ANALOG DEVICES AD 8607 ARZ Datasheet

Precision Micropower, Low Noise CMOS,
Rail-to-Rail Input/Output Operational Amplifiers

FEATURES

Low offset voltage: 50 μV maximum Low input bias current: 1 pA maximum Single-supply operation: 1.8 V to 5 V Low noise: 22 nV/√Hz Micropower: 50 μA maximum Low distortion No phase reversal Unity gain stable

APPLICATIONS

Battery-powered instrumentation Multipole filters Sensors Low power ASIC input or output amplifiers

GENERAL DESCRIPTION

The AD8603/AD8607/AD8609 are single/dual/quad micro­power rail-to-rail input and output amplifiers, respectively, that feature very low offset voltage as well as low input voltage and current noise.
These amplifiers use a patented trimming technique that achieves superior precision without laser trimming. The parts are fully specified to operate from 1.8 V to 5.0 V single supply or from ±0.9 V to ±2.5 V dual supply. The combination of low offsets, low noise, very low input bias currents, and low power consumption makes the AD8603/AD8607/AD8609 especially useful in portable and loop-powered instrumentation.
The ability to swing rail to rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs, and other wide output swing devices in low power, single-supply systems.
The AD8603 is available in a tiny 5-lead TSOT package. The AD8607 is available in 8-lead MSOP and 8-lead SOIC packages. The AD8609 is available in 14-lead TSSOP and 14-lead SOIC packages.
AD8603/AD8607/AD8609

PIN CONFIGURATIONS

OUT
1
AD8603
TOP VIEW
V–
2
(Not to Scale)
+IN
3
Figure 1. 5-Lead TSOT (UJ Suffix)
1
OUT A
–IN A
+IN A
V–
AD8607
2
TOP VIEW
3
(Not to Scale)
4
Figure 2. 8-Lead MSOP (RM Suffix)
OUT A
1
V–
AD8607
2
3
TOP VIEW
(Not to Scale)
4
–IN A
+IN A
Figure 3. 8-Lead SOIC (R Suffix)
1
OUT A
2
–IN A
3
+IN A
V+
+IN B
–IN B
OUT B
AD8609
TOP VIEW
4
(Not to Scale)
5
6
7
Figure 4. 14-Lead TSSOP (RU Suffix)
OUT A
1
2
–IN A
3
+IN A
+IN B
–IN B
OUT B
V+
AD8609
TOP VIEW
4
(Not to Scale)
5
6
7
Figure 5. 14-Lead SOIC (R Suffix)
5
4
8
7
6
5
8
7
6
5
14
13
12
11
10
14
13
12
11
10
9
8
V+
OUT B
–IN B
+IN B
9
8
V+
–IN
V+
OUT B
–IN B
+IN B
OUT D
–IN D
+IN D
V–
+IN C
–IN C
OUT C
OUT D
–IN D
+IN D
V–
+IN C
–IN C
OUT C
04356-001
04356-002
04356-003
04356-004
4356-005
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2003–2008 Analog Devices, Inc. All rights reserved.
AD8603/AD8607/AD8609

TABLE OF CONTENTS

Features .............................................................................................. 1
Applicat ions ....................................................................................... 1
General Description ......................................................................... 1
Pin Configurations ........................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings ............................................................ 5
ESD Caution .................................................................................. 5
Typical Performance Characteristics ............................................. 6

REVISION HISTORY

6/08—Rev. B to Rev. C
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Changes to Figure 15 ........................................................................ 7
Changes to Figure 33 ...................................................................... 10
Changes to Figure 45 and Figure 47 ............................................. 13
Updated Outline Dimensions ....................................................... 14
Changes to Ordering Guide .......................................................... 16
6/05—Rev. A to Rev. B
Updated Figure 49 .......................................................................... 15
Changes to Ordering Guide .......................................................... 17
10/03—Rev. 0 to Rev. A
Added AD8607 and AD8609 Parts .................................. Universal
Changes to Specifications ................................................................ 3
Changes to Figure 35 ...................................................................... 10
Added Figure 41 .............................................................................. 11
8/03—Revision 0: Initial Version
Applicat ions ..................................................................................... 12
No Phase Reversal ...................................................................... 12
Input Overvoltage Protection ................................................... 12
Driving Capacitive Loads .......................................................... 12
Proximity Sensors ....................................................................... 13
Composite Amplifiers ................................................................ 13
Battery-Powered Applications .................................................. 13
Photodiodes ................................................................................ 13
Outline Dimensions ....................................................................... 14
Ordering Guide .......................................................................... 16
Rev. C | Page 2 of 16
AD8603/AD8607/AD8609

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

VS = 5 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS V
−0.3 V < VCM < +5.2 V 40 300 μV
−40°C < TA < +125°C, −0.3 V < VCM < +5.2 V 700 μV Offset Voltage Drift ∆VOS/∆T −40°C < TA < +125°C 1 4.5 μV/°C Input Bias Current IB 0.2 1 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 500 pA Input Offset Current IOS 0.1 0.5 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 250 pA Input Voltage Range IVR −0.3 +5.2 V Common-Mode Rejection Ratio CMRR 0 V < VCM < 5 V 85 100 dB
−40°C < TA < +125°C 80 dB Large Signal Voltage Gain AVO R
AD8603 400 1000 V/mV AD8607/AD8609 250 450 V/mV
Input Capacitance C
C
1.9 pF
DIFF
2.5 pF
CM
OUTPUT CHARACTERISTICS
Output Voltage High VOH I
−40°C to +125°C 4.9 V
I
−40°C to +125°C 4.50 V Output Voltage Low VOL I
−40°C to +125°C 50 mV
I
−40°C to +125°C 330 mV Short-Circuit Current ISC ±70 mA Closed-Loop Output Impedance Z
f = 10 kHz, AV = 1 36 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR 1.8 V < VS < 5 V 80 100 dB Supply Current per Amplifier ISY V
−40°C <TA < +125°C 60 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 10 kΩ 0.1 V/μs Settling Time 0.1% tS G = ±1, 2 V step 23 μs Gain Bandwidth Product GBP RL = 100 kΩ 400 kHz
R
Phase Margin ØO R
NOISE PERFORMANCE
Peak-to-Peak Noise e
0.1 Hz to 10 Hz 2.3 3.5 μV
n p-p
Voltage Noise Density en f = 1 kHz 25 nV/√Hz
f = 10 kHz 22 nV/√Hz
Current Noise Density in f = 1 kHz 0.05 pA/√Hz Channel Separation CS f = 10 kHz −115 dB f = 100 kHz −110 dB
= 3.3 V @ VCM = 0.5 V and 2.8 V 12 50 μV
S
= 10 kΩ, 0.5 V < VO < 4.5 V
L
= 1 mA 4.95 4.97 V
L
= 10 mA 4.65 4.97 V
L
= 1 mA 16 30 mV
L
= 10 mA 160 250 mV
L
= 0 V 40 50 μA
O
= 10 kΩ 316 kHz
L
= 10 kΩ, RL = 100 kΩ 70 Degrees
L
Rev. C | Page 3 of 16
AD8603/AD8607/AD8609
VS = 1.8 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS V
−0.3 V < VCM < +1.8 V 40 300 μV
−40°C < TA < +85°C, −0.3 V < VCM < +1.8 V 500 μV
−40°C < TA < +125°C, −0.3 V < VCM < +1.7 V 700 μV Offset Voltage Drift ∆VOS/∆T −40°C < TA < +125°C 1 4.5 μV/°C Input Bias Current IB 0.2 1 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 500 pA Input Offset Current IOS 0.1 0.5 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 250 pA Input Voltage Range IVR −0.3 +1.8 V Common-Mode Rejection Ratio CMRR 0 V < VCM < 1.8 V 80 98 dB
−40°C < TA < +85°C 70 dB Large Signal Voltage Gain AVO R
AD8603 150 3000 V/mV AD8607/AD8609 100 2000 V/mV
Input Capacitance C
C
2.1 pF
DIFF
3.8 pF
CM
OUTPUT CHARACTERISTICS
Output Voltage High VOH I
−40°C to +125°C 1.6 V Output Voltage Low VOL I
−40°C to +125°C 80 mV Short-Circuit Current ISC ±10 mA Closed-Loop Output Impedance Z
f = 10 kHz, AV = 1 36 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR 1.8 V < VS < 5 V 80 100 dB Supply Current per Amplifier ISY V
−40°C < TA < +85°C 60 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 10 kΩ 0.1 V/μs Settling Time 0.1% tS G = ±1, 1 V step 9.2 μs Gain Bandwidth Product GBP RL = 100 kΩ 385 kHz
R
Phase Margin ØO R
NOISE PERFORMANCE
Peak-to-Peak Noise e
0.1 Hz to 10 Hz 2.3 3.5 μV
n p-p
Voltage Noise Density en f = 1 kHz 25 nV/√Hz
f = 10 kHz 22 nV/√Hz
Current Noise Density in f = 1 kHz 0.05 pA/√Hz Channel Separation CS f = 10 kHz −115 dB f = 100 kHz −110 dB
= 3.3 V @ VCM = 0.5 V and 2.8 V 12 50 μV
S
= 10 kΩ, 0.5 V < VO < 4.5 V
L
= 1 mA 1.65 1.72 V
L
= 1 mA 38 60 mV
L
= 0 V 40 50 μA
O
= 10 kΩ 316 kHz
L
= 10 kΩ, RL = 100 kΩ 70 Degrees
L
Rev. C | Page 4 of 16
AD8603/AD8607/AD8609

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings apply at 25°C, unless otherwise noted.
Table 3.
Parameter Rating
Supply Voltage 6 V Input Voltage GND to VS Differential Input Voltage ±6 V Output Short-Circuit Duration to GND Indefinite Storage Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Table 4. Package Characteristics
Package Type θ
5-Lead TSOT (UJ) 207 61 °C/W 8-Lead MSOP (RM) 210 45 °C/W 8-Lead SOIC_N (R) 158 43 °C/W 14-Lead SOIC_N (R) 120 36 °C/W 14-Lead TSSOP (RU) 180 35 °C/W
1
θJA is specified for the worst-case conditions, that is, θJA is specified for a
device soldered in a circuit board for surface-mount packages.
1
θJC Unit
JA

ESD CAUTION

Rev. C | Page 5 of 16
AD8603/AD8607/AD8609

TYPICAL PERFORMANCE CHARACTERISTICS

300
VS = 3.3V
250
T
= 25°C
A
200
150
100
50
0
(µV)
OS
–50
V
–100
–150
–200
–250
–300
0
0.9 2.1 3.0
0.60.3 1. 5 2.72. 41.81.2
VCM(V)
VCM (V)
Figure 9. Input Offset Voltage vs. Common-Mode Voltage
400
350
300
250
VS = ±2.5V
3.3
04356-009
NUMBER OF AMPLIFIERS
2600
2400
2200
2000
1800
1600
1400
1200
1000
800
600
400
200
VS = 5V T
= 25°C
A
V
= 0V TO 5V
CM
0
–270
–210
–150 –30 30 90 210 270–90
0150
VOS (µV)
Figure 6. Input Offset Voltage Distribution
30
25
20
VS = ±2.5V T
= –40°C TO +125° C
A
V
= 0V
CM
04356-006
15
10
NUMBERS OF AMPL IFIERS
5
0
0
0.4 0.8 1.2 2.0 2.4 2.8 3.6 4.0 4.4 4.8 5.2
1.6 3.2 TCVOS (µV/°C)
Figure 7. Input Offset Voltage Drift Distribution
300
VS = 5V
250
T
= 25°C
200
150
100
(µV)
OS
–50
V
–100
–150
–200
–250
–300
A
50
0
0
1.5 3.5 5.0
1.00.5 2.5 4.54.03.02.0 VCM (V)
Figure 8. Input Offset Voltage vs. Common-Mode Voltage
200
150
100
INPUT BIAS CURRENT (pA)
50
0
0
04356-007
25 75
50 100 125
TEMPERATURE (°C)
4356-010
Figure 10. Input Bias Current vs. Temperature
1000
VS = 5V
= 25°C
T
A
100
10
1
0.1
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
0.01
04356-008
0.001
SOURCE
0.01 0.1 1 LOAD CURRENT (mA)
SINK
10
04356-011
Figure 11. Output Voltage to Supply Rail vs. Load Current
Rev. C | Page 6 of 16
AD8603/AD8607/AD8609
350
V
= 5V
S
T
= 25°C
A
300
– VOH@ 10mA LOAD
V
250
200
150
100
OUTPUT VOLTAGE SWING (mV)
50
DD
@ 10mA LOAD
V
OL
– VOH@ 1mA LOAD
V
DD
0
–25 –10 125
–40
20 35 50 65 80 95 1105 TEMPERATURE (°C)
VOL@ 1mA LOAD
Figure 12. Output Voltage Swing vs. Temperature
100
80
60
40
20
0
–20
–40
OPEN-LOOP GAIN (dB)
–60
–80
–100
1k 10k 100k 1M 10M
FREQUENCY ( Hz)
VS = ±2.5V R
L
C
L
Φ = 70.9°
Figure 13. Open-Loop Gain and Phase vs. Frequency
5.0
VS = 5V
4.5 = 4.9V p-p
V
IN
= 25°C
T
A
4.0
= 1
A
V
3.5
3.0
2.5
2.0
1.5
1.0
OUTPUT VOLTAGE SWING (V p-p)
0.5
0
0.01
0.1 1 100 FREQUENCY ( kHz)
10
Figure 14. Closed-Loop Output Voltage Swing vs. Frequency
= 100k = 20pF
225
180
135
90
45
0
–45
–90
–135
–180
–225
04356-012
PHASE (Degree)
04356-013
04356-014
1750
VS= ±2.5V, ±0.9V
1575
1400
1225
1050
875
700
525
OUTPUT IMPEDANCE (Ω)
350
175
0
100
AV = 100
AV = 10
1k 100k
FREQUENCY (Hz)
10k
Figure 15. Output Impedance vs. Frequency
140
120
100
80
60
40
20
CMRR (dB)
0
–20
–40
–60
100
1k 10k
FREQUENCY ( Hz)
Figure 16. CMRR vs. Frequency
140
120
100
80
60
40
20
PSRR (dB)
0
–20
–40
–60
10 100 1k 10k 100k
FREQUENCY (Hz)
Figure 17. PSRR vs. Frequency
= 1
A
V
VS = ±2.5V
VS = ±2.5V
100k
04356-015
04356-016
04356-017
Rev. C | Page 7 of 16
AD8603/AD8607/AD8609
A
T
T
60
VS = 5V
50
40
30
L OVERSHOOT (%)
20
10
SMALL SIGN
0
10
LOAD CAPACITANCE (pF)
OS–
OS+
100 1000
Figure 18. Small Signal Overshoot vs. Load Capacitance
60
VS = ±2.5V
55
50
45
40
35
30
25
20
SUPPLY CURRENT (µA)
15
10
5
0
–40
–10 5
20 80–25 50
35 65
TEMPERATURE (°C)
Figure 19. Supply Current vs. Temperature
100
90
80
70
60
50
40
30
SUPPLY CURRENT (µA)
20
10
0
0
1
2453
SUPPLY VOLTAGE (V)
Figure 20. Supply Current vs. Supply Voltage
95 110 125
TA = 25°C
04356-018
4356-019
04356-020
VS = 5V, 1.8V
VOLTAGE NOISE (1µV/DIV)
TIME (1s/DIV)
Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise
VS = 5V R
= 10k
L
C
= 200pF
L
A
= 1
V
AGE (50mV/DI V)
VOL
TIME (4µs/DIV)
Figure 22. Small Signal Transient
VS = 5V R
= 10k
L
C
= 200pF
L
A
= 1
V
AGE (1V/DIV)
VOL
TIME (20µs/DIV)
Figure 23. Large Signal Transient
04356-021
04356-022
04356-023
Rev. C | Page 8 of 16
AD8603/AD8607/AD8609
VS= ±2.5V R
= 10k
L
A
= 100
(V)
+2.5V
OUT
0V
0V
(mV) V
IN
V
–50mV
μ
s/DIV))
TIME (4
TIME (40µs/DIV)
V
V IN
= 50mV
04356-024
Figure 24. Negative Overload Recovery
VS = ±2.5V R
= 10k
L
A
= 100
V
V
= 50mV
(V)
OUT
(mV) V
IN
V
IN
0V
0V
–50mV
TIME (4µs/DIV)
+2.5V
04356-025
Figure 25. Positive Overload Recovery
168
144
Hz)
120
96
72
48
VOLTAGE NOISE DENSITY (nV/
24
0
0.1 1.00.2 0.3 0.4 0. 5 0.6 0.7 0.8 0.90 FREQUENCY (kHz)
VS = ±2.5V
04356-026
Figure 26. Voltage Noise Density vs. Frequency
176
154
Hz)
132
110
88
66
44
VOLTAGE NOISE DENSITY (nV/
22
0
11234567890
FREQUENCY (kHz)
VS = ±2.5V
Figure 27. Voltage Noise Density vs. Frequency
NUMBER OF AMPLIFIERS
800 750
700 650
600
550
500
450 400
350 300
250
200
150
100
50
0 –300
–240 60 240
–180 –120
Figure 28. V
–60
VOS (µV)
OS
0
Distribution
VS = 1.8V T
= 25°C
A
V
CM
120
= 0V TO 1. 8V
180
300
VS = 1.8V
250
T
= 25°C
A
200
150
100
50
0
(µV)
OS
–50
V
–100
–150
–200
–250
–300
0
0.9
0.60.3 1.5 1.81.2
VCM(V)
VCM (V)
Figure 29. Input Offset Voltage vs. Common-Mode Voltage
0
04356-027
300
04356-028
9 2 0
­6 5 3 4 0
Rev. C | Page 9 of 16
AD8603/AD8607/AD8609
A
1000
VS = 1.8V T
= 25°C
A
100
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
0.01
10
1
0.1
0.001
SOURCE
0.01 0.1 1 LOAD CURRENT (mA)
SINK
Figure 30. Output Voltage to Supply Rail vs. Load Current
100
90
80
70
60
50
40
30
20
OUTPUT VOLTAGE SWING (mV)
10
0
–40
–25
VS = 1.8V
–10
35
20
5
TEMPERATURE (°C)
VDD – VOH@ 1mA LOAD
VOL@ 1mA LOAD
50 65 80 95 110
Figure 31. Output Voltage Swing vs. Temperature
60
VS = 1.8V T
= 25°C
A
50
A
= 1
V
40
125
10
04356-030
04356-031
100
80
60
40
20
0
–20
–40
OPEN-LOOP GAIN (dB)
–60
–80
–100
1k 10k 100k 1M 10M
FREQUENCY ( Hz)
VS = ±0.9V R C Φ = 70°
Figure 33. Open-Loop Gain and Phase vs. Frequency
140
VS= 1.8V
120
100
80
60
40
20
CMRR (dB)
0
–20
–40
–60
100 1k 10k 100k
FREQUENCY ( Hz)
Figure 34. CMRR vs. Frequency
1.8
VS= 1.8V
1.5 V
= 1.7V p-p
IN
T
= 25°C
A
A
= 1
V
1.2
= 100k
L
= 20pF
L
225
180
135
90
45
0
–45
–90
–135
–180
–225
PHASE (Degrees)
04356-033
04356-034
30
L OVERSHOOT (%)
20
OS–
10
SMALL SIGN
0
10
LOAD CAPACITANCE (pF)
OS+
100 1000
Figure 32. Small Signal Overshoot vs. Load Capacitance
04356-032
0.9
0.6
OUTPUT VOLTAGE SWING (V p-p)
0.3
0
0.01 0.1 1 10010 FREQUENCY (kHz )
Figure 35. Closed-Loop Output Voltage Swing vs. Frequency
04356-035
Rev. C | Page 10 of 16
AD8603/AD8607/AD8609
R A
VS = 1.8V R
= 10k
L
C
= 200pF
L
A
= 1
V
VOLTAGE (50mV/DIV)
TIME (4µs/DIV)
04356-036
Figure 36. Small Signal Transient
VS = 1.8V R
= 10k
L
C
= 200pF
L
A
= 1
V
176
154
Hz)
132
110
88
66
44
VOLTAGE NOISE DENSITY (nV/
22
0
11234567890
FREQUENCY (kHz)
Figure 39. Voltage Noise Density vs. Frequency
0
–20
–40
TION (dB)
–60
VS = ±0.9V
VS = ±2.5V, ±0.9V
0
04356-039
–80
VOLTAGE (500mV/DIV)
TIME (20µs/DIV)
04356-037
Figure 37. Large Signal Transient
168
140
Hz)
112
84
56
28
VOLTAGE NOISE DENSITY (nV/
0
0.1 1.00.2 0.3 0.4 0.5 0. 6 0.7 0.8 0. 90 FREQUENCY (kHz)
VS = ±0.9V
04356-038
–100
CHANNEL SEPA
–120
–140
100
1k 10k 100k
FREQUENCY ( Hz)
1M
04356-040
Figure 40. Channel Separation vs. Frequency
Figure 38. Voltage Noise Density vs. Frequency
Rev. C | Page 11 of 16
AD8603/AD8607/AD8609

APPLICATIONS

NO PHASE REVERSAL

The AD8603/AD8607/AD8609 do not exhibit phase inversion even when the input voltage exceeds the maximum input common-mode voltage. Phase reversal can cause permanent damage to the amplifier, resulting in system lockups. The AD8603/AD8607/AD8609 can handle voltages of up to 1 V over the supply.
VS = ±2.5V
= 6V p-p
V
V
IN
V
OUT
VOLTAGE (1V/DIV)
TIME (4µs/DIV)
Figure 41. No Phase Response
IN
A
V
= 10k
R
L
= 1
04356-041

INPUT OVERVOLTAGE PROTECTION

If a voltage 1 V higher than the supplies is applied at either input, the use of a limiting series resistor is recommended. If both inputs are used, each one should be protected with a series resistor.
To ensure good protection, the current should be limited to a maximum of 5 mA. The value of the limiting resistor can be determined from the following equation:
(V
VS)/(RS + 200 Ω) ≤ 5 mA
IN

DRIVING CAPACITIVE LOADS

The AD8603/AD8607/AD8609 are capable of driving large capacitive loads without oscillating. Figure 42 shows the output of the AD8603/AD8607/AD8609 in response to a 100 mV input signal, with a 2 nF capacitive load.
Although it is configured in positive unity gain (the worst case), the AD8603 shows less than 20% overshoot. Simple additional circuitry can eliminate ringing and overshoot.
One technique is the snubber network, which consists of a series RC and a resistive load (see Figure 43). With the snubber in place, the AD8603/AD8607/AD8609 are capable of driving capacitive loads of 2 nF with no ringing and less than 3% overshoot.
The use of the snubber circuit is usually recommended for unity gain configurations. Higher gain configurations help improve the stability of the circuit. Figure 44 shows the same output response with the snubber in place.
VS = ±0.9V V
= 100mV
IN
C
= 2nF
L
R
= 10k
L
4356-042
Figure 42. Output Response to a 2 nF Capacitive Load, Without Snubber
V
EE
V– V+
R
S
200mV
+ –
150
C
S
V
CC
47pF
C
L
04356-043
Figure 43. Snubber Network
VSY = ±0.9V V
= 100mV
IN
C
= 2nF
L
R
= 10k
L
R
= 150
S
C
= 470pF
S
04356-044
Figure 44. Output Response to a 2 nF Capacitive Load with Snubber
Optimum values for RS and CS are determined empirically; Tabl e 5 lists a few starting values.
Table 5. Optimum Values for the Snubber Network
CL (pF) RS (Ω)
CS (pF)
100 to ~500 500 680 1500 100 330 1600 to ~2000 400 100
Rev. C | Page 12 of 16
AD8603/AD8607/AD8609

PROXIMITY SENSORS

Proximity sensors can be capacitive or inductive and are used in a variety of applications. One of the most common applications is liquid level sensing in tanks. This is particularly popular in pharmaceutical environments where a tank must know when to stop filling or mixing a given liquid. In aerospace applications, these sensors detect the level of oxygen used to propel engines. Whether in a combustible environment or not, capacitive sensors generally use low voltage. The precision and low voltage of the AD8603/AD8607/AD8609 make the parts an excellent choice for such applications.

COMPOSITE AMPLIFIERS

A composite amplifier can provide a very high gain in applications where high closed-loop dc gains are needed. The high gain achieved by the composite amplifier comes at the expense of a loss in phase margin. Placing a small capacitor, C in parallel with R2 (see Figure 45) improves the phase margin. Picking C
= 50 pF yields a phase margin of about 45° for the
F
values shown in Figure 45.
C
F
R1
1k
V
EE
V
IN
V
V+
99k
AD8603
V
CC
R2
R3 R4
V
V
Figure 45. High Gain Composite Amplifier
A composite amplifier can be used to optimize dc and ac characteristics. Figure 46 shows an example using the AD8603 and the AD8541. This circuit offers many advantages. The band­width is increased substantially, and the input offset voltage and noise of the AD8541 become insignificant because they are divided by the high gain of the AD8603.
The circuit in Figure 46 offers high bandwidth (nearly double that of the AD8603), high output current, and very low power consumption of less than 100 μA.
V
EE
R1
V–
1k
V
IN
AD8603
V+
V
CC
R3
1k
C2
Figure 46. Low Power Composite Amplifier
F
CC
U5
V+
AD8541
V
EE
99k1k
R2
100k
V
CC
V+ V
AD8541
V
EE
, in the feedback
04356-045
R4
100
C3
04356-046

BATTERY-POWERED APPLICATIONS

The AD8603/AD8607/AD8609 are ideal for battery-powered applications. The parts are tested at 5 V, 3.3 V, 2.7 V, and 1.8 V and are suitable for various applications whether in single or dual supply.
In addition to their low offset voltage and low input bias, the AD8603/AD8607/AD8609 have a very low supply current of 40 μA, making the parts an excellent choice for portable electronics. The TSOT package allows the AD8603 to be used on smaller board spaces.

PHOTODIODES

Photodiodes have a wide range of applications from barcode scanners to precision light meters and CAT scanners. The very low noise and low input bias current of the AD8603/AD8607/ AD8609 make the parts very attractive amplifiers for I-V conversion applications.
Figure 47 shows a simple photodiode circuit. The feedback capacitor helps the circuit maintain stability. The signal band­width can be increased at the expense of an increase in the total noise; a low-pass filter can be implemented by a simple RC network at the output to reduce the noise. The signal bandwidth can be calculated by ½πR2C2, and the closed-loop bandwidth is the intersection point of the open-loop gain and the noise gain.
The circuit shown in Figure 47 has a closed-loop bandwidth of 58 kHz and a signal bandwidth of 16 Hz. Increasing C2 to 50 pF yields a closed-loop bandwidth of 65 kHz, but only 3.2 Hz of signal bandwidth can be achieved.
C2
10pF
R2
1000M
V
EE
V–
C1
R1
1000M
10pF
Figure 47. Photodiode Circuit
AD8603
V+
V
CC
04356-047
Rev. C | Page 13 of 16
AD8603/AD8607/AD8609

OUTLINE DIMENSIONS

2.90 BSC
54
0.50
0.30
2.80 BSC
0.95 BSC
*
1.00 MAX
SEATING PLANE
(UJ-5)
0.20
0.08
8° 4° 0°
0.60
0.45
0.30
1.60 BSC
123
PIN 1
*
0.90
0.87
0.84
0.10 MAX
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
1.90
BSC
Figure 48. 5-Lead Thin Small Outline Transistor Package [TSOT]
Dimensions shown in millimeters
3.20
3.00
2.80
8
5
4
SEATING PLANE
5.15
4.90
4.65
1.10 MAX
0.23
0.08
8° 0°
0.80
0.60
0.40
3.20
3.00
1
2.80
PIN 1
0.65 BSC
0.95
0.85
0.75
0.15
0.38
0.00
0.22
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 49. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Rev. C | Page 14 of 16
AD8603/AD8607/AD8609
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLL ING DIMENSI ONS ARE IN MILLIMETERS; INCH DI MENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRI ATE FOR USE IN DESIGN.
5.00 (0.1968)
4.80 (0.1890)
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-A A
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
8° 0°
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 50. 8-Lead Standard Small Outline Package [SOIC_N]
(R-8)
Dimensions shown in millimeters and (inches)
8.75 (0.3445)
8.55 (0.3366)
4.00 (0.1575)
3.80 (0.1496)
14
1
8
6.20 (0.2441)
5.80 (0.2283)
7
0.25 (0.0098)
0.10 (0.0039)
COPLANARIT Y
0.10
CONTROLL ING DIMENSIONS ARE IN MILLIMETERS; INCH DI MENSIONS (IN PARENTHESES) ARE ROUNDED-O FF MIL LIMETE R EQUIVALENTS FOR REFERENCE ON LY AND ARE NOT APPROPRI ATE FOR USE IN DESIGN.
1.27 (0.0500) BSC
0.51 (0.0201)
0.31 (0.0122)
COMPLIANT TO JEDEC STANDARDS MS-012-AB
1.75 (0.0689)
1.35 (0.0531)
SEATING PLANE
8° 0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0197)
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
45°
060606-A
Figure 51. 14-Lead Standard Small Outline Package [SOIC_N]
(R-14)
Dimensions shown in millimeters and (inches)
5.10
5.00
4.90
1.05
1.00
0.80
4.50
4.40
4.30
PIN 1
14
0.65
BSC
0.15
0.05
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
0.30
0.19
8
6.40
BSC
71
1.20 MAX
SEATING PLANE
0.20
0.09
COPLANARITY
0.10
8° 0°
0.75
0.60
0.45
Figure 52. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
Rev. C | Page 15 of 16
AD8603/AD8607/AD8609

ORDERING GUIDE

Model Temperature Range Package Description Package Option Branding
AD8603AUJ-R2 −40°C to +125°C 5-Lead TSOT UJ-5 BFA AD8603AUJ-REEL −40°C to +125°C 5-Lead TSOT UJ-5 BFA AD8603AUJ-REEL7 −40°C to +125°C 5-Lead TSOT UJ-5 BFA AD8603AUJZ-R2 AD8603AUJZ-REEL AD8603AUJZ-REEL7 AD8607ARM-R2 −40°C to +125°C 8-Lead MSOP RM-8 A00 AD8607ARM-REEL −40°C to +125°C 8-Lead MSOP RM-8 A00 AD8607ARMZ-R2 AD8607ARMZ-REEL AD8607AR −40°C to +125°C 8-Lead SOIC_N R-8 AD8607AR-REEL −40°C to +125°C 8-Lead SOIC_N R-8 AD8607AR-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8 AD8607ARZ AD8607ARZ-REEL AD8607ARZ-REEL7 AD8609AR −40°C to +125°C 14-Lead SOIC_N R-14 AD8609AR-REEL −40°C to +125°C 14-Lead SOIC_N R-14 AD8609AR-REEL7 −40°C to +125°C 14-Lead SOIC_N R-14 AD8609ARZ AD8609ARZ-REEL AD8609ARZ-REEL7 AD8609ARU −40°C to +125°C 14-Lead TSSOP RU-14 AD8609ARU-REEL −40°C to +125°C 14-Lead TSSOP RU-14 AD8609ARUZ AD8609ARUZ-REEL
1
Z = RoHS Compliant Part.
1
−40°C to +125°C 5-Lead TSOT UJ-5 A0X
1
−40°C to +125°C 5-Lead TSOT UJ-5 A0X
1
−40°C to +125°C 5-Lead TSOT UJ-5 A0X
1
−40°C to +125°C 8-Lead MSOP RM-8 A0G
1
−40°C to +125°C 8-Lead MSOP RM-8 A0G
1
−40°C to +125°C 8-Lead SOIC_N R-8
1
−40°C to +125°C 8-Lead SOIC_N R-8
1
−40°C to +125°C 8-Lead SOIC_N R-8
1
−40°C to +125°C 14-Lead SOIC_N R-14
1
−40°C to +125°C 14-Lead SOIC_N R-14
1
−40°C to +125°C 14-Lead SOIC_N R-14
1
−40°C to +125°C 14-Lead TSSOP RU-14
1
−40°C to +125°C 14-Lead TSSOP RU-14
©2003–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04356-0-6/08(C)
Rev. C | Page 16 of 16
Loading...