ANALOG DEVICES AD7533 Service Manual

CMOS Low Cost,

FEATURES

Low cost 10-bit DAC Low cost AD7520 replacement Linearity: ½ LSB, 1 LSB, or 2 LSB Low power dissipation Full 4-quadrant multiplying DAC CMOS/TTL direct interface Latch free (protection Schottky not required) Endpoint linearity

APPLICATIONS

Digitally controlled attenuators Programmable gain amplifiers Function generation Linear automatic gain controls
V
REF
20k
S1 S2 S3 SN
BIT 1 (MSB) BIT 10 (LS B)

GENERAL DESCRIPTION

The AD7533 is a low cost, 10-bit, 4-quadrant multiplying DAC manufactured using an advanced thin-film-on-monolithic­CMOS wafer fabrication process.
Pin and function equivalent to the AD7520 industry standard, the AD7533 is recommended as a lower cost alternative for old AD7520 sockets or new 10-bit DAC designs.
AD7533 application flexibility is demonstrated by its ability to interface to TTL or CMOS, operate on 5 V to 15 V power, and provide proper binary scaling for reference inputs of either positive or negative polarity.

FUNCTIONAL BLOCK DIAGRAM

10k
DIGITAL INPUTS (DTL/TTL/CMOS COMPATIBLE)
10k 10k
20k 20k 20k
BIT 2 BIT 3
Figure 1.
10-Bit Multiplying DAC
AD7533
20k
I
2
OUT
I
1
OUT
10k
R
FB
01134-001
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.
AD7533

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 4
ESD Caution.................................................................................. 4
Te r mi n ol o g y ...................................................................................... 5
Pin Configurations and Function Descriptions ........................... 6

REVISION HISTORY

3/07—Rev. B to Rev. C
Changes to Table 1............................................................................ 3
Changes to Table 2............................................................................ 4
Changes to Figure 13, Figure 14, and Figure 17 ........................... 9
Updated Outline Dimensions....................................................... 10
Changes to Ordering Guide.......................................................... 12
1/06—Rev. A to Rev. B
Updated Format..................................................................Universal
Changes to Absolute Maximum Ratings....................................... 4
Added Pin Configurations
and Function Descriptions Section................................................ 6
Updated Outline Dimensions....................................................... 10
Changes to Ordering Guide.......................................................... 12
Circuit Description............................................................................7
General Circuit Information........................................................7
Equivalent Circuit Analysis .........................................................7
Operation............................................................................................8
Unipolar Binary Code ..................................................................8
Bipolar (Offset Binary) Code.......................................................8
Applications........................................................................................9
Outline Dimensions ....................................................................... 10
Ordering Guide .......................................................................... 12
3/04—Rev. 0 to Rev. A
Changes to Specifications.................................................................2
Changes to Absolute Maximum Ratings........................................3
Changes to Ordering Guide.............................................................3
Updated Outline Dimensions..........................................................7
Rev. C | Page 2 of 12
AD7533

SPECIFICATIONS

VDD = 15 V, V
Table 1.
Parameter TA = 25°C TA = Operating Range Test Conditions
STATIC ACCURACY
Resolution 10 Bits 10 Bits Relative Accuracy
AD7533JN, AD7533AQ, AD7533SQ, AD7533JP
AD7533KN, AD7533BQ, AD7533KP, AD7533TE
AD7533LN, AD7533CQ, AD7533UQ ±0.05% FSR maximum ±0.05% FSR maximum DNL ±1 LSB maximum ±1 LSB maximum Gain Error
Supply Rejection
∆Gain/∆V
Output Leakage Current
I
1 ±5 nA maximum ±200 nA maximum Digital inputs = V
OUT
I
2 ±5 nA maximum ±200 nA maximum Digital inputs = V
OUT
DYNAMIC ACCURACY
Output Current Settling Time 600 ns maximum
Feedthrough Error ±0.05% FSR maximum
Propagation Delay 100 ns typical 100 ns typical Glitch Impulse 100 nV-s typical 100 nV-s typical
REFERENCE INPUT
Input Resistance (VREF) 5 kΩ min, 20 kΩ maximum 5 kΩ min, 20 kΩ maximum611 kΩ nominal
ANALOG OUTPUTS
Output Capacitance
C
IOUT1
C
IOUT2
C
IOUT1
C
IOUT2
DIGITAL INPUTS
Input High Voltage (V Input Low Voltage (V Input Leakage Current (IIN) ±1 μA maximum ±1 μA maximum VIN = 0 V and V Input Capacitance (CIN) 8 pF maximum
POWER REQUIREMENTS
V
DD
VDD Ranges I
DD
25 μA maximum 50 μA maximum Digital inputs over V
1
FSR = full-scale range.
2
Full scale (FS) = V
3
Maximum gain change from TA = 25°C to T
4
AC parameter, sample tested to ensure specification compliance.
5
Guaranteed, not tested.
6
Absolute temperature coefficient is approximately −300 ppm/°C.
OUT
5
DD
2, 3
REF
1 = V
1
4
.
2 = 0 V, V
OUT
= 10 V, unless otherwise noted.
REF
±0.2% FSR maximum ±0.2% FSR maximum
±0.1% FSR maximum ±0.1% FSR maximum
±1% FS maximum ±1% FS maximum Digital input = V
0.001%/% maximum 0.001%/% maximum Digital inputs = V
4
50 pF maximum 20 pF maximum 30 pF maximum 50 pF maximum
) 2.4 V minimum 2.4 V minimum
INH
) 0.8 V maximum 0.8 V maximum
INL
5
5
5
5
5
800 ns5
5
±0.1% FSR maximum
100 pF maximum 35 pF maximum 35 pF maximum 100 pF maximum
8 pF maximum
5
5
5
5
5
5
15 V ± 10% 15 V ± 10% Rated accuracy 5 V to 16 V 5 V to 16 V Functionality with degraded performance 2 mA maximum 2 mA maximum Digital inputs = V
or T
MIN
is ±0.1% FSR.
MAX
INH
To 0.05% FSR; R inputs = V
INH
LOAD
to V
Digital inputs = V 100 kHz sine wave
Digital inputs = V
Digital inputs = V
DD
, VDD = 14 V to 17 V
INH
, V
= ±10 V
INL
REF
, V
= ±10 V
INH
REF
= 100 Ω, digital
or V
INL
INH
INL
INL
, V
or V
IN
REF
to V
INL
INH
= ±10 V,
D
INH
INL
Rev. C | Page 3 of 12
AD7533

ABSOLUTE MAXIMUM RATINGS

TA = 25 °C unless otherwise noted.
Table 2.
Parameter Rating
VDD to GND −0.3 V, +17 V RFB to GND ±25 V V
to GND ±25 V
REF
Digital Input Voltage Range −0.3 V to VDD + 0.3 V I
1, I
OUT
Power Dissipation (Any Package)
Operating Temperature Range
Storage Temperature Range −65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C
2 to GND −0.3 V to V
OUT
To 75°C 450 mW Derates above 75°C by 6 mW/°C
Plastic (JN, JP, KN, KP, LN Versions) −40°C to +85°C Hermetic (AQ, BQ, CQ Versions) −40°C to +85°C Hermetic (SQ, TE, UQ Versions) −55°C to +125°C
DD
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. C | Page 4 of 12
AD7533

TERMINOLOGY

Relative Accuracy
Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for ideal zero and full scale and is expressed in % of full-scale range or (sub) multiples of 1 LSB.
Resolution
Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2 a resolution of [2
–(n–1)
–n
) (V
). A bipolar converter of n bits has
REF
] (V
). Resolution in no way implies
REF
linearity.
Settling Time
Time required for the output function of the DAC to settle to within ½ LSB for a given digital input stimulus, that is, 0 to full scale.
Gain Error
Gain error is a measure of the output error between an ideal DAC and the actual device output. It is measured with all 1s in the DAC after offset error is adjusted out and is expressed in LSBs. Gain error is adjustable to zero with an external potentiometer.
Feedthrough Error
Error caused by capacitive coupling from V
to output with all
REF
switches off.
Output Capacitance
Capacity from I
OUT
1 and I
2 terminals to ground.
OUT
Output Leakage Current
Current that appears on I low or on I
2 terminal when all inputs are high.
OUT
1 terminal with all digital inputs
OUT
Rev. C | Page 5 of 12
AD7533
2

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

I
1
1
OUT
2
I
2
OUT
GND
3
AD7533
BIT 1 (MSB)
BIT 2
BIT 3
BIT 4
BIT 5
TOP VIEW
4
(Not to Scale)
5
6
7
8
Figure 2. 16-Lead PDIP Pin Configuration
I
1
1
OUT
2
I
2
OUT
3
GND
BIT 1 (MSB)
BIT 2
BIT 3
BIT 4
BIT 5
AD7533
4
TOP VIEW
(Not to Scale)
5
6
7
8
Figure 3. 16-Lead SOIC Pin Configuration
I
1 1
OUT
2
I
2
OUT
GND 3
BIT 1 (M SB) 4
BIT 2
BIT 3 6 BI T 811
BIT 4 7 BI T 710
BIT 5 8 BI T 69
AD7533
TOP VIEW
(Not to Scale)
5
Figure 4. 16-Lead CERDIP Pin Configuration
R
16
FB
V
15
REF
14
V
DD
13
BIT 10 (LSB)
BIT 9
12
BIT 8
11
10
BIT 7
BIT 6
9
01134-002
R
16
FB
15
V
REF
14
V
DD
BIT 10 (LSB)
13
BIT 9
12
11
BIT 8
BIT 7
10
9
BIT 6
01134-003
BIT 1 (MSB)
NC = NO CONNECT
BIT 1 (MSB)
R
16
FB
15
V
REF
V
14
DD
BIT 10 (LS B)13
12
BIT 9
01134-004
4
GND
5
6
NC
7
BIT 2
8
BIT 3
Figure 5. 20-Terminal LCC Pin Configuration
4
GND
5
6
NC
BIT 2
7
8
BIT 3
Figure 6. 20-Lead PLCC Pin Configuration
1
FB
OUT
OUT
R
I
I
3
19
20
1NC2
AD7533
TOP VIEW
(Not to Scale)
13
11NC10
BIT 59BIT 4
2
1
OUT
I
NC
1201923
PIN 1 INDENTFIER
AD7533
TOP VIEW
BIT 5NCBIT 6
FB
R
OUT
I
(Not to scale)
91011 12 13
BIT 4
NC = NO CONNECT
REF
V
BIT 712BIT 6
REF
V
BIT 7
18
V
DD
17
BIT 10 (LSB)
16
NC
15
BIT 9
14
BIT 8
18
V
DD
17
BIT 10 (LS B)
16
NC
BIT 9
15
14
BIT 8
01134-005
01134-006
Table 3. Pin Function Descriptions
Pin Number
16-Lead PDIP, SOIC, CERDIP 20-Lead LCC, PLCC Mnemonic Description
1 2 I 2 3 I
1 DAC Current Output.
OUT
OUT
2
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.
3 4 GND Ground. 4 to 13 5, 7 to 10, 12 to 15, 17 BIT 1 to BIT 10 MSB to LSB. 14 18 V
DD
Positive Power Supply Input. These parts can be operated from a supply of 5 V to 16 V.
15 19 V 16 20 R
REF
FB
DAC Reference Voltage Input Terminal. DAC Feedback Resistor Pin. Establish voltage output for the DAC
by connecting R
to external amplifier output.
FB
NA 1, 6, 11, 16 NC No Connect.
Rev. C | Page 6 of 12
AD7533
V
V
V

CIRCUIT DESCRIPTION

GENERAL CIRCUIT INFORMATION

The AD7533 is a 10-bit multiplying DAC that consists of a highly stable thin-film R-2R ladder and ten CMOS current switches on a monolithic chip. Most applications require the addition of only an output operational amplifier and a voltage or current reference.
The simplified D/A circuit is shown in R- 2R ladder structure is used, that is, the binarily weighted currents are switched between the I thus maintaining a constant current in each ladder leg independent of the switch state.
V
REF
BIT 1 (MSB) BIT 10 (LS B)
10k
20k
S1 S2 S3 SN
DIGITAL INPUTS (DTL/TTL/CMOS COMPATIBLE)
10k 10k
20k 20k 20k
BIT 2 BIT 3
Figure 7. Functional Diagram
One of the CMOS current switches is shown in Figure 8. The geometries of Device 1, Device 2, and Device 3 are optimized to make the digital control inputs DTL/TTL/CMOS compatible over the full military temperature range. The input stage drives two inverters (Device 4, Device 5, Device 6, and Device 7), which in turn drive the two output N channels. The on resistances of the switches are binarily sealed so that the voltage drop across each switch is the same. For example, Switch 1 in Figure 8 is designed for an on resistance of 20 Ω, Switch 2 for 40 Ω, and so on. For a 10 V reference input, the current through Switch 1 is 0.5 mA, the current through Switch 2 is 0.25 mA, and so on, thus maintaining a constant 10 mV drop across each switch. It is essential that each switch voltage drop be equal if the binarily weighted current division property of the ladder is to be maintained.
Figure 7. An inverted
OUT
1 and I
2 bus lines,
OUT
10k
20k
I
I
R
OUT
OUT
2
1
FB
+
DTL/TTL/
CMOS INPUT
250
13
2
6
4
7
5
89
2
OUT
TO LADDER
I
1I
OUT
01134-007
Figure 8. CMOS Switch

EQUIVALENT CIRCUIT ANALYSIS

The equivalent circuits for all digital inputs high and digital inputs low are shown in all digital inputs low, the reference current is switched to I The current source I leakages to the substrate, while the I/1024 current source represents a constant 1-bit current drain through the termination resistor on the R-2R ladder. The on capacitance of the output N channel switch is 100 pF, as shown on the I capacitance is 35 pF, as shown on the I the circuit for all digital inputs high, as shown in
01134-001
similar to Ter m in a l I
Figure 9; however, the on switches are now on
1. Therefore, there is the 100 pF at that terminal.
OUT
R 10k
I
REF
REF
R
Figure 9. Equivalent Circuit—All Digital Inputs Low
I
REF
REF
R
Figure 10. Equivalent Circuit—All Digital Inputs High
Figure 9 and Figure 10. In Figure 9 with
is composed of surface and junction
LEAKAGE
2 terminal. The off switch
OUT
1 terminal. Analysis of
OUT
Figure 10, is
R
I
I
R
I
I
FB
OUT
OUT
FB
OUT
OUT
I/1024
R 10k
I/1024
I
LEAKAGE
I
LEAKAGE
I
LEAKAGE
I
LEAKAGE
R
35pF
100pF
R
100pF
35pF
2.
OUT
1
2
01134-008
1
2
01134-009
Rev. C | Page 7 of 12
AD7533

OPERATION

UNIPOLAR BINARY CODE

BIPOLAR (OFFSET BINARY) CODE

Table 4. Unipolar Binary Operation (2-Quadrant Multiplication)
Digital Input Analog Output
MSB LSB (V
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
as shown in Figure 11)
OUT
1023
V
REF
⎝ ⎛
V
REF
V
REF
⎝ ⎛
V
REF
⎝ ⎛
V
REF
⎝ ⎛
V
REF
1024
513
1024
512
511
1024
1
1024
0
1024
⎟ ⎠
⎞ ⎟ ⎠
=
⎠ ⎞
⎟ ⎠
⎞ ⎟ ⎠
0
=
⎟ ⎠
V
REF
21024
Nominal LSB magnitude for the circuit of Figure 11 is given by
1
=
VLSB
REF
1024
⎟ ⎠
BIPOLAR
ANALOG INP UT
±10V
R1
1k
MSB
LSB
4
13
UNIPOLAR
DIGITAL
INPUT
NOTES
1. R1 AND R2 USED ONLY IF GAIN ADJUST MENT IS REQUIRED.
2. C1 PHASE COMPENSATION (5pF TO 15pF) MAY BE REQUIRED WHEN USING HIGH SPEED AMPLIFIER.
V
15
AD7533
GND
REF
V
DD
R2
R
14
3
330
FB
16
I
OUT
1
2
I
OUT
C1
1
V
OUT
2
Figure 11. Unipolar Binary Operation (2-Quadrant Multiplication)
Table 5. Unipolar Binary Operation (4-Quadrant Multiplication)
Digital Input Analog Output
MSB LSB (V
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1
+
+
as shown in Figure 12)
OUT
511
⎛ ⎜ ⎝
⎛ ⎜ ⎝
512
1
512
⎟ ⎠
⎞ ⎟ ⎠
V
REF
V
REF
1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
1
⎛ ⎜ ⎝
⎛ ⎜ ⎝
⎛ ⎜ ⎝
512
511
512
512 512
⎟ ⎠
⎞ ⎟ ⎠
⎞ ⎟ ⎠
V
REF
V
REF
V
REF
Nominal LSB magnitude for the circuit of Figure 12 is given by
1
=
VLSB
REF
⎜ ⎝
512
⎟ ⎠
BIPOLAR
ANALOG I NPUT
V
±10V
DD
R1
1k
V
REF
14
15
MSB
LSB
4
AD7533
13
3
GND
BIPOLAR
DIGI TAL
INPUT
NOTES
1. R3, R4 , AND R5 SELE CTED FOR M ATCHING A ND TRACKING .
2. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
3. C1 PHASE COMPENSATION (5pF TO 15pF) M AY BE REQUIRED WHEN USING HIG H SPEED AMPLIFIERS.
R2
330
16
1
2
C1
I
1
OUT
I
2
OUT
Figure 12. Bipolar Operation (4-Quadrant Multiplication)
01134-010
R4
20k
R3
10k
A1
5k
R5
20k
A2
V
OUT
R6
01134-011
Rev. C | Page 8 of 12
AD7533
V
V
T
01134
015

APPLICATIONS

V
BIT 1
DIGITAL
INPUT
“D”
BIT 10
I
I
OUT
OUT
IN
2
1
MSB
LSB
2
1
R
FB
16
AD7533
3
GND
Figure 15. Divider (Digitally Controlled Gain)
REF
15
4
AD7533
13
3
GND
Figure 16. Modified Scale Factor and Offset
DIGITAL
INPUT
+15
14
15
+15V
14
MAGNITUDE BITS
SIGN BIT
DIGITAL
FREQUENCY
CONTROL
WORD
MSB
4
LSB
13
V
REF
V
OUT
R
FB
16
I
OUT
1
2
I
OUT
V
OUT
where:
D= +
BIT 1 DIGITAL
INPUT “D”
BIT 10
V
OUT
where:
0 < D
1
2
= V
REF
BIT 1
2
0 < D
1
ANALOG INPUT
MSB
LSB
13
CALIBRATE
MSB
4
LSB
13
–V
IN
=
D
BIT 1
D= +
1
2 1023 1024
R1
–V
R
= –
R1 + R
BIT 2
2
2 1023 1024
BIPOLAR
V
15
AD7533
REF
3
GND
V
DD
R
14
FB
16
I
1
OUT
1
2
I
2
OUT
OP97
±10V
4
Figure 13. 10-Bit and Sign Multiplying DAC
10V
15
+15V
V
V
REF
AD7533
3
GND
NC
DD
14
16
I
1
OUT
1
I
OUT
2
6.8V (2)
2
1k
10k
1%
C
OP97
t
Figure 14. Programmable Function Generator
DIGITAL
INPUT
(TEST LIMIT)
BIT 10
BIT 2
+…
2
10
2
2
01134-014
.
V
OU
R2
REFD
R1D
2
R
+ R
2
1
2
BIT 10
+…
10
2
-
10k
10k
1/2 AD7512DIJN
V
5k
OUT
OP97
4.7k
1
tCt
10
REF
15
SQUARE WAVE
TRIANGULAR WAVE
)
+15V
AD7533
3
14
01134-013
TEST INPUT
(0 TO – V
REF
16
I
OUT
1
2
I
OUT
OP97
10k
1%
f = N ( )
8
R
= 10k
R
t
0 < N ≤ (1 2
V
MSB
4
LSB
13
GND
Figure 17. Digitally Programmable Limit Detector
01134-012
)
1
2
AD790 COMPARATOR
FAIL/PASS TEST
01134-016
Rev. C | Page 9 of 12
AD7533
C

OUTLINE DIMENSIONS

0.800 (20.32)
0.790 (20.07)
0.780 (19.81)
16
1
0.100 (2.54) BSC
0.210 (5.33) MAX
0.150 (3.81)
0.130 (3.30)
0.115 (2.92)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.070 (1.78)
0.060 (1.52)
0.045 (1.14)
CONTROLL ING DIMENSIONS ARE IN INCHES; MI LLIME TER DIMENSI ONS (IN PARENTHESES) ARE ROUNDED-O FF INCH E QUIVALENTS FOR REFERENCE ON LY AND ARE NOT APPROP RIATE FOR USE I N DESIGN. CORNER LEADS M AY BE CONFIGURED AS WHOL E OR HALF L EADS.
Figure 18. 16-Lead Plastic Dual In-Line Package [PDIP]
10.50 (0.4134)
10.10 (0.3976)
9
0.280 (7. 11)
0.250 (6.35)
0.240 (6.10)
8
0.060 (1.52)
0.015 (0.38)
0.015 (0.38)
MIN
SEATING PLANE
0.005 (0.13) MIN
COMPLIANT TO JEDEC STANDARDS MS-001-AB
GAUGE
PLANE
MAX
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.430 (10.92) MAX
(N-16)
Dimensions shown in inches and (millimeters)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
073106-B
9
7.60 (0.2992)
7.40 (0.2913)
8
10.65 (0.4193)
10.00 (0.3937)
2.65 (0.1043)
2.35 (0.0925)
SEATING PLANE
8° 0°
0.33 (0.0130)
0.20 (0.0079)
0 0
.
7
.
2
5
(
0
5
(
0
.
0
2
9
5
)
0
0
9
8
)
.
1.27 (0.0500)
0.40 (0.0157)
45°
112906-B
0.30 (0.0 118)
0.10 (0.0039)
OPLANARITY
0.10
16
1
1.27 (0.0500) BSC
0.51 (0.0201)
0.31 (0.0122)
CONTROLL ING DIMENS IONS ARE IN MILLIM ETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-O FF MIL LIMETE R EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRI ATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-013- AA
Figure 19. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body (RW-16)
Dimensions shown in millimeters and (inches)
Rev. C | Page 10 of 12
AD7533
0
0.005 (0.13) MIN
16
1
PIN 1
0.100 (2.54) BSC
0.840 (21.34) MAX
.200 (5.08)
MAX
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
0.098 (2.49) MAX
9
0.310 (7.87)
0.220 (5.59)
8
0.070 (1.78)
0.030 (0.76)
SEATING PLANE
0.060 (1.52)
0.015 (0.38)
0.150 (3.81) MIN
0.320 (8.13)
0.290 (7.37)
15°
0.015 (0.38)
0.008 (0.20)
Figure 20. 16-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-16)
Dimensions shown in inches and (millimeters)
20
1
VIEW
0.150 (3.81) BSC
0.200 (5.08) REF
0.100 (2.54) REF
0.015 (0.38) MIN
3
4
0.028 (0.71)
0.022 (0.56)
0.050 (1.27)
8
BSC
9
45° TYP
0.100 (2.54)
0.064 (1.63)
0.358 (9.09)
0.342 (8.69) SQ
0.088 (2.24)
0.054 (1.37)
0.358
(9.09)
MAX
SQ
0.075 (1.91)
0.095 (2.41)
0.075 (1.90)
0.011 (0.28)
0.007 (0.18) R TYP
0.075 (1.91) REF
0.055 (1.40)
0.045 (1.14)
REF
19
18
14
13
BOTTOM
CONTROLL ING DIMENS IONS ARE IN INCHES; MILLIMETE R DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OF F INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRI ATE FOR USE IN DES IGN.
022106-A
Figure 21. 20-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-20-1)
Dimensions shown in inches and (millimeters)
BSC
0.180 (4.57)
0.165 (4.19)
0.120 (3.04)
0.090 (2.29)
(P-20)
0.20 (0.51) MIN
0.021 (0.53)
0.013 (0.33)
0.032 (0.81)
0.026 (0.66)
0.045 (1.14)
0.025 (0.64)
0.020 (0.50)
0.330 (8.38)
0.290 (7.37)
R
R
BOTTOM
VIEW
(PINS UP)
0.048 (1.22)
0.042 (1.07)
0.020
(0.51)
0.048 (1.22 )
0.042 (1.07)
3
4
PIN 1
IDENTIFIER
TOP VIEW
(PINS DOWN)
8
9
0.356 (9.04)
R
0.350 (8.89)
0.395 (10.03)
0.385 (9.78)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
0.056 (1.42)
0.042 (1.07)
19
18
0.050 (1.27)
14
13
SQ
SQ
COMPLIANT TO JEDEC STANDARDS MO-047-AA
Figure 22. 20-Lead Plastic Leaded Chip Carrier [PLCC]
Dimensions shown in inches and (millimeters)
Rev. C | Page 11 of 12
AD7533

ORDERING GUIDE

Nonlinearity
Model Temperature Range Package Description Package Option
AD7533ACHIPS DIE AD7533JN −40°C to +85°C 16-Lead Plastic Dual In-Line Package [PDIP] N-16 ±0.2 AD7533JNZ1 −40°C to +85°C 16-Lead Plastic Dual In-Line Package [PDIP] N-16 ±0.2 AD7533KN −40°C to +85°C 16-Lead Plastic Dual In-Line Package [PDIP] N-16 ±0.1 AD7533KNZ
1
−40°C to +85°C 16-Lead Plastic Dual In-Line Package [PDIP] N-16 ±0.1 AD7533LN −40°C to +85°C 16-Lead Plastic Dual In-Line Package [PDIP] N-16 ±0.05 AD7533LNZ1 −40°C to +85°C 16-Lead Plastic Dual In-Line Package [PDIP] N-16 ±0.05 AD7533JP −40°C to +85°C 20-Lead Plastic Leaded Chip Carrier [PLCC] P-20 ±0.2 AD7533JP-REEL −40°C to +85°C 20-Lead Plastic Leaded Chip Carrier [PLCC] P-20 ±0.2 AD7533JPZ AD7533JPZ-REEL
1
−40°C to +85°C 20-Lead Plastic Leaded Chip Carrier [PLCC] P-20 ±0.2
1
−40°C to +85°C 20-Lead Plastic Leaded Chip Carrier [PLCC] P-20 ±0.2 AD7533KP −40°C to +85°C 20-Lead Plastic Leaded Chip Carrier [PLCC] P-20 ±0.1 AD7533KP-REEL −40°C to +85°C 20-Lead Plastic Leaded Chip Carrier [PLCC] P-20 ±0.1 AD7533KPZ
1
−40°C to +85°C 20-Lead Plastic Leaded Chip Carrier [PLCC] P-20 ±0.1 AD7533KPZ-REEL1−40°C to +85°C 20-Lead Plastic Leaded Chip Carrier [PLCC] P-20 ±0.1 AD7533KR −40°C to +85°C 16-Lead Standard Small Outline Package [SOIC_W] RW-16 ±0.1 AD7533KR-REEL −40°C to +85°C 16-Lead Standard Small Outline Package [SOIC_W] RW-16 ±0.1 AD7533KRZ
1
−40°C to +85°C 16-Lead Standard Small Outline Package [SOIC_W] RW-16 ±0.1 AD7533KRZ-REEL1−40°C to +85°C 16-Lead Standard Small Outline Package [SOIC_W] RW-16 ±0.1 AD7533AQ −40°C to +85°C 16-Lead Ceramic Dual In-Line Package [CERDIP] Q-16 ±0.2 AD7533BQ −40°C to +85°C 16-Lead Ceramic Dual In-Line Package [CERDIP] Q-16 ±0.1 AD7533CQ −40°C to +85°C 16-Lead Ceramic Dual In-Line Package [CERDIP] Q-16 ±0.05 AD7533SQ −55°C to +125°C 16-Lead Ceramic Dual In-Line Package [CERDIP] Q-16 ±0.2 AD7533UQ −55°C to +125°C 16-Lead Ceramic Dual In-Line Package [CERDIP] Q-16 ±0.05 AD7533UQ/883B −55°C to +125°C 16-Lead Ceramic Dual In-Line Package [CERDIP] Q-16 ±0.05 AD7533TE/883B −55°C to +125°C 20-Terminal Ceramic Leadless Chip Carrier [LCC] E-20-1 ±0.1
1
Z = RoHS compliant part.
(% FSR max)
©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C01134-0-3/07(C)
T
Rev. C | Page 12 of 12
TTT
Loading...