ANALOG DEVICES AD9146 Service Manual

TxDAC+ Digital-to-Analog Converter
AD9146
Rev. A
Trademarks and registered trademarks are the property of their respective owners.
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.
NOTES
1. AQM = ANALOG QUADRATURE M ODULATOR.
COMPLEX BAS E BAND
DC
COMPLEX IF
f
IF
RF
LO – f
IF
DIGITAL
BASEBAND
PROCESSOR
PA
I DAC
Q DAC
2/4
SINC
–1
2/4
SINC
–1
ANTIALIASING
FILTER
AQM
LO
OFFSET
AND
GAIN
ADJ
OFFSET
AND
GAINADJ
09691-001
Data Sheet

FEATURES

Flexible LVDS interface allows byte or nibble load Single-carrier W-CDMA ACLR = 80 dBc at 122.88 MHz IF Analog output: adjustable 8.7 mA to 31.7 mA, R Integrated 2×/4× interpolator/complex modulator allows
carrier placement anywhere in the DAC bandwidth
Gain, dc offset, and phase adjustment for sideband
suppression Multiple chip synchronization interfaces High performance, low noise PLL clock multiplier Digital inverse sinc filter Low power: 1.2 W at 1.0 GSPS, 800 mW at 500 MSPS,
full operating conditions 48-lead, exposed paddle LFCSP

APPLICATIONS

Wireless infrastructure W-CDMA, CDMA2000, TD-SCDMA, WiMAX, GSM, LTE Digital high or low IF synthesis Transmit diversity Wideband communications: LMDS/MMDS, point-to-point

GENERAL DESCRIPTION

The AD9146 is a dual, 16-bit, high dynamic range digital-to­analog converter (DAC) that provides a sample rate of 1000 MSPS with nominal supplies and 1230 MSPS with increased supplies, permitting multicarrier generation up to the Nyquist frequency.
= 25 Ω to 50 Ω
L

TYPICAL SIGNAL CHAIN

Dual, 16-Bit, 1230 MSPS,
The AD9146 TxDAC+® includes features optimized for direct conversion transmit applications, including complex digital mod­ulation, and gain and offset compensation. The DAC outputs are optimized to interface seamlessly with analog quadrature modulators, such as the ADL537x F-MOD series from Analog Devices, Inc. A 3-wire serial port interface provides for program­ming/readback of many internal parameters. Full-scale output current can be programmed over a range of 8.7 mA to 31.7 mA. The AD9146 comes in a 48-lead LFCSP.

PRODUCT HIGHLIGHTS

1. Ultralow noise and intermodulation distortion (IMD)
enable high quality synthesis of wideband signals from baseband to high intermediate frequencies (IF).
2. Proprietary DAC output switching technique enhances
dynamic performance.
3. Current outputs are easily configured for various single-
ended or differential circuit topologies.
4. Compact LVDS digital interface offers reduced width
data bus.

COMPANION PRODUCTS

IQ Modulators: ADL5370, ADL537x family IQ Modulators with PLL and VCO: ADRF6701, ADRF670x family Clock Drivers: AD9516, AD951x family Voltage Regulator Design Tool: ADIsimPower
Additional companion products on the AD9146 product page
Information furnishe d by Analog Devices is be lieved to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No licen se is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
www.analog.com
AD9146 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Product Highlights ........................................................................... 1
Companion Products ....................................................................... 1
Typical Signal Chain......................................................................... 1
Revision History ............................................................................... 3
Functional Block Diagram .............................................................. 4
Specifications ..................................................................................... 5
DC Specifications ......................................................................... 5
Digital Specifications ................................................................... 6
Digital Input Data Timing Specifications ................................. 6
AC Specifications .......................................................................... 7
Absolute Maximum Ratings ............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution .................................................................................. 8
Pin Configuration and Function Descriptions ............................. 9
Typical Performance Characteristics ........................................... 11
Terminology .................................................................................... 15
Theory of Operation ...................................................................... 16
Serial Port Operation ................................................................. 16
Data Format ................................................................................ 16
Serial Port Pin Descriptions ...................................................... 16
Serial Port Options ..................................................................... 17
Device Configuration Register Map and Descriptions ......... 18
LVDS Input Data Ports .................................................................. 28
Byte Interface Mode ................................................................... 28
Nibble Interface Mode ............................................................... 28
FIFO Operation .......................................................................... 28
Interface Timing ......................................................................... 31
Digital Datapath .............................................................................. 32
Premodulation ............................................................................ 32
Interpolation Filters.................................................................... 32
Datapath Configuration ............................................................ 34
Determining Interpolation Filter Modes ................................ 34
Coarse Modulation Mixing Sequences .................................... 35
Quadrature Phase Correction ................................................... 35
Rev. A | Page 2 of 56
DC Offset Correction ................................................................ 35
Inverse Sinc Filter ....................................................................... 36
DAC Input Clock Configurations ................................................ 37
Driving the DACCLK and REFCLK Inputs ........................... 37
Direct Clocking .......................................................................... 37
Clock Multiplication .................................................................. 37
PLL Settings ................................................................................ 38
Configuring the VCO Tuning Band ........................................ 38
Analog Outputs............................................................................... 39
Transmit DAC Operation .......................................................... 39
Auxiliary DAC Operation ......................................................... 40
Interfacing to Modulators ......................................................... 41
Baseband Filter Implementation .............................................. 41
Driving the ADL5375-15 .......................................................... 41
Reducing LO Leakage and Unwanted Sidebands .................. 42
Device Power Management........................................................... 43
Power Dissipation....................................................................... 43
Tx Enable ..................................................................................... 43
Temperature Sensor ................................................................... 44
Multichip Synchronization ............................................................ 45
Synchronization with Clock Multiplication ............................... 45
Synchronization with Direct Clocking .................................... 46
Data Rate Mode Synchronization ............................................ 46
FIFO Rate Mode Synchronization ........................................... 47
Additional Synchronization Features ...................................... 48
Interrupt Request Operation ........................................................ 49
Interrupt Service Routine .......................................................... 49
Interface Timing Validation .......................................................... 50
SED Operation ............................................................................ 50
SED Example............................................................................... 51
Example Start-Up Routine ............................................................ 52
Device Configuration ................................................................ 52
Derived PLL Settings ................................................................. 52
Start-Up Sequence ...................................................................... 52
Outline Dimensions ....................................................................... 53
Ordering Guide .......................................................................... 53
Data Sheet AD9146

REVISION HISTORY

1/12—Rev. 0 to Rev. A
Change to General Description Section ......................................... 1
Change to DCI Delay[1:0], Table 11 ............................................. 23
Changes to Interface Timing Section, Figure 37, and
Figure 38 ........................................................................................... 31
Changes to SED Operation Section and Table 26 ....................... 50
4/11—Revision 0: Initial Version
Rev. A | Page 3 of 56
AD9146 Data Sheet
MULTICHIP
SYNCHRONIZATION
D7P/D7N
D0P/D0N
DATA
RECEIVER
FIFO HB2
f
DATA
/2
PRE
MOD
HB1_CLK
MODE
HB2_CLK
INTP
FACTOR
PHASE
CORRECTION
INTERNAL CLOCK TIMING AND CONTROL LOGIC
16
16
10
16
16
I OFFSET
Q OFFSET
INV
SINC
AUX
1.2G DAC 1
16-BIT
IOUT1P
IOUT1N
AUX
1.2G DAC 2
16-BIT
IOUT2P
IOUT2N
REF AND
BIAS
FSADJ
DACCLKP DACCLKN
REFCLKP REFCLKN
REFIO
10
GAIN 110GAIN 2
DAC_CLK
SERIAL
INPUT/OUTPUT
PORT
PROGRAMMING
REGISTERS
POWER-ON
RESET
SDIO
SCLK
CS
RESET
IRQ
0
1
CLOCK
MULTIPLIER
(2× TO 16×)
CLK
RCVR
CLK
RCVR
PLL CONTROL
SYNC
DAC CLK_SEL
DAC_CLK
PLL_LOCK
DCI
FRAME
INVSINC_CLK
09691-002
HB1

FUNCTIONAL BLOCK DIAGRAM

Figure 2.
Rev. A | Page 4 of 56
Data Sheet AD9146
Power Supply Rejection Ratio, AVDD33
−0.3 +0.3
% FSR/V
CVDD18
1.71
1.8
1.89
V
PLL On
864 mW

SPECIFICATIONS

DC SPECIFICATIONS

T
to T
MIN
Table 1.
Parameter Min Typ Max Unit
RESOLUTION 16 Bits ACCURACY
Differential Nonlinearity (DNL) ±2.1 LSB
Integral Nonlinearity (INL) ±3.7 LSB
MAIN DAC OUTPUTS
Offset Error −0.001 0 +0.001 % FSR
Gain Error (with Internal Reference) −3.6 ±2 +3.6 % FSR
Full-Scale Output Current1 8.66 19.6 31.66 mA
Output Compliance Range −1.0 +1.0 V
Output Resistance 10
Gain DAC Monotonicity Guaranteed
Settling Time to Within ±0.5 LSB 20 ns
MAIN DAC TEMPERATURE DRIFT
Offset 0.04 ppm/°C
Gain 100 ppm/°C
Reference Voltage 30 ppm/°C
REFERENCE
Internal Reference Voltage 1.2 V
Output Resistance 5
ANALOG SUPPLY VOLTAGES
AVDD33 3.13 3.3 3.47 V
, AV D D3 3 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IFS = 20 mA, maximum sample rate, unless otherwise noted.
MAX
DIGITAL SUPPLY VOLTAGES
DVDD18 1.71 1.8 1.89 V
POWER CONSUMPTION
2× Mode, f
PLL Off 780 mW
AVDD33 56 mA
CVDD18 58 mA
DVDD18 343 mA
Power-Down Mode (Register 0x01 = 0xFC) 8.5 19 mW
POWER-UP TIME 260 ms OPERATING RANGE −40 +25 +85 °C
1
Based on a 10 kΩ external resistor between FSADJ and AVSS.
= 500 MSPS, IF = 10 MHz
DAC
Rev. A | Page 5 of 56
AD9146 Data Sheet

DIGITAL SPECIFICATIONS

T
to T
MIN
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
CMOS INPUT LOGIC LEVEL
Input VIN Logic High 1.2 V Input VIN Logic Low 0.6 V
CMOS OUTPUT LOGIC LEVEL
Output V Output V
LVDS RECEIVER INPUTS1 Applies to data, DCI, and FRAME inputs
Input Voltage Range, VIA or VIB 825 1575 mV Input Differential Threshold, V Input Differential Hysteresis, V Receiver Differential Input Impedance, RIN 80 120 Ω LVDS Input Rate See Table 5
DAC CLOCK INPUT (DACCLKP, DACCLKN)
Differential Peak-to-Peak Voltage 100 500 2000 mV Common-Mode Voltage Self-biased input, ac-coupled 1.25 V Maximum Clock Rate 1200 MHz
REFCLK INPUT (REFCLKP, REFCLKN)
Differential Peak-to-Peak Voltage 100 500 2000 mV Common-Mode Voltage 1.25 V REFCLK Frequency
SERIAL PORT INTERFACE
Maximum Clock Rate (SCLK) 40 MHz Minimum Pulse Width High (t Minimum Pulse Width Low (t Setup Time, SDIO to SCLK (tDS) 2.09 ns Hold Time, SDIO to SCLK (tDH) 0.844 ns Data Valid, SDIO to SCLK (tDV) 2.904 ns Setup Time, CS to SCLK (t
1
LVDS receiver is compliant with the IEEE 1596 reduced range link, unless otherwise noted.
, AV D D3 3 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IFS = 20 mA, maximum sample rate, unless otherwise noted.
MAX
Logic High 1.4 V
OUT
Logic Low 0.4 V
OUT
−100 +100 mV
IDTH
to V
IDTHH
PLL Mode 1 GHz ≤ f SYNC Mode See the Multichip Synchronization
20 mV
IDTHL
≤ 2.1 GHz 15.625 525 MHz
VCO
0 525 MHz
section for conditions
) 12.5 ns
PWH
) 12.5 ns
PWL
) 2.38 ns
DCSB

DIGITAL INPUT DATA TIMING SPECIFICATIONS

Table 3.
Parameter Value Unit
LATENCY (DACCLK CYCLES)
1× Interpolation (With or Without Modulation) 64 Cycles 2× Interpolation (With or Without Modulation) 135 Cycles 4× Interpolation (With or Without Modulation) 292 Cycles Inverse Sinc 20 Cycles
Rev. A | Page 6 of 56
Data Sheet AD9146
f
= 800 MSPS, f
= 100 MHz
81 dBc
W-CDMA ADJACENT CHANNEL LEAKAGE RATIO (ACLR), SINGLE-CARRIER
2× (HB1)
1200
1230
150
153.75
300
307.5

AC SPECIFICATIONS

T
to T
MIN
Table 4.
Parameter Min Typ Max Unit
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
f
DAC
f
DAC
f
DAC
TWO-TONE INTERMODULATION DISTORTION (IMD)
f
DAC
f
DAC
f
DAC
DAC
NOISE SPECTRAL DENSITY (NSD), SINGLE-CARRIER W-CDMA
f
DAC
f
DAC
W-CDMA ADJACENT CHANNEL LEAKAGE RATIO (ACLR), FOUR-CARRIER
f
DAC
f
DAC
f
DAC
, AV D D3 3 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IFS = 20 mA, maximum sample rate, unless otherwise noted.
MAX
= 200 MSPS, f = 400 MSPS, f = 800 MSPS, f
= 600 MSPS, f = 600 MSPS, f = 800 MSPS, f
= 400 MSPS, f = 800 MSPS, f
= 491.52 MSPS, f = 983.04 MSPS, f = 983.04 MSPS, f
= 50 MHz 70 dBc
OUT
= 70 MHz 65 dBc
OUT
= 70 MHz 67 dBc
OUT
= 50 MHz 85 dBc
OUT
= 80 MHz 82 dBc
OUT
= 60 MHz 83 dBc
OUT
OUT
= 80 MHz −162 dBm/Hz
OUT
= 80 MHz −164 dBm/Hz
OUT
= 15 MHz 75 dBc
OUT
= 80 MHz 77 dBc
OUT
= 200 MHz 76 dBc
OUT
f
= 983.04 MSPS, f
DAC
f
= 983.04 MSPS, f
DAC
= 80 MHz 82 dBc
OUT
= 122.88 MHz 80 dBc
OUT
Table 5. Maximum Rate (MSPS) with DVDD and CVDD Supply Regulation
Interface Mode
Interpolation Factor
f
1.8 V ± 5% 1.9 V ± 5% 1.8 V ± 5% 1.9 V ± 5% 1.8 V ± 5% 1.9 V ± 5% 1.8 V ± 5% 1.9 V ± 5%
(MSPS) f
IN TER FACE
(MSPS) f
HB1
(MSPS) f
HB2
(MSPS)
DAC
Byte (8 Bits) 1200 1230 300 307.5 2× (HB1) 1200 1230 300 307.5 600 615 2× (HB2) 1200 1230 300 307.5 600 615 1200 1230 300 307.5 600 615 1200 1230 Nibble (4 Bits) 1× 1200 1230 150 153.75
2× (HB2) 1200 1230 150 153.75 300 307.5 1200 1230 150 153.75 300 307.5 600 615
Rev. A | Page 7 of 56
AD9146 Data Sheet
DVDD18, CVDD18 to AVSS, EPAD,
−0.3 V to +2.1 V , SCLK, SDIO to EPAD
−0.3 V to DVDD18 + 0.3 V

ABSOLUTE MAXIMUM RATINGS

Table 6.
Parameter Rating
AVDD33 to AVSS, EPAD, CVSS −0.3 V to +3.6 V
CVSS AVSS to EPAD, CVSS −0.3 V to +0.3 V EPAD to AVSS, CVSS −0.3 V to +0.3 V CVSS to AVSS, EPAD −0.3 V to +0.3 V FSADJ, REFIO, IOUT1P, IOUT1N,
IOUT2P, IOUT2N to AVSS D[7:0]P, D[7:0]N, FRAMEP, FRAMEN,
DCIP, DCIN to EPAD DACCLKP, DACCLKN, REFCLKP,
REFCLKN to EPAD RESET, IRQ, CS Junction Temperature 125°C Storage Temperature Range −65°C to +150°C
−0.3 V to AVDD33 + 0.3 V
−0.3 V to DVDD18 + 0.3 V
−0.3 V to CVDD18 + 0.3 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

The exposed pad (EPAD) of the 48-lead LFCSP must be soldered to the ground plane (AVSS). The EPAD provides an electrical, thermal, and mechanical connection to the board.
Typical θ
, θJB, and θJC values are specified for a 4-layer board and
JA
an 8-layer board in still air. Airflow increases heat dissipation, effectively reducing θ
and θJB.
JA
Table 7. Thermal Resistance
Package1 PCB θJA θJB θJC Unit
48-Lead LFCSP 4-layer 23.2 8.5 8.7 °C/W 48-Lead LFCSP 8-layer 16.4 3.9 7.1 °C/W
1
EPAD soldered to ground plane.

ESD CAUTION

Rev. A | Page 8 of 56
Data Sheet AD9146
NOTES
1. THE EXP OSED PAD (EPAD) M US T BE SOLDERE D TO THE GROUND PLANE (AVSS). THE EPAD PROVIDES AN ELECT RICAL, THERM AL, AND MECHANICAL CO NNE CTION TO THE BOARD.
DACCLKP DACCLKN
AD9146
TOP VIEW
(Not to S cale)
PIN 1 INDICATOR
09691-003
2
CVDD18
1.8 V Clock Supply. Supplies clock receivers, clock distribution, and PLL circuitry.
7
REFCLKN
PLL Reference Clock Input, Negative. This pin has a secondary function as a synchronization input.
23
D2P
Data Bit 2, Positive.
24
D2N
Data Bit 2, Negative.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

AVDD33
IOUT1P
IOUT1N
AVDD33
AVSS
FSADJ
REFIO
AVSS
AVDD33
IOUT2N
IOUT2P
4847464544434241403938
AVDD33 37
D2N
RESET36 DVDD18
35
IRQ
34
CS
33
SCLK
32
SDIO
31
TXENABLE
30
DVDD18
29
D0N
28
D0P
27
D1N
26
D1P
25
CVDD18 CVDD18
CVSS REFCLKP REFCLKN
DVDD18
D7P
D7N
D6P
D6N
1 2 3 4 5 6 7 8
9 10 11 12
13141516171819
D5P
D4P
D4N
D5N
DCIP
DCIN
FRAMEP
2021222324
D3P
D2P
D3N
FRAMEN
Figure 3. Pin Configuration
Table 8. Pin Function Descriptions
Pin No. Mnemonic Description
1 CVDD18 1.8 V Clock Supply. Supplies clock receivers, clock distribution, and PLL circuitry.
3 DACCLKP DAC Clock Input, Positive. 4 DACCLKN DAC Clock Input, Negative. 5 CVSS Clock Supply Common. 6 REFCLKP PLL Reference Clock Input, Positive. This pin has a secondary function as a synchronization input.
8 DVDD18 1.8 V Digital Supply. Supplies power to digital core and digital data ports. 9 D7P Data Bit 7 (MSB), Positive. 10 D7N Data Bit 7 (MSB), Negative. 11 D6P Data Bit 6, Positive. 12 D6N Data Bit 6, Negative. 13 D5P Data Bit 5, Positive. 14 D5N Data Bit 5, Negative. 15 D4P Data Bit 4, Positive. 16 D4N Data Bit 4, Negative. 17 DCIP Data Clock Input, Positive. 18 DCIN Data Clock Input, Negative. 19 FRAMEP Frame Input, Positive. 20 FRAMEN Frame Input, Negative. 21 D3P Data Bit 3, Positive. 22 D3N Data Bit 3, Negative.
25 D1P Data Bit 1, Positive. 26 D1N Data Bit 1, Negative. 27 D0P Data Bit 0 (LSB), Positive.
Rev. A | Page 9 of 56
AD9146 Data Sheet
32
SCLK
Serial Port Clock Input (CMOS).
48
AVDD33
3.3 V Analog Supply.
EPAD
The exposed pad (EPAD) must be soldered to the ground plane (AVSS). The EPAD provides an electrical,
Pin No. Mnemonic Description
28 D0N Data Bit 0 (LSB), Negative. 29 DVDD18 1.8 V Digital Supply. Supplies power to digital core and digital data ports. 30 TXENABLE Active High Transmit Path Enable (CMOS). A low level on this pin clamps the DAC outputs to midscale. 31 SDIO Serial Port Data Input/Output (CMOS).
33 34 35 DVDD18 1.8 V Digital Supply. Supplies power to digital core and digital data ports. 36 37 AVDD33 3.3 V Analog Supply. 38 IOUT2P Q DAC Positive Current Output.
39 IOUT2N Q DAC Negative Current Output. 40 AVDD33 3.3 V Analog Supply. 41 AVS S Analog Supply Common. 42 REFIO 1.2 V Band Gap Voltage Reference Output. Should be decoupled to AVSS with a 0.1 µF capacitor. 43 FSADJ Full-Scale Current Output Adjust. Place a 10 kΩ resistor from this pin to AVSS. 44 AVS S Analog Supply Common. 45 AVDD33 3.3 V Analog Supply. 46 IOUT1N I DAC Negative Current Output. 47 IOUT1P I DAC Positive Current Output.
Serial Port Chip Select, Active Low (CMOS).
CS
Interrupt Request. Open-drain, active low output. Pull this pin high external to the device.
IRQ
Reset, Active Low (CMOS).
RESET
thermal, and mechanical connection to the board.
Rev. A | Page 10 of 56
Data Sheet AD9146
–90
–85
–80
–75
–70
–65
–60
–55
–50
0 50 100 150 200 250 300 350 400
HARMONICS (dBc)
f
OUT
(MHz)
2×, 300MSPS, S E COND HARMONIC 4×, 200MSPS, S E COND HARMONIC 2×, 300MSPS, THIRD HARMONI C 4×, 200MSPS, THIRD HARMONI C
09691-076
–90
–85
–80
–75
–70
–65
–60
–55
–50
0 50 100 150 200 250 300 350 400
SECOND HARMONIC (dBc)
f
OUT
(MHz)
0dBFS –6dBFS –12dBFS –18dBFS
09691-077
–90
–85
–80
–75
–70
–65
–60
–55
–50
0 50 100 150 200 250 300 350 400
THIRD HARMONIC (dBc)
f
OUT
(MHz)
0dBFS –6dBFS –12dBFS –18dBFS
09691-078
f
OUT
(MHz)
–80
–78
–76
–74
–72
–70
–68
–66
–64
–62
–60
0 50 100 150 200 250 300 350 400
HIGHEST DIGITAL SPUR (dBc)
09691-079
2×, 300MSPS
4×, 200MSPS
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
START 1MHz #RES BW 10kHz
STOP 600MHz
SWEEP 7.22s (1001pts)
VBW 10kHz
09691-089
AMPLIT UDE ( dBm)
10
0
–10
–20
AMPLIT UDE ( dBm)
–30
–40
–50
–60
–70
–80
–90
START 1MHz #RES BW 10kHz
STOP 800MHz
SWEEP 9.63s (1001pts)VBW 10kHz
09691-090

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Harmonics vs. f
Digital Scale = 0 dBFS, I
Figure 5. Second Harmonic vs. f
f
= 400 MSPS, IFS = 20 mA
DATA
over f
OUT
over Digital Scale, 4× Interpolation,
OUT
and Interpolation,
DATA
= 20 mA
FS
Figure 7. Highest Digital Spur vs. f
Digital Scale = 0 dBFS, I
OUT
over f
FS
Figure 8. Single-Tone Spectrum, 2× Interpolation,
f
= 300 MSPS, f
DATA
= 101 MHz
OUT
and Interpolation,
DATA
= 20 mA
Figure 6. Third Harmonic vs. f
f
OUT
= 400 MSPS, IFS = 20 mA
DATA
over Digital Scale, 4× Interpolation,
Rev. A | Page 11 of 56
Figure 9. Single-Tone Spectrum, 4× Interpolation,
f
= 200 MSPS, f
DATA
= 151 MHz
OUT
AD9146 Data Sheet
–95
–90
–85
–80
–75
–70
–65
–60
–55
0 50 100 150 200 250 300 350 400
IMD (dBc)
f
OUT
(MHz)
2×, 300MSPS
4×, 200MSPS
09691-080
–95
–90
–85
–80
–75
–70
–65
–60
–55
0 50 100 150 200 250 300 350 400
IMD (dBc)
0dBFS –6dBFS –12dBFS –18dBFS
09691-081
f
OUT
(MHz)
–90
–85
–80
–75
–70
–65
–60
–55
–50
0 50 100 150 200 250 300 350 400
IMD (dBc)
f
OUT
(MHz)
IFS = 10mA I
FS
= 20mA
I
FS
= 30mA
09691-082
–95
–90
–85
–80
–75
–70
–65
–60
–55
–50
–45
0 50 100 150 200 250 300 350 400
IMD (dBc)
f
OUT
(MHz)
PLL ON
09691-083
PLL OFF
0 50 100 150 200 250 300 350 400
NSD (dBm/Hz)
f
OUT
(MHz)
–170
–165
–160
–155
–150
–145
–140
–135
–130
SINGLE-TONE: 2×, 200M S P S SINGLE-T
ONE: 4×, 200MS P S W-CDMA: 2×, 200MSPS W-CDMA: 4×, 200MSPS
09691-084
–170
–165
–160
–155
–150
–145
–140
–135
–130
0 50 100 150 200 250 300 350 400
NSD (dBm/Hz)
f
OUT
(MHz)
SINGLE-TONE: 2×, 200M S P S SINGLE-TONE: 4×, 200M S P S W-CDMA: 2×, 200MSPS W-CDMA: 4×, 200MSPS
09691-085
Figure 10. IMD vs. f
Digital Scale = 0 dBFS, I
Figure 11. IMD vs. f
f
DATA
over f
OUT
over Digital Scale, 4× Interpolation,
OUT
and Interpolation,
DATA
= 20 mA
FS
= 400 MSPS, IFS = 20 mA
Figure 13. IMD vs. f
Digital Scale = 0 dBFS, I
, 4× Interpolation, f
OUT
= 20 mA, PLL On and PLL Off
FS
= 200 MSPS,
DATA
Figure 14. NSD vs. f
f
DATA
over Interpolation, Single-Tone and W-CDMA Signals,
OUT
= 200 MSPS, Digital Scale = 0 dBFS, IFS = 20 mA, PLL Off
Figure 12. IMD vs. f
f
DATA
over Full-Scale Current, 4× Interpolation,
OUT
= 400 MSPS, Digital Scale = 0 dBFS
Figure 15. NSD vs. f
f
DATA
over Interpolation, Single-Tone and W-CDMA Signals,
OUT
= 200 MSPS, Digital Scale = 0 dBFS, IFS = 20 mA, PLL On
Rev. A | Page 12 of 56
Data Sheet AD9146
–80
–78
–76
–74
–72
–70
–68
–66
–64
–62
–60
0 40 80 120 160 200 240 280 320 360 400 440 480
ACLR (dBc)
0dBFS –3dBFS –6dBFS
f
OUT
(MHz)
09691-093
0 40 80 120 160 200 240 280 320 360 400 440 480
ACLR (dBc)
0dBFS –3dBFS –6dBFS
–80
–78
–76
–74
–72
–70
–68
–66
–64
–62
–60
f
OUT
(MHz)
09691-094
0 40 80 120 160 200 240 280 320 360 400 440 480
ACLR (dBc)
0dBFS –3dBFS –6dBFS
–80
–78
–76
–74
–72
–70
–68
–66
–64
–62
–60
f
OUT
(MHz)
09691-086
0 40 80 120 160 200 240 280 320 360 400 440 480
ACLR (dBc)
2×, PLL OFF 2×, PLL ON 4×, PLL OFF 4×, PLL ON
–80
–78
–76
–74
–72
–70
–68
–66
–64
–62
–60
f
OUT
(MHz)
09691-095
–80
–78
–76
–74
–72
–70
–68
–66
–64
–62
–60
0 40 80 120 160 200 240 280 320 360 400 440 480
ACLR (dBc)
2×, PLL OFF 2×, PLL ON 4×, PLL OFF 4×, PLL ON
f
OUT
(MHz)
09691-096
Figure 16. Four-Carrier W-CDMA ACLR vs. f
Channel, 4× Int erpolation, f
DATA
Figure 17. Four-Carrier W-CDMA ACLR vs. f
Alternate Channel, 4× Interpolation, f
over Digital Scale, Adjacent
OUT
= 245.76 MSPS, PLL Off
over Digital Scale, First
OUT
= 245.76 MSPS, PLL Off
DATA
Figure 19. Four-Carrier W-CDMA ACLR vs. f
Channel, f
= 245.76 MSPS, PLL Off and PLL On
DATA
Figure 20. Four-Carrier W-CDMA ACLR vs. f
Alternate Channel, f
= 245.76 MSPS, PLL Off and PLL On
DATA
over Interpolation, Adjacent
OUT
over Interpolation, First
OUT
Figure 18. Four-Carrier W-CDMA ACLR vs. f
Alternate Channel, 4× Interpolation, f
over Digital Scale, Second
OUT
= 245.76 MSPS, PLL Off
DATA
Rev. A | Page 13 of 56
AD9146 Data Sheet
–80
–78
–76
–74
–72
–70
–68
–66
–64
–62
–60
0 40 80 120 160 200 240 280 320 360 400 440 480
ACLR (dBc)
f
OUT
(MHz)
2×, PLL OFF 2×, PL
L ON 4×, PLL OFF 4×, PLL ON
09691-087
AMPLIT UDE ( dBm)
CENTER 122MHz #RES BW 30kHz
SPAN 49.68MHz
SWEEP 1.371sVBW 3kHz
–35
–25
–55
–45
–75
–65
–95
–105
–125
–115
–85
OFFSET FREQFILTER
CARRIER POWER
INTEG BW dBc
LOWER
ACP-IBWTOTAL CARRIER POWER –16.469dBm/15.36MHz
UPPER
dBm dBc
dBm FILTER
5MHz 10MHz 15MHz
ON1 –22.205dBm/3.84MHz 3.84MHz
3.84MHz
3.84MHz
–76.37 –77.45 –77.59
–98.78 –99.85 –99.99
–77.11 –77.49 –77.51
–99.52 –99.89 –99.91
ON ON ON
–22.2dBm –22.4dBm –22.7dBm –22.7dBm
09691-092
–84
–82
–80
–78
–76
–74
–72
–70
–68
–66
–64
–62
–60
0 40 80 120 160 200 240 280 320 360 400 440 480
ACLR (dBc)
f
OUT
(MHz)
1 CARRIER
4 CARRIER
09691-088
CENTER 200MHz #RES BW 30kHz
SPAN 49.68MHz
SWEEP 1.371sVBW 3kHz
–35
–25
–55
–45
–75
–65
AMPLIT UDE ( dBm)
–95
–105
–125
–115
–85
–23.3dBm –22.9dBm –22.6dBm –22.8dBm
OFFSET FREQFILTER
CARRIER POWER
INTEG BW dBc
LOWER
ACP-IBWTOTAL CARRIER POWER –16.873dBm/15.36MHz
UPPER
dBm dBc dBm FILTER
5MHz 10MHz 15MHz
ON1 –23.284dBm/3.84MHz 3.84MHz
3.84MHz
3.84MHz
–76.55 –76.73 –76.64
–99.49 –99.67 –99.59
–75.66 –75.68 –75.88
–98.60 –98.62 –98.83
ON ON ON
09691-091
Figure 21. Four-Carrier W-CDMA ACLR vs. f
Alternate Channel, f
= 245.76 MSPS, PLL Off and PLL On
DATA
over Interpolation, Second
OUT
Figure 22. Four-Carrier W-CDMA Performance, 4× Interpolation,
f
= 245.76 MSPS, Digital Scale = −6 dBFS, f
DATA
OUT
= 122 MHz
Figure 23. W-CDMA ACLR vs. f
4× Interpolation, f
DATA
over Number of Carriers, Adjacent Channel,
OUT
= 245.76 MSPS, Digital Scale = −6 dBFS, PLL Off
Figure 24. Four-Carrier W-CDMA Performance, 4× Interpolation,
f
= 245.76 MSPS, Digital Scale = −6 dBFS, f
DATA
OUT
= 200 MHz
Rev. A | Page 14 of 56
Data Sheet AD9146

TERMINOLOGY

Integral Nonlinearity (INL)
INL is the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale.
Differential Nonlinearity (DNL)
DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code.
Offset Error
Offset error is the deviation of the output current from the ideal of 0 mA. For IOUT1P, 0 mA output is expected when all inputs are set to 0. For IOUT1N, 0 mA output is expected when all inputs are set to 1.
Gain Error
Gain error is the difference between the actual and ideal output span. The actual span is determined by the difference between the output when all inputs are set to 1 and the output when all inputs are set to 0.
Output Compliance Range
The output compliance range is the range of allowable voltage at the output of a current output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance.
Temperature Drift
Temperature drift is specified as the maximum change from the ambient (25°C) value to the value at either T
MIN
or T
MAX
. For offset and gain drift, the drift is reported in ppm of full-scale range (FSR) per degree Celsius. For reference voltage drift, the drift is reported in ppm per degree Celsius.
Power Supply Rejection (PSR)
PSR is the maximum change in the full-scale output as the supplies are varied from minimum to maximum specified voltages.
Settling Time
Settling time is the time required for the output to reach and remain within a specified error band around its final value, measured from the start of the output transition.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels, between the peak amplitude of the output signal and the peak spurious signal within the dc to Nyquist frequency of the DAC. Typically, energy in this band is rejected by the interpolation filters. This specification, there­fore, defines how well the interpolation filters work and the effect of other parasitic coupling paths on the DAC output.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the measured output signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels.
Interpolation Filter
If the digital inputs to the DAC are sampled at a multiple rate of f
(interpolation rate), a digital filter can be constructed that
DATA
has a sharp transition band near f appear around f
(output data rate) can be greatly suppressed.
DAC
/2. Images that typically
DATA
Adjacent Channel Leakage Ratio (ACLR)
ACLR is the ratio in decibels relative to the carrier (dBc) between the measured power within a channel and that of its adjacent channel.
Complex Image Rejection
In a traditional two-part upconversion, two images are created around the second IF frequency. These images have the effect of wasting transmitter power and system bandwidth. By placing the real part of a second complex modulator in series with the first complex modulator, either the upper or lower frequency image near the second IF can be rejected.
Rev. A | Page 15 of 56
32
SCLK
31
SDIO
33
CS
SPI
PORT
09691-032
AD9146 Data Sheet

THEORY OF OPERATION

High performance, small size, and low power consumption make the AD9146 a very attractive DAC for wired and wireless communications systems. The dual digital signal path and dual DAC structure allow an easy interface to common quadrature modulators when designing single sideband (SSB) transmitters.
The AD9146 offers features that allow simplified synchroniza­tion with incoming data and between multiple devices. Auxiliary DACs are also provided on chip. The auxiliary DACs can be used for output dc offset compensation (for LO compensation in SSB transmitters) and for gain matching (for image rejection optimiza­tion in SSB transmitters).

SERIAL PORT OPERATION

The serial port is a flexible, synchronous serial communications port that allows easy interfacing to many industry-standard microcontrollers and microprocessors. The serial I/O is com­patible with most synchronous transfer formats, including both the Motorola SPI and Intel® SSR protocols. The interface allows read/write access to all registers that configure the AD9146. Single-byte or multiple-byte transfers are supported, as well as MSB first or LSB first transfer formats.
Figure 25. Serial Port Interface Pins
A communication cycle with the AD9146 has two phases. Phase 1 is the instruction cycle (the writing of an instruction byte into the device), coincident with the first eight SCLK rising edges. The instruction byte provides the serial port controller with information regarding the data transfer cycle—Phase 2 of the communication cycle. The Phase 1 instruction byte defines whether the upcoming data transfer is a read or write, along with the starting register address for the first byte of the data transfer. The first eight SCLK rising edges of each communication cycle are used to write the instruction byte into the device.
A logic high on the
CS
pin followed by a logic low resets the serial port timing to the initial state of the instruction cycle. From this state, the next eight rising SCLK edges represent the instruction bits of the current I/O operation.
The remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual data transfer between the device and the system controller. Phase 2 of the communication cycle is a transfer of one or more data bytes. Registers change immediately upon writing to the last bit of each transfer byte.
Rev. A | Page 16 of 56

DATA FORMAT

The instruction byte contains the information shown in Ta ble 9.
Table 9. Serial Port Instruction Byte
I7 (MSB) I6 I5 I4 I3 I2 I1 I0 (LSB)
R/W A6 A5 A4 A3 A2 A1 A0
R/W, Bit 7 of the instruction byte, determines whether a read or a write data transfer occurs after the instruction byte write. Logic 1 indicates a read operation, and Logic 0 indicates a write operation.
A6 to A0, Bit 6 to Bit 0 of the instruction byte, determine the register that is accessed during the data transfer portion of the communication cycle. For multibyte transfers, A6 is the starting byte address. The remaining register addresses are generated by the device based on the LSB_FIRST bit (Register 0x00, Bit 6).

SERIAL PORT PIN DESCRIPTIONS

Serial Clock (SCLK)

The serial clock pin synchronizes data to and from the device and runs the internal state machines. The maximum frequency of SCLK is 40 MHz. All data input is registered on the rising edge of SCLK. All data is driven out on the falling edge of SCLK.
Chip Select (CS)
An active low input starts and gates a communication cycle. It allows more than one device to be used on the same serial communications lines. When the goes to a high impedance state. During the communication
CS
cycle, the
pin should stay low.

Serial Data I/O (SDIO)

The SDIO pin is a bidirectional pin that functions as an input in write mode and as an output in read mode. Data is written into the device on this pin and read from the device on this pin. The configuration of the SDIO pin is controlled by Register 0x00, Bit 7. To enable readback of the register data, this bit must be set to 1.
CS
pin is high, the SDIO pin
Data Sheet AD9146
R/W A6 A5 A4 A3 A2 A1 A0 D7
ND6N
D5
N
D00D10D2
0D30
INSTRUCTION CYCLE DATA TRANSFER CYCLE
SCLK
SDIO
09691-033
CS
SCLK
SDIO
CS
A0 A1 A2 A3 A4 A5 A6 R/W D0
0
D1
0
D2
0
D7
ND6N
D5
ND4N
INSTRUCTION CYCLE DATA TRANSFER CYCLE
09691-034
SCLK
SDIO
CS
INSTRUCTION BIT 6INSTRUCTION BIT 7
t
DCSB
t
DS
t
DH
t
PWH
t
PWL
t
SCLK
09691-035
SCLK
SDIO
CS
DATABIT n – 1DATA BIT n
t
DV
09691-036

SERIAL PORT OPTIONS

The serial port can support both MSB first and LSB first data formats. This functionality is controlled by the LSB_FIRST bit (Register 0x00, Bit 6). The default is MSB first (LSB_FIRST = 0).
When LSB_FIRST = 0 (MSB first), the instruction and data bits must be written from MSB to LSB. Multibyte data transfers in MSB first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes should follow from high address to low address. In MSB first mode, the serial port internal byte address generator decrements for each data byte of the multibyte communication cycle.
When LSB_FIRST = 1 (LSB first), the instruction and data bits must be written from LSB to MSB. Multibyte data transfers in LSB first format start with an instruction byte that includes the register address of the least significant data byte. Subsequent data bytes should follow from low address to high address. In LSB first mode, the serial port internal byte address generator increments for each data byte of the multibyte communication cycle.
If the MSB first mode is active, the serial port controller data address decrements from the data address written toward 0x00 for multibyte I/O operations. If the LSB first mode is active, the serial port controller data address increments from the data address written toward 0x7F for multibyte I/O operations.
Figure 27. Serial Port Interface Timing, LSB First
Figure 28. Timing Diagram for Serial Port Register Write
Figure 29. Timing Diagram for Serial Port Register Read
Figure 26. Serial Port Interface Timing, MSB First
Rev. A | Page 17 of 56
Loading...
+ 39 hidden pages