AMD RS880 databook

AMD RS880 Databook
Device Specification for the RS880
Technical Reference Manual
Rev 1.40
P/N: 46112_rs880_ds_pub_1.40
© 2013 Advanced Micro Devices Inc
Please note that in this databook, references to "DVI" and "HDMI" may refer to: (1) the function of the integrated DVI/HDMI interface described in details in section
2.3 and 3.8, as well as in other sections; or (2) the capability of the TMDS interface, multiplexed on the PCI-E external graphics interface, to enable DVI or HDMI through passive enabling circuitries. Any statement in this databook on any DVI or HDMI-related functionality must be understood to apply to (1), (2), or both, according to the immediate context of the reference.
USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO, WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E, GREENWOOD VILLAGE, COLORADO 80111.
Trademarks
AMD, the AMD Arrow, ATI, the ATI logo, 3Dc+, AMD Athlon, AMD Phenom, AMD OverDrive, AMD PowerNow!, Avivo, Cool’n’Quiet, HyperMemory, PowerPlay, PowerShift, AMD PowerXpress, AMD Radeon, SurroundView, Vari-Bright, CrossFire, and combinati ons thereof are trademarks of Advanced Micro Devices, Inc.
DisplayPort is a trademark of the Video Electronics Standards Assoctation. HyperTransport is a trademark of the HyperTransport Technology Consortium.
Microsoft, Windows, Windows Vista, Windows 7, DirectDraw, and DirectX are registered trademarks of Microsoft Corporation. OpenGL is a registered trademark of Silicon Graphics Internal. PCI Express and PCIe are registered trademarks of PCI-SIG. WinBench is a registered trademark of Ziff Davis, Inc. Linux is a registered trademark of Linus Torvalds in the U.S. and other countries. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Disclaimer
The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.
AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.
© 2013 Advanced Micro Devices, Inc. All rights reserved.

Table of Contents

Chapter 1: Overview
1.1 Introducing the RS880 ........................................................................................................................................................1-1
1.2 RS880 Features ...................................................................................................................................................................1-2
1.2.1 CPU HyperTransport™ Interface.........................................................................................................................1-2
1.2.2 Memory Interface.................................................................................................................................................1-2
1.2.3 AMD HyperMemory™........................................................................................................................................1-2
1.2.4 PCI Express® Interface........................................................................................................................................1-2
1.2.5 A-Link Express II Interface..................................................................................................................................1-3
1.2.6 2D Acceleration Features.....................................................................................................................................1-4
1.2.7 3D Acceleration Features.....................................................................................................................................1-4
1.2.8 Motion Video Acceleration Features....................................................................................................................1-5
1.2.9 Multiple Display Features ....................................................................................................................................1-5
1.2.10 DVI/HDMI™ .......................................................................................................................................................1-7
1.2.11 DisplayPort™ Interface .......................................................................................................................................1-7
1.2.12 Integrated HD Audio Controller and Codec.........................................................................................................1-8
1.2.13 System Clocks ......................................................................................................................................................1-8
1.2.14 Power Management Features ...............................................................................................................................1-8
1.2.15 PC Design Guide Compliance..............................................................................................................................1-8
1.2.16 Test Capability Features.......................................................................................................................................1-8
1.2.17 Packaging .............................................................................................................................................................1-9
1.3 Software Features................................................................................................................................................................1-9
1.4 Branding Diagrams .............................................................................................................................................................1-9
1.5 Graphics Device ID and Graphics Engine Clock Speed...................................................................................................1-10
1.6 Conventions and Notations ...............................................................................................................................................1-10
1.6.1 Pin Names...........................................................................................................................................................1-10
1.6.2 Pin Types............................................................................................................................................................1-10
1.6.3 Numeric Representation.....................................................................................................................................1-11
1.6.4 Register Field......................................................................................................................................................1-11
1.6.5 Hyperlinks ..........................................................................................................................................................1-11
1.6.6 Acronyms and Abbreviations.............................................................................................................................1-11
Chapter 2: Functional Descriptions
2.1 Host Interface......................................................................................................................................................................2-1
2.2 Side-Port Memory Interface................................................................................................................................................2-3
2.2.1 DDR2 Memory Interface......................................................................................................................................2-3
2.2.2 DDR3 Memory Interface......................................................................................................................................2-5
2.3 DVI/HDMI™......................................................................................................................................................................2-6
2.3.1 DVI/HDMI™ Data Transmission Order and Signal Mapping ............................................................................2-6
2.3.2 Support for HDMI™ Packet Types......................................................................................................................2-9
2.4 VGA DAC Characteristics................................................................................................................................................2-10
2.5 Clock Generation ..............................................................................................................................................................2-10
Chapter 3: Pin Descriptions and Strap Options
3.1 Pin Assignment Top View..................................................................................................................................................3-2
3.1.1 RS880 Pin Assignment Top View........................................................................................................................3-2
3.2 Interface Block Diagram.....................................................................................................................................................3-4
3.3 CPU HyperTransport™ Interface .......................................................................................................................................3-5
© 2013 Advanced Micro Devices, Inc. AMD RS880 Databook 1.40 Proprietary Table of Contents-1
Table of Contents
3.4 Side-port Memory Interface............................................................................................................................................... 3-5
3.5 PCI Express® Interfaces .................................................................................................................................................... 3-6
3.5.1 1 x 16 Lane Interface for External Graphics ....................................................................................................... 3-6
3.5.2 A-Link Express II Interface for Southbridge....................................................................................................... 3-6
3.5.3 6 x 1 Lane Interface for General Purpose External Devices .............................................................................. 3-6
3.5.4 Miscellaneous PCI Express® Signals ................................................................................................................. 3-6
3.6 Clock Interface................................................................................................................................................................... 3-7
3.7 CRT Interface..................................................................................................................................................................... 3-7
3.8 Integrated DVI/HDMI™ Interface..................................................................................................................................... 3-7
3.9 TMDS Interface Multiplexed on the PCI Express® Graphics Lanes................................................................................ 3-8
3.10 DisplayPort™ Interface.................................................................................................................................................. 3-10
3.11 Power Management Pins................................................................................................................................................3-11
3.12 Miscellaneous Pins..........................................................................................................................................................3-11
3.13 Power Pins...................................................................................................................................................................... 3-12
3.14 Ground Pins.................................................................................................................................................................... 3-13
3.15 Strapping Options ........................................................................................................................................................... 3-14
Chapter 4: Timing Specifications
4.1 HyperTransport™ Bus Timing .......................................................................................................................................... 4-1
4.2 HyperTransport™ Reference Clock Timing Parameters ................................................................................................... 4-1
4.3 PCI Express® Differential Clock AC Specifications......................................................................................................... 4-2
4.4 Timing Requirements for REFCLK_P Used as OSCIN (14.3181818MHz)..................................................................... 4-2
4.5 Side-port Memory Timing for DDR2 Mode...................................................................................................................... 4-2
4.5.1 Read Cycle DQ/DQS Delay ................................................................................................................................4-2
4.5.2 Write Cycle DQ/DQS Delay ............................................................................................................................... 4-3
4.6 Power Rail Power-up Sequence......................................................................................................................................... 4-3
Chapter 5: Electrical Characteristics and Physical Data
5.1 Electrical Characteristics.................................................................................................................................................... 5-1
5.1.1 Maximum and Minimum Ratings........................................................................................................................ 5-1
5.1.2 DC Characteristics............................................................................................................................................... 5-2
5.2 RS880 Thermal Characteristics.......................................................................................................................................... 5-6
5.2.1 RS880 Thermal Limits ........................................................................................................................................ 5-6
5.2.2 Thermal Diode Characteristics............................................................................................................................ 5-7
5.3 Package Information .......................................................................................................................................................... 5-8
5.3.1 Physical Dimensions............................................................................................................................................ 5-8
5.3.2 Pressure Specification.......................................................................................................................................... 5-9
5.3.3 Board Solder Reflow Process Recommendations ............................................................................................. 5-10
Chapter 6: Power Management and ACPI
6.1 ACPI Power Management Implementation ....................................................................................................................... 6-1
6.2 Power Management for the Graphics Controller ............................................................................................................... 6-2
6.2.1 PCI Function Power States.................................................................................................................................. 6-2
6.2.2 PCI Power Management Interface....................................................................................................................... 6-2
6.2.3 Capabilities List Data Structure in PCI Configuration Space ............................................................................. 6-2
6.2.4 Register Block Definition.................................................................................................................................... 6-3
6.2.5 Capability Identifier: CAP_ID (Offset = 0)......................................................................................................... 6-4
6.2.6 Next Item Pointer (Offset = 1)............................................................................................................................. 6-5
6.2.7 PMC - Power Management Capabilities (Offset = 2) ......................................................................................... 6-6
AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. Table of Contents-2 Proprietary
Table of Contents
Chapter 7: Testability
7.1 Test Capability Features......................................................................................................................................................7-1
7.2 Test Interface.......................................................................................................................................................................7-1
7.3 XOR Test ............................................................................................................................................................................7-1
7.3.1 Description of a Generic XOR Tree.....................................................................................................................7-1
7.3.2 Description of the RS880 XOR Tree....................................................................................................................7-2
7.3.3 XOR Tree Activation ...........................................................................................................................................7-2
7.3.4 XOR Tree for the RS880......................................................................................................................................7-2
7.4 VOH/VOL Test...................................................................................................................................................................7-4
7.4.1 Description of a Generic VOH/VOL Tree ...........................................................................................................7-4
7.4.2 VOH/VOL Tree Activation..................................................................................................................................7-5
7.4.3 VOH/VOL Pin List...............................................................................................................................................7-6
Appendix A: Pin Listings
A.1 RS880 Pin List Sorted by Ball Reference..........................................................................................................................1-2
A.2 RS880 Pin List Sorted by Pin Name..................................................................................................................................1-7
Appendix B: Revision History
© 2013 Advanced Micro Devices, Inc. AMD RS880 Databook 1.40 Proprietary Table of Contents-3
Table of Contents
AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. Table of Contents-4 Proprietary

List of Figures

Figure 1-1: Possible Configurations for the x16 PCIe® Graphics Interface ................................................................................. 1-3
Figure 1-2: RS880 Multiple Display Options ................................................................................................................................1-6
Figure 1-3: RS880 ASIC A11 Production Branding ....................................................................................................................1-10
Figure 2-1: RS880 Internal Block Diagram ................................................................................................................................... 2-1
Figure 2-2: Host Interface Block Diagram ..................................................................................................................................... 2-2
Figure 2-3: RS880 Host Bus Interface Signals ..............................................................................................................................2-3
Figure 2-4: RS880 Side-Port Memory Interface ............................................................................................................................ 2-4
Figure 2-5: Data Transmission Ordering for the Integrated DVI/HDMI™ and TMDS Interfaces ............................................... 2-6
Figure 3-1: RS880 Pin Assignment Top View (Left) .................................................................................................................... 3-2
Figure 3-2: RS880 Pin Assignment Top View (Right) .................................................................................................................. 3-3
Figure 3-3: RS880 Interface Block Diagram .................................................................................................................................3-4
Figure 4-1: RS880 Power Rail Power-up Sequence ......................................................................................................................4-3
Figure 5-1: DC Characteristics of the Integrated DVI/HDMI™ and the TMDS Interfaces .......................................................... 5-5
Figure 5-2: RS880 528-Pin FCBGA Package Outline ................................................................................................................... 5-8
Figure 5-3: RS880 Ball Arrangement (Bottom View) ................................................................................................................... 5-9
Figure 5-4: Recommended Stencil Opening Sizes for Solder Paste Pads on PCB ...................................................................... 5-10
Figure 5-5: RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile ............................................................ 5 -11
Figure 6-1: Linked List for Capabilities ......................................................................................................................................... 6-5
Figure 7-1: Example of a Generic XOR Tree ................................................................................................................................7-2
Figure 7-2: Sample of a Generic VOH/VOL Tree ......................................................................................................................... 7-5
© 2013 Advanced Micro Devices, Inc. AMD RS880 Databook 1.40 Proprietary List of Figures-1
List of Figures
AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. List of Figures-2 Proprietary

List of Tables

Table 1-1: Possible Configurations for the PCIe® General Purpose Links ....................................................................................1-3
Table 1-2: Graphics Device ID and Graphics Engine Clock Speed .............................................................................................1-10
Table 1-3: Pin Type Codes ............................................................................................................................................................1-10
Table 1-4: Acronyms and Abbreviations ......................................................................................................................................1-11
Table 2-1: Supported DDR2 Components ......................................................................................................................................2-4
Table 2-2: DDR2 Memory Row and Column Addressing ..............................................................................................................2-4
Table 2-3: Supported DDR3 Components ......................................................................................................................................2-5
Table 2-4: DDR3 Memory Row and Column Addressing ..............................................................................................................2-5
Table 2-5: Single Link Signal Mapping for DVI/HDMI™ ...........................................................................................................2-7
Table 2-6: Dual-Link Signal Mapping for DVI ..............................................................................................................................2-8
Table 2-7: Support for HDMI™ Packet Type .................................................................................................................................2-9
Table 2-8: VGA DAC Characteristics ..........................................................................................................................................2-10
Table 3-1: CPU HyperTransport™ Interface ..................................................................................................................................3-5
Table 3-2: Side-Port Memory Interface ..........................................................................................................................................3-5
Table 3-3: 1 x 16 Lane PCI Express® Interface for External Graphics ..........................................................................................3-6
Table 3-4: 1 x 4 Lane A-Link Express II Interface for Southbridge ...............................................................................................3-6
Table 3-5: 6 x 1 Lane PCI Express® Interface for General Purpose External Devices ..................................................................3-6
Table 3-6: PCI Express® Interface for Miscellaneous PCI Express® Signals ...............................................................................3-6
Table 3-7: Clock Interface ...............................................................................................................................................................3-7
Table 3-8: CRT Interface ................................................................................................................................................................3-7
Table 3-9: Integrated DVI/HDMI™ Interface ................................................................................................................................3-7
Table 3-10: TMDS Interface Multiplexed on the PCI Express® Graphics Interface (Dual-Link DVI) .........................................3-8
Table 3-11: TMDS Interface Multiplexed on the PCI Express® Graphics Interface (HDMI™ on Lane 0-3) ..............................3-9
Table 3-12: TMDS Interface Multiplexed on the PCI Express® Graphics Interface (HDMI™ on Lane 4-7) ..............................3-9
Table 3-13: Miscellaneous TMDS Interface Signals ......................................................................................................................3-9
Table 3-14: DisplayPort™ Interface Multiplexed on the PCI Express® Graphics Interface .......................................................3 -10
Table 3-15: Miscellaneous DisplayPort™ Signals .......................................................................................................................3-10
Table 3-16: Power Management Pins ...........................................................................................................................................3-11
Table 3-17: Miscellaneous Pins ....................................................................................................................................................3-11
Table 3-18: Power Pins .................................................................................................................................................................3-12
Table 3-19: Ground Pins ...............................................................................................................................................................3-13
Table 3-20: Strap Definitions for the RS880 ................................................................................................................................3-14
Table 4-1: Timing Requirements for HyperTransport™ Reference Clock (100MHz) Output by the Clock Generator ................4-1
Table 4-2: PCI Express® Differential Clock (GFX_REFCLK, GPPSB_REFCLK, 100MHz) AC Characteristics ......................4-2
Table 4-3: Timing Requirements for REF_CLKP Used as OSCIN (14.3181818MHz) .................................................................4-2
Table 4-4: RS880 Power Rail Power-up Sequence .........................................................................................................................4-3
Table 5-1: Maximum and Minimum Ratings .................................................................................................................................. 5-1
Table 5-2: DC Characteristics for 3.3V TTL Signals .....................................................................................................................5-2
Table 5-3: DC Characteristics for DDC Signals (DDC Mode) .......................................................................................................5-2
Table 5-4: DC Characteristics for AUX Signals (AUX Mode) ......................................................................................................5-2
Table 5-5: DC Characteristics for POWERGOOD .........................................................................................................................5-2
Table 5-6: DC Characteristics for HyperTransport™ and PCI-E Differential Clock (HT_REFCLK, GFX_REFCLK,
GPPSB_REFCLK, 100MHz) ..........................................................................................................................................................5-3
Table 5-7: DC Characteristics for REFCLK_P as OSCIN Input (14.3181818MHz) .....................................................................5-3
Table 5-8: DC Characteristics for the Memory Interface when Supporting DDR2 ........................................................................5-3
Table 5-9: DC Characteristics for the Memory Interface when Supporting DDR3 ........................................................................5-3
Table 5-10: DC Characteristics for the Integrated DVI/HDMI™ ..................................................................................................5-4
Table 5-11: DC Characteristics for the TMDS Interface Multiplexed on the PCI Express® Gfx Lanes ......................................5-4
Table 5-12: Electrical Specifications for the DisplayPort Interface ..............................................................................................5-5
Table 5-13: RS880 Thermal Limits ................................................................................................................................................5-6
Table 5-14: RS880 528-Pin FCBGA Package Physical Dimensions .............................................................................................5-8
Table 5-15: Recommended Board Solder Reflow Profile - RoHS/Lead-Free Solder .................................................................. 5 -11
© 2013 Advanced Micro Devices, Inc. AMD RS880 Databook 1.40 Proprietary List of Tables-1
List of Tables
Table 6-1: ACPI States Supported by the RS880 ............................................................................................................................6-1
Table 6-2: ACPI Signal Definitions ................................................................................................................................................6-1
Table 6-3: Standard PCI Configuration Space Header Type 0 .......................................................................................................6-2
Table 6-4: PCI Status Register ........................................................................................................................................................6-3
Table 6-5: Capabilities Pointer (CAP_PTR) ...................................................................................................................................6-3
Table 6-6: Power Management Register Block ..............................................................................................................................6-3
Table 6-7: Power Management Control/Status Register (PMCSR) ................................................................................................6-4
Table 6-8: Capability Identifier (CAP_ID) .....................................................................................................................................6-4
Table 6-9: Next Item Pointer (NEXT_ITEM_PTR) .......................................................................................................................6-5
Table 6-10: Power Management Capabilities – PMC .....................................................................................................................6-6
Table 7-1: Pins on the Test Interface ..............................................................................................................................................7-1
Table 7-2: Example of an XOR Tree ..............................................................................................................................................7-2
Table 7-3: RS880 XOR Tree ...........................................................................................................................................................7-3
Table 7-4: Truth Table for the VOH/VOL Tree Outputs ................................................................................................................7-5
Table 7-5: RS880 VOH/VOL Tree .................................................................................................................................................7-7
AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. List of Tables-2 Proprietary

1.1 Introducing the RS880

The RS880 is a ninth-generation Integrated Graphics Processor (IGP) that integrates a DirectX® 10.1 compliant Shader Model 4.1 graphics core and a system controller in a single chip. It supports AMD’s AM3-socket CPUs, including the AMD Phenom™ II and later desktop processors. The RS880 integrates an ATI RV620-based graphics engine, dual display, an integrated DVI/HDMI™ interface, a TMDS interface, DisplayPort capability, and Northbridge functionality in a single BGA package. This high level of integration and scalability enables manufacturers to offer enthusiast level capabilities and performance while helping to minimize board space and system cost.
The RS880 is pin-compatible with AMD's mainstream 700 and 800-series products including the RS780, RS780M, RX780, RX781, RS880M, and RX881, allowing a single design to target multiple market seg ment s .
Robust and Flexible Core Logic Features
The RS880 combines graphics and system logic functions in a single chip using a 21mm body BGA package, reducing overall solution area. For optimal system and graphics performance, the RS880 supports a high speed HyperTransport™ interface to the AMD processor, running at a data rate of up to 4.4 GT/s and supporting both HT 1.0 and HT 3.0 protocols. The RS880 is ideally suited for 64-bit operating systems, and supports platform configurations with greater than 4GB of system memory. The rich PCI Express external graphics and up to six other PCI Express peripherals, all supporting the PCI Express 2.0 standard with data rates of up to 5.0GT/s. These capabilities are complemented by the advanced I/O features of AMD’s SB700-series Southbridges.
Designed for Windows Vista
Chapter 1

Overview

®
(PCIe®) expansion capabilities of RS880 include support for PCI Express
®
The RS880 delivers a compelling Windows Vista experience. It harnesses the increased bandwidth of HyperTransport 3.0 to a DirectX 10.1 graphics core, which provides the 3D rendering power needed to generate the Windows Vista desktop even under the most demanding circumstances. The AMD RV620-based graphics core employs a unified shader architecture to deliver excellent 3D performance across the whole spectrum of 3D applications. It meets all current Windows Vista Premium Logo requirements.
Leading Multimedia Capabilities
The RS880 incorporates AMD’s Unified Video Decoder (UVD) 2.0 technology, which provides dedicated hardware decode of the H.264, VC-1, and MPEG-2 video formats used for HD contents and Blu-ray disks. The RS880 also incorporates the innovative AMD Avivo™ HD display architecture, providing users with amazing visual quality. Advanced scaling and color correction capabilities, along with increased precision through the entire display pipeline, ensure an exceptional image on CRT monitors, LCD panels, and any other display device. Dual DisplayPort output capability provides the ability to interface to the next generation of digital display devices. That is complemented by a fully integrated DVI/HDMI and HDCP support, allowing compatibility with even the most modern high definition televisions without the additional cost of external components.
*Note: AMD Avivo HD is a technology platform that includes a broad set of capabilities offered by certain AMD Radeon™ products. Support for any AMD Avivo HD capability is subject to qualification of the RS880 ASIC. Full enablement of some AMD Avivo HD capabilities may require complementary products.
Low Power Consumption and Industry Leading Power Manage ment
The RS880 is manufactured using the power efficient 55 nm technology, and it supports a whole range of industry standards and new proprietary power management features. System power can be further reduced through the dedicated local frame buffer interface supported by the RS880. The integrated UVD dramatically reduces CPU loading and hence overall power consumption during Blu-ray video and HD contents playback.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 1-1
Software Compatibility
The graphics driver for the RS880 is fully compatible with all other AMD Radeon™ class graphics controllers from AMD. A single driver can support multiple graphics configurations across AMD’s product lines, including the AMD Radeon family and the AMD chipset family. In addition, this driver compatibilit y allows the RS880 to benefit immediately from AMD's software optimization and from the advanced Windows Windows 7
®
support available in the Radeon family drivers.

1.2 RS880 Features

1.2.1 CPU HyperTransport Interface

Supports 16-bit up/down HyperTransport (HT) 3.0 interface up to 4.4 GT/s.
Supports 200, 400, 600, 800, and 1000 MHz HT1 frequencies.
Supports 1.6, 1.8, 2.0, and 2.2 GHz HT3 frequencies.
Supports AMD’s AM3-socket CPUs, including the AMD Phenom II and later desktop processors.
Supports LDTSTOP interface and CPU link stutter mode.

1.2.2 Memory Interface

Supports an optional dedicated local frame buffer (side-port) of up to 128MB through a 16-bit interface. Note,
however, that the memory interface is optimized for a 64MB local frame buffer. As such, the system BIOS will downsize the side-port size if a 128MB memory device is populated.
New highly flexible memory architecture allows asymmetric side-port and shared system memory frame buffer sizes.
Supported configurations include UMA only and UMA+side-port (interleave mode).
New dynamic memory allocation scheme improves performance and reduces power simultaneously.
Support for DDR2 system memories up to DDR2-800, with a maximum memory clock speed of 400MHz. Memory
clock is independent of any other clock source and can therefore be set to any frequency equal to or less than 400MHz (DDR2-800), allowing the use of lower speed side-port memories.
Support for DDR3 system memories up to DDR3-1200, with a maximum memory clock speed of 600MHz. Memory
clock is independent of any other clock source and can therefore be set to any frequency equal to or less than 600MHz (DDR3-1200), allowing the use of lower speed side-port memories.
Support one memory device of x16 width (see section 2.2.1.1, “Supported DDR2 Components,” on page 2-4.and
section 2.2.2.1, “Supported DDR3 Components,” on page 2-5, for details).
Asynchronous HyperTransport and memory controller interface speeds.
Supports DDR SDRAM self refresh mechanism.
Supports dynamic CKE and ODT for power conservation.
RS880 Features
®
XP, Windows Vista®, and

1.2.3 AMD HyperMemory

Supports AMD HyperMemory™*.
* Note: Includes dedicated and shared memory. The amount of HyperMemory available is determined by various factors.
For details, please consult your AMD CSS representative.

1.2.4 PCI Express® Interface

Supports PCIe Gen2 (version 2.0).
Optimized peer-to-peer and general purpose link performance.
Highly flexible PCI Express implementation to suit a variety of platform needs.
A dual-port, x16 graphics interface, configurable to any one of the modes illustrated in Figure 1-1 for the RS880:
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 1-2 Proprietary
RS880 Features
01 32 456789101112131415
PCI- E x16
PCI- E x 8 External Graphics
DL-DVI
PCI- E x 16 External Graphics
TMDS enabling Dual- Link
DVI(DL-DVI)
LEGEND
Not Used
TMDS enabling Single- Link
DVI(SL-DVI)
DisplayPort (DP)
TMDS enabling HDMI
PCI-E x 16 Interface
HDMI
SL-DVI
Not Used
DP
DP
Not Used
SL-DVI Not Used
HDMI Not Used
DP Not Used
DL-DVI
PCI- E x 8
SL-DVIHDMI
PCI- E x 8
PCI- E x 8
DPDP
HDMI Not Used
DP Not Used
SL-DVI Not Used
PCI- E x 8
PCI- E x 8
PCI- E x 8
DP Not Used
DP Not Used
HDMI
HDMI
Figure 1-1 Possible Configurations for the x16 PCIe
®
Graphics Interface
Supports programmable lane reversal for the graphics link to ease motherboard layout when the end device does not
support lane reversal.
Supports six general purpose lanes, for up to six devices on specific ports. Possible configurations are listed in
Table 1-1.
Table 1-1 Possible Configurations for the PCIe® General Purpose Links
Config. B Config. C Config. C2 Config. E Config. K Config. L
GPP1 x4 x4 x2 x2 x2 x1

1.2.5 A-Link Express II Interface

© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 1-3
GPP2-----x1 GPP3 - - x2 x1 x2 x1 GPP4---x1-x1 GPP5 x2 x1 x2 x1 x1 x1 GPP6 - x1 - x1 x1 x1
Supports x1, x2, x4, x8, x12 and x16 polarity inversion.
One x4 A-Link Express II interface for connection to an AMD Southbridge. The A-Link Express II is a proprietary
interface developed by AMD basing on the PCI Express technology, with additional Northbridge-Southbridge messaging functionalities.
Supports programmable lane reversal to ease motherboard layout.

1.2.6 2D Acceleration Features

Highly-optimized 128-bit engine, capable of processing multiple pixe ls per clock.
Hardware acceleration of Bitblt, line drawing, polygon and rectangle fills, bit masking, monochrome expansion,
panning and scrolling, scissoring, and full ROP support (including ROP3).
Optimized handling of fonts and text using AMD proprietary techniques.
Game acceleration including support for Microsoft's DirectDraw
Blit, and Masked Blit.
Acceleration in 1/8/15/16/32-bpp modes:
Pseudocolor mode for 8bpp
ARGB1555 and RGB565 modes for 16bpp
ARGB8888 mode for 32bpp
Significant increase in the High-End Graphics WinBench
Setup of 2D polygons and lines.
Support for GDI extensions:
In Windows XP and Windows Vista: Alpha BLT, Transparent BLT, and Gradient Fill.
In Windows 7: Alpha BLT, Transparent BLT, Color Fill BLT, Stretch BLT, and Clear Type BLT.
RS880 Features
®
: Double Buffering, Virtual Sprites, Transparent
®
score due to capability for C18 color expansion.
Hardware cursor (up to 64x64x32bpp), with alpha channel for direct support of Windows XP, Windows Vista and
Windows 7 alpha cursor.

1.2.7 3D Acceleration Features

DirectX 10.1 compliant, including full speed 32-bit floating point per component operations
Shader Model 4.1 geometry and pixel support in a unified shader architecture:
Full speed 32-bit floating point processing per component.
High dynamic range rendering with floating point blending, text ure filtering and anti-aliasing support.
High performance dynamic branching and flow control.
Nearly unlimited shader instruction store, using an advance caching system.
Advanced shader design, with ultra-threading sequencer for high efficiency operations.
Advanced, high performance branching support, including static and dynamic branching.
32-bit floating point components for high dynamic range computations.
Full anti-aliasing on render surfaces up to and including 128-bit floating point formats.
Support for OpenGL
®
2.0
Anti-Aliasing Filtering:
2x/4x/8x modes.
Sparse multi-sample algorithm with gamma correction, programmable sample patterns, and centroid sampling.
Temporal anti-aliasing.
Adaptive anti-aliasing mode.
Lossless color compression (up to 8:1) at all resolutions, up to and including widescreen HDTV.
Anisotropic Filtering:
2x/4x/8x/16x modes
Up to 128-tap texture filtering.
Adaptive algorithm with performance (bi-linear) and quality (tri-linear) options.
Improved quality mode due to improved subpixel precision, higher precision LOD computations, and
rotationally invariant LOD computations.
Advanced Texture Compression (3Dc+™ ):
High quality 4:1 compression for normal maps and luminance maps.
Works with any single-channel or two-channel data format.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 1-4 Proprietary
RS880 Features
HW support to overcome "Small batch" issues in CPU limited applications.
3D resources virtualized to a 32-bit addressing space, for support of large numbers of render targets and textures.
New vertex cache and vertex fetch design, to increase vertex throughput from previous generations.
Full support of 64-bit and 128-bit textures and surfaces, which can be 4x to 8x faster than previous generation of HW.
Up to 8K x 8K textures, including 128 bpp texture are supported.
New multi-level texture cache to give optimal performance, greater than 8x the previous designs.
High efficiency ring bus memory controller:
Programmable arbitration logic maximizes memory efficiency, software upgradeable.
Fully associative texture, color, and Z cache design.
New hierarchical Z and stencil buffers with early Z Test.
New lossless Z-buffer compression for both Z and stencil.
Fast Z-Buffer Clear.
Z cache optimized for real-time shadow rendering.
Z and color compression resources virtualized to a 32-bit addressing space, for support of multiple render targets
and textures simultaneously.

1.2.8 Motion Video Acceleration Features

Video scaling and fully programmable YCrCb to RGB color space conversion for full-speed video playback and fully adjustable color controls.
Adaptive de-interlacing eliminates video artifacts caused by displaying interlaced video on non-interlaced displays,
and by analyzing image and using optimal de-interlacing function on a per-pixel basis.
Motion video acceleration for HD contents and Blu-ray technology.
Dedicated UVD (Unified Video Decoder) 2.0 hardware for H.264,VC-1, and MPEG-2 decode:
H.264 implementation is based on the ISO/IEC 14496-10 spec.
VC-1 implementation is based on the SMPTE 421M spec.

1.2.9 Multiple Display Features

General
Dual independent displays. Possible configurations are illustrated in Figure 1-2.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 1-5
RS880 Features
Figure 1-2 RS880 Multiple Display Options
Resolution, refresh rates, and display data can be completely independent for the two display paths.
Each display controller supports true 30 bits per pixel throughout the display pipe.
Each display path supports VGA and accelerated modes, video overlay, hardware cursor, hardware icon , and palette
gamma correction.
Supports both interlaced and non-interlaced displays.
Full ratiometric expansion ability is supported for source desktop modes up to 1920 pixels/line.
Maximum DAC frequency of 400 MHz.
Supports 8, 16, 32, and 64-bpp depths for the main graphics layer:
For 32-bpp depth, supports xRGB 8:8:8:8, xRGB 2:10:10:10, sCrYCb 8:8:8:8, and xCrYCb 2:10:10:10 data
formats.
For 64-bpp depth, supports xRGB 16:16:16:16 data format.
Independent gamma, color conversion and correction controls for main graphics layer.
Support for DDC1 and DDC2B+ for plug and play monitors.
8-bit alpha blending of graphics and video overlay .
Hardware cursor up to 64x64 pixels in 2 bpp, full color AND/XOR mix, and full color 8-bit alpha blend.
Hardware icon up to 128x128 pixels in 2 bpp, with two colors, transparent, and inverse transparent. AND/XOR
mixing. Supports 2x2 icon magnification.
Virtual desktop support.
Support for flat panel displays via VGA, DVI, or HDMI.
Integrated HD audio controller for HDMI audio data.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 1-6 Proprietary
RS880 Features
VGA Output
Maximum resolutions supported by the VGA output for different refresh rates are:
2048x1536 @85Hz (pixel clock at 388.5MHz) for 4:3 format
2560x1440 @75Hz (pixel clock at 397.25MHz) for 16:9 format
2456x1536 @60Hz (pixel clock at 320MHz) for 16:10 format
Support for stereoscopic monitors.
SurroundView™
RS880’s SurroundView™ feature allows support for up to four independent monitors for systems equipped with an
additional ATI discrete graphics card (requires special BIOS and display driver support).

1.2.10 DVI/HDMI

Integrated DVI or HDMI* interface (passing HDMI CTS v1.3b): single-link support only for HDMI‡, 30-bit
dual-link support for DVI.
Also supports a TMDS interface, enabling DVI or HDMI (passing HDMI CTS v1.3b), which is multiplexed on the
PCIe external graphics interface.‡
1620 Mbps/channel with 162 MHz pixel clock rate per link.
Supports industry standard EIA-861B video modes including 480p, 720p, 1080i, and 1080p (for a full list of currently
supported modes, contact you AMD CSS representative). Maximum resolutions supported by various modes are:
Single-link DVI: 1600x1200 @60Hz with standard timings, and 1920x1200 @60Hz with reduced blanking
timings.
Dual-link DVI: 2560x1600 @60Hz.
HDMI: 1080p.
Supports YCbCr 4:4:4 and 4:2:2 modes with HDMI.
HDMI basic audio support at 32, 44.1 or 48 kHz. Supports two-channel uncompressed audio data, and, for Windows
Vista platforms only, 5.1-channel audio data and DTS. HD audio device compatible with the Microsoft HD audio driver.
HDCP support for two independent display streams with on-chip key storage. Also available when the integrated
DVI/HDMI interface or the TMDS interface runs in dual-link mode.**
Notes: * CEC is not supported.
** HDCP content protection support is only available to HDCP licensees and can only be enabled when connected
to an HDCP-capable receiver.
‡ The TMDS interface multiplexed on the PCIe graphics lanes cannot enable HDMI when the integrated
DVI/HDMI interface is supporting HDMI, and vice versa.

1.2.11 DisplayPort™ Interface

Supports all mandatory features of the VESA DisplayPort Standard, Version 1.1, plus the following optional features:
10-bit support.
YCbCr 4:4:4 and 4:2:2 support.
HDCP support
Optional test pattern support.
Supports two independent displays over the PCIe interface for external graphics (see Figure 1-1,“Possible
Configurations for the x16 PCIe® Graphics Interface,” on page 1-3 for details).
Supports 4, 2, or 1-lane transmission.
Supports both the 2.7 Gbps and 1.62 Gbps link symbol rates.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 1-7
Supports the Auxiliary Channel (AUX CH).
Supports a maximum resolution of 2560x1600 @60Hz with 4 lanes.

1.2.12 Integrated HD Audio Controller and Codec

Integrated HD Audio codec supports linear PCM and AC3 (5.1) audio formats for HDMI output.
Separate logical chip function.
Can encrypt data onto one associated HDMI output.
Uses Microsoft UAA driver.
Internally connected to the integrated HDMI, or HDMI-enabled interface, hence no external cable required.
Support for basic audio (32, 44.1 or 48 KHz stereo) and AC3 or DTS at the same sample rates.

1.2.13 System Clocks

Support for an external clock chip to generate side-port memory, PCIe, and A-Link Express II clocks.

1.2.14 Power Management Features

Single chip solution in 55nm, 1.1V CMOS technology.
Full ACPI 2.0 and IAPC (Instantly Available PC) power management support.
Static and dynamic power management support (APM as well as ACPI) with full VESA DPM and Energy Star
compliance.
The Chip Power Management Support logic supports four device power states defined for the OnNow Architecture—
On, Standby, Suspend, and Off. Each power state can be achieved by software control bits.
Hardware controlled intelligent clock gating enables clocks only to active fun ctional blocks, and is completely
transparent to software.
Dynamic self-refresh for the side-port memory.
Support for Cool'n'Quiet™ via FID/VID change.
Support for AMD PowerNow!™.
Clocks to every major functional block are controlled by a unique dynamic clock switching technique that is
completely transparent to the software. By turning off the clock to the block that is idle or not used at that point, the power consumption can be significantly reduced during normal operation.
Supports AMD Vari-Bright™ technology.
Supports dynamic lane reduction for the PCIe graphics interface when coupled with an AMD-based graphics device,
adjusting lane width according to required bandwidth.
RS880 Features

1.2.15 PC Design Guide Compliance

The RS880 complies with all relevant Windows Logo Program (WLP) requirements from Microsoft for WHQL certification.

1.2.16 Test Capability Features

The RS880 has a variety of test modes and capabilities that provide a very high fault coverage and low DPM (Defect Per Million) ratio:
Full scan implementation on the digital core logic through ATPG (Automatic Test Pattern Generation Vecto rs).
Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules.
A JTAG test mode to allow board level testing of neighboring devices.
An EXOR tree test mode on all the digital I/O's to allow for proper soldering verification at the board level.
A VOH/VOL test mode on all digital I/O’s to allow for proper verification of output high and output low values at the
board level.
Access to the analog modules to allow full evaluation and characterization.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 1-8 Proprietary
Software Features
IDDQ mode support to allow chip evaluation through current leakage measurements.
These test modes can be accessed through the settings on the instruction register of the JTAG circuitry.

1.2.17 Packaging

Single chip solution in 55nm, 1.1V low power CMOS technology.
528-FCBGA package, 21mmx21mm.

1.3 Software Features

Supports Microsoft Windows XP, Windows Vista, and Windows 7.
BIOS ability to read EDID 1.1, 1.2, and 1.3.
Ability to selectively enable and disable several devices including CRT, LCD, and DFP.
Register-compatible with VGA standards, BIOS-compatible with VESA VBE2.0.
Supports corporate manageability requirements such as DMI.
ACPI support.
Full Write Combining support for maximum performance of the CPU.
Full-featured, yet simple Windows utilities:
Calibration utility for WYSIWYG color
Independent brightness control of desktop and overlay
End user diagnostics
Drivers meet Microsoft's rigorous WHQL criteria and are suitable for systems with the "Designed for Windows"
logos.
Comprehensive OS and API support.
Hot-key support (Windows ACPI 2.0 or AMD Event Handler Utility where appropriate).
Extensive power management support.
Rotation mode support in software.
Dual CRTC, simultaneous view, extended desktop support (Windows XP, Windows Vista, and Windows 7)
DirectX 10.1 support.
Switchable overlay support.
H.264 playback support.
Supports AMD OverDrive™ utility.
***Warning*** AMD and ATI processors are intendedto be operated only within their associated specifications and factory settings. Operating the AMD or ATI processor outside of specification or in
excess of factory settings, including but not limited to overclocking, may damage the processor and/or lead to other problems, including but not limited to, damage to the system components (including the motherboard and components thereon (e.g. memory)), system instabilities (e.g. data loss and corrupted images), shortened processor, system component and/or system life and in extreme cases, total system failure. AMD does not provide support or service for issues or damages related to use of an AMD or ATI processor outside of processor specifications or in excess of factory settings.
Supports Hybrid CrossFire™.

1.4 Branding Diagrams

Note: The branding can be in laser, ink, or mixed laser-and-ink marking.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 1-9
Graphics Device ID and Graphics Engine Clock Speed
RADEON IGP YYWW MADE IN TAIWAN WXXXXX 215-0752001
Part Number
Date Code (“YY” - Year, ”ZZ” - Week)
AMD Product Type
AMD Logo
Wafer Lot Number (“ZZ” may not be shown)
Country of Origin (China or Taiwan)
Note: Branding can be in laser, ink, or mixed laser-and-ink marking.
WWWXXX.ZZ
MADE IN COO
Figure 1-3 RS880 ASIC A11 Production Branding

1.5 Graphics Device ID and Graphics Engine Clock Speed

Table 1-2 Graphics Device ID and Graphics Engine Clock Speed

1.6 Conventions and Notations

The following conventions are used throughout this manual.

1.6.1 Pin Names

Pins are identified by their pin names or ball references. Multiplexed pins sometimes assume alternate “functional names” when they perform their alternate functions, and these “functional names” are given in Chapter 3, “Pin Descriptions and
Strap Options.”
All active-low signals are identified by the suffix ‘#’ in their names (e.g., MEM_RAS#).

1.6.2 Pin Types

The pins are assigned different codes according to their operational characteristics. These codes are listed in Table 1-3.
Table 1-3 Pin Type Codes
I Digital Input O Digital Output OD Open Drain I/O Bi-Directional Digital Input or Output I/OD Digital Input or Open Drain M Multifunctional Pwr Power Gnd Ground A-O Analog Output A-I Analog Input
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 1-10 Proprietary
Variant
RS880 0x9710 300 500
Code Pin Type
Graphics Device ID
Graphics Engine Clock Speed ( MHz)
Min. Max.
Conventions and Notations
Table 1-3 Pin Type Codes (Continued)
Code Pin Type
A-I/O Analog Bi-Directional Input/Output A-Pwr Analog Power A-Gnd Analog Ground Other Pin types not included in any of the categories above

1.6.3 Numeric Representation

Hexadecimal numbers are appended with “h” (Intel assembly-style notation) whenever there is a risk of ambiguity. Other numbers are in decimal.
Pins of identical functions but different running integers (e.g., “GFX_TX7P, GFX_TX6P,... GFX_TX0P”) are referred to collectively by specifying their integers in square brackets and with colons (i.e., “GFX_TX[7:0]P”). A similar short-hand notation is used to indicate bit occupation in a register. For example, NB_COMMAND[15:10] refers to the bit positions 10 through 15 of the NB_COMMAND register.

1.6.4 Register Field

A field of a register is referred to by the format of [Register Name].[Register.Field]. For example, “NB_MC_CNTL.DISABLE_BYPASS” is the “DISABLE_BYPASS” field of the register “NB_MC_CNTL.”

1.6.5 Hyperlinks

Phrases or sentences in blue italic font are hyperlinks to other parts of the manual. Users of the PDF version of this manual can click on the links to go directly to the referenced sections, tables, or figures.

1.6.6 Acronyms and Abbreviations

The following is a list of the acronyms and abbreviations used in this manual.
Table 1-4 Acronyms and Abbreviations
Acronym Full Expression
ACPI Advanced Configuration and Power Interface
A-Link-E A-Link Express interface between the IGP and the Southbridge.
BGA Ball Grid Array BIOS BIST Built In Self Test.
BLT Blit
bpp bits per pixel CEC Consumer Electronic Control CPIS Common Panel Interface Specification
CRT Cathode Ray Tube CSP Chip Scale Package
DAC Digital to Analog Converter
DBI Dynamic Bus Inversion DDC DDR Double Data Rate
DFP Digital Flat Panel. Monitor connection standard from VESA.
DP DisplayPort
DPM Defects per Million
DTV Digital TV
Basic Input Output System. Initialization code stored in a ROM or Flash RAM used to start up a system or expansion card.
Display Data Channel. A VESA standard for communicating between a computer system and attached display devices.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 1-11
Table 1-4 Acronyms and Abbreviations (Continued)
Acronym Full Expression
DVD Digital Video Disc
DVI
DVS Digital Video Stream
EPROM Erasable Programmable Read Only Memory
FIFO First In, First Out FPDI Flat Panel Display Interface
GDI Graphics Device Interface
GND Ground
GPIO General Purpose Input/Output
HDCP High-Bandwidth Digital Content Protection
HDMI High Definition Multimedia Interface
HDTV High Definition TV. The 1920x1080 and the 1280x720 modes defined by ATSC.
HPD Hot Plug Detect iDCT inverse Discrete Cosine Transform
IDDQ Direct Drain Quiescent Current
IGP
JTAG Joint Test Access Group. An IEEE standard.
MB Mega Byte
MPEG
NTSC
PAL Phase Alternate Line. The standard definition TV system used in Europe and other areas. PCI Peripheral Component Interface
PCIe PCI Express
PLL Phase Locked Loop
POST Power On Self Test
PD Pull-down Resistor PU Pull-up Resistor
RAID Redundant Array of Inexpensive Disks
ROP Raster Operation
SDRAM Synchronous Dynamic RAM
TMDS Transition Minimized Differential Signaling
UMA Unified Memory Architecture
UV Chrominance (also CrCb). Corresponds to the color of a pixel.
UVD Unified Video Decoder
UXGA Ultra Extended Graphics Array
VBI Vertical Blank Interval
VESA Video Electronics Standards Association
VGA Video Graphics Adapter VRM Voltage Regulation Module
Digital Video Interface. Monitor connection standard from the DDWG (Digital Display Work Group).
Integrated Graphics Processor. A single device that integrates a graphics processor and a system controller.
Motion Pictures Experts Group. Refers to compressed video image streams in either MPEG-1 or MPEG-2 formats.
National Television Standards Committee. The standard definition TV system used in North America and other areas.
Conventions and Notations
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 1-12 Proprietary
Conventions and Notations
This page is left blank intentionally.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 1-13
Conventions and Notations
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 1-14 Proprietary
Chapter 2
CPU
Interface
Register Interface
UVD
Setup
Engine2DEngine
3D
Engine
Overlay
Root
MUX
Display 1& 2
Integrated DVI/HDMI
TMDS, enabling DVI/HDMI
CRT
Memory Controller
CPU
BIF
SB
External
Graphics
Complex
A-Link-E II
Gfx Interface
PCIe
®
Interface
(1 x 16 Lanes)
GPP Interface
PCIe
®®
(6 x 1 Lanes)
Expansion
Slots or
On-board
Devices
(1 x 4 Lanes)
(Multiplexed on PCIe® Gfx Lanes)
DisplayPorts
(Multiplexed on PCIe
®
Gfx Lanes)
Optional 16-bit
DDR2/DDR3
Memory Channel
HyperTransport™
Unit

Functional Descriptions

This chapter describes the functional operation of the major interfaces of the RS880 system logic. Figure 2-1, “RS880
Internal Block Diagram,” illustrates the RS880 internal blocks and interfaces.

2.1 Host Interface

The RS880 is optimized to interface with AMD processors through the HyperTransport an overview of the HyperTransport
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 2-1
Figure 2-1 RS880 Internal Block Diagram
TM
interface. For a detailed description of the interface, please refer to the
interface. This section presents
Host Interface
HT Interface to CPU (PHY)
Configuration
Registers
Root Complex
Memory Controller
LTA
LRA
SCH
Data Link Layer
Protocol/Transacti o n La ye r
HyperTransport I/O Link Specification from the HyperTransport Consortium. Figure 2-2, “Host Interface Block
Diagram,” illustrates the basic blocks of the host bus interface of the RS880.
Figure 2-2 Host Interface Block Diagram
The HyperTransport (HT) Interface, formerly known as the LDT (Lightning Data Transport) interface, is a high speed, packet-based link implemented on two unidirectional buses. It is a point-to-point interface where data can flow both upstream and downstream at the same time. The commands, addresses, and data travel in packets on the HyperTransport link. Lengths of packets are in multiples of four bytes. The HT link consists of three parts: the physical layer (PHY), the data link layer, and the protocol/transaction layer. The PHY is the physical interface between the RS880 and the CPU. The data link layer includes the initialization and configuration sequences, periodic redundancy checks, connect/disconnect sequences, and information packet flow controls. The protocol layer is responsible for maintaining strict ordering rules defined by the HT protocol.
The RS880 HyperTransport bus interface consists of eighteen unidirectional differential data/control pairs and two differential clock pairs in each of the upstream and downstream direction. On power up, the HT link is 8-bit wide and runs at a default speed of 400MT/s. After negotiation, carried out by the HW and SW together, the link width can be brought up to 16-bit and the interface can run up to 4.4GT/s. The interface is illustrated in Figure 2-3, “RS880 Host Bus Interface
Signals.” The signal name and direction for each signal is shown with respect to the processor. Note that the signal names
may be different from those used in the pin listing of the RS880. Detailed descriptions of the signals are given in section
3.3, “CPU HyperTransport™ Interface‚’ on page 3-5.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 2-2 Proprietary
Side-Port Memory Interface
HT_RXCADN
2 2
RS880
CPU
HT_RXCADP
HT_RXCTLN
HT_RXCTLP
HT_RXCLKN
HT_RXCLKP
16
16
HT_TXCADN
2 2
HT_TXCADP
HT_TXCTLN
HT_TXCTLP
HT_TXCLKN
HT_TXCLKP
16
16
2
2
2 2
HT_TXCALP
HT_RXCALN
HT_RXCALP
HT_TXCALN

2.2 Side-Port Memory Interface

In order to significantly decrease system power and increase graphics performance, the RS880 provides an optional side-port memory interface for dedicated frame buffer memory, to be used exclusively for the integrated graphics core. The side-port memory interface can significantly reduce system power by allowing the CPU to stay in its lowest power state during periods of inactivity. Screen refreshes are fetched from the side-port memory, and there is no need to "wake up" the CPU to fetch screen refresh data.
The RS880 memory controller is unique and highly optimized. It operates in 16-bit mode at very high speed (up to DDR2-800 and DDR3-1200), and has a programmable interleaved mode that significantly increases the memory bandwidth and reduces data latency to the integrated graphics core. The additional bandwidth provided to the internal graphics core will also aid the RS880 in reaching and exceeding Microsoft's Windows Vista requirements.

2.2.1 DDR2 Memory Interface

Figure 2-4, “RS880 Side-Port Memory Interface,” on page 2-4 illustrates the side-port memory interface of the RS880.
RS880 memory controller features and limitations:
Supports a single memory device up to 128MB of physical size. However, as the memory interface is
optimized for a 64MB local frame buffer, the system BIOS will downsize the side-port memory if a 128MB memory device is populated.
Controls a single rank of DDR2 devices in 16-bit memory configuration.
Supports device sizes of 256, 512, and 1024 Mbits, and a device width of x16.
As the memory controller supplies only one chip select signal, only devices with one chip selec t are supp orte d.
A wide range of DDR2 timing parameters, configurations, and loadings are programmable via the RS880
memory controller configuration registers.
Figure 2-3 RS880 Host Bus Interface Signals
®
Premium logo
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 2-3
Data Mask MEM_DM[1:0]
Data MEM_DQ[15:0]
2
4
16
RS880 Side-Port Memory
Interface
Data Strobes MEM_DQS[1:0]P/N
Un-buffered DDR2 SDRAM
MEM_CKE, MEM_RAS#,
Differential Clocks MEM_CKP/MEM_CKN
4
2
MEM_CAS#, MEM_WE#
14
Address MEM_A[13:0]
1
Chip Select MEM_CS#
1
On-Die Termination MEM_ODT
3
Bank Address MEM_BA[2:0]
MEM_CALN
MEM_CALP
VDD_MEM
Side-Port Memory Interface
Figure 2-4 RS880 Side-Port Memory Interface
2.2.1.1 Supported DDR2 Components
The memory controller supports DDR2 SDRAM chips in several configurations. These chips are organized in banks, rows (or pages), and columns. The supported DDR2 components have four or eight banks. Table 2-1 lists the supported memory components.
Table 2-1 Supported DDR2 Components
DDR2 SDRAM
Config Mbits CS Mode Bank Bits Row Bits Col Bits
16Mbx16 256 4 2 13 9 32 32Mbx16 512 10 2 13 10 64 64Mbx16 1024 11 3 13 10 128
Mbytes
2.2.1.2 Row and Column Addressing
Table 2-2 shows how the physical address P (after taking out the bank bit) is used to provide the row and column
addressing for each size of DDR2 memories.
Table 2-2 DDR2 Memory Row and Column Addressing
A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
Row P10 P14 P13 P12 P11 P22 P21 P20 P19 P18 P17 P16 P15 Column - - PC - P9P8P7P6P5P4P3 P2 P1
Row P23 P14 P13 P12 P11 P22 P21 P20 P19 P18 P17 P16 P15 Column - - PCP10P9P8P7P6P5P4P3 P2 P1
16Mbx16 devices
32Mbx16 devices
Address
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 2-4 Proprietary
Side-Port Memory Interface
A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
Row Column
Row Column Note: PC = precharge flag
P23 P14 P13 P12 P11 P22 P21 P20 P19 P18 P17 P16 P15
- - PC P10 P9 P8 P7 P6 P5 P4 P3 P2 P1
P24 P23 P14 P13 P12 P11 P22 P21 P20 P19 P18 P17 P16 P15
- - PC P10 P9 P8 P7 P6 P5 P4 P3 P2 P1

2.2.2 DDR3 Memory Interface

RS880 memory controller features and limitations:
Supports a single memory device up to 128MB of physical size. However, as the memory interface is
optimized for a 64MB local frame buffer, the system BIOS will downsize the side-port memory if a 128MB memory device is populated.
Supports a single rank of DDR3 device in 16-bit memory configuration.
Supports device sizes of 512 and 1024 Mbits, and a device width of x16.
Address
64Mbx16 devices
128Mbx16 devices
A wide range of DDR3 timing parameters, configurations, and loadings are programmable via the RS880 memory
controller configuration registers.
2.2.2.1 Supported DDR3 Components
The memory controller supports DDR3 SDRAM chips in several configurations. These chips are organized in banks, rows (or pages), and columns. Table 2-3 lists the supported memory components.
Table 2-3 Supported DDR3 Components
DDR3 SDRAM
Config Mbits CS Mode Bank Bits Row Bits Col Bits
32Mbx16 512 9 3 12 10 64 64Mbx16 1024 11 3 13 10 128
2.2.2.2 Row and Column Addressing
Table 2-4 shows how the physical address P (after taking out the bank bit) is used to provide the row and column
addressing for each size of DDR3 memories.
Table 2-4 DDR3 Memory Row and Column Addressing
Address
A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
32Mbx16 devices
Row P23 P14 P13 P12 P11 P22 P21 P20 P19 P18 P17 P16 P15 Column - - PCP10P9P8P7P6P5P4P3 P2 P1
64Mbx16 devices
Row P23 P14 P13 P12 P1 1 P22 P21 P20 P19 P18 P17 P16 P15 Column - - PC P10 P9 P8 P7 P6 P5 P4 P3 P2 P1
Mbytes
Note: PC = precharge flag
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 2-5

2.3 DVI/HDMI™

TX0P TX0M
TX1P TX1M
TX2P TX2M
TXCP
TXCM
TG9TG8TG7TG6TG5TG4TG3TG2TG1TG0
Depending upon state of HSYNC and VSYNC
Depending upon encoded Green channel pixel dataDepending upon state of PLL_SYNC and CTL1
Depending upon state of CTL2 and CTL3
TR1TR0 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9
Depending upon encoded Red channel pixel data
TB0 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9
Depending upon encoded Blue channel pixel data

2.3.1 DVI/HDMI™ Data Transmission Order and Signal Mapping

The RS880 contains an integrated DVI/HDMI interface and a TMDS interface (multiplexed on the PCI Express® graphics lanes), both supporting clock frequencies of up to 162 MHz for each signal link. The multiplexing relationships between the PCIe external graphics signals and the TMDS signals are given in section 3.9, “TMDS Interface Multiplexed on the
PCI Express® Graphics Lanes‚’ on page 3-8. Figure 2-5 below shows the transmission ordering of the signals on both
interfaces in single-link mode.
DVI/HDMI™
Figure 2-5 Data Transmission Ordering for the Integrated DVI/HDMI™ and TMDS Interfaces
For dual-link mode, which is for DVI only, the same transmission order applies to data channels on the second li nk, with the first link transmitting data for even pixels and the second link for odd pixels. See Table 2-6 below for details.
The signal mapping for the transmission is shown in Table 2-5 (single link) and Table 2-6 (dual-link DVI) below.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 2-6 Proprietary
DVI/HDMI™
Table 2-5 Single Link Signal Mapping for DVI/HDMI™
DVI/HDMI™
Functional Name
TX0M/P Phase 1 B0
TX1M/P Phase 1 G0
TX2M/P Phase 1 R0
Note: H/VSYNC are transmitted on TX0M/P (Blue) channel during blank.
Data Phase Signal
Phase 2 B1 Phase 3 B2 Phase 4 B3 Phase 5 B4 Phase 6 B5 Phase 7 B6 Phase 8 B7 Phase 9 B8
Phase 10 B9
Phase 2 G1 Phase 3 G2 Phase 4 G3 Phase 5 G4 Phase 6 G5 Phase 7 G6 Phase 8 G7 Phase 9 G8
Phase 10 G9
Phase 2 R1 Phase 3 R2 Phase 4 R3 Phase 5 R4 Phase 6 R5 Phase 7 R6 Phase 8 R7 Phase 9 R8
Phase 10 R9
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 2-7
Table 2-6 Dual-Link Signal Mapping for DVI
Link 1 Link 2
DVI Functional
Name
TX0M/P Phase 1 EVEN_B0 TX3M/P Phase 1 ODD_B0
TX1M/P Phase 1 EVEN_G0 TX4M/P Phase 1 ODD_G0
TX2M/P Phase 1 EVEN_R0 TX5M/P Phase 1 ODD_R0
Notes:
- H/VSYNC are transmitted on TX0M/P (Blue) channel during blank.
- For DVI dual-link mode, the first active data pixel is defined as pixel#0 (an even pixe l), as opposed to the DVI specifications.
Data Phase Signal
Phase 2 EVEN_B1 Phase 2 ODD_B1 Phase 3 EVEN_B2 Phase 3 ODD_B2 Phase 4 EVEN_B3 Phase 4 ODD_B3 Phase 5 EVEN_B4 Phase 5 ODD_B4 Phase 6 EVEN_B5 Phase 6 ODD_B5 Phase 7 EVEN_B6 Phase 7 ODD_B6 Phase 8 EVEN_B7 Phase 8 ODD_B7 Phase 9 EVEN_B8 Phase 9 ODD_B8
Phase 10 EVEN_B9 Phase 10 ODD_B9
Phase 2 EVEN_G1 Phase 2 O DD_G1 Phase 3 EVEN_G2 Phase 3 O DD_G2 Phase 4 EVEN_G3 Phase 4 O DD_G3 Phase 5 EVEN_G4 Phase 5 O DD_G4 Phase 6 EVEN_G5 Phase 6 O DD_G5 Phase 7 EVEN_G6 Phase 7 O DD_G6 Phase 8 EVEN_G7 Phase 8 O DD_G7 Phase 9 EVEN_G8 Phase 9 O DD_G8
Phase 10 EVEN_G9 Phase 10 ODD_G9
Phase 2 EVEN_R1 Phase 2 ODD_R1 Phase 3 EVEN_R2 Phase 3 ODD_R2 Phase 4 EVEN_R3 Phase 4 ODD_R3 Phase 5 EVEN_R4 Phase 5 ODD_R4 Phase 6 EVEN_R5 Phase 6 ODD_R5 Phase 7 EVEN_R6 Phase 7 ODD_R6 Phase 8 EVEN_R7 Phase 8 ODD_R7 Phase 9 EVEN_R8 Phase 9 ODD_R8
Phase 10 EVEN_R9 Phase 10 ODD_R9
DVI Functional
Name
Data Phase Signal
DVI/HDMI™
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 2-8 Proprietary
DVI/HDMI™

2.3.2 Support for HDMI™ Packet Types

Table 2-7 Support for HDMI™ Packet Type
Packet
Value
0x00 Null Yes Inserted b y hardwa re whe n ne eded .
0x01
0x02 Audio Sample Yes
0x03 General Control No
0x04 ACP Packet No — 0x05 ISRC1 Packet No
0x06 ISRC2 Packet No — 0x07 Reserved N /A N/A N/A
InfoFrame Packet Type
HDMI™ IDEIA-861B
0x80 0x00 Vendor-Specific Yes* — 0x81 0x01 AVI Yes Inserted o n line selected by software.
0x82 0x02
0x83 0x03 Audio Yes
0x84 0x04 MPEG Source No
* Note: These packet types are supported using generic packet types. A ma ximu m o f tw o of them can be supported simultaneously.
Packet Type
Audio Clock Regeneration
ID
Source Product Descriptor
Supported
or Not
Yes Inserted by hardware as required.
Yes*
Source Comment
Sent when required to meet maximum time between data island specification.
Audio samples come from HD audio DMA. Channel status from HD audio and video registers. Inserted in horizontal blank whenever audio FIFO contains data.
Sending and contents controlled by video driver.
For colorimetry, repet it io n coun t, video format, picture formatting.
Inserted on line selected by software. Contents from registers written by video and HD audio drivers.
For channel counts, sampling frequency, etc.
According to the CEA-861 specification, MPEG Source InfoFrames should not be used.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 2-9

2.4 VGA DAC Characteristics

Table 2-8 VGA DAC Characteristics

Parameter Min Typ Max Notes
Resolution 10 bits - - 1 Maximum PS/2 setting Output Voltage - 0.7V - 1 Maximum PS/2 setting Output Current - 18.7mA - 1 Full Scale Error +8% / -3% - +10% 2, 3 DAC to DAC Correlation -2% - +2% 1, 4 Differential Linearity -2 LSB - +2 LSB 1, 5 Integral Linearity -2 LSB - +2 LSB 1, 5 Rise Time (10% to 90%) 0.58ns - 1.7ns 1, 6 Full Scale Settling Time - TBA - 1, 7, 8 Glitch Energy - TBA - 1, 8 Monotonicity - - - 9
Notes: 1 - Tested over the operating temperature range at nominal supp ly voltage, with an Iref of -1.50mA (Iref is the level of the current flowing
out of the RSET resistor).
2 - Tested over the operating temperature range at reduced supply voltage, with an Iref of -1.50mA (Iref is the level of the current flowing
out of the Rset resistor). 3 - Full scale error from the value predicted by the design equations. 4 - About the mid-point of the distribution of the three DACs measured at full scale deflection. 5 - Linearity measured from the best fit line through the DAC characteristics. Monotonicity guaranteed. 6 - Load = 37.5Ω + 20 pF with Iref = -1.50 mA (Iref is the current flowing out of the Rset resistor). 7 - Measured from the end of the overshoot to the point where the amplitude of the video ringing is down to +/-5% of the final steady state
value. 8 - This parameter is sampled, not 100% tested. 9 - Monotonicity is guaranteed.
VGA DAC Characteristics

2.5 Clock Generation

The RS880 provides support for an external clock chip to generate side-port memory, PCIe, and A-Link Express II clocks.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 2-10 Proprietary
Clock Generation
This page is left blank intentionally.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 2-11
Clock Generation
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 2-12 Proprietary
Chapter 3

Pin Descriptions and Strap Options

This chapter gives the pin descriptions and the strap options for the RS880. To jump to a topic of interest, use the following list of hyperlinked cross references:
“Pin Assignment Top View” on page 3-2 “Interface Block Diagram” on page 3-4
“CPU HyperTransport™ Interface” on page 3-5 “Side-port Memory Interface” on page 3-5 “PCI Express® Interfaces” on page 3-6:
“1 x 16 Lane Interface for External Graphics” on page 3-6
“A-Link Express II Interface for Southbridge” on page 3-6
“6 x 1 Lane Interface for General Purpose External Devices” on page 3-6
“Miscellaneous PCI Express® Signals” on page 3-6 “Clock Interface” on page 3-7 “CRT Interface” on page 3-7
“Integrated DVI/HDMI™ Interface” on page 3-7 “TMDS Interface Multiplexed on the PCI Express® Graphics Lanes” on page 3-8 “DisplayPort™ Interface” on page 3-10 “Power Management Pins” on page 3-11 “Miscellaneous Pins” on page 3-11 “Power Pins” on page 3-12 “Ground Pins” on page 3-13 “Strapping Options” on page 3-14
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 3-1

3.1 Pin Assignment Top View

3.1.1 RS880 Pin Assignment Top View

The figures below only represent the relative ball positions. For the actual physical layout of the balls, please refer to
Figure 5-3, “RS880 Ball Arrangement (Bottom View),” on page 5- 9.
12345678910111213
A
VSSAPCIE GFX_TX2N GFX_RX1N GFX_TX1N GFX_TX0N VDDP CIE
B
GFX_RX2N GFX_RX2P GFX_TX2P GFX_RX0N VDDPCIE AUX_CAL LDTSTOP#
C
D GFX_TX3P GFX_TX3N VSSAPCIE GFX_RX0P VSSAPCIE VDDPCIE
GFX_TX4N GFX_TX4P VSSAPCIE GFX_RX3P VDDPCIE
E
GFX_TX6P GFX_TX6N GFX_TX5N GFX_TX5P GFX_RX3N VDDPCIE GPIO2 DAC_SCL VDD18 REFCLK_N AVDD
F
G
VSSAPCIE VSSAPCIE VSSAPCIE GFX_RX4P GFX_RX4N VDDPCIE VSS VDD18 RESERVED GPIO4
GFX_TX8P GFX_TX8N GFX_TX7N GFX_TX7P GFX_RX5P GFX_RX5N VSSAPCIE VDDPCIE VDDA18PCIE VDD33 VDD33
H
GFX_TX9N GFX_TX9P VSSAPCIE GFX_RX6N GFX_RX6P GFX_RX7P GFX_RX7N VDDPCIE VDDA18PCIE VDDC VSS
J
K
GFX_TX11P GFX_TX11N GFX_TX10N GFX_TX10P VDDPCIE VDDA18PCIE VSS VDDC
VSSAPCIE VSSAPCIE VSSAPCIE GFX_RX8P GFX_RX8N VSSAPCIE GFX_RX9N VDDPCIE VDDA18PCIE VDDC VSS
L
GFX_TX13P GFX_TX13N GFX_TX12N GFX_TX12P GFX_RX11N VSSAPCIE GFX_RX10N GFX_RX9P VDDPCIE VDDA18PCIE VSS VDDC VDDC
M
N
GFX_TX14N GFX_TX14P VSSAPCIE VDDC VSS
P
GFX_TX15P GFX_TX15N GFX_RX14N GFX_RX14P GFX_RX11P VSSAPCIE GFX_RX10P GFX_RX12N VDDPCIE VDDA18PCIE VDDC VSS VDDC
VSSAPCIE VSSAPCIE VSSAPCIE GFX_RX13N GFX_RX13P VSSAPCIE GFX_RX12P VDDPCIE VDDA18PCIE VSS VDDC
R
GFX_REFCLKNGFX_REFCLK
T
GPP_REFCLKPGPP_REFCLK
U
GPP_TX5P GPP_TX5N
V
VSSAPCIE VSSAPCIE VSSAPCIE SB_RX3P GPP_RX3N VSSAPCIE VSSAPCIE VDDA18PCIE VSS MEM_RAS#
W
GPP_TX3P GPP_TX3N GPP_TX4N GPP_TX4P SB_RX3N VSSAPCIE SB_RX1N SB_RX0N VDDA18PCIE VDD_MEM MEM_CAS#
Y
AA
GPP_TX2N GPP_TX2P VSSAPCIE SB_RX2P SB_RX2N SB_RX1P SB_RX0P VDDA18PCIE VDD_MEM MEM_A4
VSSAPCIE VSSAPCIE GPP_TX1N GPP_TX1P VSSAPCIE SB_TX2P VSSAPCIE PCE_CALRN VDDA18PCIE VDD_MEM VSS MEM_A0 MEM_CS#
AB
GPP_TX0P GPP_TX0N VSSAPCIE VSSAPCIE SB_TX2N PCE_CALRP VDD_MEM VSS
AC
AD
GPP_RX2P GPP_RX2N GPP_RX1N GPP_RX0N SB_TX3P SB_TX1N SB_TX0P
VSSAPCIE GPP_RX1P GPP_RX0P VSSAPCIE SB_TX3N SB_TX1P SB_TX0N
AE
VSSAPCIE GFX_RX1P GFX_TX1P GFX_TX0P VDDPCIE
GFX_RX15N GFX_RX15P VDDPCIE VDDA18PCIE VDDC VSS
P
N
GPPSB_REFC
12345678910111213
VSSAPCIE GPP_RX4P GPP_RX4N GPP_RX5N GPP_RX5P VDDPCIE VDDA18PCIE VSS VDDC
GPPSB_REFC
LKN
Pin Assignment Top View
DDC_DATA1/
AUX1N
DDC_CLK1/
AUX1P
VDDA18PCIEP
VDDA18PCIEP
GPP_RX3P VSSAPCIE VSSAPCIE VSSAPCIE VDDPCIE MEM_A2 VSS
LKP
DDC_CLK0/
AUX0P
DDC_DATA0/
AUX0N
SYSRESET# TMDS_HPD HPD VSS SUS_STAT# TESTMODE
LL
DAC_SDA GPIO3 REFCLK_P AVDD
LL
THERMALDIO
DE_N
THERMALDIO
DE_P
I2C_DATA POWERGOOD DAC_HSYNC PLLVDD VDDLTP18
I2C_CLK STRP_DATA DAC_VSYNC PLLVSS VSSLTP18
VDDA18PCIE VDD_MEM VDD18_MEM MEM_COMPN MEM_A8
VDDA18PCIE VDD_MEM VDD18_MEM MEM_COMPP MEM_A11
ALLOW_LDTSTO
P
CPU Interface A-Link Express II Interface Clock Interface Side-port Memory Interface CRT Interface External graphics Interface Integrated DVI/HDMI Interface General Purpose External Device Interface
Power Management Interface Powers Grounds Others
Figure 3-1 RS880 Pin Assignment Top View (Left)
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 3-2 Proprietary
Pin Assignment Top View
14 15 16 17 18 19 20 21 22 23 24 25
VDDLT33 VDDLT18 TXCLK_LN TXOUT_U1P TXOUT_U0N TXOUT_L3P TXOUT_L2N TXOUT_L1P TXOUT_L0P VDDHTRX HT_RXCALN VSSAHT A
VDDLT33 VDDLT18 TXCLK_LP TXOUT_U1N TXOUT_U0P TXOUT_L3N TXOUT_L2P TXOUT_L1N TXOUT_L0N VDDHTRX HT _TXCALP HT_TXCALN B
VSSLT VSSLT VSSLT VSSLT VSSLT HT_RXCALP HT_REFCLKN HT_REFCLKP C
PLLVDD18 VSSLT TXCLK_UP TXCLK_UN TXOUT_U3P TXOUT_U3N TXOUT_U2P TXOUT_U2N VDDHTRX VSSAHT HT_TXCAD0P HT_TXCAD0N D
VSS VSS RESERVED GREEN BLUE VSSLT VDDHTRX VSSAHT HT_TXCAD1P HT_TXCAD1N E
AVDDDI RESERVED RESERVED GREEN# BLUE# VDDHTRX HT_TXCAD8P HT_TXCAD3N HT_TXCAD3P HT_TXCAD2P HT_TXCAD2N F
DAC_RSET AVSSDI RED# RED VDDHTRX HT_TXCAD9P HT_TXCAD8N VSSAHT VSSAHT VSSAHT G
AVSS Q AVDDQ VDDA18HTPLL VDDHTRX VSSAHT VSSAHT HT_TXCAD9N HT_TXCAD4N HT_TXCAD4P HT_T XCLK0P HT_TXCLK0N H
VDDC VSS VDDC VDDHT HT_TXCAD11P HT_TXCAD12N HT_TXCAD10P HT_TXCAD10N VSSAHT HT_TXCAD5N HT_TXCAD5P J
VSS VDDC V DDHT HT_TXCAD11N HT_TXCAD7N HT_TXCAD7P HT_TXCAD6P HT_TXCAD6N K
VDDC VSS VDDHT VSSAHT HT_TXCAD13N HT_TXCAD12P HT_TXCLK1N HT_TXCLK1P VSSAHT VSSAHT VSSAHT L
VSS VDDC V DDHT VDDHTTX HT_TXCAD15N HT_TXCAD13P VSSAHT HT_TXCAD14P HT_RXCTL0P HT_RXCTL0N HT_TXCTL0P HT_TXCTL0N M
VDDC VSSAHT HT_RXCAD7P HT_RXCAD7N N
VDDC VSS VDDHT VDDHTTX HT_TXCAD15P HT_TXCTL1P VSSAHT HT_TXCAD14N HT_RXCAD5P HT_RXCAD5N HT_RXCAD6N HT_R XCA D6P P
VSS VDDC V DDHT VDDHTTX HT_TXCTL1N VSSAHT HT_RXCTL1N HT_RXCT L1P VSSAHT VSSAHT VSSAHT R
VDDC VDDC VDDHT VDDHTTX HT_RXCLK0P HT_RXCLK0N HT_RXCAD4N HT_RXCAD4P T
VSS VSS VDDC VDDHTTX
MEM_ODT MEM_CKP MEM_DQ4 VDDHTTX VSSAHT
MEM_CKN VSS MEM_DM0 MEM_DQS0N VDDHTTX
MEM_A13 MEM_DQ7 MEM_DQS0P VSS MEM_DQ3 VDDHTTX VSSAHT HT_RXCAD11P
VSS MEM_DQ6 MEM_DQ5 MEM_DQ0 MEM_DQ2 MEM_DQ1 VDDHTTX HT_RXCLK1N
MEM_A6 VSS MEM_A5 VSS MEM_CKE VSS MEM_DQ12 VSS VDDHTTX HT_RXCLK1P HT_RXCAD9N HT_RXCAD9P AB
MEM_A12 MEM_A10 MEM_DQ11 MEM_DQ8 MEM_DQ14 VDDHTTX HT_RXCAD8P HT_RXCAD8N AC
MEM_A7 MEM_A9 MEM_BA0 MEM_BA2 MEM_WE# MEM_DQ9 MEM_DQS1P MEM_DQ15 MEM_DQ13 IOPLLVSS VDDHTTX VSSAHT AD
VSS MEM_A3 MEM_A1 MEM_BA1 MEM_VREF MEM_DM1 VSS MEM_DQS1N MEM_DQ10 IOPLLVDD18 IOPLLVDD VDDHTTX AE
14 15 16 17 18 19 20 21 22 23 24 25
HT_RXCAD15 HT_RXCAD15 HT_RXCAD14 HT_RXCAD14
HT_RXCAD13 HT_RXCAD13
HT_RXCAD12 HT_RXCAD12
VSSAHT HT_RXCAD3P HT_RXCAD3N U
HT_RXCAD1P HT_RXCAD1N HT_RXCAD2N HT_RXCAD2P V
VSSAHT VSSAHT VSSAHT W
HT_RXCAD11
HT_RXCAD0N HT_RXCAD0P Y
HT_RXCAD10 HT_RXCAD10
AA
CPU Interface A-Link Express II Interface Clock Interface Side-port Memory Interface CRT Interface External graphics Interface Integrated DVI/HDMI Interface General Purpose External Device Interface
Power Management Interface Powers Grounds Others
Figure 3-2 RS880 Pin Assignment Top View (Right)
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 3-3

3.2 Interface Block Diagram

HT_RXCAD[15:0]P, HT_RXCAD[15:0]N
HT_RXCLK[1:0]P, HT_RXCLK[1:0]N
HT_RXCTL[1:0]P, HT_RXCTL[1:0]N
HT_TXCTL[1:0]P, HT_TXCTL[1:0]N
HT_RXCALP, HT_RXCALN
HT_TXCALP, HT_TXCALN
HT_TXCLK[1:0]P, HT_TXCLK[1:0]N
HT_TXCAD[15:0]P, HT_TXCAD[15:0]N
SB_TX[3:0]P, SB_TX[3:0]N
SB_RX[3:0]P, SB_RX[3:0]N
TXOUT_U0N, TXOUT_U0P TXOUT_U1N, TXOUT_U1P TXOUT_U2N, TXOUT_U2P
TXCLK_LN, TXCLK_LP
TXOUT_L0N, TXOUT_L0P
TXCLK_UN, TXCLK_UP
TXOUT_L1N, TXOUT_L1P TXOUT_L2N, TXOUT_L2P
GFX_TX[15:0]P, GFX_TX[15:0]N GFX_RX[15:0]P, GFX_RX[15:0]N
AVSSQ
TESTMODE
THERMALDIDOE_N,
SYSRESET#
POWERGOOD
VDDLT33
VDDC
PLLVSS
DAC_RSET
RED, RED# GREEN, GREEN#
DAC_SCL DAC_SDA
DAC_HSYNC
DAC_VSYNC
BLUE, BLUE#
THERMALDIODE_P
HyperTransport™
Interface
Integrated DVI/HDMI
Interface
A-Link Express
II Interface
Power
Management
Interface
Misc. Signals
PCIe
®
External
Graphics or
TMDS
Interface
CRT
Interface
Clock
Interface
Power
Grounds
VDDHTRX
AVSSDI
PCIe
Interface
for General
Purpose
External Devices
GPP_TX[5:0]P, GPP_TX[5:0]N GPP_RX[5:0]P, GPP_RX[5:0]N
PCE_CALRP
Misc. PCIe
Signals
PCE_CALRN
VSS
LDTSTOP#
ALLOW_LDTSTOP
I2C_CLK
DDC_DATA0/AUX0N
I2C_DATA
STRP_DATA
TMDS_HPD
IOPLLVDD
AVDD AVDDDI
VDDLTP18
VDDLT18
AVDDQ
DDC_CLK0/AUX0P
VSSLT
IOPLLVSS
VSSAPCIE
VSSAHT
VDD_MEM
IOPLLVDD18
PLLVDD
PLLVDD18 VDDA18HTPLL
VDD33 VDDHT
VDDA18PCIEPLL
VDDA18PCIE
VDD18_MEM
VDD18
VDDHTTX
AUX_CAL
DDC_DATA1/AUX1N
HPD
DDC_CLK1/AUX1P
MEM_DM[1:0]
MEM_A[13:0]
MEM_CKE
MEM_CKP, MEM_CKN
MEM_RAS#
MEM_CS#
Side-port
Memory
Interface
MEM_CAS#
MEM_DQ[15:0]
MEM_DQS[1:0]P, MEM_DQS[1:0]N
MEM_WE#
MEM_ODT
MEM_COMPP, MEM_COMPN
MEM_VREF
MEM_BA[2:0]
GPIO[4:2]
GPPSB_REFCLKP, GPPSB_REFCLKN
HT_REFCLKP, HT_REFCLKN
GFX_REFCLKP, GFX_REFCLKN
REFCLK_N, REFCLK_P
GPP_REFCLKP, GPP_REFCLKN
SUS_STAT#
VSSLTP18
RED#, GREEN#, BLUE#
Figure 3-3 shows the different interfaces on the RS880. Interface names in blue are hyperlinks to the corresponding sections in this chapter.
Interface Block Diagram
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 3-4 Proprietary
Figure 3-3 RS880 Interface Block Diagram
CPU HyperTransport™ Interface

3.3 CPU HyperTransport™ Interface

Table 3-1 CPU HyperTransport Interface

Pin Name Type
HT_RXCAD[15:0]P, HT_RXCAD[15:0]N
HT_RXCLK[1:0]P, HT_RXCLK[1:0]N
HT_RXCTL[1:0]P, HT_RXCTL[1:0]N
HT_TXCAD[15:0]P, HT_TXCAD[15:0]N
HT_TXCLK[1:0]P, HT_TXCLK[1:0]N
HT_TXCTL[1:0]P, HT_TXCTL[1:0]N
HT_RXCALN Other VDDHTRX VSS Receiver Calibration Resistor to VDD_HT power rail. HT_RXCALP Other VDDHTRX VSS Receiver Calibration Resistor to Ground HT_TXCALP Other VDDHTTX VSS Transmitte r Calibration Resistor to HTTX_ CALN HT_TXCALN Other VDDHTTX VSS Transmitter Calibration Resistor to HTTX_CALP
I VDDHTRX VSS Receiver Command, Address, and Data Differe ntial Pairs
I VDDHTRX VSS
I VDDHTRX VSS
O VDDHTTX VSS Transmitter Command, Address, and Data Differential Pairs
O VDDHTTX VSS
O VDDHTTX VSS
Power
Domain

3.4 Side-port Memory Interface

Table 3-2 Side-Port Memory Interface

Ground Domain
Functional Description
Receiver Clock Signal Differential Pairs. Forwarded clock signal. Each byte of RXCAD uses a different clock signal. Dat a is transfe rred o n ea ch clo ck ed ge.
Receiver Control Differential Pairs. For distinguishing control packets from data packets.
Transmitter Clock Signal Differential Pairs. Ea ch byte of TXCAD uses a different clock signal. Data is transferred on each clock edge.
Transmitter Control Differentia l Pairs. Fo rwarded clock signal. For distinguishing control packets from data packets.
Pin Name Type
MEM_A[13:0] O VDD_MEM VSS None MEM_BA[2:0] O VDD_MEM VSS None Memory Bank Address
MEM_RAS# O VDD_MEM VSS None Row Address Strobe MEM_CAS# O VDD_MEM VSS None Column Address Strobe MEM_WE# O VDD_MEM VSS None Write Enable Strobe MEM_CKE O VDD_MEM VSS None Clock Enable
MEM_CKP, MEM_CKN
MEM_CS# O VDD_MEM VSS None Chip Select MEM_ODT O VDD_MEM VSS None On-die Termination MEM_DQ[15:0] I/O VDD_MEM VSS None Memory Data Bus. Supports SSTL2 and SSTL3. MEM_DM[1:0] I/O VDD_MEM VSS None Data masks for each byte during memory write cycle s
MEM_DQS[1:0]P, MEM_DQS[1:0]N
MEM_COMPP, MEM_COMPN
MEM_VREF Other VSS None
O VDD_MEM VSS None O VDD_MEM VSS None
I/O VDD_MEM VSS None I/O VDD_MEM VSS None
Other VDD_MEM VSS None
Power
Domain
Ground Domain
Integrated Termination
Functional Description
Memory Address Bus. Provides the multiplexed row and column addresses to the memory.
Memory Differential Clock
Memory Data Strobe s. These a re bi-directional data strobes for latching read/write data.
Memory interface compensation pins for N and P channel devices. Connect through resistors to VDD_MEM and ground respectively (refer to the reference schematics for the proper resistor values).
Reference voltage. It supplies the threshold value fo r distinguishing between “1” and “0” on a memory signal. Typical value is 0.5*VDD_MEM.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 3-5

3.5 PCI Express® Interfaces

3.5.1 1 x 16 Lane Interface for External Graphic s

Table 3-3 1 x 16 Lane PCI Express® Interface for External Graphics
PCI Express® Interfaces
Pin Name Type
GFX_TX[15:0]P, GFX_TX[15:0]N
GFX_RX[15:0]P, GFX_RX[15:0]N
O VDDPCIE VSSAPCIE
Power
Domain
I VDDPCIE VSSAPCIE
Ground Domain
Integrated Termination
50Ω between complements
50Ω between complements
Functional Description
Transmit Data Differential Pairs. Connect to external connector for an external graphics card on the motherboard (if implemented).
Receive Data Differential P airs. Connect to external connector for an external graphics card on the motherboard (if implemented).

3.5.2 A-Link Express II Interface for Southbridge

Note: The widths of the A-Link Express II interface and the general purpose links for external devices are configured
through the programmable strap GPPSB_LINK_CONFIG, which is programmed through RS880’s registers. See the
RS880 ASIC Family Register Reference Guide, order# 46142, and the RS880 ASIC Family Register Programming Requirements, order# 46141, for details.
Table 3-4 1 x 4 Lane A-Link Express II Interface for Southbridge
Pin Name Type
SB_TX[3:0]P, SB_TX[3:0]N
SB_RX[3:0]P, SB_RX[3:0]N
O VDDPCIE VSSAPCIE
Power
Domain
I VDDPCIE VSSAPCIE
Ground Domain
Integrated
Termination
50Ω between complements
50Ω between complements
Functional Description
Transmit Data Differential Pairs. Connect to the corresponding Receive Data Differential pairs on the Southbridge.
Receive Data Differential Pairs. Con nect t o the correspon ding Transmit Data Dif ferent ial p airs on the Sou thbridge .

3.5.3 6 x 1 Lane Interface for General Purpose External Devices

Note: The widths of the A-Link Express II interface and the general purpose links for external devices are configured
through the programmable strap GPPSB_LINK_CONFIG, which is programmed through RS880’s registers. See the
RS880 ASIC Family Register Reference Guide, order# 46412, and the RS880 ASIC Family Register Programming Requirements, order# 46141, for details.
Table 3-5 6 x 1 Lane PCI Express® Interface for General Purpose External Devices
Pin Name Type
GPP_TX[5:0]P, GPP_TX[5:0]N
GPP_RX[5:0]P, GPP_RX[5:0]N
O VDDPCIE VSSAPCIE
Power
Domain
I VDDPCIE VSSAPCIE
Ground Domain

3.5.4 Miscellaneous PCI Expre ss® Signals

Ta ble 3-6 PCI Express® Interface for Miscellaneous PCI Express® Signals
Pin Name Type
PCE_CALRN Other VDDPCIE VSSAPCIE
PCE_CALRP Other VDDPCIE VSSAPCIE
Power
Domain
Ground Domain
Integrated
Termination
50Ω between complements
50Ω between complements
Functional Description
Transmit Data Dif ferential Pairs. C onnect to extern al connectors on the motherboard for add-in card or ExpressCard support.
Receive Data Differential Pairs. Connect to external connectors on the motherboard for add-in card or ExpressCard support.
Functional Description
RX Impedance Calibration. Connect to VDDPCIE on the motherboard with an external resistor of an appropriate value.
TX Impedance Calibration. Connect to GND on the motherboard with an external resistor of an appropriate value.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 3-6 Proprietary
Clock Interface

3.6 Clock Interface

Table 3-7 Clock Interface

Pin Name Type
HT_REFCLKP, HT_REFCLKN
GFX_REFCLKP, GFX_REFCLKN
GPPSB_REFCLKP, GPPSB_REFCLKN
GPP_REFCLKP, GPP_REFCLKN
REFCLK_P, REFCLK_N

3.7 CRT Interface

Table 3-8 CRT Interface

Pin Name Type
RED A-O AVDD Red for CRT monitor output GREEN A-O AVDD Green for CRT monitor output BLUE A-O AVDD Blue for CRT monitor output
DAC_HSYNC A-O VDD33 VSS
DAC_VSYNC A-O VDD33 VSS
DAC_RSET Other N/A AVSSQ
DAC_SDA I/O VDD33 VSS
DAC_SCL I/O VDD33 VSS
Power
Domain
VDDA18H
I
TPLL
I/O VDDPCIE VSSAPCIE
I VDDPCIE VSSAPCIE
O VDDPCIE VSSAPC IE
IVDD33VSS
Power
Domain
Ground Domain
VSSAHT
Ground Domain
Integrated
Termination
50Ω between complements
50Ω between complements
50Ω between complements
Integrated
Termination
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
Functional Description
HyperTransport™ 100MHz reference clock dif ferential pa ir. Input from external clock source, as a reference clock for the HyperTransport interface.
Clock Differential Pair for external graphics. Input from the external clock generator, as a reference clock for externa l graph ics.
Clock Differential Pair for Southbridge and general purpose PCIe devices. Input from the external clock generator, as a reference clock for A-Link Express II and general purpose PCIe.
Clock Differential Pair for general purpose PCIe devices. Not u sed. Can be left unconnected, or connected to the external clock generator.
Reference clock input for the RS880. REFCLK_P is a single-ended,
14.31818MHz input from the external clock generator; input swing should be 1.1V. Connect REFCLK_N to VREF (0.55V) on the motherboard.
®
Functional Description
Display Horizontal Sync
Display Ve rti cal Sy nc
DAC internal reference to set full scale DAC current through 1% resistor to AVSSQ
I2C data for display (to video monitor). The signal is 5V-tolerant.
I2C clock for display (to video monitor). The signal is 5V-tolerant.

3.8 Integrated DVI/HDMI™ Interface

Table 3-9 Integrated DVI/HDMI™ Interface

Pin Name
Functional
Type
Name
DVI/HDMI™
TXOUT_L0N TX0M O VDDLT18 VSSLT None DVI/HDMI™ data channel 0 (-) TXOUT_L0P TX0P O VDDLT18 VSSLT None DVI/HDMI data channel 0 (+) TXOUT_L1N TX1M O VDDLT18 VSSLT None DVI/HDMI data channel 1 (-) TXOUT_L1P TX1P O VDDLT18 VSSLT None DVI/HDMI data channel 1 (+)
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 3-7
Power
Domain
Ground Domain
Integrated
Termination
Functional Description
TMDS Interface Multiplexed on the PCI Express® Graphics Lanes
Table 3-9 Integrated DVI/HDMI™ Interface (Continued)
Pin Name
Functional
Type
Name
TXOUT_L2N TX2M O VDDLT18 VSSLT None DVI/HDMI data channel 2 (-) TXOUT_L2P TX2P O VDDLT18 VSSLT None DVI/HDMI data channel 2 (+)
TXOUT_L3N TX3M O VDDLT18 VSSLT None
TXOUT_L3P TX3P O VDDLT18 VSSLT None
TXOUT_U0N TX4M O VDDLT18 VSSLT None
TXOUT_U0P TX4P O VDDLT18 VSSLT None
TXOUT_U1N TX5M O VDDLT18 VSSLT None
TXOUT_U1P TX5P O VDDLT18 VSSLT None
TXOUT_U2N O VDDLT18 VSSLT None Unused TXOUT_U2P O VDDLT18 VSSLT None Unused TXOUT_U3N O VDDLT18 VSSLT None Unused TXOUT_U3P O VDDLT18 VSSLT None Unused TXCLK_LN TXCM O VDDLT18 VSSLT None DVI/HDMI clock channel (-) TXCLK_LP TXCP O VDDL T18 VSSLT None DVI/HDMI clock channel (+) TXCLK_UN O VDDLT18 VSSLT None Unused TXCLK_UP O VDDLT18 VSSLT None Unused
DVI/HDMI™
Power
Domain
Ground Domain
Integrated
Termination
Functional Description
DVI data channel 3 (-). The channel is only used in DVI dual-link mode and is not used for HDMI support.
DVI data channel 3 (+). The channel is only used in DVI dual-link mode and is not used for HDMI support.
DVI data channel 4 (-). The channel is only used in DVI dual-link mode and is not used for HDMI support.
DVI data channel 4 (+) The channel is only used in DVI dual-link mode and is not used for HDMI support.
DVI data channel 5 (-). The channel is only used in DVI dual-link mode and is not used for HDMI support.
DVI data channel 5 (+). The channel is only used in DVI dual-link mode and is not used for HDMI support.

3.9 TMDS Interface Multiplexed on the PCI Express® Graphics Lanes

The RS880 supports a dual-link TMDS interface, enabling DVI/HDMI, which is multiplexed on the PCIe® external graphics lanes.
HDMI is enabled only through the single-link mode. Table 3-10 to Table 3-12 show the multiplexing relationships between the PCIe external graphics signals and the TMDS signals for different configuration s. Table 3-13 lists the miscellaneous TMDS signals that are not multiplexed on the PCIe graphics interface.

Table 3-10 TMDS Interface Multiplexed on the PCI Express® Graphics Interface (Dual-Link DVI)

Pin Name
GFX_TX0P A5 TX2P - 1st Link Red+ GFX_TX0N B5 TX2M - 1st Link Red­GFX_TX1P A4 TX1P - 1st Link Green+ GFX_TX1N B4 TX1M - 1st Link Green­GFX_TX2P C3 TX0P - 1st Link Blue+ GFX_TX2N B2 TX0M- 1st Link Blue ­GFX_TX3P D1 TXCP - Clock+ GFX_TX3N D2 TXCM - Clock­GFX_TX4P E2 TX5P- 2nd Link Red+
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 3-8 Proprietary
Ball
Reference
TMDS Function
TMDS Interface Multiplexed on the PCI Express® Graphics Lanes
Table 3-10 TMDS Interface Multiplexed on the PCI Express® Graphics Interface (Dual-Link DVI) (Continued)
Pin Name
GFX_TX4N E1 TX5M - 2nd Link Red­GFX_TX5P F4 TX4P- 2nd Link Green+ GFX_TX5N F3 TX4M - 2nd Link Green­GFX_TX6P F1 TX3P - 2nd Link Blue+ GFX_TX6N F2 TX3M - 2nd Link Blue-

Table 3-11 TMDS Interface Multiplexed on the PCI Express® Graphics Interface (HDMI™ on Lane 0-3)

Pin Name
GFX_TX0P A5 TX2P - Red+ GFX_TX0N B5 TX2M - Red­GFX_TX1P A4 TX1P - Green+ GFX_TX1N B4 TX1M - Green­GFX_TX2P C3 TX0P - Blue+ GFX_TX2N B2 TX0M- Blue ­GFX_TX3P D1 TXCP - Clock+ GFX_TX3N D2 TXCM - Clock-

Table 3-12 TMDS Interface Multiplexed on the PCI Express® Graphics Interface (HDMI™ on Lane 4-7)

Ball
Reference
Ball
Reference
TMDS Function
TMDS Function
Pin Name
GFX_TX4P E2 TX2P - Red+ GFX_TX4N E1 TX2M - Red­GFX_TX5P F4 TX1P - Green+ GFX_TX5N F3 TX1M - Green­GFX_TX6P F1 TX0P - Blue+ GFX_TX6N F2 TX0M- Blue ­GFX_TX7P H4 TXCP - Clock+ GFX_TX7N H3 TXCM - Clock-
Ball
Reference
TMDS Function

Table 3-13 Miscellaneous TMDS Interface Signals

Pin Name
DDC_CLK0/AUX0P A8
DDC_DATA0/AUX0N B8
DDC_CLK1/AUX1P B7
DDC_DATA1/AUX1N A7
*Note: Typical arrangements shown here. BIOS can select which DDC clock/dat a pair is to be used for each display.
Ball
Reference
TMDS Function
DDC Clock 0 for display connected onto lane 0 to 3 (or 0 to 7 for dual-link DVI) of the PCIe® external graphics interface.* For detailed pin information, see
Table 3-17, “Miscellaneous Pins”
DDC Data Channel 0 for display connected onto lane 0 to 3 (or 0 to 7 for du al -link DVI) on the PCIe external graphics interface.* For detailed pin information,
Table 3-17, “Miscellaneous Pins”
DDC Clock 1 for display connected onto lane 4 to 7 of the PCIe external grap hics interface.* For detailed pin information,
Pins”
.
DDC Data Channel 1 for displayconnected onto lane 4 to 7 on the PCI e external graphics interface.* For detailed pin information,
“Miscellaneous Pins”
.
.
see
.
see Table 3-17, “Miscellaneous
see Table 3-17,
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 3-9

3.10 DisplayPort™ Interface

The RS880 supports a maximum two DisplayPort™ (DP) channels through signals multiplexed on the PCIe graphics interface. Different implementations are possible, depending on the system configuration. Table 3-10 shows only one possibility, which uses the lower eight lanes of the interface for a dual-link DP output. For more explanations, please refer to RS880 DisplayPort Implementation Details. Table 3-15 lists the miscellaneous DP signals that are not multiplexed on the PCIe graphics interface.
Table 3-14 DisplayPort™ Interface Multiplexed on the PCI Express
Pin Name Ball Reference DisplayPort ™ Function
GFX_TX0P, GFX_TX0N
GFX_TX1P, GFX_TX1N
GFX_TX2P, GFX_TX2N
GFX_TX3P, GFX_TX3N
DDC_CLK0/AUX0P, DDC_DATA0/AUX0N
GFX_TX4P, GFX_TX4N
GFX_TX5P, GFX_TX5N
GFX_TX6P, GFX_TX6N
GFX_TX7P, GFX_TX7N
AUX_CAL C8 Calibration for auxiliary p ads.
A5/B5 Main Link Channel Pair 0 on the first DP connector
A4/B4 Main Link Channel Pair 1 on the first DP connector
C3/B2 Main Link Channel Pair 2 on the first DP connecto r
D1/D2 Main Link Channel Pair 3 on the first DP connector
A8/B8 Auxiliary Channel Pair 0 on the first DP connector
E2/E1 Main Link Channel Pair 0 on the second DP conne ct or
F4/F3 Main Link Channel Pair 1 on the second DP connector
F1/F2 Main Link Channel Pair 2 on the second DPconnector
H4/H3 Main Link Channel Pair 3 on the second DP connector
®
Graphics Interface
DisplayPort™ Interface

Table 3-15 Miscellaneous DisplayPort™ Signals

Pin Name Ball Reference DisPlay Port™ Function
DDC_CLK0/AUX0P, DDC_DATA0/AUX0N
DDC_CLK1/AUX1P, DDC_DATA1/AUX1N
HPD D10
A8/B8
B7/A7
Auxiliary Channel Pair 0 on the first DP connector. For detailed pin informa­tion,
see Table 3-17, “Miscellaneous Pins”.
Auxiliary Channel Pair 1 on the second DP connector. For detailed pin infor­mation,
see Table 3-17, “Miscellaneous Pins”.
Hot plug detect for DisplayPort. Can also be used as GPIO. For de t ailed pin information,
see Table 3-17, “Miscellaneous Pins”.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 3-10 Proprietary
Power Management Pins

3.11 Power Management Pins

Table 3-16 Power Management Pins

Pin Name Type
LDTSTOP# I VDD33 VSS HyperTransport™ S to p. U sed fo r systems requiring power mana gement. It is a
ALLOW_LDTSTOP OD VDD33 VSS Allow LDTSTOP. The signal is used for controlling LDTSTOP assertions. It is an
SYSRESET# I VDD33 VSS Global Hardware Reset. This signal comes from the Southbridge.
SUS_STAT# I VDD33 VSS
POWERGOOD I VDD18 VSS Input from the motherboard signifying that the power to the RS880 is up and ready .
Power
Domain
Ground Domain
Functional Description
single-ended signal for input from the Southbridge to enable and disable t he HyperTransport link during system state tran sitions.
Note: For platforms supporting DDR2 system memory, 1.8V signalling can be used on the signal. For platforms supporting DDR3 system me mory, follow recommendations in the RS880-Series IGP Motherboard Schematic Review
Checklist.
output to the SB. 1 = LDTSTOP# can be asserted 0 = LDTSTOP# has to be de-asserted
Note: For platforms supporting DDR2 system memory, 1.8V signalling can be used on the signal. For platforms supporting DDR3 system me mory, follow recommendations in the RS880-Series IGP Motherboard Schematic Review
Checklist.
Suspend Stat us. SUS_STAT# from the Southbridge is connect ed to the pin to gate the sideport memory I/Os while power is ramping up a nd t he P OWE RGOOD signal to the RS880 is still low.
Signal High means all power planes are valid. It is not observed internally until it has been high for more than six consecutive REFCLK cycles. The rising edge of this signal is deglitched.

3.12 Miscellaneous Pins

Table 3-17 Miscellaneous Pins

Pin Name Type
AUX_CAL I VDD33 VSS
DDC_CLK0/AUX0P I/O VDD33 VSS
DDC_DATA0/AUX0N I/O VDD33 VSS
DDC_CLK1/AUX1P I/O VDD33 VSS
DDC_DATA1/AUX1N I/O VDD33 VSS
GPIO[4:2] I/O VDDR3 VSS
HPD I VDD33 VSS
Power
Domain
Ground
Domain
Integrated
Termination
50kΩ
programmable:
PU/PD/non
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
Functional Description
Calibration for auxiliary pads.
DDC Clock 0 for displays, or AUX0P of the auxiliary pair for the DisplayPort connected onto lane 0 to 3 of the PCIe graphics interface. Can also be used as a GPIO.
DDC Data Channel 0 for displays, or AUX0N of the auxiliary p air for the DisplayPort connected onto lane 0 to 3 on the PCIe external graphics interface. Can also be used as a GPIO.
DDC Clock 1 for displays, or AUX1P of the auxiliary pair for the DisplayPort connected onto lane 4 to 7 of the PCIe external graphics interface. Can also be used as a GPIO.
DDC Data Channel 1 for displays, or AUX1N of the auxiliary p air for the DisplayPort connected onto lane 4 to 7 on the PCIe external graphics interface. Can also be used as a GPIO.
General Purpose I/O. These pins can also be used as outputs to the voltage regulator for pulse-width modulation of various voltages on the motherboard. If not used for pulse-width-modulation, GPIO3 can also be used as a "hot plug" panel detection input pin tha t monitors if the voltage is greater than 2.0V on th e ho t-plugg in g line from a digital display.
Hot plug detect for DisplayPort. Can also be used as GPIO.
®
external
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 3-11
Table 3-17 Miscellaneous Pins (Continued)
Power Pins
Pin Name Type
I2C_CLK I/O VDD33 VSS
I2C_DA TA I/O VDD33 VSS
NC No connect. These pins should be left unconnected to anything.
STRP_DATA I/O VDD33 VSS
TESTMODE I VDD33 VSS – THERMALDIODE_P,
THERMALDIODE_N
TMDS_HPD I/O VDD33 VSS
VDDLT33 Other
A-O
Power
Domain
Ground
Domain
Integrated
Termination
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
50kΩ
programmable:
PU/PD/none
Functional Description
2
I
C interface clock signal.It can also be used as GPIO. The signal is
5V-tolerant.
2
I
C interface data signal. It can also be used as GP IO. The sig nal
is 5V-tolerant.
2
I
C interface data signal for external EEPROM based st rap loading. Can also be used as GPIO, or as output to the voltage regulator for pulse-width modulation of RS880’s core voltage.
When High, puts the RS880 in test mode and disables the RS 880 from operating normally.
Diode connections to external SMBus microcontroller for monitoring IC thermal characteristics.
TMDS Hot Plug Detect. It monitors the hot-plug line for panel detection. It is a 3.3V CMOS compatible input. When not used for hot plug detection, it can also be used as output to the vo ltage regulator for pulse-width modulation of various voltages on the motherboard.
These balls are only for maintaining pin-comp at ib ility with earlier generations of AMD IGPs or chipsets. They can either be connected to a 3.3V rail or left unconnected on RS880 syst ems.

3.13 Power Pins

Table 3-18 Power Pins

Pin Name Voltage
AVDD 3.3V 2 E12, F12 Dedicated power for the DAC. Effort shou ld be made at the board
AVDDDI 1.8V 1 F14 Dedicated digital power for the DAC AVDDQ 1.8V 1 H15 DAC Bandgap Reference V olt age IOPLL VDD 1.1V 1 AE24 1.1V power f or me mory I/ O PLLs IOPLL VDD18 1.8V 1 AE23 1.8V power for memory I/O PLLs PLLVDD 1.V 1 A12 1.1V Power for system PLLs PLLVDD18 1.8V 1 D14 1.8V power for system PLLs VDD_MEM 1.5/1.8V 6 AA11, AB10, AC10, AD10,
VDD18_MEM 1.8V 2 AD11, AE11 1.8V power for side-port memory interface VDDA18HTPLL 1.8V 1 H17 I/O power for HyperTransport™ PLL VDDA18PCIE 1.8V 15 AA9, AB9, AD9, AE9, H9,
VDDA18PCIEPLL 1.8V 2 D7, E7 1.8V I/O power for PCIe PLLs VDDC 1.1V 22 J11, J14, J16, K1 2, K 15,
VDD18 1.8V 2 F9, G9 1.8V I/O transform power
Pin
Count
Ball Reference Pin Description
level to provide as clean a power as possible to this pin to avoid noise injection, which can affect display quality. Adequate decoupling should be provided between this pin and AVSS.
Isolated power for side-port memory interface.
AE10, Y11
1.8V I/O power for PCIe J10, K10, L10, M10, P10, R10, T10, U10, W9, Y9
Core power L11, L1 4, M 12, M13, M15, N12, N14, P11, P13, P14, R12, R15, T1 1, T14, T15, U12, U16
®
graphics, SB, and GPP interfaces
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 3-12 Proprietary
Ground Pins
Table 3-18 Power Pins (Continued)
Pin Name Voltage
VDD33 3.3V 2 H11, H12 3.3V I/O power VDDHT 1.1V 7 J17, K16, L16, M16, P16,
VDDHTRX 1.1V 7 A23 ,B23, D22, E21, F20,
VDDHTTX 1.2V 13 AA21, AB22, AC23, AD24,
VDDLT18 1.8V 2 A15, B15 1.8V I/O power for the integrated DVI/HDMI™ interface VDDLTP18 1.8V 1 A13 Power for integrated DVI/HDMI PLL macro. VDDPCIE 1.1V 17 A6, B6, C6, D6, E6, F6, G7,
Total Power Pin Count 107

3.14 Ground Pins

Table 3-19 Ground Pins

Pin Name Pin Count Ball Reference Comments
AVSSDI 1 G15 Dedicated digital ground for the DAC (1.8V) AVSS Q 1 H14 Dedicated ground for the Band Gap Reference. Ef fo rt shou ld be
PLLVS S 1 B12 Ground pin for graphics core PLL RED#, GREEN#,
BLUE# VSS 34 AA14, AB1 1, AB15, AB1 7,
VSSAHT 27 A25, AD25, D23, E22, G22,
VSSAPCIE 40 A2, AA4, AB1, AB2, AB5, AB7,
VSSLT 7 C14, C16, C18, C20, C22,
Pin
Count
3 G17, F18, F19 Grounds for the DAC. These pins must be connecte d directly to
Ball Reference Pin Description
Digital I/O power for HyperTransport interface
R16, T16
I/O power for HyperTransport receive interface
G19, H18
I/O power for HyperTransport transmit interface AE25, M17, P17, R17, T17, U17, V18, W19, Y20
Main I/O power for PCIe graphics, SB, and GPP in terfa ce s H8, J9, K9, L9, M9, P9, R9, T9, U9, V9
made at the board level to provide as clean a ground as possible to this pin to avoid noise injection, which can affect display quality . Adequate decoupling should be provided between this pin and AVDD.
ground.
Common Ground AB19, AB21, AC12, AE14, AE20, D11, E14, E15, G8, J12, J15, K11, K14, L12, L15, M11, M14, N13, P12, P15, R11, R14, T12, U11, U14 , U15, V12, W11 , W15, Y1 8
Ground pin for HyperTransport interface PLL G24, G25, H19, H20, J22, L17, L22, L24, L25, M20, N22, P20, R19, R22, R24, R25, U22, V19, W22, W24, W25, Y21
Ground for PCI Express AC3, AC4, AE1, AE4, B1, D3, D5, E4, G1, G2, G4, H7, J4, L1, L2, L4, L7, M6, N4, P6, R1, R2, R4, R7, U4, V6, V7, V8, W1, W2, W4, W7, W8, Y6
Integrated DVI/HDMI™ D15, E20
®
Interface
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 3-13
Table 3-19 Ground Pins (Continued)
Pin Name Pin Count Ball Reference Comments
VSSLTP18 1 B13 Ground for Integrated DVI/HDMI PLL macro Total Ground Pin Count 113

3.15 Strapping Options

The RS880 provides strapping options to define specific operating parameters. The strap values are latched into internal registers after the assertion of the POWERGOOD signal to the RS880. Table 3-20, “Strap Definitions for the RS880,” shows the definitions of all the strap functions. These straps are set by one of the following four methods:
Attaching pull-up resistors to specific strap pins listed in Table 3-20 to set their values to “1”.
Attaching pull-down resistors to specific strap pins listed in Table 3-20 to set their values to “0”.
Downloading the strap values from an I
representative for details).
Setting through an external debug port, if implemented (contact your AMD CSS representative for details).
All of the straps listed in Table 3-20 are defined active low. To select “1”, the strap pins must be pulled up to VDD33 through resistors. To select “0”, the strap pins must be pulled down to VSS through resistors. During reset, the strap pins are undriven, allowing the external pull-up or pull-down to pull a pin to “0” or “1.” The values on the strap pins are then latched into the device and used as operational parameters. However, for debug purposes, those latched values may be overridden through an external debug strap port or by a bit-stream downloaded from a serial EEPROM.
Strapping Options
2
C serial EEPROM (for debug purpose only; contact your AMD CSS

Table 3-20 Strap Definitions for the RS880

Strap Function Strap Pin Description
STRAP_DEBUG_BUS_GPIO _ENABLE#
SIDE_PORT_EN# DAC_HSYNC Indicates if memory side-port is available or not.
LOAD_EEPROM_STRAPS# SUS_STAT# Selects loading of strap values from EEPROM.
Note: On the RS880, the widths of the A-Link Express II interfac e a nd t he g enera l purpo se PCI e links are conf ig ured throu gh t he programmable strap GPPSB_LINK_CONFIG, which is programmed through RS880’s regist ers. S ee t he RS880 ASIC Family Register Reference Guide, order# 46142, and the RS880 ASIC Family Register Programming Require ments, order# 46141, for details.
DAC_VSYNC Enables debug bus access through memory I/O pads and GPIOs.
0: Enable 1: Disable (See debug bus specification documents for m ore d etails.)
0: Available 1: Not available
2
0: I
C master can load strap values from EEPROM if connected, or use default values if EEPROM is not connected. Please refer to RS880's reference schematics for system level implementation details.
1: Use default values
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 3-14 Proprietary

4.1 HyperTransport™ Bus T iming

For HyperTransport™ bus timing information, please refer to CPU specifications.

4.2 HyperTransport™ Reference Clock Timing Parameters

Table 4-1 Timing Requirements for HyperTransport™ Reference Clock (100MHz) Output by the Clock Generator

Symbol Parameter Minimum Maximum Unit Note
ΔV
CROSS
F Frequency 99.9 100 MHz 2 ppm Long Term Accuracy -300 +300 Ppm 3 S
FALL
S
RISE
T
jc max
T
j-accumulated
V
D(PK-PK)
V
D
ΔV
D
DC Duty Cycle 45 55 % 11
Notes:
More details are available in AMD HyperTransport 3.0 Reference Clock Specification and AMD Family 10h Processor Reference Clock Parameters, order # 34864.
1 Single-ended measurement at crossing point. Value is maximum-minimum over all time. DC value of common mode is not important due to blocking cap. 2 Minimum frequency is a consequence of 0.5% down spread spectrum. 3 Measured with spread spectrum turned off. 4 Only simulated at the receive die pad. This parameter is intended to give guidance for simulation. It cannot be tested on a tester but is guaranteed by design. 5 Differential measurement through the range of ±100mV, differential signal must remain monotonic and within slew rate specification when crossing through this region. 6 T 7 Accumulated T 8 V 9 V V 10 The difference in magnitude of two adjacent V signal. 11 Defined as t
is the maximum difference of t
jc max
D(PK-PK)
is the amplitude of the ring-back differential measurement, guaranteed by design that the ring-back will not cross 0V VD.
D(min)
is the largest amplitude allowed.
D(max)
Change in Crossing point voltage over all edges - 140 mV 1
Output falling edge slew rate -10 -0.5 V/ns 4, 5 Output rising edge slew rate 0.5 10 V/ns 4, 5 Jitter, cycle to cycle - 150 ps 6 Accumulated jitter over a 10 μs period -1 1 ns 7 Peak to Peak Differential Voltage 400 2400 mV 8 Differential Voltage 200 1200 mV 9 Change in V
over a 10μs time period, measured with JIT2 TIE at 50ps interval.
jc
is the overall magnitude of the differential signal.
HIGH/tCYCLE
cycle to cycle -75 75 mV 10
DDC
between any two adjacent cycles.
CYCLE
measurements. V
DDC
.
DDC
Chapter 4

Timing Specifications

is the stable post overshoot and ring-back part of the
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 4-1
PCI Express® Differential Clock AC Specifications

4.3 PCI Express® Differential Clock AC Specifications

Ta ble 4-2 PCI Express® Differential Clock (GFX_REFCLK, GPPSB_REFCLK, 100MHz) AC Characteristics

Symbol Description Minimum Maximum Unit
Rising Edge Rate Rising Edge Rate 0.6 4.0 V/ns Falling Edge Rate Falling Edge Rate 0.6 4.0 V/ns T
PERIOD AVG
T
PERIOD ABS
T
CCJITTER
Duty Cycle Duty Cycle 40 60 % Rise-Fall Matching Rising edge rate (REFCLK+) to falling edge rate
Average Clock Period Aquaria -300 +2800 ppm Absolute Period (including jitter and spread spectrum
modulation) Cycle to Cycle Jitter - 150 Ps
(REFCLK-) matching
9.847 10.203 ns
-20%

4.4 Timing Requirements for REFCLK_P Used as OSCIN (14.3181818MHz)

Table 4-3 Timing Requirements for REF_CLKP Used as OSCIN (14.3181818MHz)

Symbol Parameter Min Max Unit Note
TIP REFCLK Period 69.82033 69.86224 ns TIH REFCLK High Time 2.0 ns TIL REFCLK Low Time 2.0 ns TIR REFCLK Rise Time 1.5 ns 1
TIF REFCLK Fall Time 1.5 ns 1 TIRR REFCLK Rising Edge Rate 0.09 4.0 V/ns TIFR REFCLK Falling Edge Rate 0.09 4.0 V/ns TIDC Duty Cycle 45 55 % 2
TIJCC REFCLK Cycle-to-Cycle Jitter Requirement 300 ps 3
TIJPP REFCLK Peak-to-Peak Jitter Requirement 200 ps 2, 3
TIJLT
Notes:
1. Measured from -150mV to + 150mV from VREF, which is 0.55V.
2. Measured at VREF, which is 0.55V.
3. Measured with spread spectrum disabled.
REFCLK Long T erm Jitter Requirement (1μs after scope trigger)
500 ps

4.5 Side-port Memory Timing for DDR2 Mode

The RS880’s side-port memory DDR2 interface complies with all the timing requirements given in the JESD79-2B specification. Please refer to the JEDEC standard for any timing details.

4.5.1 Read Cycle DQ/DQS Delay

During a memory read cycle, there is a DLL inside the RS880 that can delay each DQS signal with respect to its byte of the DQ valid window. This delay ensures adequate setup and hold time to capture the memory data. This DLL delay is programmable through the following registers:
MCA_DLL_SLAVE_RD_0. MCA_DLL_ADJ_DQSR_0 <NBMCIND : 0xE0[7:0]> MCA_DLL_SLAVE_RD_1. MCA_DLL_ADJ_DQSR_1 <NBMCIND : 0xE1[7:0]> The fraction of strobe delay, in terms of a memory clock period is (24+MCA_DLL_ADJ_DQSR) / 240. For example: if
MCA_DLL_ADJ_DQSR_1 = 36, then DQS1 is delayed by 0.25 x memory_clock_period. So, if the memory clock period is 5ns, then DQS1 is delayed internally by 1.25ns with respect to DQ[15:8].
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 4-2 Proprietary
Power Rail Power-up Sequence
T11
T12
T13
3.3-V Rails
(AVDD, VDD33)
1.8/1.5-V Side-port Memory,
1.8-V Display, PLL, and I/O Transform Rails
(PLLVDD18, IOPLLVDD18, VDDLT18, VDDLTP18,
VDDA18HTPLL, VDDA18PCIEPLL, AVDDDI, AVDDQ,
VDD18, VDD_MEM)
1.1-V PLL Rails
(PLLVDD, IOPLLVDD)
1.1-V VDDC
Note: There are no specific requirements for the following 1.1V or 1.2V rails: VDDHT, VDDHTRX, VDDHTTX, VDDPCIE

4.5.2 Write Cycle DQ/DQS Delay

Similar to a read cycle, during memory write cycle there is a DLL inside the RS880 that can delay each DQS signal with respect to its byte of the DQ valid window. This delay ensures adequate setup and hold time for DQ and DQS to the memory. This DLL delay is programmable by the following registers in the same manner as with the read cycle:
MCA_DLL_SLAVE_WR_0.MCA_DLL_ADJ_DQ_B0 <NBMCIND : 0xE8[7:0]> MCA_DLL_SLAVE_WR_1.MCA_DLL_ADJ_DQ_B1 <NBMCIND : 0xE9[7:0]> Again, the fraction of strobe delay, in terms of a memory clock period is (24+MCA_DLL_ADJ_DQSR) / 240. For
example: if MCA_DLL_ADJ_DQ_B0 = 96, then DQS0 is delayed by 0.5 x memory_clock_period. So, if the memory clock period is 5ns, then DQS0 is delayed internally by 2.5ns with respect to DQ[7:0].
Depending on the board layout of DQS and DQ signals, it may be necessary to have different delays for each DQS signal. Layouts of the DQS and DQ signals should follow the rules given in the AMD RS880-Series IGP Motherboard Design Guide, order# 46103.

4.6 Power Rail Power-up Sequence

Figure 4-1 RS880 Power Rail Power-up Sequence

Table 4-4 RS880 Power Rail Power-up Sequence

Symbol Parameter
T11
T12
T13 1.1-V PLL rails ramp high relative to VDDC (1.1V) 0 No restrictions
3.3-V rails ramp high relative to 1.8/1.5-V Side-Port Memory, 1.8-V Display, PLL, and I/O Transform rails
1.8/1.5-V Side-Port Memory, 1.8-V Display, PLL, and I/O Transform rails ramp high relative to 1.1-V PLL rails
Voltage Difference During Ramping
Minimum (V) Maximum (V)
02.1
0 No restrictions
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 4-3
Power Rail Power-up Sequence
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 4-4 Proprietary

Electrical Characteristics and Physical Data

5.1 Electrical Characteristics

5.1.1 Maximum and Minimum Ratings

Table 5-1 Maximum and Minimum Ratings
Pin Minimum Typical Maximum Unit Comments
AVDD 3.135 3.3 3.465 V Dedicate d p o wer for the DAC AVDDDI 1.71 1.8 1.89 V Dedicated digital power for the DAC IOPLL VDD 1.045 1.1 1.155 V 1.1V power for memory I/O PLLs IOPLL VDD18 1.71 1.8 1.89 V 1.8V power for memory I/O PLLs PLLVDD 1.045 1.1 1.155 V 1.1V power for system PLLs PLLVDD1 8 1.71 1.8 1.89 V 1.8V power for system PLLs VDD_MEM 1.425/1.71 1.5/1.8V 1.575/1.89 V Isolated pow e r for sid e -p or t m em or y
VDD18_MEM 1.71 1.8 1.89 V 1.8V power for side-port memory
VDDA18HTPLL 1.71 1.8 1.89 V I/O power for HyperTransport™ PLL VDDA18PCIE 1.71 1.8 1.89 V 1.8V I/O power for PCIe
VDDA18PCIEPLL 1.71 1.8 1.89 V 1.8V I/O power for PCIe PLLs VDDC 1.045 1.1 1.155 V Core power VDD18 1.71 1.8 1.89 V 1.8V I/O transform power VDD33 3.135 3.3 3.465 V 3.3V I/ O po w e r VDDHT 1.045 1.1 1.155 V I/O power for HyperTransport interface VDDHTRX 1.045 1.1 1.155
VDDHTTX 1.14 1.2 1.26
VDDL T18 1.71 1.8 1.89 V 1.8V I/O power for the integrated
VDDL TP18 1.71 1.8 1.89 V Power for integrated DVI/HDMI PLL
VDDPCIE 1.045 1.1 1.155 V Main I/O power for PCIe graphics, SB,
Note: Numbers in this table are to be qualified.
Chapter 5
interface
interface
SB, and GPP interfaces
I/O power for HyperTransport receive
V
interface I/O power for HyperTransport transmit
V
interface
DVI/HDMI™ interface
macro
and GPP interfaces
®
graphics,
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 5-1
Electrical Characteristics

5.1.2 DC Characteristics

Table 5-2 DC Characteristics for 3.3V TTL Signals
Pins Symbol Description Minimum Maximum Unit
All pins belonging to the VDD33 domain (refer to pin description tables in this chapter).
Note: * Measured with edge rate of 1
** For detailed current/voltage characteri stics, please re fer t o th e I BIS mo del.
Table 5-3 DC Characteristics for DDC Signals (DDC Mode)
Pins Symbol Description Minimum Maximum Unit Note
DDC_DATA0/AUX0N DDC_CLK0/AUX0P DDC_DATA1/AUX1N DDC_CLK1/AUX1P
Notes:
1. Measured with edge rate of 1
2. For detailed current/voltage characteristics, please refer to the IBIS model.
3. Measurement taken with PMOS/NMOS streng th set to default values, PVT=Nominal Case.
4. Interface circuit is open drain. Pulled high by external power.
VILdc
VIHdc
VILac AC input low volta ge 0.15 V
VIHac AC input high voltage 2.5 V
VOLdc Output low voltage** 0.53 V
VOHdc Output high voltage** 2.46 V
IOLdc Output low current at V=0.1V** 2.8 mA
IOHdc Output high current at V=VDD33-0.1V** 2.6 mA
VILdc
VIHdc
VOL Output low voltage
VOH Output high voltage
IOL Output low current at V=0 .1V 0.55 6.25 mA 2, 3, 4
μs at P A D pin.
DC voltage at the pad that will produce a stable low input to the chip
DC voltage at pad that will produce a stable high input to the chip
μs at P AD pin.
DC voltage at the pad that will pro duce a stable low input to the chip
DC voltage at pad that will pro duce a stable high input to the chip
–0.7V
1.4 V
–1.5V1
3.0 V 1
VDD5-0.25
(VDD5 is external
5V DDC pull-up
supply)
86mV @ I=3mA,
230mV@I=8mA
V 2, 3, 4
V 2, 3, 4
Table 5-4 DC Characteristics for AUX Signals (AUX Mode)
Pins Symbol Description Minimum Maximum Unit
DDC_DATA0/AUX0N DDC_CLK0/AUX0P DDC_DATA1/AUX1N DDC_CLK1/AUX1P
Note: The AUX signals comply with VESA’s the signals.
Vcm Input/output common mode voltage 569 610 mV
Vdiff Pad differential output swing 525 622 mV
DisplayPort Standard; please refer to the document for other electrical characteristics of
Table 5-5 DC Characteristics for POWERGOOD
Symbol Description Minimum Typical Maximum
VIL Input Low Voltage 0 0V 300mV
VIH Input High Voltage 1.62V 1.8V 1.98V
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 5-2 Proprietary
Electrical Characteristics
T able 5-6 DC Characteristics for HyperTransport™ and PCI-E Differential Clock (HT_REFCLK, GFX_REFCLK, GPPSB_REFCLK, 100MHz)
Symbol Description Minimum Maximum Unit
V
IL
V
IH
V
CROSS
V
CROSS DELTA
V
RB
V
IMAX
V
IMIN
T able 5-7 DC Characteristics for REFCLK_P as OSCIN Input (14.3181818MHz)
Symbol Description Minimum Maximum Unit Note
V
IL
V
IH
V
IMAX
V
IMIN
Z
C-DC
Notes:
1. V
ILmax =
2. V
IHmin =
Differential Input Low Voltage - -150 mV Differential Input High Voltage +150 - mV Absolute Crossing Point Voltage +250 +550 mV Variation of V
clock edges Ring-back Voltage Margin -100 +100 mV Absolute Max Input Voltage - +1.15 V Absolute Min Input Voltage - -0.15 V
Single Input Low Voltage - 0.40 V 1 Single Input High Voltage 0.70 - V 2 Absolute Max Input Voltage - +1.15 V
Absolute Min Input Voltage - -0.15 V Clock source DC impedance 40 60 Ω
VREF - 0.15V, where VREF = 0.55V
VREF + 0.15V, where VREF = 0.55V
CROSS
over all rising
- +140 mV
Table 5-8 DC Characteristics for the Memory Interface when Supporting DDR2
Symbol Description Minimum Maximum Comments
VIL(dc) DC Input Low Voltage -0.3V VREF-0.15V For DQ and DQS VIH(dc) DC Input High Voltage VREF + 0.15V VDDQ + 0.3V
For DQ and DQS. (VDDQ is I/O voltage
of memory device.) VIL(ac) AC Input Low Voltage VREF - 0.31V For DQ and DQS VIH(ac) AC Input High Voltage VREF + 0.31V For DQ and DQS
VUSH
VOSH
Minimum Voltage Allowed for Undershoot
Maximum Voltage Allowed for Overshoot
- 0.3V For DQ and DQS
VDDQ + 0.3V
For DQ and DQS. (VDDQ is I/O voltage
of memory device.)
VOI Output Low Voltage 0.186V 0.305V I_out = 16.5mA
VOH Output High Voltage 1.7V 1.9V I_out = -16.5mA
VREF DC Input Reference Voltage 0.882V 0.918V
ILI Input Leakage Current 10
ILO Tri-state Leakage Current 10
μA15μA μA15μA
IOL Output Low Current 19mA 28mA IOH Output High Current -19mA -29.5mA CIN Input Capacitance 3pF 5pF
Table 5-9 DC Characteristics for the Memory Interface when Supporting DDR3
Symbol Description Minimum Maximum Comments
VIL(dc) DC Input Low Voltage -0.3V VREF - 0.1V For DQ and DQS VIH(dc) DC Input High Voltage VREF + 0.1V VDDQ + 0.3V
For DQ and DQS. (VDDQ is IO voltage of memory device.)
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 5-3
Electrical Characteristics
Symbol Description Minimum Maximum Comments
VIL(ac) AC Input Low Voltage VREF - 0.15V For DQ and DQS VIH(ac) AC Input High Voltage VREF + 0.15V For DQ and DQS
VUSH
VOSH
VOI Output Low Voltage 0.186V 0.305V I_out = 16.5mA
VOH Output High Voltage 1.4V 1.6V I_out = -16.5mA
VREF DC Input Reference Voltage 0.735V 0.765V
ILI Input Leakage Current 10 ILO Tri-state Leakage Current 10 IOL Output Low Current 16.5mA 24.3mA IOH Output High Current -15.8mA -24.6mA CIN Input Capacitance 3pF 5pF
Table 5-10 DC Characteristics for the Integrated DVI/HDMI™
Minimum Voltage Allowed for Undershoot
Maximum Voltage Allowed for Overshoot
Symbol Parameter Min Typical Max Unit Note
VH Single-ended High Level Output Voltage AVCC - 10 AVCC + 10 mV 1
VL Single-ended Low Level Output Voltage AVCC - 600 AVCC - 400 mV 1 VSW Single-ended Output Swing 400 600 mV VOS Differential Output Overshoot (Ringing) 15%*2VSW – VUS Differential Output Undershoot (Ringing) 25%*2VSW
IDDLP Average Supply Current at LPVDD 20.0 mA 2 IDDLV
IOL Output Low Current 8 mA
IOH Output High Current 12 mA
IPDLP Power Do wn Cu rrent at L PVDD 10.0 – IPDLV
Notes: 1 AV CC stands for the termination supply voltage of the receiver, which is 3.3V +/- 5%.
2 Measured under typical conditions, at minimum differential clock frequency an d ma ximum DVI/HDMI™ PLL VOC frequency. 3 Measured under typical conditions, based on typical leakage values. 4 Figure 5-1 below illustrates some of the DC Characteristics of the DVI/HDMI interface.
Average Supply Current at LVDDR18 and LVDDR33
Power Down Current at LVDDR18 and LVDDR33
- 0.3V For DQ and DQS
VDDQ + 0.3V
μA15μA μA15μA
100.0 mA 2
10.0
For DQ and DQS. (VDDQ is IO voltage of memory device.)
μA3 μA3
Table 5-11 DC Characteristics for the TMDS Interface Multiplexed on the PCI Express® Gfx Lanes
Symbol Parameter Min Typical Max Unit Note
VH Single-ended High Level Output Voltage AVCC - 10 AVCC + 10 mV 1
VL Single-ended Low Level Output Voltage AVCC - 600 AVCC - 400 mV 1 VSW Single-ended Output Swing 400 600 mV VOS Differential Output Overshoot (Ringing) 15%*2VSW – VUS Differential Output Undershoot (Ringing) 25%*2VSW
Notes: 1 AV CC stands for the termination supply voltage of the receiver, which is 3.3V +/- 5%.
2 Figure 5-1 below illustrates some of the DC Characteristics of the TMDS interface.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 5-4 Proprietary
Electrical Characteristics
VSW
VHmax
VHmin
VLmax
VLmin
2VSW
VOS
VUS
Single-ended Waveforms
Differential Waveform
VOS
VUS
Figure 5-1 DC Characteristics of the Integrated DVI/HDMI™ and the TMDS Interfaces
Table 5-12 Electrical Specifications for the DisplayPort Interface
Symbol Parameter Min Typ Max Unit Notes
UI
HIGH_RATE
UI
LOW_RATE
V
TX-DIFFp_p
V
TX-PREMMP-RATIO
Unit Interval for DP High Bit Rate (2.7
- 370 - ps High limit = +300 ppm
Gbps/lane) Unit Interval for DP Reduced Bit Rate (1.62
- 617 - ps High limit = +300 ppm
Gbps/lane) Differential Peak-to-Peak Output Voltage Level 0.34 - 0.92 V ­Pre-emphasis Level 0 - 7.2 dB -
Low limit = -5300 ppm
Low limit = -5300 ppm
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 5-5

5.2 RS880 Thermal Characteristics

This section describes some key thermal paramet ers of the RS880. For a detailed discussion on these parameters an d other thermal design descriptions including package level thermal data and analysis, please consult the Thermal
Design and Analysis Guidelines

5.2.1 RS880 Thermal Limits

Table 5-13 RS880 Thermal Limits
Parameter Minimum Nominal Maximum Unit Note
Operating Case Temperature 0 95 Absolute Rated Junction
Temperature Storage Temperature -40 60 Ambient Temperature 0 45 Thermal Design Power 15 W 4
Notes:
1 - The maximum operating case temperature is the die geometric top-center temperature measured via a thermocouple based on the methodology given in the document This is the temperature at which the functionality of the chip is qualified. 2 - The maximum absolute rated junction temperature is the junction temperature at which the device can operate without causing damage to the ASIC. This temperature can be measured via the integrated thermal diode described in the next section. 3 - The ambient temperature is defined as the temperature of the local intake air to the thermal management device. The maximum ambient temperature is dependent on the heat sink's local ambient conditions as well as the chassis' external ambient, and the value given here is based on AMD’s reference heat sink solution for the RS880. Refer to Chapter 6 in the
Guidelines for the RS880 Product Family
mentioned document for details of ambient conditions. 4 - Thermal Design Power (TDP) is defined as the highest power dissipated while running currently available worst case applications at nominal voltages. Since the core power of modern ASICs using 65nm and smaller process technology can vary significantly, parts specifically screened for higher core power were used for TDP measurement. The TDP is intended only as a design reference.
for the RS880 Product Family, order# 46139.
Thermal Design and Analysis Guidelines for the RS880 Product Family, order# 46139 (Chapter 12).
RS880 Thermal Characteristics
°
C1
——115
, order# 46139 for heatsink and thermal design guidelines. Refer to Chapter 7 of the above
°
C2
°
C
°
C3
Thermal Design and Analysis
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 5-6 Proprietary
RS880 Thermal Characteristics
VΔ
η K× T× N()ln×
q
------------------------------------------- -
=

5.2.2 Thermal Diode Char acteristics

The RS880 has an on-die thermal diode, with its positive and negative terminals connected to the THERMALDIODE_P and THERMALDIODE_N pins respectively. Combined with a thermal sensor circuit, the diode temperature, and hence the ASIC temperature, can be derived from a differential voltage reading ( below:
where:
Δ
V = Difference of two base-to-emitter voltage readings, one using current = I and the other using current = N x I
N = Ratio of the two thermal diode currents (=10 when using an ADI thermal sensor, e.g. ADM 1020, 1030)
η
= Ideality factor of the diode
K = Boltzman’s Constant T = Temperature in Kelvin q = Electron charge
Δ
V). The equation relating T to ΔV is given
The series resistance of the thermal diode (RT) must be taken into account as it introduces an error in the reading
o
(for every 1.0Ω, approximately 0.8
induced, plus any other known fixed error. Measured values of diode ideality factor and series resist ance for the
R
T
diode circuit are defined in the Thermal Design and Analysis Guidelines
C is added to the reading). The sensor circuit should be calibrated to offset the
for the RS880 Product Family, order#
46139.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 5-7

5.3 Package Information

Mo d- 00 08 5- Rev -0 3

5.3.1 Physical Dimensions

Figure 5-2 and Table 5-14 describe the physical dimensions of the RS880 package. Figure 5-3 shows the detailed
ball arrangement for the RS880.
Package Information
Table 5-14 RS880 528-Pin FCBGA Package Physical Dimensions
Ref. Min(mm) Typical (mm) Max. (mm)
c 0.48 0.58 0.68
A 1.69 1.84 1.99 A1 0.30 0.40 0.50 A2 0.81 0.86 0.91
φb 0.40 0.50 0.60
D1 20.85 21.00 21.15 D2 - 8.58 ­D3 2.00 - ­D4 1.00 - ­E1 20.85 21.00 21.15 E2 - 7.70 ­E3 2.00 - ­E4 1.00 - ­F1 - 19.20 ­F2 - 19.20 ­e1 - 0.80 (min. pitch) -
ddd - - 0.20
Note: Maximum height of SMT components is 0.65 0 mm.
Figure 5-2 RS880 528-Pin FCBGA Package Outline
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 5-8 Proprietary
Package Information
Figure 5-3 RS880 Ball Arrangement (Bottom View)

5.3.2 Pressure Specification

To avoid damages to the ASIC (die or solder ball joint cracks) caused by improper mechanical assembly of the cooling device, follow the recommendations below:
It is recommended that the maximum load that is evenly applied across the contact area between the thermal
management device and the die does not exceed 6 lbf. Note that a total load of 4 -6 lbf is a dequa te to secu re the thermal management device and achieve the lowest thermal contact resistance with a temperature drop across the thermal interface material of no more than 3°C. Also, the surface flatness of the metal spreader should be
0.001 inch/1 inch.
Pre-test the assembly fixture with a strain gauge to make sure that the flexing of the final assembled board and
the pressure applying around the ASIC package will not exceed 600 micron strain under any circumstances.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 5-9
Ensure that any distortion (bow or twist) of the board after SMT and cooling device assembly is within industry
1:1 ratio to pad, or 400µm max for the nine corner balls’ openings
1:1 ratio to pad, or 400µm max for the eight corner balls’ openings
1:1 ratio to pad, or 400µm max for the nine corner balls’ openings
1:1 ratio to pad, or 400µm max for the nine corner balls’ openings
1:1 ratio to pad,
with special
requirement for
corner balls
guidelines (IPC/EIA J-STD-001). For measurement method, refer to the industry approved tech nique described in the manual IPC-TM-650, section 2.4.22.

5.3.3 Board Solder Reflow Process Recommendations

5.3.3.1 Stencil Opening Size for Solder Paste Pads on PCB
It is recommended that the stencil aperture for solder paste be kept at the same size as that of the land pads. However, for the nine (or eight) p ads at each corner of the ASIC package, the size of t he openings should not exceed 400µm (see Figure 5-4 below). This recommendation is based on AMD’s sample land pattern desig n for the RS880, which is available from your AMD CSS representative.
Package Information
5.3.3.2 Reflow Profile
A reference reflow profile is given below. Please note the following when using RoHS/lead-free solder (SAC105/305/405 Tin-Silver-Cu):
The final reflow temperature profile will depend on the type of solder paste and chemistry of flux used in the SMT
Figure 5-4 Recommended Stencil Opening Sizes for Solder Paste Pads on PCB
process. Modifications to the reference reflow profile may be required in order to accommodate the requirements of the other components in the application.
An oven with 10 heating zones or above is recommended.
To ensure that the reflow profile meets the target specification on both sides of the board, a different profile and oven
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 5-10 Proprietary
Package Information
50
250
150
200
100
Peak 245 C max.
220
C
Heating Time
Solder/Part Surface Temperature ( C)
170 C
50
250
150
200
100
C max.
220 C
o
120 - 240 sec max
Heating Time
C
60 – 120 sec max
130 C
60 – 80 sec typical
45 – 90 sec max 60 – 80 sec typical
Pre–heating Zone
Soldering Zone
Ramp Rate < 2 C / sec
Ramp Rate < 2 C / sec
Soaking Zone
recipe for the first and second reflow may be required.
Mechanical stiffening can be used to minimize board warpage during reflow.
It is suggested to decrease temperature cooling rate to minimize board warpage.
This reflow profile applies only to RoHS/lead-free (high temperature) soldering process and it should not be used for
Eutectic solder packages. Damage may result if this condition is violated.
Maximum 3 reflows are allowed on the same part.
Table 5-15 Recommended Board Solder Reflow Profile - RoHS/Lead-Free Solder
Profiling Stage Temperature Process Range
Overall Preheat Room temp to 220
Soaking Time 130
Liquidus 220
Ramp Rate Ramp up and Cooling <2
Peak Max. 245
Temperature at peak
within 5
°C
°C 2 mins to 4 mins
°C to 170°C Typical 60 – 80 seconds
°C Typical 60 – 80 seconds
°C / second
°C 235°C +/-5°C
°C to 245°C 10 – 30 seconds
240
Figure 5-5 RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 5-11
Package Information
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 5-12 Proprietary

6.1 ACPI Power Management Implementation

This chapter describes the support for ACPI power management provided by the RS880. The RS880 Northbridge supports ACPI Revision 2.0. The hardware, system BIOS, video BIOS, and drivers of the RS880 have all the logic required for meeting the power management specifications of PC2001, OnNow, and the Windows Logo Program and Device Requirements version 2.1. Table 6-1, “ACPI States Supported by the RS880,” describes the ACPI states supported by the RS880. Table 6-2, “ACPI Signal Definitions,” describes the signals used in the ACPI power management scheme of the RS880.

Table 6-1 ACPI States Supported by the RS880

ACPI State Description
Graphics States: D0 Full on, display active. D1 Display Off. RS880 power on. Configuration registers, state, and main memory contents retained. D3 Hot Similar to D1, with additional power saving and the graphics PLLs shut off. D3 Cold RS880 power off. Processor States: S0/C0: Working State Working State. The processor is executing instructions. S0/C1: Halt CPU Halt state. No instructions are executed. This state has the lowest latency on resume and contributes
minimum power savings.
S0/C2: Stop Grant Caches Snoopable
S0/C3/C1e: Stop Grant Caches Snoopable
System States: S1: Standby
Powered On Suspend S3: Standby
Suspend to RAM S4: Hibernate
Suspend to Disk S5: Soft Off System is off. OS re-boots when the system transitions to the working state. G3: Mechanical Off Occurs when system power (AC or battery) is not present or is unable to keep the system in one of the
Stop Grant or Cache Snoopable CPU state. This state offers more power savings but has a higher latency on resume than the C1 state.
Processor is put into Stop Grant state. Caches are still snoopable. The HyperTransport™ link may be disconnected and put into a low power state. System memory may be put into self-refresh.
System is in Standby mode. This state has low wakeup latency on resume. OEM support of this state is optional.
System is off but context is saved to RAM. OEM support of this state is optional. System memory is put into self-refresh.
System is off but context is saved to disk. When the system transitions to the working state, the OS is resumed without a system re-boot.
other states.
Chapter 6

Power Management and ACPI

Note: Also supported are additional processor power states that are not part of the ACPI specification, e.g. C1E (C1 Enhanced) and C3 pop-up. Please refer to the relevant Southbridge databook and the RS880 ASIC Family Register Programming Requirements, order# 46141, for more information.

Table 6-2 ACPI Signal Definitions

Signal Name Description Source
ALLOW_LDTSTOP Output to the Southbridge to allow LDTSTOP# assertion. Northbridge LDTSTOP# HyperTransport™ Technology Stop: Enables and disables links during
system state transitions. POWERON# Power On Power switch RESET# Global Reset Southbridge
Southbridge
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 6-1

6.2 Power Management for the Graphics Controller

The RS880 supports power management for the embedded graphics device as specified by the PCI Bus Power Management Interface Specification version 1.0, according to which the integrated graphics core of the RS880 qualifies as a device embedding a single function in the power management system.

6.2.1 PCI Function Power States

There are up to four power states defined for each PCI function associated with each PCI device in the system. These power states are D0, D1, D2 and D3. D0 (on) consumes the most power while D3 (off) consumes the least. D1 and D2 enable levels of power savings in between those of D0 and D3. The concepts of these power states are universal for all functions in the system. When transitioned to a given power management state, the intended functional beh a vior is dependent upon the type (or class) of the function.

6.2.2 PCI Power Management Interface

The four basic power management operations are:
Capabilities Reporting
Power Status Reporting
Setting Power State
System Wakeup
All four of these capabilities are required for each power management function with the exception of wakeup event generation.
Power Management for the Graphics Controller
This section describes the format of the registers in the PCI Configuration Space that are used by these power management operations. The Status and Capabilities Pointer (CAP_PTR) fields have been highlighted to indicate where the PCI Power Management features appear in the standard Configuration Space Header.
Table 6-3 Standard PCI Configuration Space Header Type 0
R e g i s t e r F i e l d s ( 3 2 B i t s )
MSB LSB
Device ID Vendor ID 00h (LSB) Status (with Bit 4 set to 1) Command 04h Class Code Revision ID 08h BIST Header Type Latency Timer Cache Line Size 0Ch Base Address Registers 10h
CardBus CIS Pointer 28h Subsystem ID Subsystem Vendor ID 2Ch Expansion ROM Base Address 30h Reserved CAP_PTR 34h Reserved 38h Max_Lat Min_Gnt Interrupt Pin Interrupt Line 3Ch
Offset
14h 18h 1Ch 20h 24h

6.2.3 Capabilities List Data Structure in PCI Configuration Space

The Capabilities bit in the PCI Status register (offset = 06h) indicates whether or not the subject function implements a linked list of extended capabilities. Specifically, if bit 4 is set, the CAP_PTR register is implemented to give offset to the first item in the Capabilities link list.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 6-2 Proprietary
Power Management for the Graphics Controller
Table 6-4 PCI Status Register
Bits Default Value
15:05----Refer to PCI Local Bus Specification, Revision 2.2 04 1b Read Only This bit indicates whether this function implements a list of extended capabilities
03:00 0h Read Only Reserved
Read/
Write
Description
such as PCI power management. When set, this bit indicates the presence of Capabilities. A value of 0 implies that this function does not implement Capabilities.
The location of the Capabilities Pointer (CAP_ PTR) depends on th e PCI header type. See PCI Specification Revision 2.2 for specification of CAP_PTR offsets.
Table 6-5 Capabilities Pointer (CAP_PTR)
Bits Default Value
07:00 50h Read Only The CAP_PTR provides an offset in the PCI Configuration Space of the
Read/
Write
Description
function to access the location of the first item in the Capabilities linked list. The CAP_PTR offset is DWORD aligned, so that the two least significant bits are always zeros.
The graphics core implements extended capabilities of the AGP and Power Management. It needs to provide the standardized register interface. The first entry in the chain of descriptors has to be the PMI descriptor, as this functionality will be supported even if the RS880 operates as a PCI device. The Capabilities Identifier for Power Management is 01h.

6.2.4 Register Block Definition

This section describes the PCI Power Management Interface registers. These registers are implemented inside the Host Interface (HI) as part of the configuration space of the device (RS880).
Table 6-6 Power Management Register Block
Register Fields Offset
Capability Identifiers (CAP_ID) 00h Next Item Pointer (NEXT_ITEM_PTR) 01h Power Management Capabilities (PMC) 02h Power Management Control/Status Register (PMCSR) 04h Reserved 06h
The first 16 bits (Capabilities ID [offset = 0] and Next Item Pointer [offset = 1]) are used for the linked list infrastructure. The next 32 bits (PMC [offset = 2] and PMCSR registers [offset = 4]) are required for compliance with this specification.
As with all PCI configuration registers, these registers may be accessed as bytes, 16-bit words, or 32-bit DWORDs. All of the write operations to the reserved registers must be treated as no-ops. This implies that the access must be completed normally on the bus and the data should be discarded. Read accesses to the reserved or the unimplemented registers must be completed normally and a data value of 0000h should be returned.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 6-3
Power Management for the Graphics Controller
Table 6-7 Power Management Control/Status Register (PMCSR)
Field
Name
Power State 1:0 00 This field describes the power state of the graphics core.
Power State 15:2 0 These Read Only bits will return the clock status of each clock tree, generated inside the clock
Bits
Default (Reset)
States Function 00 = D0 Normal operation, no power savings enabled 01 = D1 Sleeping state 1:
10 = D2 Sleeping state 2
11 = D3 Everything, except Host Interface, is turned off.
block.
The offset for each register is listed as an offset from the beginning of the linked list item that is determined either from the CAP_PTR (if Power Management is the first item in the lis t) or the NEXT_ITEM_PTR of the previous item in the list.

6.2.5 Capability Identifier: CAP_ID (Offset = 0)

The Capability Identifier, when read by system software as 01h, indicates that the data structure currently being pointed to is the PCI Power Management data structure. Each function of a PCI device may have only one item in its capability list with CAP_ID set to 01h.
Description
Display is off Host access to DRAM is allowed
Display is off. All engines are off. Graphics core does not respond to host accesses to the frame buffer.
Table 6-8 Capability Identifier (CAP_ID)
Bits Default Value
07:00 01h Read Only This field, when set to 01h, identifies the linked list item as being the PCI Power
Read/
Write
Description
Management registers
Figure 6-1, ‘Linked List for Capabilities,” shows the implementation of the capabilities list. The CAP_PTR gives the
location of the first item in the list. PCI Power Management registers have been stated as example in this list (although the capabilities can be in any order).
The first byte of each entry is required to be the ID of that capability. The PCI Power Management capability has an
ID of 01h.
The next byte is a pointer giving an absolute offset in the functions PCI Configuration Space to the next item in the
list and must be DWORD aligned.
If there are no more entries in the list, the NEXT_ITEM_PTR must be set to 0 to indicate an end of the linked list.
Each capability can then have registers following the NEXT_ITEM_PTR.
The definition of these registers (including layout, size, and bit definitions) is specific to each capability. The PCI Power Management Register Block is defined in Figure 6-1, ‘Linked List for Capabilities,” below.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 6-4 Proprietary
Power Management for the Graphics Controller
Cap_Ptr = 50h
8 bits
PCI Configuration Header
Offset 34h
025Ch
AGP Capability
0100h
PM Registers
Offset 5Ch
Offset 50h
Figure 6-1 Linked List for Capabilities

6.2.6 Next Item Pointer (Offset = 1)

The Next Item Pointer register describes the location of the next item in the capability list of the function. The value given is an offset in the PCI Configuration Space of that function. This register must be set to 00h if the function does not implement any other capabilities defined by the PCI Specifications for inclusion in the capabilities list, or if power management is the last item in the list.
Table 6-9 Next Item Pointer (NEXT_ITEM_PTR)
Bits
07:00 80h Read Only This field provides an offset in the PCI Configuration Space of the function pointing to the location
Default
Value
Read/
Write
Description
of next item in the capability list of the function. For Power Management of the RS880, this pointer is set to 80h and it points to the next capability pointer of the MSI structure.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 6-5

6.2.7 PMC - Power Management Capabilities (Offset = 2)

The Power Management Capabilities register is a 16-bit Read Only register that provides information on the capabilities of the function related to power management. The information in this register is generally static and is known at design time.
Table 6-10 Power Management Capabilities – PMC
Power Management for the Graphics Controller
Bits Default Value
15:11 00111b Read Only This 5-bit field indicates the power states in which the function may assert PME#. A value of
10 001b Read Only RS880 supports D2. 09 001b Read Only RS880 supports D1. 08:06 000b Read Only Reserved 05 1b Read Only The Device Specific Initialization bit indicates whether special initialization of this function is
04 0b Read Only Reserved 03 0b Read Only Reserved 02:00 001b Read Only A value of 001b indicates that this function complies with Revision 1.0 of the PCI Power
Read/
Write
Description
0b for any bit indicates that the function is not capable of asserting the PME# signal while in that power state. bit(11) XXXX1b - PME# can be asserted from D0. bit(12) XXX1Xb - PME# can be asserted from D1. bit(13) XX1XXb - PME# can be asserted from D2. bit(14) X0XXXb - PME# cannot be asserted from D3hot. bit(15) 0XXXXb - PME# cannot be asserted from D3cold.
required (beyond the standard PCI configuration header) before the generic class device driver is able to use it. The RS880 requires device specific initialization after Reset; this field must therefore return a value 1 to the system.
Management Interface Specification.
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 6-6 Proprietary
Power Management for the Graphics Controller
This page is left blank intentionally.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 6-7
Power Management for the Graphics Controller
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 6-8 Proprietary

7.1 T est Capability Featur es

The RS880 has integrated test modes and capabilities. These test features cover both the ASIC and board level testing. The ASIC tests provide a very high fault coverage and low DPM (Defect Per Million) ratio of the part. The board level tests modes can be used for motherboard manufacturing and debug purposes. The following are the test modes of the RS880:
Full scan implementation on the digital core logic that provides about 99% fault coverage through ATPG (Automatic
Test Pattern Generation Vectors).
Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules.
Improved access to the analog modules and PLLs in the RS880 to allow full evaluation and characterization of these
modules.
A JTAG test mode (w hich is not entirely compliant to the IEEE 1149.1 standard) to allow board level testing of
neighboring devices.
An XOR TREE test mode on all the digital I/O’s to allow for proper soldering verification at the board level.
A VOH/VOL test mode on all digital I/O’s to allow for proper verification of output high and output low voltages at
the board level.
These test modes can be accessed through the settings on the instruction register of the JTAG circuitry.
Chapter 7

Testability

7.2 T est Interface

Table 7-1
TESTMODE D13 I IEEE 1149.1 test port reset DDC_DA TA0/AUX0N B8 I TMS: Test Mode Select (IEEE 1149.1 test mode select) I2C_DATA A9 I TDI: Test Mode Data In (IEEE 1149.1 data in) I2C_CLK B9 I TCLK: Test Mode Clock (IEEE 1149.1 clock) TMDS_HPD D9 O TDO: Test Mode Data Out (IEEE 1149.1 data out)
POWERGOOD A10 I I/O Reset
Pins on the Test Interface
Pin Name Ball number Type Description

7.3 XOR T est

7.3.1 Description of a Generic XOR Tree

An example of a generic XOR tree is shown in the Figure 7-1.
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 7-1
XOR Test
XOR Start Signal
1
2
3
4
5
6
A
Figure 7-1 Example of a Generic XOR Tree
Pin A is assigned to the output direction, and pins 1 through 6 are assigned to the input direction. It can be seen that after all pins 1 to 6 are assigned to logic 0 or 1, a logic change in any one of these pins will toggle the output pin A.
The following is the truth table for the XOR tree shown in Figure 7-1 The XOR start signal is assumed to be logic 1.
Table 7-2 Example of an XOR Tree
Test Vector
number
10000001 21000000 31100001 41110000 51111001 61111100 71111111
Input Pin 1 Input Pin 2 Input Pin 3 Input Pin 4 Input Pin 5 Input Pin 6 Output Pin A

7.3.2 Description of the RS880 XOR Tree

7.3.3 XOR Tree Activation

The RS880 chip enters the XOR tree test mode by means of the JTAG. First, the 8-bit instruction register of the JTAG is loaded with the XOR instruction (“00001000”). This instruction assigns the input direction to all the pins except pin TDO, which is assigned the output direction to serve as the output of the XOR tree. After loading, the JTAG is taken to the Run-Test state for completion of the XOR tree initialization.
A 10MHz clock frequency for the Test Mode Clock (I2C_CLK) is recommended for the XOR TREE test mode. A pair of differential clock at 10MHz should also be supplied to HT_REFCLKP/N to enable I/Os for testing.

7.3.4 XOR Tree for the RS880

46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 7-2 Proprietary
The XOR start signal is applied at the TDI Pin of the JTAG circuitry and the output of the XOR tree is obtained at the TDO Pin. Refer to Table 7-3 for the list of the signals included on the XOR tree. A toggle of any of these balls in the XOR tree will cause the output to toggle.
There is no specific connection order to the signals on the tree. When the XOR tree is activated, any pin on the XOR tree must be either pulled down or pulled up to the I/O voltage of the pin. Only pins that are not on the XOR tree can be left floating.
When differential signal pairs are listed as single entries on the XOR tree, opposite input values should be applied to the two signals in each pair (e.g., for entry no. 1 on the tree, when “1” is applied to HT_RXCAD0P, “0” should be applied to HT_RXCAD0N).
XOR Test
Table 7-3 RS880 XOR Tree
No. Pin Name
1 HT_RXCAD0P/N Y25/Y24 2 HT_RXCAD1P/N V22/V23 3 HT_RXCAD2P/N V25/V24 4 HT_RXCAD3P/N U24/U25 5 HT_RXCAD4P/N T25/T24 6 HT_RXCAD5P/N P22/P23 7 HT_RXCAD6P/N P25/P24 8 HT_RXCAD7P/N N24/N25 9 HT_RXCAD8P/N AC24/AC25
10 HT_RXCAD9P/N AB25/AB24
11 HT_RXCAD10P/N AA24/AA25 12 HT_RXCAD11P/N Y22/Y23 13 HT_RXCAD12P/N W21/W20 14 HT_RXCAD13P/N V21/V20 15 HT_RXCAD14P/N U20/U21 16 HT_RXCAD15P/N U19/U18 17 HT_RXCTL0P/N M22/M23 18 HT_RXCTL1P/N R21/R20 19 MEM_CKE AB18 20 MEM_CS# AB13 21 MEM_ODT V14 22 MEM_WE# AD18 23 MEM_RAS# W12 24 MEM_CAS# Y12 25 MEM_BA0 AD16 26 MEM_BA1 AE17 27 MEM_BA2 AD17 28 MEM_A0 AB12 29 MEM_A1 AE16 30 MEM_A2 V11 31 MEM_A3 AE15 32 MEM_A4 AA12 33 MEM_A5 AB16 34 MEM_A6 AB14 35 MEM_A7 AD14
Ball
Reference
No. Pin Name
36 MEM_A8 AD13 37 MEM_A9 AD15 38 MEM_A10 AC16 39 MEM_A11 AE13 40 MEM_A12 AC14 41 MEM_A13 Y14 42 MEM_DQ0 AA18 43 MEM_DQ1 AA20 44 MEM_DQ2 AA19 45 MEM_DQ3 Y19 46 MEM_DQ4 V17 47 MEM_DQ5 AA17 48 MEM_DQ6 AA15 49 MEM_DQ7 Y15 50 MEM_DQ8 AC20 51 MEM_DQ9 AD19 52 MEM_DQ10 AE22 53 MEM_DQ11 AC18 54 MEM_DQ12 AB20 55 MEM_DQ13 AD22 56 MEM_DQ14 AC22 57 MEM_DQ15 AD21 58 MEM_DM0 W17 59 MEM_DM1 AE19 60 MEM_DQS0P/N Y17/W18 61 MEM_DQS1P/N AD20/AE21 62 MEM_CKP/N V15/W14 63 GFX_RX0P/N D4/C4 64 GFX_RX1P/N A3/B3 65 GFX_RX2P/N C2/C1 66 GFX_RX3P/N E5/F5 67 GFX_RX4P/N G5/G6 68 GFX_RX5P/N H5/H6 69 GFX_RX6P/N J6/J5 70 GFX_RX7P/N J7/J8
Ball
Reference
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 7-3
VOH/VOL Test
No. Pin Name
71 GFX_RX8P/N L5/L6 72 GFX_RX9P/N M8/L8 73 GFX_RX10P/N P7/M7 74 GFX_RX11P/N P5/M5 75 GFX_RX12P/N R8/P8 76 GFX_RX13P/N R6/R5 77 GFX_RX14P/N P4/P3 78 GFX_RX15P/N T4/T3 79 GPP_RX0P/N AE3/AD4 80 GPP_RX1P/N AE2/AD3 81 GPP_RX2P/N AD1/AD2 82 GPP_RX3P/N V5/W6 83 GPP_RX4P/N U5/U6 84 GPP_RX5P/N U8/U7 85 SB_RX0P/N AA8/Y8
Ball
Reference
86 SB_RX1P/N AA7/Y7 87 SB_RX2P/N AA5/AA6 88 SB_RX3P/N W5/Y5 89 GPIO3 E9 90 GPIO4 G12 91 GPIO2 F7 92 DAC_HSYNC A11 93 DAC_VSYNC B11 94 DAC_SCL F8 95 DDC_CLK0/AUX0P A8 96 HPD D10 97 DDC_DATA1/AUX1N A7 98 DDC_CLK1/AUX1P B7

7.4 VOH/VOL Test

7.4.1 Description of a Generic VOH/VOL Tree

The VOH/VOL logic gives signal output on I/O’s when test patterns are applied through the TEST_ODD and TEST_EVEN inputs. Sample of a generic VOH/VOL tree is shown in
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 7-4 Proprietary
Figure 7-2.
VOH/VOL Test
1
6
5
4
3
2
VOH/VOL
mode
TEST_ODD
TEST_EVEN
Figure 7-2 Sample of a Generic VOH/VOL Tree

7.4.2 VOH/VOL Tree Activation

The following is the truth table for the above VOH/VOL tree.
Table 7-4 Truth Table for the VOH/VOL Tree Outputs
Test Vector
Number
100000000 201010101 310101010 411111111
Refer to
To activate the VOH/VOL tree and run a VOH/VOL test, perform the sequence below:
1. Supply a 10MHz clock to the REFCLK_P pin and a 10MHz differential clock pair to the HT_REFCLKP/N pins to enable I/Os for testing.
2. Set POWERGOOD to 0.
TEST_ODD
Input
TEST_EVEN
Input
Output
Pin 1
Output
Pin 2
Output
Pin 3
Output
Pin 4
Output
Pin 5
Section 7.4.3 for the list of pins that are on the VOH/VOL tree. VOH/VOL Tree Activation
Output
Pin 6
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 7-5
3. Set TESTMODE to 1.
4. Set DAC_SDA to 0.
5. Load JTAG instruction register with the instruction 0110 0011.
6. Load JTAG instruction register with the instruction 0010 0111.
7. Set POWERGOOD to 1.
8. Load JTAG instruction register with the instruction 1001 1001.
9. Run test by loading JTAG data register with data 0000 0000 0000 00xy, where bit x is the input value for TEST_ODD and bit y that for TEST_EVEN (see Table 7-4 above).
10. To end test, load JTAG instruction register with the instruction 0101 1101.

7.4.3 VOH/VOL Pin List

Table 7-5 shows the RS880 VOH/VOL tree. There is no specific order for connection. Under the Control column, an “ODD” or “EVEN” indicates that the logical output of the pin is same as the “TEST_ODD” or “TEST_EVEN” input respectively.
When a differential pair appear in the table as a single entry, the output of the positive (“P”) pin is indicated in the Control column (see last paragraph for explanations), and the output of the negative pin (“N”) will be of the opposite value. For example, for entry no. 1 on the tree, when TEST_EVEN is 1, HT_TXCAD0P will give a value of 1 and HT_TXCAD0N will give a value of 0.
VOH/VOL Test
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 7-6 Proprietary
VOH/VOL Test
Table 7-5 RS880 VOH/VOL Tree
No. Pin Name
1 HT_TXCAD0P/N D24/D25 Even
2 HT_TXCAD1P/N E24/E25 Odd
3 HT_TXCAD2P/N F24/F25 Even
4 HT_TXCAD3P/N F23/F22 Odd
5 HT_TXCAD4P/N H23/H22 Even
6 HT_TXCAD5P/N J25/J24 Odd
7 HT_TXCAD6P/N K24/K25 Even
8 HT_TXCAD7P/N K23/K22 Odd
9 HT_TXCAD8P/N F21/G21 Even
10 HT_TXCAD9P/N G20/H21 Odd 11 HT_TXCAD10P/N J20/J21 Even 12 HT_TXCAD11P/N J18/K17 Odd 13 HT_TXCAD12P/N L19/J19 Even 14 HT_TXCAD13P/N M19/L18 Odd 15 HT_TXCAD14P/N M21/P21 Even 16 HT_TXCAD15P/N P18/M18 Odd 17 HT_TXCTL0P/N M24/M25 Even 18 HT_TXCTL1P/N P19/R18 Odd 19 MEM_DQ0 AA18 Even 20 MEM_DQ1 AA20 Odd 21 MEM_DQ2 AA19 Even 22 MEM_DQ3 Y19 Odd 23 MEM_DQ4 V17 Even 24 MEM_DQ5 AA17 Odd 25 MEM_DQ6 AA15 Even 26 MEM_DQ7 Y15 Odd 27 MEM_DQ8 AC20 Even 28 MEM_DQ9 AD19 Odd 29 MEM_DQ10 AE22 Even 30 MEM_DQ11 AC18 Odd 31 MEM_DQ12 AB20 Even 32 MEM_DQ13 AD22 Odd 33 MEM_DQ14 AC22 Even 34 MEM_DQ15 AD21 Odd 35 MEM_DM0 W17 Even
Ball
Reference
Control
No. Pin Name
36 MEM_DM1 AE19 Odd 37 MEM_DQS0P/N Y17/W18 Even 38 MEM_DQS1P/N AD20/AE21 Odd 39 MEM_CKE AB18 Even 40 MEM_CS# AB13 Odd 41 MEM_ODT V14 Even 42 MEM_WE# AD18 Odd 43 MEM_RAS# W12 Even 44 MEM_CAS# Y12 Odd 45 MEM_BA0 AD16 Even 46 MEM_BA1 AE17 Odd 47 MEM_BA2 AD17 Even 48 MEM_A0 AB12 Odd 49 MEM_A1 AE16 Even 50 MEM_A2 V11 Odd 51 MEM_A3 AE15 Even 52 MEM_A4 AA12 Odd 53 MEM_A5 AB16 Even 54 MEM_A6 AB14 Odd 55 MEM_A7 AD14 Even 56 MEM_A8 AD13 Odd 57 MEM_A9 AD15 Even 58 MEM_A10 AC16 Odd 59 MEM_A11 AE13 Even 60 MEM_A12 AC14 Odd 61 MEM_A13 Y14 Even 62 MEM_CKP/N V15/W14 Odd 63 GFX_TX0P/N A5/B5 Even 64 GFX_TX1P/N A4/B4 Odd 65 GFX_TX2P/N C3/B2 Even 66 GFX_TX3P/N D1/D2 Odd 67 GFX_TX4P/N E2/E1 Even 68 GFX_TX5P/N F4/F3 Odd 69 GFX_TX6P/N F1/F2 Even 70 GFX_TX7P/N H4/H3 Odd
Ball
Reference
Control
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary 7-7
VOH/VOL Test
No. Pin Name
71 GFX_TX8P/N H1/H2 Even 72 GFX_TX9P/N J2/J1 Odd 73 GFX_TX10P/N K4/K3 Even 74 GFX_TX11P/N K1/K2 Odd 75 GFX_TX12P/N M4/M3 Even 76 GFX_TX13P/N M1/M2 Odd 77 GFX_TX14P/N N2/N1 Even 78 GFX_TX15P/N P1/P2 Odd 79 GPP_TX0P/N AC1/AC2 Even 80 GPP_TX1P/N AB4/AB3 Odd 81 GPP_TX2P/N AA2/AA1 Even 82 GPP_TX3P/N Y1/Y2 Odd 83 GPP_TX4P/N Y4/Y3 Even 84 GPP_TX5P/N V1/V2 Odd 85 SB_TX0P/N AD7/AE7 Even
Ball
Reference
Control
86 SB_TX1P/N AE6/AD6 Odd 87 SB_TX2P/N AB6/AC6 Even 88 SB_TX3P/N AD5/AE5 Odd 89 GPIO2 F7 Even 90 GPIO4 G12 Odd 91 GPIO3 E9 Even 92 DAC_VSYNC B11 Odd 93 DAC_HSYNC A11 Even 94 HPD D10 Odd
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. 7-8 Proprietary
Appendix A

Pin Listings

This appendix contains pin listings for the RS880 sorted in different ways. To go to the listing of interest, use the linked cross-references below:
“RS880 Pin List Sorted by Ball Reference” on page A-2
“RS880 Pin List Sorted by Pin Name” on page A-7
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary A-1
A.1 RS880 Pin List Sorted by Ball Reference
T able A-1 RS880 Pin List Sorted by Ball Reference
Ball Ref Pin Name
A10 POWERGOOD A11 DAC_HSYNC A12 PLLVDD A13 VDDLTP18 A14 VDDLT33 A15 VDDLT18 A16 TXCLK_LN A17 TXOUT_U1P A18 TXOUT_U0N A19 TXOUT_L3P A2 VSSAPCIE A20 TXOUT_L2N A21 TXOUT_L1P A22 TXOUT_L0P A23 VDDHTRX A24 HT_RXCALN A25 VSSAHT A3 GFX_RX1P A4 GFX_TX1P A5 GFX_TX0P A6 VDDPCIE A7 DDC_DATA1/AUX1N A8 DDC_CLK0/AUX0P A9 I2C_DATA AA1 GPP_TX2N AA11 VDD_MEM AA12 MEM_A4 AA14 VSS AA15 MEM_DQ6 AA17 MEM_DQ5 AA18 MEM_DQ0 AA19 MEM_DQ2 AA2 GPP_TX2P AA20 MEM_DQ1 AA21 VDDHTTX AA22 HT_RXCLK1N AA24 HT_RXCAD10P AA25 HT_RXCAD10N AA4 VSSAPCIE AA5 SB_RX2P AA6 SB_RX2N AA7 SB_RX1P
Ball Ref Pin Name
AA8 SB_RX0P AA9 VDDA18PCIE AB1 VSSAPCIE AB10 VDD_MEM AB11 VSS AB12 MEM_A0 AB13 MEM_CS# AB14 MEM_A6 AB15 VSS AB16 MEM_A5 AB17 VSS AB18 MEM_CKE AB19 VSS AB2 VSSAPCIE AB20 MEM_DQ12 AB21 VSS AB22 VDDHTTX AB23 HT_RXCLK1P AB24 HT_RXCAD9N AB25 HT_RXCAD9P AB3 GPP_TX1N AB4 GPP_TX1P AB5 VSSAPCIE AB6 SB_TX2P AB7 VSSAPCIE AB8 PCE_CALRN AB9 VDDA18PCIE AC1 GPP_TX0P AC10 VDD_MEM AC12 VSS AC14 MEM_A12 AC16 MEM_A10 AC18 MEM_DQ11 AC2 GPP_TX0N AC20 MEM_DQ8 AC22 MEM_DQ14 AC23 VDDHTTX AC24 HT_RXCAD8P AC25 HT_RXCAD8N AC3 VSSAPCIE AC4 VSSAPCIE AC6 SB_TX2N
Pin Listings
Ball Ref Pin Name
AC8 PCE_CALRP AD1 GPP_RX2P AD10 VDD_MEM AD11 VDD18_MEM AD12 MEM_COMPN AD13 MEM_A8 AD14 MEM_A7 AD15 MEM_A9 AD16 MEM_BA0 AD17 MEM_BA2 AD18 MEM_WE# AD19 MEM_DQ9 AD2 GPP_RX2N AD20 MEM_DQS1P AD21 MEM_DQ15 AD22 MEM_DQ13 AD23 IOPLLVSS AD24 VDDHTTX AD25 VSSAHT AD3 GPP_RX1N AD4 GPP_RX0N AD5 SB_TX3P AD6 SB_TX1N AD7 SB_TX0P AD8 THERMALDIODE_N AD9 VDDA18PCIE AE1 VSSAPCIE AE10 VDD_MEM AE11 VDD18_MEM AE12 MEM_COMPP AE13 MEM_A11 AE14 VSS AE15 MEM_A3 AE16 MEM_A1 AE17 MEM_BA1 AE18 MEM_VREF AE19 MEM_DM1 AE2 GPP_RX1P AE20 VSS AE21 MEM_DQS1N AE22 MEM_DQ10 AE23 IOPLLVDD18
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. A-2 Proprietary
Pin Listings
Ball Ref Pin Name
AE24 IOPLLVDD AE25 VDDHTTX AE3 GPP_RX0P AE4 VSSAPCIE AE5 SB_TX3N AE6 SB_TX1P AE7 SB_TX0N AE8 THERMALDIODE_P AE9 VDDA18PCIE B1 VSSAPCIE B10 STRP_DATA B11 DAC_VSYNC B12 PLLVSS B13 VSSLTP18 B14 VDDLT33 B15 VDDLT18 B16 TXCLK_LP B17 TXOUT_U1N B18 TXOUT_U0P B19 TXOUT_L3N B2 GFX_TX2N B20 TXOUT_L2P B21 TXOUT_L1N B22 TXOUT_L0N B23 VDDHTRX B24 HT_TXCALP B25 HT_TXCALN B3 GFX_RX1N B4 GFX_TX1N B5 GFX_TX0N B6 VDDPCIE B7 DDC_CLK1/AUX1P B8 DDC_DATA0/AUX0N B9 I2C_CLK C1 GFX_RX2N C10 LDTSTOP# C12 ALLOW_LDTSTOP C14 VSSLT C16 VSSLT C18 VSSLT C2 GFX_RX2P C20 VSSLT C22 VSSLT C23 HT_RXCALP
Ball Ref Pin Name
C24 HT_REFCLKN C25 HT_REFCLKP C3 GFX_TX2P C4 GFX_RX0N C6 VDDPCIE C8 AUX_CAL D1 GFX_TX3P D10 HPD D11 VSS D12 SUS_STAT# D13 TESTMODE D14 PLLVDD18 D15 VSSLT D16 TXCLK_UP D17 TXCLK_UN D18 TXOUT_U3P D19 TXOUT_U3N D2 GFX_TX3N D20 TXOUT_U2P D21 TXOUT_U2N D22 VDDHTRX D23 VSSAHT D24 HT_TXCAD0P D25 HT_TXCAD0N D3 VSSAPCIE D4 GFX_RX0P D5 VSSAPCIE D6 VDDPCIE D7 VDDA18PCIEPLL D8 SYSRESET# D9 TMDS_HPD E1 GFX_TX4N E11 REFCLK_P E12 A VDD E14 VSS E15 VSS E17 RESERVED E18 GREEN E19 BLUE E2 GFX_TX4P E20 VSSLT E21 VDDHTRX E22 VSSAHT E24 HT_TXCAD1P
Ball Ref Pin Name
E25 HT_TXCAD1N E4 VSSAPCIE E5 GFX_RX3P E6 VDDPCIE E7 VDDA18PCIEPLL E8 DAC_SDA E9 GPIO3 F1 GFX_TX6P F11 REFCLK_N F12 AVDD F14 AVDDDI F15 RESERVED F17 RESERVED F18 GREEN# F19 BLUE# F2 GFX_TX6N F20 VDDHTRX F21 HT_TXCAD8P F22 HT_TXCAD3N F23 HT_TXCAD3P F24 HT_TXCAD2P F25 HT_TXCAD2N F3 GFX_TX5N F4 GFX_TX5P F5 GFX_RX3N F6 VDDPCIE F7 GPIO2 F8 DAC_SCL F9 VDD18 G1 VSSAPCIE G11 RESERVED G12 GPIO4 G14 DAC_RSET G15 AVSSDI G17 RED# G18 RED G19 VDDHTRX G2 VSSAPCIE G20 HT_TXCAD9P G21 HT_TXCAD8N G22 VSSAHT G24 VSSAHT G25 VSSAHT G4 VSSAPCIE
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary A-3
Pin Listings
Ball Ref Pin Name
G5 GFX_RX4P G6 GFX_RX4N G7 VDDPCIE G8 VSS G9 VDD18 H1 GFX_TX8P H11 VDD33 H12 VDD33 H14 AVSSQ H15 AVDDQ H17 VDDA18HTPLL H18 VDDHTRX H19 VSSAHT H2 GFX_TX8N H20 VSSAHT H21 HT_TXCAD9N H22 HT_TXCAD4N H23 HT_TXCAD4P H24 HT_TXCLK0P H25 HT_TXCLK0N H3 GFX_TX7N H4 GFX_TX7P H5 GFX_RX5P H6 GFX_RX5N H7 VSSAPCIE H8 VDDPCIE H9 VDDA18PCIE J1 GFX_TX9N J10 VDDA18PCIE J11 VDDC J12 VSS J14 VDDC J15 VSS J16 VDDC J17 VDDHT J18 HT_TXCAD11P J19 HT_TXCAD12N J2 GFX_TX9P J20 HT_TXCAD10P J21 HT_TXCAD10N J22 VSSAHT J24 HT_TXCAD5N J25 HT_TXCAD5P J4 VSSAPCIE
Ball Ref Pin Name
J5 GFX_RX6N J6 GFX_RX6P J7 GFX_RX7P J8 GFX_RX7N J9 VDDPCIE K1 GFX_TX11P K10 VDDA18PCIE K11 VSS K12 VDDC K14 VSS K15 VDDC K16 VDDHT K17 HT_TXCAD11N K2 GFX_TX11N K22 HT_TXCAD7N K23 HT_TXCAD7P K24 HT_TXCAD6P K25 HT_TXCAD6N K3 GFX_TX10N K4 GFX_TX10P K9 VDDPCIE L1 VSSAPCIE L10 VDDA18PCIE L11 VDDC L12 VSS L14 VDDC L15 VSS L16 VDDHT L17 VSSAHT L18 HT_TXCAD13N L19 HT_TXCAD12P L2 VSSAPCIE L20 HT_TXCLK1N L21 HT_TXCLK1P L22 VSSAHT L24 VSSAHT L25 VSSAHT L4 VSSAPCIE L5 GFX_RX8P L6 GFX_RX8N L7 VSSAPCIE L8 GFX_RX9N L9 VDDPCIE M1 GFX_TX13P
Ball Ref Pin Name
M10 VDDA18PCIE M11 VSS M12 VDDC M13 VDDC M14 VSS M15 VDDC M16 VDDHT M17 VDDHTTX M18 HT_TXCAD15N M19 HT_TXCAD13P M2 GFX_TX13N M20 VSSAHT M21 HT_TXCAD14P M22 HT_RXCTL0P M23 HT_RXCTL0N M24 HT_TXCTL0P M25 HT_TXCTL0N M3 GFX_TX12N M4 GFX_TX12P M5 GFX_RX11N M6 VSSAPCIE M7 GFX_RX10N M8 GFX_RX9P M9 VDDPCIE N1 GFX_TX14N N12 VDDC N13 VSS N14 VDDC N2 GFX_TX14P N22 VSSAHT N24 HT_RXCAD7P N25 HT_RXCAD7N N4 VSSAPCIE P1 GFX_TX15P P10 VDDA18PCIE P11 VDDC P12 VSS P13 VDDC P14 VDDC P15 VSS P16 VDDHT P17 VDDHTTX P18 HT_TXCAD15P P19 HT_TXCTL1P
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. A-4 Proprietary
Pin Listings
Ball Ref Pin Name
P2 GFX_TX15N P20 VSSAHT P21 HT_TXCAD14N P22 HT_RXCAD5P P23 HT_RXCAD5N P24 HT_RXCAD6N P25 HT_RXCAD6P P3 GFX_RX14N P4 GFX_RX14P P5 GFX_RX11P P6 VSSAPCIE P7 GFX_RX10P P8 GFX_RX12N P9 VDDPCIE R1 VSSAPCIE R10 VDDA18PCIE R11 VSS R12 VDDC R14 VSS R15 VDDC R16 VDDHT R17 VDDHTTX R18 HT_TXCTL1N R19 VSSAHT R2 VSSAPCIE R20 HT_RXCTL1N R21 HT_RXCTL1P R22 VSSAHT R24 VSSAHT R25 VSSAHT R4 VSSAPCIE R5 GFX_RX13N R6 GFX_RX13P R7 VSSAPCIE R8 GFX_RX12P R9 VDDPCIE T1 GFX_REFCLKN T10 VDDA18PCIE T11 VDDC T12 VSS T14 VDDC T15 VDDC T16 VDDHT T17 VDDHTTX
Ball Ref Pin Name
T2 GFX_REFCLKP T22 HT_RXCLK0P T23 HT_RXCLK0N T24 HT_RXCAD4N T25 HT_RXCAD4P T3 GFX_RX15N T4 GFX_RX15P T9 VDDPCIE U1 GPP_REFCLKP U10 VDDA18PCIE U11 VSS U12 VDDC U14 VSS U15 VSS U16 VDDC U17 VDDHTTX U18 HT_RXCAD15N U19 HT_RXCAD15P U2 GPP_REFCLKN U20 HT_RXCAD14P U21 HT_RXCAD14N U22 VSSAHT U24 HT_RXCAD3P U25 HT_RXCAD3N U4 VSSAPCIE U5 GPP_RX4P U6 GPP_RX4N U7 GPP_RX5N U8 GPP_RX5P U9 VDDPCIE V1 GPP_TX5P V11 MEM_A2 V12 VSS V14 MEM_ODT V15 MEM_CKP V17 MEM_DQ4 V18 VDDHTTX V19 VSSAHT V2 GPP_TX5N V20 HT_RXCAD13N V21 HT_RXCAD13P V22 HT_RXCAD1P V23 HT_RXCAD1N V24 HT_RXCAD2N
Ball Ref Pin Name
V25 HT_RXCAD2P V3 GPPSB_REFCLKN V4 GPPSB_REFCLKP V5 GPP_RX3P V6 VSSAPCIE V7 VSSAPCIE V8 VSSAPCIE V9 VDDPCIE W1 VSSAPCIE W11 VSS W12 MEM_RAS# W14 MEM_CKN W15 VSS W17 MEM_DM0 W18 MEM_DQS0N W19 VDDHTTX W2 VSSAPCIE W20 HT_RXCAD12N W21 HT_RXCAD12P W22 VSSAHT W24 VSSAHT W25 VSSAHT W4 VSSAPCIE W5 SB_RX3P W6 GPP_RX3N W7 VSSAPCIE W8 VSSAPCIE W9 VDDA18PCIE Y1 GPP_TX3P Y11 VDD_MEM Y12 MEM_CAS# Y14 MEM_A13 Y15 MEM_DQ7 Y17 MEM_DQS0P Y18 VSS Y19 MEM_DQ3 Y2 GPP_TX3N Y20 VDDHTTX Y21 VSSAHT Y22 HT_RXCAD11P Y23 HT_RXCAD11N Y24 HT_RXCAD0N Y25 HT_RXCAD0P Y3 GPP_TX4N
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary A-5
Ball Ref Pin Name
Y4 GPP_TX4P Y5 SB_RX3N Y6 VSSAPCIE Y7 SB_RX1N Y8 SB_RX0N Y9 VDDA18PCIE
Pin Listings
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. A-6 Proprietary
Pin Listings
A.2 RS880 Pin List Sorted by Pin Name
T able A-2 RS880 Pin List Sorted by Pin Name
Pin Name Ball Ref
ALLOW_LDTSTOP C12 AUX_CAL C8 AVDD E12 AVDD F12 AVDDDI F14 AVDDQ H15 AVSSDI G15 AVSSQ H14 BLUE E19 BLUE# F19 DAC_HSYNC A11 DAC_RSET G14 DAC_SCL F8 DAC_SDA E8 DAC_VSYNC B11 DDC_CLK0/AUX0P A8 DDC_CLK1/AUX1P B7 DDC_DATA0/AUX0N B8 DDC_DATA1/AUX1N A7 GFX_REFCLKN T1 GFX_REFCLKP T2 GFX_RX0N C4 GFX_RX0P D4 GFX_RX10N M7 GFX_RX10P P7 GFX_RX11N M5 GFX_RX11P P5 GFX_RX12N P8 GFX_RX12P R8 GFX_RX13N R5 GFX_RX13P R6 GFX_RX14N P3 GFX_RX14P P4 GFX_RX15N T3 GFX_RX15P T4 GFX_RX1N B3 GFX_RX1P A3 GFX_RX2N C1 GFX_RX2P C2 GFX_RX3N F5 GFX_RX3P E5
Pin Name Ball Ref
GFX_RX4N G6 GFX_RX4P G5 GFX_RX5N H6 GFX_RX5P H5 GFX_RX6N J5 GFX_RX6P J6 GFX_RX7N J8 GFX_RX7P J7 GFX_RX8N L6 GFX_RX8P L5 GFX_RX9N L8 GFX_RX9P M8 GFX_TX0N B5 GFX_TX0P A5 GFX_TX10N K3 GFX_TX10P K4 GFX_TX11N K2 GFX_TX11P K1 GFX_TX12N M3 GFX_TX12P M4 GFX_TX13N M2 GFX_TX13P M1 GFX_TX14N N1 GFX_TX14P N2 GFX_TX15N P2 GFX_TX15P P1 GFX_TX1N B4 GFX_TX1P A4 GFX_TX2N B2 GFX_TX2P C3 GFX_TX3N D2 GFX_TX3P D1 GFX_TX4N E1 GFX_TX4P E2 GFX_TX5N F3 GFX_TX5P F4 GFX_TX6N F2 GFX_TX6P F1 GFX_TX7N H3 GFX_TX7P H4 GFX_TX8N H2 GFX_TX8P H1
Pin Name Ball Ref
GFX_TX9N J1 GFX_TX9P J2 GPIO2 F7 GPIO3 E9 GPIO4 G12 GPP_REFCLKN U2 GPP_REFCLKP U1 GPP_RX0N AD4 GPP_RX0P AE3 GPP_RX1N AD3 GPP_RX1P AE2 GPP_RX2N AD2 GPP_RX2P AD1 GPP_RX3N W6 GPP_RX3P V5 GPP_RX4N U6 GPP_RX4P U5 GPP_RX5N U7 GPP_RX5P U8 GPP_TX0N AC2 GPP_TX0P AC1 GPP_TX1N AB3 GPP_TX1P AB4 GPP_TX2N AA1 GPP_TX2P AA2 GPP_TX3N Y2 GPP_TX3P Y1 GPP_TX4N Y3 GPP_TX4P Y4 GPP_TX5N V2 GPP_TX5P V1 GPPSB_REFCLKN V3 GPPSB_REFCLKP V4 GREEN E18 GREEN# F18 HPD D10 HT_REFCLKN C24 HT_REFCLKP C25 HT_RXCAD0N Y24 HT_RXCAD0P Y25 HT_RXCAD10N AA25 HT_RXCAD10P AA24
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary A-7
Pin Listings
Pin Name Ball Ref
HT_RXCAD11N Y23 HT_RXCAD11P Y22 HT_RXCAD12N W20 HT_RXCAD12P W21 HT_RXCAD13N V20 HT_RXCAD13P V21 HT_RXCAD14N U21 HT_RXCAD14P U20 HT_RXCAD15N U18 HT_RXCAD15P U19 HT_RXCAD1N V23 HT_RXCAD1P V22 HT_RXCAD2N V24 HT_RXCAD2P V25 HT_RXCAD3N U25 HT_RXCAD3P U24 HT_RXCAD4N T24 HT_RXCAD4P T25 HT_RXCAD5N P23 HT_RXCAD5P P22 HT_RXCAD6N P24 HT_RXCAD6P P25 HT_RXCAD7N N25 HT_RXCAD7P N24 HT_RXCAD8N AC25 HT_RXCAD8P AC24 HT_RXCAD9N AB24 HT_RXCAD9P AB25 HT_RXCALN A24 HT_RXCALP C23 HT_RXCLK0N T23 HT_RXCLK0P T22 HT_RXCLK1N AA22 HT_RXCLK1P AB23 HT_RXCTL0N M23 HT_RXCTL0P M22 HT_RXCTL1N R20 HT_RXCTL1P R21 HT_TXCAD0N D25 HT_TXCAD0P D24 HT_TXCAD10N J21 HT_TXCAD10P J20 HT_TXCAD11N K17 HT_TXCAD11P J18
Pin Name Ball Ref
HT_TXCAD12N J19 HT_TXCAD12P L19 HT_TXCAD13N L18 HT_TXCAD13P M19 HT_TXCAD14N P21 HT_TXCAD14P M21 HT_TXCAD15N M18 HT_TXCAD15P P18 HT_TXCAD1N E25 HT_TXCAD1P E24 HT_TXCAD2N F25 HT_TXCAD2P F24 HT_TXCAD3N F22 HT_TXCAD3P F23 HT_TXCAD4N H22 HT_TXCAD4P H23 HT_TXCAD5N J24 HT_TXCAD5P J25 HT_TXCAD6N K25 HT_TXCAD6P K24 HT_TXCAD7N K22 HT_TXCAD7P K23 HT_TXCAD8N G21 HT_TXCAD8P F21 HT_TXCAD9N H21 HT_TXCAD9P G20 HT_TXCALN B25 HT_TXCALP B24 HT_TXCLK0N H25 HT_TXCLK0P H24 HT_TXCLK1N L20 HT_TXCLK1P L21 HT_TXCTL0N M25 HT_TXCTL0P M24 HT_TXCTL1N R18 HT_TXCTL1P P19 I2C_CLK B9 I2C_DATA A9 IOPLLVDD AE24 IOPLLVDD18 AE23 IOPLLVSS AD23 LDTSTOP# C10 MEM_A0 AB12 MEM_A1 AE16
Pin Name Ball Ref
MEM_A10 AC16 MEM_A11 AE13 MEM_A12 AC14 MEM_A13 Y14 MEM_A2 V11 MEM_A3 AE15 MEM_A4 AA12 MEM_A5 AB16 MEM_A6 AB14 MEM_A7 AD14 MEM_A8 AD13 MEM_A9 AD15 MEM_BA0 AD16 MEM_BA1 AE17 MEM_BA2 AD17 MEM_CAS# Y12 MEM_CKE AB18 MEM_CKN W14 MEM_CKP V15 MEM_COMPN AD12 MEM_COMPP AE12 MEM_CS# AB13 MEM_DM0 W17 MEM_DM1 AE19 MEM_DQ0 AA18 MEM_DQ1 AA20 MEM_DQ10 AE22 MEM_DQ11 AC18 MEM_DQ12 AB20 MEM_DQ13 AD22 MEM_DQ14 AC22 MEM_DQ15 AD21 MEM_DQ2 AA19 MEM_DQ3 Y19 MEM_DQ4 V17 MEM_DQ5 AA17 MEM_DQ6 AA15 MEM_DQ7 Y15 MEM_DQ8 AC20 MEM_DQ9 AD19 MEM_DQS0N W18 MEM_DQS0P Y17 MEM_DQS1N AE21 MEM_DQS1P AD20
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. A-8 Proprietary
Pin Listings
Pin Name Ball Ref
MEM_ODT V14 MEM_RAS# W12 MEM_VREF AE18 MEM_WE# AD18 PCE_CALRN AB8 PCE_CALRP AC8 PLLVDD A12 PLLVDD18 D14 PLLVSS B12 POWERGOOD A10 RED G18 RED# G17 REFCLK_N F11 REFCLK_P E11 RESERVED E17 RESERVED F15 RESERVED F17 RESERVED G11 SB_RX0N Y8 SB_RX0P AA8 SB_RX1N Y7 SB_RX1P AA7 SB_RX2N AA6 SB_RX2P AA5 SB_RX3N Y5 SB_RX3P W5 SB_TX0N AE7 SB_TX0P AD7 SB_TX1N AD6 SB_TX1P AE6 SB_TX2N AC6 SB_TX2P AB6 SB_TX3N AE5 SB_TX3P AD5 STRP_DATA B10 SUS_STAT# D12 SYSRESET# D8 TESTMODE D13 THERMALDIODE_N AD8 THERMALDIODE_P AE8 TMDS_HPD D9 TXCLK_LN A16 TXCLK_LP B16 TXCLK_UN D17
Pin Name Ball Ref
TXCLK_UP D16 TXOUT_L0N B22 TXOUT_L0P A22 TXOUT_L1N B21 TXOUT_L1P A21 TXOUT_L2N A20 TXOUT_L2P B20 TXOUT_L3N B19 TXOUT_L3P A19 TXOUT_U0N A18 TXOUT_U0P B18 TXOUT_U1N B17 TXOUT_U1P A17 TXOUT_U2N D21 TXOUT_U2P D20 TXOUT_U3N D19 TXOUT_U3P D18 VDD_MEM AA11 VDD_MEM AB10 VDD_MEM AC10 VDD_MEM AD10 VDD_MEM AE10 VDD_MEM Y11 VDD18 F9 VDD18 G9 VDD18_MEM AD11 VDD18_MEM AE11 VDD33 H11 VDD33 H12 VDDA18HTPLL H17 VDDA18PCIE AA9 VDDA18PCIE AB9 VDDA18PCIE AD9 VDDA18PCIE AE9 VDDA18PCIE H9 VDDA18PCIE J10 VDDA18PCIE K10 VDDA18PCIE L10 VDDA18PCIE M10 VDDA18PCIE P10 VDDA18PCIE R10 VDDA18PCIE T10 VDDA18PCIE U10 VDDA18PCIE W9
Pin Name Ball Ref
VDDA18PCIE Y9 VDDA18PCIEPLL D7 VDDA18PCIEPLL E7 VDDC J11 VDDC J14 VDDC J16 VDDC K12 VDDC K15 VDDC L1 1 VDDC L14 VDDC M12 VDDC M13 VDDC M15 VDDC N12 VDDC N14 VDDC P11 VDDC P13 VDDC P14 VDDC R12 VDDC R15 VDDC T11 VDDC T14 VDDC T15 VDDC U12 VDDC U16 VDDHT J17 VDDHT K16 VDDHT L16 VDDHT M16 VDDHT P16 VDDHT R16 VDDHT T16 VDDHTRX A23 VDDHTRX B23 VDDHTRX D22 VDDHTRX E21 VDDHTRX F20 VDDHTRX G19 VDDHTRX H18 VDDHTTX AA21 VDDHTTX AB22 VDDHTTX AC23 VDDHTTX AD24 VDDHTTX AE25
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary A-9
Pin Listings
Pin Name Ball Ref
VDDHTTX M17 VDDHTTX P17 VDDHTTX R17 VDDHTTX T17 VDDHTTX U17 VDDHTTX V18 VDDHTTX W19 VDDHTTX Y20 VDDLT18 A15 VDDLT18 B15 VDDLT33 A14 VDDLT33 B14 VDDLTP18 A13 VDDPCIE A6 VDDPCIE B6 VDDPCIE C6 VDDPCIE D6 VDDPCIE E6 VDDPCIE F6 VDDPCIE G7 VDDPCIE H8 VDDPCIE J9 VDDPCIE K9 VDDPCIE L9 VDDPCIE M9 VDDPCIE P9 VDDPCIE R9 VDDPCIE T9 VDDPCIE U9 VDDPCIE V9 VSS AA14 VSS AB11 VSS AB15 VSS AB17 VSS AB19 VSS AB21 VSS AC12 VSS AE14 VSS AE20 VSS D11 VSS E14 VSS E15 VSS G8 VSS J12
Pin Name Ball Ref
VSS J15 VSS K11 VSS K14 VSS L12 VSS L15 VSS M11 VSS M14 VSS N13 VSS P12 VSS P15 VSS R11 VSS R14 VSS T12 VSS U11 VSS U14 VSS U15 VSS V12 VSS W11 VSS W15 VSS Y18 VSSAHT A25 VSSAHT AD25 VSSAHT D23 VSSAHT E22 VSSAHT G22 VSSAHT G24 VSSAHT G25 VSSAHT H19 VSSAHT H20 VSSAHT J22 VSSAHT L17 VSSAHT L22 VSSAHT L24 VSSAHT L25 VSSAHT M20 VSSAHT N22 VSSAHT P20 VSSAHT R19 VSSAHT R22 VSSAHT R24 VSSAHT R25 VSSAHT U22 VSSAHT V19 VSSAHT W22
Pin Name Ball Ref
VSSAHT W24 VSSAHT W25 VSSAHT Y21 VSSAPCIE A2 VSSAPCIE AA4 VSSAPCIE AB1 VSSAPCIE AB2 VSSAPCIE AB5 VSSAPCIE AB7 VSSAPCIE AC3 VSSAPCIE AC4 VSSAPCIE AE1 VSSAPCIE AE4 VSSAPCIE B1 VSSAPCIE D3 VSSAPCIE D5 VSSAPCIE E4 VSSAPCIE G1 VSSAPCIE G2 VSSAPCIE G4 VSSAPCIE H7 VSSAPCIE J4 VSSAPCIE L1 VSSAPCIE L2 VSSAPCIE L4 VSSAPCIE L7 VSSAPCIE M6 VSSAPCIE N4 VSSAPCIE P6 VSSAPCIE R1 VSSAPCIE R2 VSSAPCIE R4 VSSAPCIE R7 VSSAPCIE U4 VSSAPCIE V6 VSSAPCIE V7 VSSAPCIE V8 VSSAPCIE W1 VSSAPCIE W2 VSSAPCIE W4 VSSAPCIE W7 VSSAPCIE W8 VSSAPCIE Y6 VSSLT C14
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. A-10 Proprietary
Pin Listings
Pin Name Ball Ref
VSSLT C16 VSSLT C18 VSSLT C20 VSSLT C22 VSSLT D15 VSSLT E20 VSSLTP18 B13
© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary A-11
This page is left blank intentionally.
Pin Listings
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. A-12 Proprietary
Rev. 1.40 (April 2013)
Updated Figure 1-3, “RS880 ASIC A11 Production Branding.”
Rev. 1.30 (Nov 2010)
First release of the public version.
Changes from the last NDA release:
Updated Section 2.2.2, “DDR3 Memory Interface”: Clarified on features and limitations of the RS880 memory
controller.
Updated Table 3-2, “Side-Port Memory Interface”: Revised descriptions for MEM_DQS[1:0]P/N and
MEM_COMPP/N.
Updated Table 5-3, “DC Characteristics for DDC Signals (DDC Mode)”: Revised VILdc and VIHdc values and
removed VILac and VIHac values.
Appendix B

Revision History

© 2013 Advanced Micro Devices, Inc. 46112 AMD RS880 Databook 1.40 Proprietary B-1
This page intentionally left blank.
Revision History
46112 AMD RS880 Databook 1.40 © 2013 Advanced Micro Devices, Inc. B-2 Proprietary
Loading...