ANALOG DEVICES AD7745 Service Manual

24-Bit Capacitance-to-Digital Converter

FEATURES

Capacitance-to-digital converter
New standard in single chip solutions Interfaces to single or differential floating sensors Resolution down to 4 aF (that is, up to 21 ENOB) Accuracy: 4 fF Linearity: 0.01% Common-mode (not changing) capacitance up to 17 pF Full-scale (changing) capacitance range: ±4 pF Tolerant of parasitic capacitance to ground up to 60 pF Update rate: 10 Hz to 90 Hz Simultaneous 50 Hz and 60 Hz rejection at 16 Hz
Temperature sensor on-chip
Resolution: 0.1°C, accuracy: ±2°C Voltage input channel Internal clock oscillator
2-wire serial interface (I Power
2.7 V to 5.25 V single-supply operation
0.7 mA current consumption Operating temperature: –40°C to +125°C 16-lead TSSOP package

APPLICATIONS

Automotive, industrial, and medical systems for
Pressure measurement Position sensing Level sensing Flowmeters Humidity sensing Impurity detection
2
C®-compatible)

FUNCTIONAL BLOCK DIAGRAMS

VDD
with Temperature Sensor
AD7745/AD7746

GENERAL DESCRIPTION

The AD7745/AD7746 are a high resolution, Σ-Δ capacitance-to­digital converter (CDC). The capacitance to be measured is connected directly to the device inputs. The architecture fea­tures inherent high resolution (24-bit no missing codes, up to 21-bit effective resolution), high linearity (±0.01%), and high accuracy (±4 fF factory calibrated). The AD7745/AD7746 capacitance input range is ±4 pF (changing), while it can accept up to 17 pF common-mode capacitance (not changing), which can be balanced by a programmable on-chip, digital-to­capacitance converter (CAPDAC).
The AD7745 has one capacitance input channel, while the AD7746 has two channels. Each channel can be configured as single-ended or differential. The AD7745/AD7746 are designed for floating capacitive sensors. For capacitive sensors with one plate connected to ground, the AD7747 is recommended.
The parts have an on-chip temperature sensor with a resolution of 0.1°C and accuracy of ±2°C. The on-chip voltage reference and the on-chip clock generator eliminate the need for any external components in capacitive sensor applications. The parts have a standard voltage input, which together with the differential reference input allows easy interface to an external temperature sensor, such as an RTD, thermistor, or diode.
2
The AD7745/AD7746 have a 2-wire, I interface. Both parts can operate with a single power supply from 2.7 V to 5.25 V. They are specified over the automotive temperature range of –40°C to +125°C and are housed in a 16-lead TSSOP package.
C-compatible serial
VDD
VIN(+) VIN(–)
CIN1(+) CIN1(–)
EXCA EXCB
TEMP
SENSOR
CAP DAC
CAP DAC
EXCITATION
MUX
CLOCK
GENERATOR
24-BIT Σ-
MODULATOR
REFIN(+) REFIN(–) GND
DIGITAL
FILTER
CONTROL LOGIC
CALIBRATION
VOLTAGE
REFERENCE
AD7745
SERIAL
INTERFACE
I2C
Figure 1.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
SDA
SCL
RDY
05468-001
VIN(+) VIN(–)
CIN1(+) CIN1(–)
CIN2(+) CIN2(–)
EXC1 EXC2
TEMP
SENSOR
CAP DAC
CAP DAC
EXCITATION
MUX
CLOCK
GENERATOR
24-BIT Σ-
MODULATOR
REFIN(+) REFIN(–) GND
DIGITAL
FILTER
CONTROL LOGIC
CALIBRATION
VOLTAGE
REFERENCE
Figure 2.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
www.analog.com
AD7746
SERIAL
INTERFACE
I2C
SDA
SCL
RDY
05468-002
AD7745/AD7746
TABLE OF CONTENTS
Specifications..................................................................................... 3
Timing Specifications....................................................................... 5
Absolute Maximum Ratings............................................................ 6
Pin Configurations and Function Descriptions ........................... 7
Typical Performance Characteristics .............................................8
Output Noise and Resolution Specifications ..............................11
Serial Interface ................................................................................ 12
Read Operation........................................................................... 12
Write Operation.......................................................................... 12
AD7745/AD7746 Reset ............................................................. 13
General Call................................................................................. 13
Register Descriptions ..................................................................... 14
Status Register ............................................................................. 15
Cap Data Register....................................................................... 15
VT Data Register........................................................................ 15
Cap Set-Up Register................................................................... 16
VT Set-Up Register .................................................................... 16
EXC Set-Up Register.................................................................. 17
Configuration Register .............................................................. 18
Cap DAC A Register................................................................... 19
Cap DAC B Register................................................................... 19
Cap Offset Calibration Register................................................ 19
REVISION HISTORY
4/05—Revision 0: Initial Version
Cap Gain Calibration Register.................................................. 19
Volt Gain Calibration Register ................................................. 19
Circuit Description......................................................................... 20
Overview ..................................................................................... 20
Capacitance-to-Digital Converter ........................................... 20
Excitation Source........................................................................ 20
CAPDAC..................................................................................... 21
Single-Ended Capacitive Input................................................. 21
Differential Capacitive Input .................................................... 21
Parasitic Capacitance to Ground.............................................. 22
Parasitic Resistance to Ground................................................. 22
Parasitic Parallel Resistance ...................................................... 22
Parasitic Serial Resistance ......................................................... 23
Capacitive Gain Calibration ..................................................... 23
Capacitive System Offset Calibration...................................... 23
Internal Temperature Sensor .................................................... 23
External Temperature Sensor ................................................... 24
Volt a ge In p ut ............................................................................... 24
V
Monitor ................................................................................ 24
DD
Typical Applicati on D iagram .................................................... 24
Outline Dimensions....................................................................... 25
Ordering Guide .......................................................................... 25
Rev. 0 | Page 2 of 28
AD7745/AD7746

SPECIFICATIONS

VDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V; GND = 0 V; EXC = 32 kHz; EXC = ±VDD/2; –40°C to +125°C, unless otherwise noted.
Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
CAPACITIVE INPUT
Conversion Input Range ±4.096 pF Integral Nonlinearity (INL)
2
±0.01 % of FSR
No Missing Codes2 24 Bit Conversion time ≥ 62 ms Resolution, p-p 16.5 Bit Conversion time = 62 ms, see Table 5 Resolution Effective 19 Bit Conversion time = 62 ms, see Table 5 Output Noise, rms 2
Absolute Error Offset Error
3
2, 4
±4 fF 32 aF1
System Offset Calibration Range2 ±1 pF Offset Drift vs. Temperature –1 aF/°C Gain Error
5
0.02 0.08 % of FS 25°C, VDD = 5 V Gain Drift vs. Temperature2 –28 –26 –24 ppm of FS/°C Allowed Capacitance to GND2 60 pF See Figure 9 and Figure 10 Power Supply Rejection 0.3 1 fF/V Normal Mode Rejection 65 dB 50 Hz ± 1%, conversion time = 62 ms 55 dB 60 Hz ± 1%, conversion time = 62 ms Channel-to-Channel Isolation 70 dB AD7746 only
CAPDAC
Full Range 17 21 pF Resolution
6
164 fF 7-bit CAPDAC
Drift vs. Temperature2 24 26 28 ppm of FS/°C
EXCITATION
Frequency 32 kHz Voltage Across Capacitance ±VDD/8 V Configurable via digital interface ±VDD/4 V
±V
DD
× 3/8
V
±VDD/2 V Average DC Voltage Across
<±40 mV
Capacitance
Allowed Capacitance to GND2 100 pF See Figure 11
TEMPERATURE SENSOR
7
V Resolution 0.1 °C Error2 ±0.5 ±2 °C Internal temperature sensor ±2 °C External sensing diode
VOLTAGE INPUT7 V
Differential VIN Voltage Range ±V
REF
V Absolute VIN Voltage2 GND − 0.03 VDD + 0.03 V Integral Nonlinearity (INL) ±3 ±15 ppm of FS No Missing Codes2 24 Bit Conversion time = 122.1 ms Resolution, p-p 16 Bits
Output Noise 3 µV rms
Offset Error ±3 µV Offset Drift vs. Temperature 15 nV/°C Full-Scale Error
2, 9
0.025 0.1 % of FS
1
Factory calibrated
aF/√Hz
1
25°C, VDD = 5 V, after offset calibration
See Table 5
After system offset calibration, Excluding effect of noise
internal
REF
internal or V
REF
REF
8
= 2.5 V
4
Conversion time = 62 ms See Table 6 and Table 7
Conversion time = 62 ms See Table 6 and Table 7
Rev. 0| Page 3 of 28
AD7745/AD7746
Parameter Min Typ Max Unit Test Conditions/Comments
Full-Scale Drift vs. Temperature 5 ppm of FS/°C Internal reference
0.5 ppm of FS/°C External reference Average VIN Input Current 300 nA/V Analog VIN Input Current Drift ±50 pA/V/°C Power Supply Rejection 80 dB Internal reference, VIN = V Power Supply Rejection 90 dB External reference, VIN = V Normal Mode Rejection 75 dB 50 Hz ± 1%, conversion time = 122.1 ms 50 dB 60 Hz ± 1%, conversion time = 122.1 ms Common-Mode Rejection 95 dB VIN = 1 V
INTERNAL VOLTAGE REFERENCE
Voltage 1.169 1.17 1.171 V TA = 25°C Drift vs. Temperature 5 ppm/°C
EXTERNAL VOLTAGE REFERENCE INPUT
Differential REFIN Voltage2 0.1 2.5 V
DD
V Absolute REFIN Voltage2 GND − 0.03 VDD + 0.03 V Average REFIN Input Current 400 nA/V Average REFIN Input Current Drift ±50 pA/V/°C Common-Mode Rejection 80 dB
SERIAL INTERFACE LOGIC INPUTS (SCL, SDA)
VIH Input High Voltage 2.1 V VIL Input Low Voltage 0.8 V Hysteresis 150 mV Input Leakage Current (SCL) ±0.1 ±1 µA
OPEN-DRAIN OUTPUT (SDA)
VOL Output Low Voltage 0.4 V
IOH Output High Leakage Current 0.1 1 µA V
LOGIC OUTPUT (
RDY
) VOL Output Low Voltage 0.4 V I VOH Output High Voltage 4.0 V I VOL Output Low Voltage 0.4 V I VOH Output High Voltage VDD – 0.6 V I
I
= 6.0 mA
SINK
= V
OUT
DD
= 1.6 mA, VDD = 5 V
SINK
= 200 µA, VDD = 5 V
SOURCE
= 100 µA, VDD = 3 V
SINK
= 100 µA, VDD = 3 V
SOURCE
POWER REQUIREMENTS
VDD-to-GND Voltage 4.75 5.25 V VDD = 5 V, nominal
2.7 3.6 V VDD = 3.3 V, nominal IDD Current 850 µA Digital inputs equal to VDD or GND 750 µA VDD = 5 V 700 µA VDD = 3.3 V IDD Current Power-Down Mode 0.5 2 µA Digital inputs equal to VDD or GND
1
Capacitance units: 1 pF = 10
2
Specification is not production tested, but is supported by characterization data at initial product release.
3
Factory calibrated. The absolute error includes factory gain calibration error, integral nonlinearity error, and offset error after system offset calibration, all at 25°C. At
different temperatures, compensation for gain drift over temperature is required.
4
The capacitive input offset can be eliminated using a system offset calibration. The accuracy of the system offset calibration is limited by the offset calibration register
LSB size (32 aF) or by converter + system p-p noise during the system capacitive offset calibration, whichever is greater. To minimize the effect of the converter + system noise, longer conversion times should be used for system capacitive offset calibration. The system capacitance offset calibration range is ±1 pF, the larger offset can be removed using CAPDACs.
5
The gain error is factory calibrated at 25°C. At different temperatures, compensation for gain drift over temperature is required.
6
The CAPDAC resolution is seven bits in the actual CAPDAC full range. Using the on-chip offset calibration or adjusting the capacitive offset calibration register can
further reduce the CIN offset or the unchanging CIN component.
7
The VTCHOP bit in the VT SETUP register must be set to 1 for the specified temperature sensor and voltage input performance.
8
Using an external temperature sensing diode 2N3906, with nonideality factor nf = 1.008, connected as in Figure 41, with total serial resistance <100 Ω.
9
Full-scale error applies to both positive and negative full scale.
-12
F; 1 fF = 10
-15
F; 1 aF = 10
-18
F.
REF
REF
/2
/2
Rev. 0 | Page 4 of 28
AD7745/AD7746
A

TIMING SPECIFICATIONS

VDD = 2.7 V to 3.6 V, or 4.75 V to 5.25 V; GND = 0 V; Input Logic 0 = 0 V; Input Logic 1 = VDD; –40°C to +125°C, unless otherwise noted.
Table 2.
Parameter Min Typ Max Unit Test Conditions/Comments
SERIAL INTERFACE
SCL Frequency 0 400 kHz SCL High Pulse Width, t SCL Low Pulse Width, t SCL, SDA Rise Time, t SCL, SDA Fall Time, t Hold Time (Start Condition), t Set-Up Time (Start Condition), t Data Set-Up Time, t Data Set-Up Time, t Set-Up Time (Stop Condition), t Data Hold Time, t Bus-Free Time (Between Stop and Start Condition, t
1
Sample tested during initial release to ensure compliance.
2
All input signals are specified with input rise/fall times = 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs.
Output load = 10 pF.
1, 2
HIGH
LOW
R
F
HD;STA
SU;STA
SU;DAT
SU;DAT
SU;STO
(Master) 0 µs
HD;DAT
See Figure 3
0.6 µs
1.3 µs
0.3 µs
0.3 µs
0.6 µs After this period, the first clock is generated
0.6 µs Relevant for repeated start condition
0.25 µs VDD ≥ 3.0 V
0.35 µs VDD < 3.0 V
0.6 µs
) 1.3 µs
BUF
t
LOW
t
R
t
F
t
HD:STA
SCL
SD
t
t
BUF
PS
HD:STA
t
HD:DAT
t
HIGH
t
SU:DAT
Figure 3. Serial Interface Timing Diagram
t
SU:STA
S
t
SU:STO
P
05468-003
Rev. 0| Page 5 of 28
AD7745/AD7746

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 3.
Parameter Rating
Positive Supply Voltage VDD to GND
Voltage on any Input or Output Pin to GND
ESD Rating (ESD Association Human Body Model, S5.1)
Operating Temperature Range –40°C to +125°C Storage Temperature Range –65°C to +150°C Junction Temperature 150°C
TSSOP Package θJA, (Thermal Impedance-to-Air)
TSSOP Package θJC, (Thermal Impedance-to-Case)
Lead Temperature, Soldering
Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C
0.3 V to +6.5 V
–0.3 V to V
2000 V
128°C/W
14°C/W
+ 0.3 V
DD
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 6 of 28
AD7745/AD7746

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

1
SCL
2
RDY
EXCA
3
EXCB REFIN(+) REFIN(–)
CIN1(–) CIN1(+)
AD7745
4
TOP VIEW
5
(Not to Scale)
6 7 8
NC = NO CONNECT
Figure 4. AD7745 Pin Configuration (16-Lead TSSOP)
16
SDA
15
NC
14
VDD
13
GND
12
VIN(–)
11
VIN(+)
10
NC NC
9
05468-004
Figure 5. AD7746 Pin Configuration (16-Lead TSSOP)
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 SCL
Serial Interface Clock Input. Connects to the master clock line. Requires pull-up resistor if not already provided in the system.
2
RDY Logic Output. A falling edge on this output indicates that a conversion on enabled channel(s) has been
finished and the new data is available. Alternatively, the status register can be read via the 2-wire serial interface and the relevant bit(s) decoded to query the finished conversion. If not used, this pin should be left as an open circuit.
3, 4 EXCA, EXCB
CDC Excitation Outputs. The measured capacitance is connected between one of the EXC pins and one of the CIN pins. If not used, these pins should be left as an open circuit.
5, 6
REFIN(+), REFIN(–)
Differential Voltage Reference Input for the Voltage Channel (ADC). Alternatively, the on-chip internal reference can be used for the voltage channel. These reference input pins are not used for conversion on capacitive channel(s) (CDC). If not used, these pins can be left as an open circuit or connected to GND.
7 CIN1(–)
CDC Negative Capacitive Input in Differential Mode. This pin is internally disconnected in single-ended CDC configuration. If not used, this pin can be left as an open circuit or connected to GND.
8 CIN1(+)
CDC Capacitive Input (in Single-Ended Mode) or Positive Capacitive Input (in Differential Mode). The measured capacitance is connected between one of the EXC pins and one of the CIN pins. If not used, this pin can be left as an open circuit or connected to GND.
9, 10
NC Not Connected. This pin should be left as an open circuit.
(AD7745) 9
(AD7746) 10
(AD7746) 11, 12 VIN(+), VIN(–)
CIN2(+)
CIN2(–)
CDC Second Capacitive Input (in Single-Ended Mode) or Positive Capacitive Input (in Differential Mode). If not used, this pin can be left open circuit or connected to GND.
CDC Negative Capacitive Input in Differential Mode. This pin is internally disconnected in a single-ended CDC configuration. If not used, this pin can be left as an open circuit or connected to GND.
Differential Voltage Input for the Voltage Channel (ADC). These pins are also used to connect an external
temperature sensing diode. If not used, these pins can be left as an open circuit or connected to GND. 13 GND Ground Pin. 14 VDD
Power Supply Voltage. This pin should be decoupled to GND, using a low impedance capacitor, for example
in combination with a 10 µF tantalum and a 0.1 µF multilayer ceramic. 15 NC Not Connected. This pin should be left as an open circuit. 16 SDA
Serial Interface Bidirectional Data. Connects to the master data line. Requires a pull-up resistor if not provided
elsewhere in the system.
SCL RDY
EXCA
EXCB REFIN(+) REFIN(–)
CIN1(–) CIN1(+)
1 2 3
AD7746
4
TOP VIEW
5
(Not to Scale)
6 7 8
NC = NO CONNECT
16 15 14 13 12 11 10
9
SDA NC VDD GND VIN(–) VIN(+) CIN2(–) CIN2(+)
05468-005
Rev. 0| Page 7 of 28
AD7745/AD7746

TYPICAL PERFORMANCE CHARACTERISTICS

100
80
60
INL (ppm)
40
20
0
–4 –3 –2 –1 0 1 2 3 4
–5 5
INPUT CAPACITANCE (pF)
Figure 6. Capacitance Input Integral Nonlinearity,
V
= 5 V, the Same Configuration as in Figure 31
DD
2000
1000
0
–1000
GAIN ERROR (ppm)
–2000
–3000
–25 0 25 50 75 100 125
–50 150
TEMPERATURE (°C)
GAIN TC –26ppm/°C
Figure 7. Capacitance Input Offset Drift vs. Temperature,
= 5 V, CIN and EXC Pins Open Circuit
V
DD
100
75
50
25
0
–25
OFFSET ERROR (aF)
–50
–75
–100
–25 0 25 50 75 100 125
–50 150
TEMPERATURE (°C)
Figure 8. Capacitance Input Gain Drift vs. Temperature,
V
= 5 V, CIN(+) to EXC = 4 pF, the Same Configuration as in Figure 30
DD
05468-014
05468-015
05468-016
18
16
14
12
10
8
6
4
CAPACITANCE ERROR (fF)
2
0
–2
0 500
50 100 150 200 250 300 350 400 450
CAPACITANCE CIN PIN TO GND (pF)
2.7V 3V 5V3.3V
05468-017
Figure 9. Capacitance Input Error vs. Capacitance between CIN and GND.
CIN(+) to EXC = 4 pF, CIN(−) to EXC = 0 pF, V
= 2 .7 V, 3 V, 3. 3 V, an d 5 V,
DD
the Same Configuration as in Figure 33
18
16
14
12
10
8
6
4
CAPACITANCE ERROR (fF)
2
0
–2
0 500
50 100 150 200 250 300 350 400 450
2.7V 3V 3.3V
5V
CAPACITANCE CIN PIN TO GND (pF)
05468-018
Figure 10. Capacitance Input Error vs. Capacitance between CIN and GND,
CIN(+) to EXC = 21 pF, CIN(−) to EXC = 23 pF, V
= 2.7 V, 3 V, 3.3 V, and 5 V,
DD
the Same Configuration as in Figure 34
5
4
3
2
1
CAPACITANCE ERROR (fF)
0
–1
0 500
50 100 150 200 250 300 350 400 450
CAPACITANCE EXC PIN TO GND (pF)
2.7V
3V
5V
3.3V
05468-019
Figure 11. Capacitance Input Error vs. Capacitance between EXC and GND,
CIN(+) to EXC = 21 pF, CIN(−) to EXC = 23 pF, V
= 2.7 V, 3 V, 3.3 V, and 5 V,
DD
the Same Configuration as in Figure 34
Rev. 0 | Page 8 of 28
AD7745/AD7746
8
6
4
2
0
–2
–4
–6
CAPACITANCE ERROR (fF)
–8
–10
–12
–250
3V
2.7V
–200 –150 –100 –50 0 50 100 150 200
CIN LEAKAGE TO GND (nA)
Figure 12. Capacitance Input Error vs. Leakage Current to GND,
CIN(+) to EXC = 4 pF, CIN(−) to EXC = 0 pF,
V
= 2.7 V and 3 V
DD
8
6
4
2
0
5V –2
–4
–6
CAPACITANCE ERROR (fF)
–8
–10
–12
–250 250
3.3V
–200 –150 –100 –50 0 50 100 150 200
CIN LEAKAGE TO GND (nA)
Figure 13. Capacitance Input Error vs. Leakage Current to GND,
CIN(+) to EXC =4 pF, CIN(−) to EXC = 0 pF,
VDD=3.3 V and 5 V
10
250
05468-028
05468-030
0
–2
–4
–6
CAPACITANCE ERROR (fF)
–8
–10
123456
07
SERIAL RESISTANCE (k)
05468-031
Figure 15. Capacitance Input Error vs. Serial Resistance,
CIN(+) to EXC = 21 pF, CIN(−) to EXC = 23 pF, V
DD
= 5 V,
the Same Configuration as in Figure 34.
0.2
0
–0.2
–0.4
–0.6
CAPACITANCE ERROR (fF)
–0.8
–1.0
2.5
3.0 3.5 4.0 4.5 5.0 VDD (V)
5.5
05468-032
Figure 16. Capacitance Input Power Supply Rejection (PSR),
CIN(+) to EXC = 4 pF, the Same Configuration as in Figure 30
0.20
1
0.1
0.01
CAPACITANCE ERROR (pF)
0.001
0.0001 1 100000
10 100 1000 10000
PARALLEL RESISTANCE (M)
Figure 14. Capacitance Input Error vs. Resistance in Parallel
with Measured Capacitance
05468-029
Rev. 0| Page 9 of 28
0.15
0.10
0.05
0
–0.05
CAPDAC CODE DNL (pF)
–0.10
–0.15
–0.20
0 128
16 32 48 64 80 96 112
CAPDAC CODE
Figure 17. CAPDAC Differential Nonlinearity (DNL)
05468-033
Loading...
+ 19 hidden pages