ANALOG DEVICES AD 8625 ARZ Datasheet

Precision Low Power
Data Sheet

FEATURES

SC70 package Very low I Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±13 V Rail-to-rail output Low supply current: 630 μA/amp typ Low offset voltage: 500 μV max Unity gain stable No phase reversal

APPLICATIONS

Photodiode amplifiers AT Es Line-powered/battery-powered instrumentation Industrial controls Automotive sensors Precision filters Audio

GENERAL DESCRIPTION

The AD862x is a precision JFET input amplifier. It features true single-supply operation, low power consumption, and rail-to-rail output. The outputs remain stable with capacitive loads of over 500 pF; the supply current is less than 630 μA/amp. Applications for the AD862x include photodiode transimpedance amplification, ATE reference level drivers, battery management, both line powered and portable instrumentation, and remote sensor signal conditioning, which includes automotive sensors.
The AD862x’s ability to swing nearly rail-to-rail at the input and rail-to-rail at the output enables it to be used to buffer CMOS DACs, ASICs, and other wide output swing devices in single-supply systems.
: 1 pA max
B
Single-Supply JFET Amplifiers
AD8625/AD8626/AD8627

PIN CONFIGURATIONS

8-Lead SOIC
(R-8 Suffix)
NC
1 2
–IN V+
AD8627
3
+IN OUT
4
V– NC
NC = NO CONNECT
8-Lead SOIC
(R-8 Suffix)
OUT A
1 2
–IN A OUT B
+IN A –IN B
OUT A OUT D
–IN A –IN D +IN A +IN D
+IN B +IN C –IN B –IN C
OUT B OUT C
AD8626
3
4
V– +IN B
14-Lead SOIC
(R-Suffix)
114 213 312
AD8625
V+ V–
411 510 69 78
NC
8 7
6
5
V+
8 7
6
5
Figure 1.
The 5 MHz bandwidth and low offset are ideal for precision filters.
The AD862x is fully specified over the industrial temperature range. (−40°C to +85°C). e AD8627 is available in both 5-lead SC70 and 8-lead SOIC surface-mount packages (SC70 packaged parts are available in tape and reel only). The AD8626 is available in MSOP and SOIC packages, while the AD8625 is available in TSSOP and SOIC packages.
5-Lead SC70
1 2
V–
+IN
3
8-Lead MSOP
1
4
14-Lead TSSOP
1
7
(KS Suffix)
AD8627
(RM-Suffix)
AD8626
(RU-Suffix)
AD8625
5OUT A
V+
–IN
4
8
V+OUT A OUT B–IN A –IN B+IN A +IN BV–
5
14
OUT DOUT A –IN D–IN A +IN D+IN A V–V+ +IN C+IN B –IN C–IN B OUT COUT B
8
03023-001
Rev. F Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2003–2013 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
AD8625/AD8626/AD8627 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Pin Configurations ........................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings ............................................................ 5
ESD Caution .................................................................................. 5

REVISION HISTORY

5/13—Rev. E to Rev. F
Changes to Applications Information Section ............................ 13
Changes to Ordering Guide .......................................................... 20
12/10—Rev. D to Rev. E
Removed Table Summary Conditions Above Table 3 ................. 5
Updated Outline Dimensions ....................................................... 18
3/09—Rev. C to Rev. D
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 19
11/04—Rev. B to Rev. C
Updated Figure Codes ....................................................... Universal
Changes to Figure 17 and 18 ........................................................... 8
Changes to Figure 33 and Figure 37 ............................................. 11
Changes to Figure 38 ...................................................................... 12
Changes to Figure 39 and Figure 40 ............................................. 13
Changes to Figure 41 to Figure 44 ................................................ 14
Typical Performance Characteristics ..............................................6
Applications Information .............................................................. 13
Minimizing Input Current ........................................................ 15
Photodiode Preamplifier Application...................................... 15
Output Amplifier for DACs ...................................................... 16
Eight-Pole Sallen Key Low-Pass Filter ..................................... 17
Outline Dimensions ....................................................................... 18
Ordering Guide .......................................................................... 20
1/04—Rev. A to Rev. B
Change to General Description ....................................................... 1
Change to Figure 10 .......................................................................... 7
Change to Figure13 ........................................................................... 7
Change to Figure 37 ....................................................................... 11
Changes to Figure 38 ...................................................................... 12
Change to Output Amplifier for DACs Section ......................... 15
Updated Outline Dimensions ....................................................... 19
10/03—Rev. 0 to Rev. A
Addition of Two New Parts ............................................... Universal
Change to General Description ....................................................... 1
Changes to Pin Configurations ....................................................... 1
Change to Specifications Table ........................................................ 3
Changes to Figure 31 ...................................................................... 10
Changes to Figure 32 ...................................................................... 11
Changes to Figure 38 ...................................................................... 12
Changes to Figure 46 ...................................................................... 16
Changes to Figure 47 ...................................................................... 16
Changes to Figure 49 ...................................................................... 17
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 19
Rev. F | Page 2 of 20
Data Sheet AD8625/AD8626/AD8627
OUTPUT CHARACTERISTICS
Slew Rate
SR
5 V/µs

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

@VS = 5 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 0.05 0.5 mV
−40°C < TA < +85°C 1.2 mV Input Bias Current IB 0.25 1 pA –40°C < TA < +85°C 60 pA Input Offset Current IOS 0.5 pA –40°C < TA < +85°C 25 pA Input Voltage Range 0 3 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 2.5 V 66 87 dB Large Signal Voltage Gain AVO RL = 10 kΩ, VO = 0.5 V to 4.5 V 100 230 V/mV Offset Voltage Drift ∆VOS/∆T –40°C < TA < +85°C 2.5 µV/°C
Output Voltage High VOH 4.92 V IL = 2 mA, –40°C < TA < +85°C 4.90 V Output Voltage Low VOL 0.075 V IL = 2 mA, –40°C < TA < +85°C 0.08 V Output Current I
POWER SUPPLY
Power-Supply Rejection Ratio PSRR VS = 5 V to 26 V 80 104 dB
Supply Current/Amplifier ISY 630 785 µA –40°C < TA < +85°C 800 µA DYNAMIC PERFORMANCE
±10 mA
OUT
Gain Bandwidth Product GBP 5 MHz
Phase Margin ØM 60 Degrees NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 1.9 µV p-p
Voltage Noise Density en f = 1 kHz 17.5 nV/√Hz
Current Noise Density in f = 1 kHz 0.4 fA/√Hz
Channel Separation Cs f = 1 kHz 104 dB
Rev. F | Page 3 of 20
AD8625/AD8626/AD8627 Data Sheet
Input Bias Current
IB
0.25 1 pA
Common-Mode Rejection Ratio
CMRR
V
= –13 V to +10 V
76
105 dB
NOISE PERFORMANCE
@VS = ±13 V; VCM = 0 V; TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 0.35 0.75 mV –40°C < TA < +85°C 1.35 mV
–40°C < TA < +85°C 60 pA Input Offset Current IOS 0.5 pA –40°C < TA < +85°C 25 pA Input Voltage Range –13 +11 V
CM
Large Signal Voltage Gain AVO RL = 10 kΩ, VO = –11 V to +11 V 150 310 V/mV Offset Voltage Drift ∆VOS/∆T –40°C < TA < +85°C 2.5 µV/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH +12.92 V VOH IL = 2 mA, –40°C < TA < +85°C +12.91 V Output Voltage Low VOL –12.92 V VOL IL = 2 mA, –40°C < TA < +85°C –12.91 V Output Current I
POWER SUPPLY
Power-Supply Rejection Ratio PSRR VS = ±2.5 V to ±13 V 80 104 dB
Supply Current/Amplifier ISY 710 850 µA –40°C < TA < +85°C 900 µA DYNAMIC PERFORMANCE
Slew Rate SR 5 V/µs
Gain Bandwidth Product GBP 5 MHz
Phase Margin ØM 60 Degrees
±15 mA
OUT
Voltage Noise en p-p 0.1 Hz to 10 Hz 2.5 µV p-p
Voltage Noise Density en f = 1 kHz 16 nV/√Hz
Current Noise Density in f = 1 kHz 0.5 fA/√Hz
Channel Separation Cs f = 1 kHz 105 dB
Rev. F | Page 4 of 20
Data Sheet AD8625/AD8626/AD8627
Lead Temperature Range (Soldering, 60 sec)
300°C

ABSOLUTE MAXIMUM RATINGS

θ
is specified for worst-case conditions when devices are
Table 3.
Parameter Ratings
Supply Voltage 27 V Input Voltage VS– to VS+ Differential Input Voltage ± Supply Voltage Output Short-Circuit Duration Indefinite Storage Temperature Range, R Package
Operating Temperature Range Junction Temperature Range, R Package
65°C to +125°C
40°C to +85°C
65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
JA
soldered in circuit boards for surface-mount packages.
Table 4.
Package Type θJA θJC Unit
5-Lead SC70 (KS) 376 126 °C/W 8-Lead MSOP (RM) 210 45 °C/W 8-Lead SOIC (R) 158 43 °C/W 14-Lead SOIC (R) 120 36 °C/W 14-Lead TSSOP (RU) 180 35 °C/W

ESD CAUTION

Rev. F | Page 5 of 20
AD8625/AD8626/AD8627 Data Sheet
03023-002
VOLTAGE (
µ
V)
25
20
0
–600 –400
NUMBER OF AMPLIFIERS
–200
0
200 400
600
15
10
5
V
SY
=±12V
T
A
= 25
°
C
OFFSET VOLTAGE (µV/°C)
12
0
0 1 2 3 4 5 6 7 8 9 10
03023-003
NUMBER OF AMPLIFIERS
6
4
2
8
10
V
SY
=±13V
VOLTAGE (
µ
V)
18
16
14
12
10
8
6
4
2
0
400 –300 –200 –100 0 100 200 300
03023-004
NUMBER OF AMPLIFIERS
V
SY
= +3.5V/–1.5V
OFFSET VOLTAGE (µV/°C)
16
14
12
10
8
6
4
2
0
0
1
2 3 4 5 6 7 8 9 10
03023-005
NUMBER OF AMPLIFIERS
VSY = +3.5V/–1.5V
V
CM
(V)
50
–50
–40
–30
20
–10
0
10
20
30
40
15.0–12.5
–10.0 –
7.5 –5.0 –2.5 0 2.5 5.0 7.5 10.0 12.5 15.0
03023-006
INPUT BIAS CURRENT (pA)
V
SY
=±13V
T
A
= 25°C
VCM (V)
–0.9
0
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7
–0.8
–15.0–12.5–10.0 –7.5 –
5.0 –2.5 0 2.5 5.0 7.5 10.0 12.5 15.0
03023-007
INPUT BIAS CURRENT (pA)
VSY =±13V TA = 25
°
C

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Input Offset Voltage
Figure 3. Offset Voltage Drift
Figure 5. Offset Voltage Drift
Figure 6. Input Bias Current vs. V
CM
Figure 4. Input Offset Voltage
Figure 7. Input Bias Current vs. VCM
Rev. F | Page 6 of 20
Data Sheet AD8625/AD8626/AD8627
TEMPERATURE (°C)
0.1
100
10
1
50
25
0 25
50 75
100
125 150
03023-008
INPUT BIAS CURRENT (pA)
V
SY
=±13V
V
CM
= 0V
V
CM
(V)
–2.0
–1.5
–1.0
–0.5
0
0.5
1.0
1.5
2.0
5 –4
–3
2
1 0
1
2
3 4
5
03023-009
INPUT BIAS CURRENT (pA)
V
SY
= +5V OR
±
5V
VCM (V)
–100
0
100
200
300
400
500
600
700
800
900
1000
–15 –12 –9 –6 –3 0 3 6 9 12 15
03023-010
INPUT OFFSET VOLTAGE (
µ
V)
V
SY
=±13V
V
CM
(V)
–500
–400
–300
–200
–100
0
100
200
300
400
500
–1 0 1 2
3
4
03023-011
INPUT OFFSET VOLTAGE (
µ
V)
V
SY
= 5V
LOAD RESI STANCE (kΩ)
10k
100k
1M
10M
0.1 1 10 100
03023-012
OPEN-LOOP GAIN (V/V)
VSY = +5V
V
SY
=±13V
TEMPERATURE (°C)
1
10
100
1000
–40 25 95 125
03023-013
OPEN-LOOP GAIN (V/mV)
e
c
b
d
a
a. VSY =±13V, VO =±11V, RL = 10k b. VSY =±13V, VO =±11V, RL = 2k c. VSY = +5V, VO = +0.5V/+4.5V, RL = 2k d. VSY = +5V, VO = +0.5V/+4.5V, R
L
= 10k
e. VSY = +5V, VO = +0.5V/+4.5V, RL = 600
Figure 8. Input Bias Current vs. Temperature
Figure 9. Input Bias Current vs. V
CM
Figure 11. Input Offset Voltage vs. V
CM
Figure 12. Open-Loop Gain vs. Load Resistance
Figure 10. Input Offset Voltage vs. V
CM
Figure 13. Open-Loop Gain vs. Temperature
Rev. F | Page 7 of 20
AD8625/AD8626/AD8627 Data Sheet
OUTPUT VOLTAGE (V)
–400
–300
–200
–100
0
100
200
300
400
500
600
–15 –10 –5 0 5 10 15
03023-014
OFFSET VOLTAGE (
µ
V)
VSY = ±13V
R
L
= 100k
RL = 10k
RL = 600
OUTPUT VOLTAGE FROM SUPPLY RAILS (mV)
–250
–200
–150
–100
–50
0
50
100
150
200
250
0 50 100 150 200 250 300
03023-015
INPUT VOLTAGE (
µ
V)
NEG RAIL
POS RAIL
V
SY
= ±5V
R
L
= 1k
RL = 100k
RL = 10k
RL = 10k
RL = 1k
TOTAL SUPPLY VOLTAGE (V)
0
100
200
300
400
500
600
700
800
0 4 8 12
16 20 24 28
03023-016
QUIESCENT CURRENT (
µ
A)
+125
°
C
+25°C
–55
°C
LOAD CURRENT ( mA)
1
10
100
1k
10k
0.001 0.01
0.1 1
10 100
03023-017
V
SY
OUTPUT VOLTAGE (mV)
V
OH
V
OL
VSY =
±
13V
LOAD CURRENT ( mA)
1
10
100
1k
10k
0.001 0.01
0.1 1 10 100
03023-018
V
SY
– OUTPUT VOLTAGE (mV)
V
SY
= 5V
V
OL
V
OH
FREQUENCY ( Hz)
–30 –135
–90
–45
–0
45
90
135
180
225
270
315
–20
–10
0
10
20
30
40
50
60
70
10k 100k 1M 10M 50M
03023-019
GAIN (dB)
PHASE (Degrees)
GAIN
PHASE
VSY =±13V R
L
= 2k
CL = 40pF
Figure 14. Input Error Voltage vs. Output Voltage for Resistive Loads
Figure 15. Input Error Voltage vs. Output Voltage within 300 mV of
Supply Rails
Figure 17. Output Saturation Voltage vs. Load Current
Figure 18. Output Saturation Voltage vs. Load Current
Figure 16. Quiescent Current vs. Supply Voltage at Different Temperatures
Figure 19. Open-Loop Gain and Phase Margin vs. Frequency
Rev. F | Page 8 of 20
Data Sheet AD8625/AD8626/AD8627
FREQUENCY ( Hz)
30
135
90
–45
0
45
90
135
180
225
270
315
–20
–10
0
10
20
30
40
50
60
70
10k 100k
1M 10M
50M
03023-020
GAIN (dB)
PHASE (Degrees)
V
SY
= 5V
R
L
= 2k
C
L
= 40pF
GAIN
PHASE
FREQUENCY ( Hz)
–30
–20
–10
0
10
20
30
40
50
60
70
1k 10k 100k 1M 10M 50M
03023-021
GAIN (dB)
G = +100
G = +1
G = +10
V
SY
=
±
13V
R
L
= 2k
C
L
= 40pF
FREQUENCY ( Hz)
–30
–20
–10
0
10
20
30
40
50
60
70
1k 10k 100k 1M 10M 50M
03023-022
GAIN (dB)
G = +100
G = +1
G = +10
V
SY
= 5V
R
L
= 2k
C
L
= 40pF
FREQUENCY ( Hz)
–60
–40
–20
0
20
40
60
80
100
120
140
1k 10k 100k 1M 10M
03023-023
CMRR (dB)
V
SY
=
±
13V
FREQUENCY ( Hz)
–60
–40
–20
0
20
40
60
80
100
120
140
1k 10k 100k 1M 10M
03023-024
CMRR (dB)
V
SY
= 5V
FREQUENCY ( Hz)
–60
–40
–20
0
20
40
60
80
100
120
140
1k 10k 100k 1M 10M
03023-025
PSRR (dB)
+PSRR
–PSRR
V
SY
=
±
13V
Figure 20. Open-Loop Gain and Phase Margin vs. Frequency
Figure 21. Closed-Loop Gain vs. Frequency
Figure 23. CMRR vs. Frequency
Figure 24. CMRR vs. Frequency
Figure 22. Closed-Loop Gain vs. Frequency
Figure 25. PSRR vs. Frequency
Rev. F | Page 9 of 20
AD8625/AD8626/AD8627 Data Sheet
FREQUENCY ( Hz)
–60
–40
–20
0
20
40
60
80
100
120
140
1k 10k 100k 1M 10M
03023-026
PSRR (dB)
+PSRR
–PSRR
V
SY
= 5V
FREQUENCY ( Hz)
0
30
60
90
120
150
180
210
240
270
300
1k 10k 100k 1M 100M10M
03023-027
Z
OUT
()
G = +100
G = +1
G = +10
V
SY
= ±
13V
FREQUENCY ( Hz)
0
30
60
90
120
150
180
210
240
270
300
1k 10k 100k 1M 100M10M
03023-028
Z
OUT
()
G = +100
G = +1
G = +10
V
SY
= 5V
TIME (400
µ
s/DIV)
03023-029
VOLTAGE (10V/DIV)
INPUT
OUTPUT
V
SY
=
±
13V
SETTLING TIME (
µ
s)
–15
10
–5
0
5
10
15
0
0.5 1.0
1.5
2.52.0
03023-030
OUTPUT SWING (V)
TS + (1%)
TS + (0.1%)
TS
(1%)
TS –
(0.1%)
CAPACITANCE (p F)
0
10
60
50
40
30
20
70
10 100 1k
03023-031
OVERSHOOT (%)
OS–
OS+
V
S
=
±
13V
R
L
= 10k
V
IN
= 100mV p-p
A
V
= +1
Figure 26. PSRR vs. Frequency
Figure 27. Output Impedance vs. Frequency
Figure 30. Output Swing and Error vs. Settling Time
Figure 29. No Phase Reversal
Figure 28. Output Impedance vs. Frequency
Figure 31. Small-Signal Overshoot vs. Load Capacitance
Rev. F | Page 10 of 20
Data Sheet AD8625/AD8626/AD8627
CAPACITANCE (p F)
0
10
50
40
30
20
70
60
10 100 1k
03023-032
OVERSHOOT (%)
OS–
OS+
V
S
= ±2.5V
R
L
= 10k
V
IN
= 100mV p-p
A
V
= +1
TIME (1s/DIV)
03023-033
VOLTAGE (50mV/DIV)
VSY =±13V AVO = 100,000V/V
0
TIME (1s/DIV)
03023-034
VOLTAGE (50mV/DIV)
0
VSY =±2.5V AVO = 100,000V/V
FREQUENCY ( kHz)
0 1 2 3 4 5 6 7 8 9 10
03023-035
VOLTAGE (nV)
28
35
42
49
56
21
14
7
0
V
SY
=
±
13V
19.7nV/ Hz
FREQUENCY ( kHz)
0
1 2 3 4
5 6 7 8 9
10
03023-036
VOLTAGE (nV)
28
35
42
49
56
21
14
7
0
V
SY
= 5V
16.7nV/ Hz
FREQUENCY ( Hz)
10 100 1k 10k 100k
03023-037
THD + NOISE (dB)
–40
–110
–100
–90
–80
–70
–60
–50
VSY =±5V, V
IN
= 9V p-p
V
SY
=
±
13V, VIN = 18V p-p
V
SY
=±2.5V, VIN = 4.5V p-p
Figure 32. Small-Signal Overshoot vs. Load Capacitance
Figure 35. Voltage Noise Density
Figure 33. 0.1 Hz to 10 Hz Noise
Figure 36. Voltage Noise Density
Figure 34. 0.1 Hz to 10 Hz Noise
Figure 37. Total Harmonic Distortion + Noise vs. Frequency
Rev. F | Page 11 of 20
AD8625/AD8626/AD8627 Data Sheet
FREQUENCY ( Hz)
–160
–150
–140
–130
–120
110
100
–90
80
10
100 1k 10k
100k
03023-049
CHANNEL SEPARATION (dB)
V
IN
2k
2k
2k
20k
V
IN
= 9V p-p
V
IN
= 4.5V p-p
VIN = 18V p-p
Figure 38. Channel Separation
Rev. F | Page 12 of 20
Data Sheet AD8625/AD8626/AD8627
TIME (2µs/DIV)
03023-038
VOLTAGE (2V/DIV)
INPUT
OUTPUT
V
SY
= 5V
4V
4V
0V
0V
TIME (2µs/DIV)
03023-039
VOLTAGE (2V/DIV)
INPUT
OUTPUT
V
SY
= 5V
4V
0V
5V
0V

APPLICATIONS INFORMATION

The AD862x is one of the smallest and most economical JFETs offered. It has true single-supply capability and has an input voltage range that extends below the negative rail, allowing the part to accommodate input signals below ground. The rail-to-rail output of the AD862x provides the maximum dynamic range in many applications. To provide a low offset, low noise, high impedance input stage, the AD862x uses n-channel JFETs. The input common-mode voltage extends from 0.2 V below –V the amplifier, configured in the unity gain buffer, closer than 2 V to the positive rail causes an increase in common-mode voltage error, as illustrated in Figure 15, and a loss of amplifier bandwidth. This loss of bandwidth causes the rounding of the output waveforms shown in Figure 39 and Figure 40, which have inputs that are 1 V and 0 V from +V
The AD862x does not experience phase reversal with input signals close to the positive rail, as shown in Figure 29. For input voltages greater than +V AD862x’s noninverting input prevents phase reversal at the expense of greater input voltage noise. This current-limiting resistor should also be used if there is a possibility of the input voltage exceeding the positive supply by more than 300 mV, or if an input voltage is applied to the AD862x when ±V Either of these conditions damages the amplifier if the condition exists for more than 10 seconds. A 10 kΩ resistor allows the amplifier to withstand up to 10 V of continuous overvoltage, while increasing the input voltage noise by a negligible amount.
to 2 V below +VS. Driving the input of
S
, respectively.
S
, a resistor in series with the
SY
= 0.
SY
Figure 39. Unity Gain Follower Response to 0 V to 4 V Step
Figure 40. Unity Gain Follower Response to 0 V to 5 V Step
Rev. F | Page 13 of 20
AD8625/AD8626/AD8627 Data Sheet
TIME (2µs/DIV)
03023-040
VOLTAGE (1V/DIV)
+5V
20k
10k
0V
–2.5V
V
SY
= 5V, 0V
5V
0V
TIME (2µs/DIV)
03023-041
VOLTAGE (10mV/DIV)
5V
60mV
20mV
600
0V
VSY = 5V RL = 600
0V
TIME (2
µ
s/DIV)
03023-042
VOLTAGE (10mV/DIV)
+5V
20k
10k
–10mV
–30mV
0V
VSY = 5V
0V
TIME (5µs/DIV)
03023-043
VOLTAGE (5V/DIV)
VSY =
±
13V
R
L
= 600
0V
The AD862x can safely withstand input voltages 15 V below V
if the total voltage between the positive supply and the input
SY
terminal is less than 26 V. Figure 41 through Figure 43 show the AD862x in different configurations accommodating signals close to the negative rail. The amplifier input stage typically maintains picoamp-level input currents across that input voltage range.
Figure 41. Gain-of-Two Inverter Response to 2.5 V Step,
Centered 1.25 V below Ground
Figure 43. Gain-of-Two Inverter Response to 20 mV Step,
Centered 20 mV below Ground
The AD862x is designed for 16 nV/√Hz wideband input voltage noise and maintains low noise performance to low frequencies, as shown in Figure 35. This noise performance, along with the AD862x’s low input current and current noise, means that the AD862x contributes negligible noise for applications with large source resistances.
The AD862x has a unique bipolar rail-to-rail output stage that swings within 5 mV of the rail when up to 2 mA of current is drawn. At larger loads, the drop-out voltage increases, as shown in Figure 17 and Figure 18. The AD862x’s wide bandwidth and fast slew rate allows it to be used with faster signals than older single-supply JFETs. Figure 44 shows the response of the AD862x, configured in unity gain, to a V
of 20 V p-p at
IN
50 kHz. The full-power bandwidth (FPBW) of the part is close to 100 kHz.
Figure 42. Unity Gain Follower Response to 40 mV Step,
Centered 40 mV above Ground
Figure 44. Unity Gain Follower Response to 20 V, 50 kHz Input Signal
Rev. F | Page 14 of 20
Data Sheet AD8625/AD8626/AD8627
f
p
f
OUT
(P)RR)ID(RV ==
)(IR
V
R
R
V
B
f
OS
D
f
E
+
 
 
+
=
1
03023-044
R
D
100M
C4 15pF
I
B
I
B
V
OS
C
F
5pF
R
F
1.5M
OUTPUT
AD8627
PHOTODIODE

MINIMIZING INPUT CURRENT

The AD862x is guaranteed to 1 pA maximum input current with a ±13 V supply voltage at room temperature. Careful attention to how the amplifier is used maintains or possibly betters this performance. The amplifier’s operating temperature should be kept as low as possible. Like other JFET input ampli­fiers, the AD862x’s input current doubles for every 10°C rise in junction temperature, as illustrated in Figure 8. On-chip power dissipation raises the device operating temperature, causing an increase in input current. Reducing supply voltage to cut power dissipation reduces the AD862x’s input current. Heavy output loads can also increase chip temperature; maintaining a minimum load resistance of 1 kΩ is recommended.
The AD862x is designed for mounting on PC boards. Main­taining picoampere resolution in those environments requires a lot of care. Both the board and the amplifier’s package have finite resistance. Voltage differences between the input pins and other pins, as well as PC board metal traces may cause parasitic currents larger than the AD862x’s input current, unless special precautions are taken. To ensure the best result, refer to the ADI website for proper board layout seminar materials. Two common methods of minimizing parasitic leakages that should be used are guarding of the input lines and maintaining adequate insulation resistance.
Contaminants, such as solder flux on the board’s surface and the amplifier’s package, can greatly reduce the insulation resistance between the input pin and traces with supply or signal voltages. Both the package and the board must be kept clean and dry.

PHOTODIODE PREAMPLIFIER APPLICATION

The low input current and offset voltage levels of the AD862x, together with its low voltage noise, make this amplifier an excellent choice for preamplifiers used in sensitive photodiode applications. In a typical photovoltaic preamp circuit, shown in Figure 45, the output of the amplifier is equal to
where:
ID = photodiode signal current (A). R
= photodiode sensitivity (A/W).
p
R
= value of the feedback resistor, in Ω.
f
P = light power incident to photodiode surface, in W.
The amplifier’s input current, I error proportional to the value of the feedback resistor. The offset voltage error, V
, causes a small current error due to the
OS
photodiode’s finite shunt resistance, R The resulting output voltage error, VE, is equal to
A shunt resistance on the order of 100 MΩ is typical for a small photodiode. Resistance RD is a junction resistance that typically drops by a factor of two for every 10°C rise in temperature. In the AD862x, both the offset voltage and drift are low, which helps minimize these errors. With I 50 mV, V
for Figure 45 is very negligible. Also, the circuit in
E
Figure 45 results in an SNR value of 95 dB for a signal bandwidth of 30 kHz.
Figure 45. A Photodiode Model Showing DC Error
, contributes an output voltage
B
D.
values of 1 pA and VOS of
B
Rev. F | Page 15 of 20
AD8625/AD8626/AD8627 Data Sheet
03023-045
AD5551/AD5552
AD8627
DGND
*AD5552 ONLY
V
DD
V
REFF
* V
REFS
*
OUT
SCLK
DIN
CS
AGND
5V
2.5V
UNIPOLAR
OUTPUT
LDAC*
0.1µF
10
µ
F
0.1
µ
F
SERIAL
INTERFACE
5V
03023-046
ONE CHANNEL
AD5544
1/2
AD8626
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY
VSSA
GND
F A
GND
X
V
DD
V
REF
X
RFBX
ADR01
VREF
10V
1/2
AD8626
–13V
+13V
–10V < V
OUT
< +10V
10k
5k
10k
V
OUT

OUTPUT AMPLIFIER FOR DACs

Many system designers use amplifiers as buffers on the output of amplifiers to increase the DAC’s output driving capability. The high resolution current output DACs need high precision amplifiers on their output as current-to-voltage converters
(I/V). Additionally, many DACs operate with a single supply of 5 V. In a single-supply application, selection of a suitable op amp may be more difficult because the output swing of the amplifier does not usually include the negative rail, in this case AGND. This can result in some degradation of the DAC’s specified performance, unless the application does not use codes near zero. The selected op amp needs to have very low offset voltage—for a 14-bit DAC, the DAC LSB is 300 µV with a 5 V reference—to eliminate the need for output offset trims. Input bias current should also be very low because the bias current multiplied by the DAC output impedance (about 10 kΩ in some cases) adds to the zero-code error. Rail-to-rail input and output performance is desired. For fast settling, the slew rate of the op amp should not impede the settling time of the DAC. Output impedance of the DAC is constant and code independent, but in order to minimize gain errors, the input impedance of the output amplifier should be as high as possible. The AD862x, with a very high input impedance, I
and a fast slew rate, is an ideal amplifier for these types of applications. A typical configuration with a popular DAC is shown in Figure 46. In these situations, the amplifier adds another time constant to the system, increasing the settling time of the output. The AD862x, with 5 MHz of BW, helps in achieving a faster effective settling time of the combined DAC and amplifier.
In applications with full 4-quadrant multiplying capability or a bipolar output swing, the circuit in Figure 47 can be used. In this circuit, the first and second amplifiers provide a total gain of 2, which increases the output voltage span to 20 V. Biasing the external amplifier with a 10 V offset from the reference voltage results in a full 4-quadrant multiplying circuit.
Figure 46. Unipolar Output
of 1 pA,
B
Figure 47. 4-Quadrant Multiplying Application Circuit
Rev. F | Page 16 of 20
Data Sheet AD8625/AD8626/AD8627
03023-047
V2
V4
V3
V1
FREQUENCY (Hz)
VOLTAGE (V)
0.1
0
0.4
0.8
1.2
1 10 100 1k
03023-048
V
IN
V
DD
V
EE
R1
162.3k
R2
162.3k
3
2
11
1
4
U1
R3
25k
C2
96.19µF D
D
V3
R10
191.4k
R5
191.4k
U2
R4
25k
C4
69.14µF D
R11
286.5k
R7
286.5k
U3
R6
25k
C6
30.86µF D
R12
815.8k
R9
815.8k
U4
R8
25k
C8
3.805µF D
C1
100µF
C3
1/4
AD8625
1/4
AD8625
1/4
AD8625
1/4
AD8625
100
µ
F
C5
100µF
C7
100µF
V1
V2
V3
V4

EIGHT-POLE SALLEN KEY LOW-PASS FILTER

The AD862x’s high input impedance and dc precision make it a great selection for active filters. Due to the very low bias current of the AD862x, high value resistors can be used to construct low frequency filters. The AD862x’s picoamp-level input currents contribute minimal dc errors. Figure 49 shows an example of a 10 Hz, 8-pole Sallen Key filter constructed using the AD862x. Different numbers of the AD862x can be used depending on the desired response, which is shown in Figure 48. The high value used for R1 minimizes interaction with signal source resistance. Pole placement in this version of the filter minimizes the Q associated with the lower pole section of the filter. This eliminates any peaking of the noise contribution of resistors in the preceding sections, minimizing the inherent output voltage noise of the filter.
Figure 48. Frequency Response Output at Different Stages
of the Low-Pass Filter
Figure 49. 10 Hz, 8-Pole Sallen Key Low-Pass Filter
Rev. F | Page 17 of 20
AD8625/AD8626/AD8627 Data Sheet
CO
MP
L
IA
NT TO JEDEC STANDARDS MO-203-AA
1.00
0.
90
0
.
70
0.
4
6
0.36
0.
2
6
2.
20
2
.0
0
1.80
2
.
40
2.10 1
.
80
1
.3
5
1
.2
5
1.15
0
72
80
9
-A
0.10 MAX
1
.1
0
0
.8
0
0.40 0
.1
0
0.22
0.08
3
1 2
45
0.65BSC
CO
PL
A
NA
RI
T
Y
0.10
SEATING P
LA
NE
0.
3
0
0.15
CONTROLLING DIMENSION
S AR
E IN MIL
LIM
ETER
S; I
NCH
DIMENSIONS
(
IN P
ARE
NTH
ESES
) ARE ROUNDED-OFF MI
LLIM
ETE
R EQU
IVA
LENT
S FO
R
REF
ERE
NCE ONL
Y AN
D AR
E NO
T APP
ROPRIATE FOR USE IN
DESI
GN.
CO
MPLIAN
T TO J
EDEC
STANDARDS MS-012-AA
012407-A
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
0.50 (0.0196)
0.25 (0.0099)
45°
8° 0°
1.75 (0.0688)
1.35 (0.0532)
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0040)
4
1
8 5
5.00(0.1968)
4.80(0.1890)
4.00 (0.1574)
3.80 (0.1497)
1.27 (0.0500) BSC
6.20 (0.2441)
5.80 (0.2284)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10

OUTLINE DIMENSIONS

Figure 50. 5-Lead Plastic Surface-Mount Package [SC70]
(KS-5)
Dimensions shown in millimeters
Figure 51. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
Rev. F | Page 18 of 20
Data Sheet AD8625/AD8626/AD8627
CO
MP
L
IA
NT
T
O J
E
DE
C S
T
AN
DA
R
DS
MO
-
18
7
-A
A
6° 0
°
0.80 0
.5
5
0.40
4
8
1
5
0.65 BSC
0.40 0
.2
5
1.10 MAX
3
.2
0
3.
00
2.
8
0
CO
P
LA
NA
R
IT
Y
0
.
10
0.
23
0
.0
9
3.
20
3
.0
0
2
.8
0
5
.
15
4.
90
4
.6
5
PI
N
1
I
D
EN
TI
F
IE
R
1
M
AX
0
.
95
0.
8
5
0.
7
5
0.
1
5
0
.
05
10-07-2009
-B
CONTROLLING DIMENSIONSARE IN MI LLIMETERS; INCH DI M E NS IONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE O NLYAND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-012-AB
060606-A
14
8
7
1
6.20 (0.2441)
5.80 (0.2283)
4.00 (0.1575)
3.80 (0.1496)
8.75 (0.3445)
8.55 (0.3366)
1.27 (0.0500) BSC
SEATING PLANE
0.25 (0.0098)
0.10 (0.0039)
0.51 (0.0201)
0.31 (0.0122)
1.75 (0.0689)
1.35 (0.0531)
0.50 (0.0197)
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
0.25 (0.0098)
0.17 (0.0067)
COPLANARITY
0.10
8° 0°
45°
COMPLI ANT TO JEDEC STANDARDS MO-153-AB- 1
061908-A
8° 0°
4.50
4.40
4.30
14
8
7
1
6.40
BSC
PIN 1
5.10
5.00
4.90
0.65 BSC
0.15
0.05
0.30
0.19
1.20 MAX
1.05
1.00
0.80
0.20
0.09
0.75
0.60
0.45
COPLANARITY
0.10
SEATING PLANE
Figure 52. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Figure 53. 14-Lead Standard Small Outline Package [SOIC_N]
(R-14)
Dimensions shown in millimeters and (inches)
Figure 54. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
Rev. F | Page 19 of 20
AD8625/AD8626/AD8627 Data Sheet
Model
Temperature Range
Package Description
Package Option
Branding
AD8626ARZ-REEL7
–40°C to +85°C
8-Lead SOIC_N
R-8
AD8627AKSZ-REEL7
–40°C to +85°C
5-Lead SC70
KS-5
B9B
AD8627AKSZ-R2
–40°C to +85°C
5-Lead SC70
KS-5
B9B
©2003–2013 Analog Devices, Inc. All rights reserved. Trademarks and

ORDERING GUIDE

1, 2
AD8625ARUZ –40°C to +85°C 14-Lead TSSOP RU-14 AD8625ARUZ-REEL –40°C to +85°C 14-Lead TSSOP RU-14 AD8625ARZ –40°C to +85°C 14-Lead SOIC_N R-14 AD8625ARZ-REEL –40°C to +85°C 14-Lead SOIC_N R-14 AD8625ARZ-REEL7 –40°C to +85°C 14-Lead SOIC_N R-14 AD8626ARMZ-REEL –40°C to +85°C 8-Lead MSOP RM-8 BJA AD8626ARMZ –40°C to +85°C 8-Lead MSOP RM-8 BJA AD8626ARZ –40°C to +85°C 8-Lead SOIC_N R-8 AD8626ARZ-REEL –40°C to +85°C 8-Lead SOIC_N R-8
AD8627AKSZ-REEL –40°C to +85°C 5-Lead SC70 KS-5 B9B
AD8627ARZ –40°C to +85°C 8-Lead SOIC_N R-8 AD8627ARZ-REEL –40°C to +85°C 8-Lead SOIC_N R-8 AD8627ARZ-REEL7 –40°C to +85°C 8-Lead SOIC_N R-8
1
Z = RoHS Compliant Part; # denotes product may be top or bottom marked.
2
For the AD8627AKS models, pre-0542 parts were branded with B9A without #.
registered trademarks are the property of their respective owners. D03023-0-5/13(F)
Rev. F | Page 20 of 20
Loading...