ANALOG DEVICES AD8134 Service Manual

Triple Differential Driver
www.BDTIC.com/ADI

FEATURES

Triple high speed differential driver
225 MHz, −3 dB large signal bandwidth 450 MHz, −3 dB small signal bandwidth Easily drives 1.4 V p-p video signal into doubly terminated
100 Ω UT 1600 V/μs slew rate Fixed internal gain of 2
Internal common-mode feedback network
Output balance error −60 dB @ 50 MHz
On-chip sync-on-common-mode circuitry Output pull-down feature for line isolation Differential input and output Differential-to-differential or single-ended-to-differential
oper
High isolation between amplifiers: 80 dB @ 10 MHz Low distortion: 64 dB SFDR @ 10 MHz on 5 V supply,
R
L, dm
Low offset: 3 mV typical output-referred on 5 V supply Low power: 26.5 mA @ 5 V for three drivers and sync circuitry Wide supply voltage range: +5 V to ±5 V Available in space-saving packaging: 4 mm × 4 mm LFCSP

APPLICATIONS

Keyboard-video-mouse (KVM) networking

GENERAL DESCRIPTION

The AD8134 is a major advancement beyond using discrete op amps for driving differential RGB signals over twisted pair cable. The AD8134 is a triple, low cost differential or single­ended input to differential output driver, and each amplifier has a fixed gain of 2 to compensate for the attenuation of the line termination resistors. The AD8134 is specifically designed for RGB signals but can be used for any type of analog signals or high speed data transmission. The AD8134 is capable of driving either Category 5 (Cat-5) unshielded twisted pair (UTP) cable or differential printed circuit board transmission lines with minimal signal degradation.
A unique feature that allows the use horizontal and vertical video sync signals over the three common-mode channels with minimal electromagnetic interference (EMI) radiation is included on-chip.
The outputs of the AD8134 can be set to a low voltage state that al
lows easy differential multiplexing of multiple drivers on the
same twisted pair cable, when used with external series diodes.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
P cable
ation
= 200 Ω
r to transmit balanced
With Sync-On-Common-Mode
AD8134

FUNCTIONAL BLOCK DIAGRAM

(SYNC)
SYNC
S–
SYNC
VS+–IN G
24 23 22 21 20
AD8134
OPD
1
V
2
S–
–IN R
3
+IN R
4
V
S–
OUT R
0
ΔV
–10
ΔV
–20
–30
–40 –50 –60
–70
–80
OUTPUT BALANCE ERROR (dB)
–90
–100
1 10 100 500
R
5
6
7 8 9 10 11
+OUT R
= 2V p-p
OUT, dm
/ΔV
OUT, cm
S+
V
OUT, dm
Figure 2. Output Balance vs. Frequency
The AD8134 driver is a natural complement to the AD8143,
AD8129, and AD8130 differential receivers.
Manufactured on the Analog Devices next generation XFCB b
ipolar process, the AD8134 has a large signal bandwidth of 225 MHz and a slew rate of 1600 V/μs. The AD8134 has an internal common-mode feedback feature that provides output gain and phase matching that is balanced to −60 dB at 50 MHz, suppressing harmonics and reducing radiated EMI.
The AD8134 is available in a 24-lead LFCSP and can operate o
ver the −40°C to +85°C extended industrial temperature range.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
V
+IN G
V
H
19
×2
G
B
12
S+
V
+OUT B
–OUT G
+OUT G
Figure 1.
VS = ±5V
FREQUENCY (MHz)
18
SYNC LEVEL
17
V
S+
16
–IN B +IN B
15
V
14
S–
–OUT B
13
(SYNC)
VS = +5V
04770-001
04770-018
AD8134
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Driving a Capacitive Load......................................................... 13
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution.................................................................................. 5
Pin Configuration and Function Descriptions............................. 6
Typical Performance Characteristics............................................. 7
Theory of Operation ...................................................................... 12
Definition of Terms.................................................................... 12
Analyzing an Application Circuit.............................................12
Closed-Loop Gain...................................................................... 12
Calculating an Application Circuit’s Input Impedance ......... 13
Output Pull-Down (OPD) ........................................................ 13
Sync-On-Common-Mode......................................................... 14
Applications..................................................................................... 15
Driving RGB Video Over Cat-5 Cable .................................... 15
How to Apply the Output Pull-Down Feature ....................... 16
KVM Networks........................................................................... 16
Video Sync-On-Common-Mode............................................. 16
Level-Shifting Sync Pulses on ±5 V Supplies.......................... 17
Layout and Power Supply Decoupling Considerations......... 18
Amplifier-to-Amplifier Isolation ............................................. 18
Exposed Paddle (EP).................................................................. 18
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 19
Input Common-Mode Voltage Range in Single-Supply
Applications.................................................................................13

REVISION HISTORY

10/05—Rev. Sp0 to Rev. A
Changes to Features and General Description ............................. 1
Changes to Figure 32...................................................................... 14
Changes to Figure 33...................................................................... 15
Changes to Figure 34...................................................................... 17
Added Level-Shifting Sync Pulses on ±5 V Supplies Section ... 17
Changes to Ordering Guide.......................................................... 19
7/04—Revision Sp0: Initial Version
Rev. A | Page 2 of 20
AD8134
www.BDTIC.com/ADI

SPECIFICATIONS

VS = ±5 V, H
Table 1.
Parameter Conditions Min Typ Max Unit
DIFFERENTIAL INPUT PERFORMANCE DYNAMIC PERFORMANCE
−3 dB Small Signal Bandwidth VO = 0.2 V p-p 450 MHz
−3 dB Large Signal Bandwidth VO = 2 V p-p 225 MHz Bandwidth for 0.1 dB Flatness VO = 0.2 V p-p 60 MHz V Slew Rate VO = 2 V p-p, 25% to 75% 1600 V/μs Settling Time to 0.1% VO = 2 V step 15 ns Isolation Between Amplifiers
DIFFERENTIAL INPUT CHARACTERISTICS
Input Common-Mode Voltage Range −5 to +5 V Input Resistance Differential 1.5 kΩ Single-ended input 1.13 kΩ Input Capacitance Differential 1 pF DC CMRR ΔV
DIFFERENTIAL OUTPUT CHARACTERISTICS
Differential Signal Gain ΔV Output Voltage Swing Each single-ended output VS− + 1.9 VS+ − 1.6 V Output Offset Voltage −24 +4 +24 mV Output Offset Drift T Output Balance Error f = 50 MHz −60 dB DC −70 −54 dB Output Voltage Noise (RTO) f = 1 MHz 25 nV/√Hz
Output Short-Circuit Current 90 mA COMMON-MODE SYNC PERFORMANCE SYNC DYNAMIC PERFORMANCE
Slew Rate V H
AND V
SYNC
Input Low Voltage VS− to −2.75 V
Input High Voltage −2.25 to VS+ V SYNC LEVEL INPUT
Input Voltage Range For linear operation V
Setting to Achieve 0.5 V Pulse Levels VS− + 0.5 V
Gain to Red Common-Mode Output ΔV
Gain to Green Common-Mode Output ΔV
Gain to Blue Common-Mode Output ΔV POWER SUPPLY
Operating Range +4.5 ±6 V
Quiescent Current 31 33 mA
PSRR ΔV OUTPUT PULL-DOWN PERFORMANCE
OPD Input Low Voltage VS− to VS+ − 4.15 V
OPD Input High Voltage VS+ − 3.15 to VS+ V
OPD Input Bias Current 67 90 μA
OPD Assert Time 100 ns
OPD De-Assert Time 100 ns
Output Voltage When OPD Asserted Each output, OPD input @ VS+ VS− + 0.86 VS− + 0.90 V
SYNC
and V
SYNC
= VS−, R
= 200 Ω @ 25°C, unless otherwise noted. T
L, dm
= 2 V p-p 55 MHz
O
f = 10 MHz, between Amplifier R and
MIN
to T
= −40°C to +85°C.
MAX
80 dB
Amplifier G
/ΔV
, ΔV
OUT, dm
OUT, dm
to T
MIN
OUT, cm
INPUTS
SYNC
O, cm
O, cm
O, cm
OUT, dm
IN, cm
/ΔV
IN, dm
MAX
= −1 V to +1 V; 25% to 75% 1000 V/μs
/ΔV
SYNC LEVEL
/ΔV
SYNC LEVEL
/ΔV
SYNC LEVEL
/ΔVS; ΔVS = ±1V −54 −48 dB
= ±1 V −48 dB
IN, cm
, ΔV
= ±1 V 1.920 1.955 2.000 V/V
IN, dm
±30 μV/°C
0.95 1.02 1.07 V/V
1.91 2.04 2.14 V/V
0.95 1.02 1.07 V/V
Rev. A | Page 3 of 20
AD8134
www.BDTIC.com/ADI
VS+ = 5 V, VS− = 0 V, H
Table 2.
Parameter Conditions Min Typ Max Unit
DIFFERENTIAL INPUT PERFORMANCE DYNAMIC PERFORMANCE
−3 dB Small Signal Bandwidth VO = 0.2 V p-p 400 MHz
−3 dB Large Signal Bandwidth VO = 2 V p-p 200 MHz Bandwidth for 0.1 dB Flatness VO = 0.2 V p-p 50 MHz Slew Rate VO = 2 V p-p, 25% to 75% 1400 V/μs Settling Time to 0.1% VO = 2 V step 14 ns Isolation Between Amplifiers
DIFFERENTIAL INPUT CHARACTERISTICS
Input Common-Mode Voltage Range 0 to 5 V Input Resistance Differential 1.5 Single-ended input 1.13 kΩ Input Capacitance Differential 1 pF DC CMRR ΔV
DIFFERENTIAL OUTPUT CHARACTERISTICS
Differential Signal Gain ΔV Output Voltage Swing Each single-ended output VS− + 1.25 VS+ − 1.15 V Output Offset Voltage −24 3 +24 mV Output Offset Drift T Output Balance Error f = 50 MHz −60 dB DC −70 −54 dB Output Voltage Noise f = 1 MHz 25 nV/√Hz
Output Short-Circuit Current 90 mA COMMON-MODE SYNC PERFORMANCE SYNC DYNAMIC PERFORMANCE
Slew Rate V H
SYNC
AND V
INPUTS
SYNC
Input Low Voltage VS− to 1.10 V
Input High Voltage 1.40 to V SYNC LEVEL INPUT
Input Voltage Range For linear operation V
Setting to Achieve 0.5 V Pulse Levels VS− + 0.5 V
Gain to Red Common-Mode Output ΔV
Gain to Green Common-Mode Output ΔV
Gain to Blue Common-Mode Output ΔV POWER SUPPLY
Operating Range +4.5 ±6 V
Quiescent Current 26.5 27.5 mA
PSRR −54 −48 dB OUTPUT PULL-DOWN PERFORMANCE
OPD Input Low Voltage VS− to VS+ − 3.85 V
OPD Input High Voltage VS+ − 2.85 to VS+ V
OPD Input Bias Current 63 80 μA
OPD Assert Time 100 ns
OPD De-Assert Time 100 ns
Output Voltage When OPD Asserted Each output, OPD input @ VS+ VS− + 0.79 VS− + 0.82 V
SYNC
and V
SYNC
= VS−, R
= 200 Ω @ 25°C, unless otherwise noted. T
L, dm
f = 10 MHz, between Amplifier R and
75 dB
MIN
to T
= −40°C to +85°C.
MAX
Amplifier G
/ΔV
, ΔV
OUT, dm
OUT, dm
MIN
OUT, cm
O, cm
O, cm
O, cm
IN, cm
/ΔV
IN, dm
to T
MAX
= −1 V to +1 V; 25% to 75% 700 V/μs
/ΔV
SYNC LEVEL
/ΔV
SYNC LEVEL
/ΔV
SYNC LEVEL
= ±1 V −48 dB
IN, cm
, ΔV
= ±1 V 1.920 1.955 2.000 V/V
IN, dm
±30 μV/°C
S+
0.97 1.02 1.06 V/V
1.94 2.03 2.10 V/V
0.96 1.02 1.05 V/V
V
Rev. A | Page 4 of 20
AD8134
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage 12 V H
, V
SYNC
, Sync Level ±V
SYNC
S
Power Dissipation See Figure 3 Input Common-Mode Voltage ±V
S
Storage Temperature Range −65°C to +125°C Operating Temperature Range −40°C to +85°C Lead Temperature (Soldering 10 sec) 300°C Junction Temperature 150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, θJA is specified for the device soldered in a circuit board in still air.
Table 4. Thermal Resistance with the Underside Pad Thermall
Package Type/PCB Type θ
24-Lead LFCSP/4-Layer 70 °C/W

Maximum Power Dissipation

The maximum safe power dissipation in the AD8134 package is limited by the associated rise in junction temperature (T
y Connected to a Copper Plane
JA
Unit
) on
J
The power dissipated in the package (P quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (V quiescent current (I and common-mode currents flowing to the loads, as well as currents flowing through the internal differential and common­mode feedback loops. The internal resistor tap used in the common-mode feedback loop places a 4 kΩ differential load on the output. RMS output voltages should be considered when dealing with ac signals.
Airflow reduces θ with the package leads from metal traces, through holes, ground, and power planes reduce the θ the underside of the package must be soldered to a pad on the PCB surface that is thermally connected to a PCB plane to achieve the specified θ
Figure 3 shows the maximum safe power dissipation in the
ackage vs. the ambient temperature for the 24-lead LFCSP
p (70°C/W) on a JEDEC standard 4-layer board with the underside paddle soldered to a pad that is thermally connected to a PCB plane. θ
4.0
3.5
3.0
2.5
the die. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the AD8134. Exceeding a junction temperature of 175°C for an extended period can result in changes in the silicon devices potentially causing failure.
2.0
1.5
1.0
MAXIMUM POWER DISSIPATION (W)
0.5
0
–40 –20 0 20 40 60
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board
). The load current consists of differential
S
. In addition, more metal directly in contact
JA
.
JA
values are approximations.
JA
AMBIENT TEMPERATURE (°C)
) is the sum of the
D
) times the
S
. The exposed pad on
JA
LFCSP
80
04770-017

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. A | Page 5 of 20
AD8134
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

(SYNC)
SYNC
S–
SYNC
+IN G
V
×2
G
–OUT G
+OUT G
AD8134
750Ω
V
H
19
18
SYNC LEVEL
(SYNC)
17
V
S+
16
–IN B +IN B
15
B
S+
V
12
+OUT B
1.5kΩ
14
13
V
V
S–
–OUT B
+5V
S+
04770-001
0.1μF ON ALL PINS
V
S+
VS+–IN G
24 23 22 21 20
AD8134
OPD
1
V
2
S–
–IN R
3
+IN R
4
V
OUT R
S–
R
5
6
7 8 9 10 11
V
+OUT R
S+
Figure 4. 24-Lead LFCSP
Table 5. Pin Function Descriptions
Pin No. Mnemonic Description
1 OPD Output Pull Down. 2, 5, 14, 21 V
S−
Negative Power Supply Voltage. 3 −IN R Inverting Input, Red Amplifier. 4 +IN R Noninverting Input, Red Amplifier. 6 −OUT R Negative Output, Red Amplifier. 7 +OUT R Positive Output, Red Amplifier. 8, 11, 17, 24 V
S+
Positive Power Supply Voltage. 9 +OUT G Positive Output, Green Amplifier. 10 −OUT G Negative Output, Green Amplifier. 12 +OUT B Positive Output, Blue Amplifier. 13 −OUT B Negative Output, Blue Amplifier. 15 +IN B Noninverting Input, Blue Amplifier. 16 −IN B Inverting Input, Blue Amplifier. 18 SYNC LEVEL
19 H 20 V
SYNC
SYNC
The voltage applied to this pin controls the amplitude of the sync pulses that are applied to
ommon-mode voltages.
the c
Horizontal Sync Pulse Input.
Vertical Sync Pulse Input. 22 +IN G Noninverting Input, Green Amplifier. 23 −IN G Inverting Input, Green Amplifier.
50Ω
V
TEST
TEST SIGNAL SOURCE
53.6Ω
53.6Ω
50Ω
750Ω
MIDSUPPLY
+
1.5kΩ
R
200Ω V
L, dm
V
S–
–5V
0.1μF ON ALL V
PINS
S–
Figure 5. Basic Test Circuit
Rev. A | Page 6 of 20
OUT, dm
+
04770-034
Loading...
+ 14 hidden pages