Analog Devices AD9229 Service Manual

Quad, 12-Bit, 50/65 MSPS,

FEATURES

Four ADCs in 1 package Serial LVDS digital output data rates
to 780 Mbps (ANSI-644) Data and frame clock outputs SNR = 69.5 dB (to Nyquist) Excellent linearity
DNL = ±0.3 LSB (typical)
INL = ±0.4 LSB (typical) 400 MHz full power analog bandwidth Power dissipation
1,350 mW at 65 MSPS
985 mW at 50 MSPS 1 V p-p to 2 V p-p input voltage range
3.0 V supply operation Power-down mode Digital test pattern enable for timing alignments

APPLICATIONS

Digital beam-forming systems for ultrasound Wireless and wired broadband communications Communication test equipment

GENERAL DESCRIPTION

Serial, LVDS, 3 V A/D Converter
AD9229

FUNCTIONAL BLOCK DIAGRAM

PDWN DTP DRVDD DRGND
AD9229
VIN+A VIN–A
VIN+B VIN–B
VIN+C VIN–C
VIN+D VIN–D
VREF
SENSE
REFT REFB
REF
SELECT
SHA
SHA
SHA
SHA
0.5V
AGND CLKLVDSBIAS

PRODUCT HIGHLIGHTS

PIPELINE
PIPELINE
PIPELINE
PIPELINE
Figure 1.
ADC
ADC
ADC
ADC
12
SERIAL
12
SERIAL
12
SERIAL
12
SERIAL
DATA RATE MULTIPLIER
LVDS
LVDS
LVDS
LVDS
D+A D–A
D+B D–B
D+C D–C
D+D D–D
FCO+ FCO–
DCO+ DCO–
04418-001
The AD9229 is a quad, 12-bit, 65 MSPS analog-to-digital converter (ADC) with an on-chip sample-and-hold circuit that is designed for low cost, low power, small size, and ease of use. The product operates at up to a 65 MSPS conversion rate and is optimized for outstanding dynamic performance in applications where a small package size is critical.
The ADC requires a single 3 V power supply and TTL-/CMOS­compatible sample rate clock for full performance operation. No external reference or driver components are required for many applications.
The ADC automatically multiplies the sample rate clock for the appropriate LVDS serial data rate. A data clock (DCO) for capturing data on the output and a frame clock (FCO) trigger for signaling a new output byte are provided. Power-down is supported and typically consumes 3 mW when enabled.
Fabricated with an advanced CMOS process, the AD9229 is available in a Pb-free, 48-lead LFCSP package. It is specified over the industrial temperature range of –40°C to +85°C.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
1. Four ADCs are contained in a small, space-saving package.
2. A data clock out (DCO) is provided, which operates up to
390 MHz and supports double-data rate operation (DDR).
3. The outputs of each ADC are serialized LVDS with data
rates up to 780 Mbps (12 bits × 65 MSPS).
4. The AD9229 operates from a single 3.0 V power supply.
5. Packaged in a Pb-free, 48-lead LFCSP package.
6. The internal clock duty cycle stabilizer maintains
performance over a wide range of input clock duty cycles.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
AD9229
TABLE OF CONTENTS
Features.............................................................................................. 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
AC Specifications.......................................................................... 4
Digital Specifications ................................................................... 5
Switching Specifications.............................................................. 6
Timing Diagram ............................................................................... 7
Absolute Maximum Ratings............................................................ 8
Explanation of Test Levels........................................................... 8
ESD Caution.................................................................................. 8
Pin Configuration and Function Descriptions............................. 9
Equivalent Circuits......................................................................... 10
Typical Performance Characteristics........................................... 11
Terminology.................................................................................... 16
Theory of Operation ...................................................................... 18
Analog Input Considerations ................................................... 18
Clock Input Considerations...................................................... 19
Evaluation Board............................................................................ 24
Power Supplies............................................................................ 24
Input Signals................................................................................ 24
Output Signals ............................................................................ 24
Default Operation and Jumper Selection Settings ................. 25
Alternate Analog Input Drive Configuration......................... 25
Outline Dimensions....................................................................... 39
Ordering Guide .......................................................................... 39

REVISION HISTORY

9/05—Rev. 0 to Rev. A
Change to Specifications.................................................................. 3
Changes to Differential Input Configurations Section.............. 19
Changes to Exposed Paddle Thermal Heat Slug
Recommendations Section........................................................ 23
Changes to Evaluation Board Section.......................................... 24
Changes to Table 11........................................................................ 36
3/05—Revision 0: Initial Version
Rev. A | Page 2 of 40
AD9229

SPECIFICATIONS

AVDD = 3.0 V, DRVDD = 3.0 V, maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless otherwise noted.
Table 1.
AD9229-50 AD9229-65
Te st
Parameter Temperature
RESOLUTION 12 12 Bits ACCURACY
No Missing Codes Full VI Guaranteed Guaranteed Offset Error Full VI ±5 ±25 ±5 ±25 mV Offset Matching Full VI ±5 ±25 ±5 ±25 mV Gain Error1 Full VI ±0.3 ±2.5 ±0.3 ±2.5 % FS Gain Matching1 Full VI ±0.2 ±1.5 ±0.2 ±1.5 % FS Differential Nonlinearity (DNL) 25°C V ±0.3 ±0.3 LSB Full VI ±0.3 ±0.6 ±0.3 ±0.7 LSB Integral Nonlinearity (INL) 25°C V ±0.6 ±0.4 LSB Full VI ±0.6 ±1 ±0.4 ±1 LSB
TEMPERATURE DRIFT
Offset Error Full V ±2 ±3 ppm/°C Gain Error1 Full V ±12 ±12 ppm/°C Reference Voltage, VREF = 1 V Full V ±16 ±16 ppm/°C
REFERENCE
Output Voltage Error, VREF = 1 V Full VI ±10 ±30 ±10 ±30 mV Load Regulation @ 1.0 mA, VREF = 1 V Full V 3 3 mV Output Voltage Error, VREF = 0.5 V Full VI ±8 ±17 ±8 ±17 mV Load Regulation @ 0.5 mA,
Full V 0.2 0.2 mV
VREF = 0.5 V
Input Resistance Full V 7 7 kΩ
ANALOG INPUTS
Differential Input Voltage Range
Full VI 2 2 V p-p
VREF = 1 V
Differential Input Voltage Range
Full VI 1 1 V p-p
VREF = 0.5 V Common Mode Voltage Full V 1.5 1.5 V Input Capacitance2 Full V 7 7 pF Analog Bandwidth, Full Power Full V 400 400 MHz
POWER SUPPLY
AVDD Full IV 2.7 3.0 3.6 2.7 3.0 3.6 V DRVDD Full IV 2.7 3.0 3.6 2.7 3.0 3.6 V IAVDD Full VI 300 330 420 455 mA DRVDD Full VI 28 31 29 33 mA Power Dissipation3 Full VI 985 1083 1350 1465 mW Power-Down Dissipation Full V 3 3 mW
CROSSTALK4 Full V –95 –95 dB
1
Gain error and gain temperature coefficients are based on the ADC only, with a fixed 1.0 V external reference and a 2 V p-p differential analog input.
2
Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.
3
Power dissipation measured with rated encode and 2.4 MHz analog input at –0.5 dBFS.
4
Typical specification over the first Nyquist zone.
Level Min Typ Max Min Typ Max Unit
Rev. A | Page 3 of 40
AD9229

AC SPECIFICATIONS

AVDD = 3.0 V, DRVDD = 3.0 V, maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless otherwise noted.
Table 2.
AD9229-50 AD9229-65
Te st
Parameter Temperature
SIGNAL-TO-NOISE RATIO (SNR) fIN = 2.4 MHz Full IV 69.5 70.4 69.0 70.2 dB f f f f
= 10.3 MHz 25°C V 70.4 70.2 dB
IN
= 25 MHz Full VI 68.7 69.6 dB
IN
= 30 MHz Full VI 68.0 69.5 dB
IN
= 70 MHz 25°C V 67.2 67.1 dB
IN
SIGNAL-TO-NOISE RATIO (SINAD) fIN = 2.4 MHz Full V 70.0 69.8 dB f f f f EFFECTIVE NUMBER OF BITS
= 10.3 MHz 25°C V 70.0 69.8 dB
IN
= 25 MHz Full VI 68.4 69.4 dB
IN
= 30 MHz Full VI 67.3 69.0 dB
IN
= 70 MHz 25°C V 66.8 66.7 dB
IN
= 2.4 MHz Full V 11.3 11.3 Bits
f
IN
(ENOB) f f f f SPURIOUS-FREE DYNAMIC RANGE
= 10.3 MHz 25°C V 11.3 11.3 Bits
IN
= 25 MHz Full VI 11.1 11.2 Bits
IN
= 30 MHz Full VI 10.9 11.2 Bits
IN
= 70 MHz 25°C V 10.8 10.8 Bits
IN
= 2.4 MHz Full V 85 85 dBc
f
IN
(SFDR) f f f f
= 10.3 MHz 25°C V 85 85 dBc
IN
= 25 MHz Full VI 76 85 dBc
IN
= 30 MHz Full VI 73 85 dBc
IN
= 70 MHz 25°C V 78 77 dBc
IN
WORST HARMONIC fIN = 2.4 MHz Full V –85 –85 dBc
(Second or Third) fIN = 10.3 MHz 25°C V –85 –85 dBc f f f
= 25 MHz Full VI –85 –76 dBc
IN
= 30 MHz Full VI –85 –73 dBc
IN
= 70 MHz 25°C V –78 –77 dBc
IN
WORST OTHER fIN = 2.4 MHz Full V –90 –90 dBc
(Excluding Second or Third) fIN = 10.3 MHz 25°C V –90 –90 dBc f f f TWO-TONE INTERMODULATION
= 25 MHz Full VI –88 –81.7 dBc
IN
= 30 MHz Full VI –88 –79.7 dBc
IN
= 70 MHz 25°C V –85 –83 dBc
IN
= 15 MHz 25°C V –73 –73 dBc
f
IN1
DISTORTION (IMD)
AIN1 and AIN2 = –7.0 dBFS f f f
= 16 MHz
IN2
= 69 MHz 25°C V –68.5 –68.5 dBc
IN1
= 70 MHz
IN2
Level
Min Typ Max Min Typ Max Unit
Rev. A | Page 4 of 40
AD9229

DIGITAL SPECIFICATIONS

AVDD = 3.0 V, DRVDD = 3.0 V, maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless otherwise noted.
Table 3.
AD9229-50 AD9229-65
Te st
Parameter Temperature
CLOCK INPUT
Logic Compliance TTL/CMOS TTL/CMOS High Level Input Voltage Full IV 2.0 2.0 V Low Level Input Voltage Full IV 0.8 0.8 V High Level Input Current Full VI 0.5 ±10 0.5 ±10 µA Low Level Input Current Full VI 0.5 ±10 0.5 ±10 µA Input Capacitance 25°C V 2 2 pF
LOGIC INPUTS (PDWN)
Logic 1 Voltage Full IV 2.0 2.0 V Logic 0 Voltage Full IV 0.8 0.8 V High Level Input Current Full IV 0.5 ±10 0.5 ±10 µA Low Level Input Current Full IV 0.5 ±10 0.5 ±10 µA Input Capacitance 25°C V 2 2 pF
DIGITAL OUTPUTS (D+, D–)
Logic Com plian ce LVDS LVDS Differential Output Voltage Full VI 260 440 260 440 mV Output Offset Voltage Full VI 1.15 1.25 1.35 1.15 1.25 1.35 V Output Coding Full VI
Level
Min Typ Max Min Typ Max Unit
Offset binary
Offset binary
Rev. A | Page 5 of 40
AD9229

SWITCHING SPECIFICATIONS

AVDD = 3.0 V, DRVDD = 3.0 V, maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless otherwise noted.
Table 4.
AD9229-50 AD9229-65
Test
Parameter Temp
CLOCK
Maximum Clock Rate Full VI 50 65 MSPS
Minimum Clock Rate Full IV 10 10 MSPS
Clock Pulse Width High
)
(t
EH
Clock Pulse Width Low
(t
)
EL
Full VI 8 10 6.2 7.7 ns
Full VI 8 10 6.2 7.7 ns
OUTPUT PARAMETERS
Propagation Delay (tPD) Full VI 3.3 6.5 7.9 3.3 6.5 7.9 ns
Rise Time (tR)
Full V 250 250 ps
(20% to 80%)
Fall Time (tF)
Full V 250 250 ps
(20% to 80%)
FCO Propagation Delay
)
(t
FCO
DCO Propagation Delay
)
(t
CPD
DCO-to-Data Delay (t
DCO-to-FCO Delay (t
Data-to-Data Skew
– t
(t
DATA-MAX
DATA-MIN
Full V 6.5 6.5 ns
Full V t
) Full IV (t
DATA
) Full IV (t
FRAME
Full IV ±100 ±250 ±100 ±250 ps
) Wake-Up Time 25°C V 4 4 ms Pipeline Latency Full IV 10 10 CLK
APERTURE
Aperture Delay (tA) 25°C V 1.8 1.8 ns Aperture Uncertainty
25°C V <1 <1 ps
(Jitter)
OUT-OF-RANGE RECOVERY
25°C V 2 2 CLK
TIME
Level
Min Typ Max Min Typ Max Unit
SAMPLE
250
SAMPLE
250
/24) –
/24) –
FCO
(t (t
(t
SAMPLE
SAMPLE
SAMPLE
+
/24) /24) (t
/24) (t
t
SAMPLE
250
SAMPLE
250
/24) +
/24) +
(t
SAMPLE
250 (t
SAMPLE
250
/24) –
/24) –
FCO
(t (t
(t
SAMPLE
SAMPLE
SAMPLE
+
/24) /24) (t
/24) (t
ns
SAMPLE
/24) +
ps
250
SAMPLE
/24) +
ps
250
cycles
rms
cycles
Rev. A | Page 6 of 40
AD9229

TIMING DIAGRAM

N–1
AIN
t
A
CLK
DCO–
DCO+
FCO–
FCO+
D+
t
EH
t
CPD
t
FCO
t
D–
PD
t
FRAME
MSB
D10
(N – 10)
(N–10)D9(N–10)D8(N – 10)D7(N – 10)D6(N – 10)D5(N – 10)D4(N–10)D3(N – 10)D2(N – 10)D1(N – 10)D0(N–10)
t
EL
t
DATA
Figure 2. Timing Diagram
N
D10
MSB
(N – 9)
(N – 9)
04418-002
Rev. A | Page 7 of 40
AD9229

ABSOLUTE MAXIMUM RATINGS

Table 5.
With
Parameter
ELECTRICAL
AVDD AGND –0.3 V to +3.9 V DRVDD DRGND –0.3 V to +3.9 V AGND DRGND –0.3 V to +0.3 V AVDD DRVDD –3.9 V to +3.9 V
Digital Outputs (D+, D–,
DCO+, DCO–, FCO+, FCO–)
LVDSBIAS DRGND –0.3 V to DRVDD CLK AGND –0.3 V to AVDD VIN+, VIN– AGND –0.3 V to AVDD PDWN, DTP AGND –0.3 V to AVDD REFT, REFB AGND –0.3 V to AVDD VREF, SENSE AGND –0.3 V to AVDD
ENVIRONMENTAL
Operating Temperature
Range (Ambient)
Maximum Junction
Temperature
Lead Temperature
(Soldering, 10 sec)
Storage Temperature Range
(Ambient)
Thermal Impedance1 25°C/W
Respect To
DRGND –0.3 V to DRVDD
–40°C to +85°C
150°C
300°C
–65°C to +150°C
Rating
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

EXPLANATION OF TEST LEVELS

I. 100% production tested.
II. 100% production tested at 25°C and guaranteed by design
and characterization at specified temperatures.
III. Sample tested only. IV. Parameter is guaranteed by design and characterization
testing.
V. Parameter is a typical value only.
VI. 100% production tested at 25°C and guaranteed by design
and characterization for industrial temperature range.
1
θ
for a 4-layer PCB with a solid ground plane in still air.
JA

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. A | Page 8 of 40
AD9229

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

DCO+
DCO–
FCO+
FCO–
D+A
D–A
D+B
D–B
D+C
D–C
D+D
D–D
DRGND
DRVDD
NC
DTP
AVDD
AGND
PDWN
AVDD
AGND
VIN+A
VIN–A AGND
4847464544434241403938
PIN 1
1 2 3 4 5 6 7 8
9 10 11 12
INDICATOR
EXPOSED PADDLE, PIN 0 (Bottom of Package)
AD9229
TOP VIEW
(Not to Scale)
37
DRGND36 DRVDD
35
LVDSBIAS
34
AGND
33
AVDD
32
AGND
31
CLK
30
AVDD
29
AGND
28
VIN+D
27
VIN–D
26
AGND
25
NC = NO CONNECT
13141516171819
VIN–B
AGND
VIN+B
Figure 3. LFCSP Top View
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
5, 8, 16, 21,
AVDD Analog Supply
29, 32 6, 9, 12, 15, 22,
AGND Analog Ground
25, 28, 31, 33 2, 35 DRVDD Digital Output Supply 1, 36 DRGND Digital Ground 0 AGND
Exposed Paddle/Thermal Heat Slug (Located on Bottom of
Package) 3 NC No Connect 4 DTP Digital Test Pattern Enable 7 PDWN
Power-Down Selection (AVDD =
Power Down) 10 VIN+A ADC A Analog Input—True 11 VIN–A
ADC A Analog Input—
Complement 13 VIN–B
ADC B Analog Input—
Complement 14 VIN+B ADC B Analog Input—True 17 SENSE Reference Mode Selection 18 VREF Voltage Reference Input/Output 19 REFB Differential Reference (Bottom) 20 REFT Differential Reference (Top) 23 VIN+C ADC C Analog Input—True 24 VIN–C
ADC C Analog Input—
Complement
AVDD
SENSE
2021222324
REFT
VREF
REFB
AVDD
AGND
VIN–C
VIN+C
04418-003
Pin No. Mnemonic Description
26 VIN–D
ADC D Analog Input—
Complement 27 VIN+D ADC D Analog Input—True 30 CLK Input Clock 34 LVDSBIAS
LVDS Output Current Set
Resistor Pin 37 D–D
ADC D Complement Digital
Output 38 D+D ADC D True Digital Output 39 D–C
ADC C Complement Digital
Output 40 D+C ADC C True Digital Output 41 D–B
ADC B Complement Digital
Output 42 D+B ADC B True Digital Output 43 D–A
ADC A Complement Digital
Output 44 D+A ADC A True Digital Output 45 FCO–
Frame Clock Indicator—
Complement Output 46 FCO+
Frame Clock Indicator—True
Output 47 DCO–
Data Clock Output—
Complement 48 DCO+ Data Clock Output—True
Rev. A | Page 9 of 40
AD9229
CLK

EQUIVALENT CIRCUITS

AVDD
DRVDD
VIN+, VIN–
AGND
04418-004
Figure 4. Equivalent Analog Input Circuit
AVDD
170Ω
AGND
04418-005
V
D– D+
V
DRGND
V
V
04418-007
Figure 7. Equivalent Digital Output Circuit
AVDD
DTP
375Ω
AGND
100kΩ
04418-051
Figure 5. Equivalent Clock Input Circuit
AVDD
PDWN
375Ω
AGND
04418-006
Figure 8. Equivalent DTP Input Circuit
Figure 6. Equivalent Digital Input Circuit
Rev. A | Page 10 of 40
AD9229

TYPICAL PERFORMANCE CHARACTERISTICS

–20
0
AIN = –0.5dBFS SNR = 70.4dB ENOB = 11.4 BITS SFDR = 85.8dBC
–20
0
AIN = –0.5dBFS SNR = 68.1dB ENOB = 11.0 BITS SFDR = 77.0dBC
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 8.14.1 12.2 16.3 20.3 24.4 28.4 32.5
Figure 9. Single-Tone 32k FFT with f
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 8.14.1 12.2 16.3 20.3 24.4 28.4 32.5
Figure 10. Single-Tone 32k FFT with f
FREQUENCY (MHz)
= 2.4 MHz, f
IN
AIN = –0.5dBFS SNR = 69.6dB ENOB = 11.3 BITS SFDR = 82.4dBC
FREQUENCY (MHz)
= 30 MHz, f
IN
SAMPLE
SAMPLE
= 65 MSPS
= 65 MSPS
04418-009
04418-010
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 8.14.1 12.2 16.3 20.3 24.4 28.4 32.5
Figure 12. Single-Tone 32k FFT with f
90
85
80
75
SNR/SFDR (dB)
70
65
60
10 2015 25 30 35 40 45 50
Figure 13. SNR/SFDR vs. f
FREQUENCY (MHz)
= 120 MHz, f
IN
1V p-p, SFDR (dBc)
2V p-p, SFDR (dBc)
2V p-p, SNR (dB)
1V p-p, SNR (dB)
ENCODE (MSPS)
, fIN = 10.3 MHz, f
SAMPLE
AIN = –0.5dBFS
SAMPLE
= 65 MSPS
SAMPLE
= 50 MSPS
04418-012
04418-013
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 8.14.1 12.2 16.3 20.3 24.4 28.4 32.5
Figure 11. Single-Tone 32k FFT with f
FREQUENCY (MHz)
IN
AIN = –0.5dBFS SNR = 68.5dB ENOB = 11.1 BITS SFDR = 81.3dBC
= 70 MHz, f
SAMPLE
= 65 MSPS
Rev. A | Page 11 of 40
04418-011
90
85
80
75
SNR/SFDR (dB)
70
65
60
10 2015 25 30 35 40 45 50
Figure 14. SNR/SFDR vs. f
1V p-p, SFDR (dBc)
2V p-p, SFDR (dBc)
2V p-p, SNR (dB)
1V p-p, SNR (dB)
ENCODE (MSPS)
, fIN = 25 MHz, f
SAMPLE
AIN = –0.5dBFS
SAMPLE
04418-014
= 50 MSPS
AD9229
95
90
85
80
75
SNR/SFDR (dB)
70
65
60
Figure 15. SNR/SFDR vs. f
1V p-p, SFDR (dBc)
2V p-p, SFDR (dBc)
2V p-p, SNR (dB)
1V p-p, SNR (dB)
10 2015 25 30 35 40 45 6550 55 60
ENCODE (MSPS)
, fIN = 10.3 MHz, f
SAMPLE
AIN = –0.5dBFS
= 65 MSPS
SAMPLE
04418-015
90
80
1V p-p, SFDR (dBc)
70
60
50
40
SNR/SFDR (dB)
30
20
10
0
–60 –10–20–30–40–50 0
1V p-p, SNR (dB)
2V p-p, SFDR (dBc)
80 dB REFERENCE
2V p-p, SNR (dB)
ANALOG INPUT LEVEL (dBFS)
Figure 18. SNR/SFDR vs. Analog Input Level,
=25 MHz, f
f
IN
SAMPLE
= 50 MSPS
04418-018
85
80
75
70
SNR/SFDR (dB)
65
60
10 2015 25 30 35 40 45 6550 55 60
Figure 16. SNR/SFDR vs. f
90
80
70
1V p-p, SFDR (dBc)
60
50
40
SNR/SFDR (dB)
30
20
10
0
–60 –10–20–30–40–50 0
1V p-p, SNR (dB)
2V p-p, SFDR (dBc)
1V p-p, SFDR (dBc)
2V p-p, SNR (dB)
1V p-p, SNR (dB)
ENCODE (MSPS)
, fIN = 30 MHz, f
SAMPLE
2V p-p, SFDR (dBc)
2V p-p, SNR (dB)
ANALOG INPUT LEVEL (dBFS)
SAMPLE
80 dB REFERENCE
AIN = –0.5dBFS
Figure 17. SNR/SFDR vs. Analog Input Level,
= 10.3 MHz, f
f
IN
SAMPLE
= 50 MSPS
= 65 MSPS
04418-016
04418-017
90
80
1V p-p, SFDR (dBc)
70
60
50
40
SNR/SFDR (dB)
30
20
10
0
–60 –10–20–30–40–50 0
1V p-p, SNR (dB)
ANALOG INPUT LEVEL (dBFS)
2V p-p, SFDR (dBc)
80 dB REFERENCE
2V p-p, SNR (dB)
Figure 19. SNR/SFDR vs. Analog Input Level,
= 10.3 MHz, f
f
IN
90
80
70
1V p-p, SFDR (dBc)
60
50
40
SNR/SFDR (dB)
30
20
10
0
–60 –10–20–30–40–50 0
1V p-p, SNR (dB)
ANALOG INPUT LEVEL (dBFS)
= 65 MSPS
SAMPLE
2V p-p, SFDR (dBc)
80 dB REFERENCE
2V p-p, SNR (dB)
Figure 20. SNR/SFDR vs. Analog Input Level,
= 30 MHz, f
f
IN
SAMPLE
= 65 MSPS
04418-019
04418-020
Rev. A | Page 12 of 40
Loading...
+ 28 hidden pages