDD
AVDD
AVDD
CLK–
7271706968676665646362616059585756
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17CLK+
18AVDD
PIN 1
INDICAT OR
PIN 0 = EPAD = AGND
AD9239
TOP VIEW
(Not to Scale)
55
54
NC
53
PGM0
52
PGM1
51
PGM2
50
PGM3
49
NC
48
AVDD
47
VCM A
46
AVDD
45
VIN – A
44
VIN + A
43
AVDD
42
AVDD
41
AVDD
40
CSB
39
SCLK
38
SDI/SDIO
37
SDO
192021222324252627282930313233
NC
AVDD
AVDD
RESET
DRVDD
DRGND
DOUT – D
DOUT – C
DOUT + D
DOUT + C
NOTES
1. NC = NO CONNECT .
2. THE EXPO SED PADDLE MUST BE SOLDERED T O THE GRO UND PLANE
FOR THE L FCSP PACKAGE. SOLDERING THE EXPOSED PADDLE TO
THE CUSTOMER BOARD INCREASES T HE RELIABIL ITY OF THE SOL DER
JOINTS, MAXIMIZ ING THE THERMAL CAPABILITY O F THE PACKAGE.
DOUT + B
DOUT – B
34
35PDWN
36NC
DRVDD
DRGND
DOUT – A
DOUT + A
06980-004
Figure 3. Pin Configuration
Table 7. Pin Function Descriptions
Pin No. Mnemonic Description
0 AGND Analog Ground (Exposed Paddle).
23, 34 DRGND Digital Output Driver Ground.
4, 7, 9, 12, 13, 14,
24, 33 DRVDD 1.8 V Digital Output Driver Supply.
2 TEMPOUT Output Voltage to Monitor Temperature.
3 RBIAS External Resistor to Set the Internal ADC Core Bias Current.
8 VCM D Common-Mode Output Voltage Reference (0.5 × AVDD).
10 VIN − D ADC D Analog Complement.
11 VIN + D ADC D Analog True.
16 CLK− Input Clock Complement.
17 CLK+ Input Clock True.
22 RESET Digital Output Timing Reset.
25 DOUT + D ADC D True Digital Output.
26 DOUT − D ADC D Complement Digital Output.
27 DOUT + C ADC C True Digital Output.
28 DOUT − C ADC C Complement Digital Output.
29 DOUT + B ADC B True Digital Output.
30 DOUT − B ADC B Complement Digital Output.
31 DOUT + A ADC A True Digital Output.
32 DOUT − A ADC A Complement Digital Output.
35 PDWN Power-Down.
Rev. 0 | Page 9 of 40
AD9239
www.BDTIC.com/ADI
Pin No. Mnemonic Description
37 SDO Serial Data Output. Used for 4-wire SPI interface.
38 SDI/SDIO Serial Data Input/Serial Data IO for 3-Wire SPI Interface.
39 SCLK Serial Clock.
40 CSB Chip Select Bar.
44 VIN + A ADC A Analog Input True.
45 VIN − A ADC A Analog Input Complement.
47 VCM A Common-Mode Output Voltage Reference (0.5 × AVDD).
50 PGM3 Optional Pin to be Programmed by Customer.
51 PGM2 Optional Pin to be Programmed by Customer.
52 PGM1 Optional Pin to be Programmed by Customer.
53 PGM0 Optional Pin to be Programmed by Customer.
56 VCM B Common-Mode Output Voltage Reference (0.5 × AVDD).
58 VIN − B ADC B Analog Input Complement.
59 VIN + B ADC B Analog Input True.
67 VIN + C ADC C Analog Input True.
68 VIN − C ADC C Analog Input Complement.
70 VCM C Common-Mode Output Voltage Reference (0.5 × AVDD).
1, 5, 6, 19, 36,
49, 54, 63, 72
NC No Connection.
Rev. 0 | Page 10 of 40
AD9239
www.BDTIC.com/ADI
TYPICAL PERFORMANCE CHARACTERISTICS
0
AIN = –1.0dBF S
SNR = 64.88dB
ENOB = 10.49 BI TS
–20
SFDR = 77.57d Bc
–20
0
AIN = –1.0dBFS
SNR = 63.13dB
ENOB = 10.19 BI TS
SFDR = 76.07dBc
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 10 20304050607080
FREQUENCY (MHz)
Figure 4. Single-Tone 32k FFT with fIN = 84.3 MHz, f
0
AIN = –1.0dBF S
SNR = 63.95dB
ENOB = 10.33 BI TS
–20
SFDR = 78.90dBc
–40
–60
–80
AMPLITUDE (dBFS)
–100
= 170 MSPS
SAMPLE
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
020406080100
06980-059
Figure 7. Single-Tone 32k FFT with fIN = 240.3 MHz, f
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
FREQUENCY (MHz)
= 210 MSPS
SAMPLE
AIN = –1.0dBF S
SNR = 64.62dB
ENOB = 10.44 BI TS
SFDR = 75.48d Bc
06980-062
–120
0 10 20304050607080
FREQUENCY (MHz)
Figure 5. Single-Tone 32k FFT with fIN = 240.3 MHz, f
0
AIN = –1.0dBFS
SNR = 64.65dB
ENOB = 10.44 BI TS
–20
SFDR = 77.54d Bc
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
020406080100
FREQUENCY (MHz)
Figure 6. Single-Tone 32k FFT with fIN = 84.3 MHz, f
SAMPLE
SAMPLE
= 170 MSPS
= 210 MSPS
–120
06980-060
020406080100120
Figure 8. Single-Tone 32k FFT with fIN = 10.3 MHz, f
0
AIN = –1.0dBFS
SNR = 64.50dB
ENOB = 10.42 BI TS
–20
SFDR = 77.97dBc
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
06980-061
020406080100120
Figure 9. Single-Tone 32k FFT with fIN = 84.3 MHz, f
FREQUENCY (MHz)
FREQUENCY (MHz)
SAMPLE
SAMPLE
06980-063
= 250 MSPS
06980-064
= 250 MSPS
Rev. 0 | Page 11 of 40
AD9239
www.BDTIC.com/ADI
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
020406080100120
FREQUENCY (MHz)
Figure 10. Single-Tone 32k FFT with fIN = 171.3 MHz, f
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
020406080100120
FREQUENCY (MHz)
Figure 11. Single-Tone 32k FFT with fIN = 240.3 MHz, f
AIN = –1.0dBFS
SNR = 63.90dB
ENOB = 10.32 BI TS
SFDR = 73.10d Bc
= 250 MSPS
SAMPLE
AIN = –1.0dBFS
SNR = 63.41dB
ENOB = 10.24 BI TS
SFDR = 77.49dBc
= 250 MSPS
SAMPLE
90
88
86
84
82
80
78
SFDR (dBFS)
76
74
72
70
06980-065
170MSPS
210MSPS
507090110 130 150 170 190 210 230 250
ENCODE (MSPS)
250MSPS
06980-068
Figure 13. SFDR vs. Encode, fIN = 84.3 MHz
100
90
80
70
60
50
40
SNR/SFDR (dB)
30
20
10
0
–90–80–70 –60–50 –40–30–20–100
06980-066
Figure 14. SNR/SFDR vs. Analog Input Level, fIN = 84.3 MHz, f
SFDR (dBFS)
SNR (dBFS)
SFDR (dB)
ANALOG INPUT LEVEL (dBFS)
SNR (dB)
SAMPLE
06980-069
= 170 MSPS
70
69
68
170MSPS
250MSPS
210MSPS
ENCODE (MSPS)
06980-067
Figure 15. SNR/SFDR vs. Analog Input Level, fIN = 84.3 MHz, f
67
66
65
64
SNR (dBFS)
63
62
61
60
507090110 130 150 170 190 210 230 250
Figure 12. SNR vs. Encode, fIN = 84.3 MHz
Rev. 0 | Page 12 of 40
100
90
80
70
60
50
40
SNR/SFDR (dB)
30
20
10
0
–90–80–70 –60–50 –40–30–20–100
SFDR (dBFS)
SNR (dBFS)
SFDR (dB)
SNR (dB)
ANALOG INPUT LEVEL (dBFS)
SAMPLE
06980-070
= 210 MSPS
Loading...
+ 28 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.