Agilent Technologies N9010A User Manual

Agilent X-Series Signal Analyzer
This manual provides documentation for the following X-Series Analyzer: EXA Signal Analyzer N9010A
N9010A EXA Specifications Guide
(Comprehensive Reference Data)
Notices
© Agilent Technologies, Inc. 2007 - 2010 No part of this manual may be reproduced
in any form or by any means (including electronic storage and retrieval or transla­tion into a foreign language) without prior agreement and written consent from Agi­lent Technologies, Inc. as governed by United States and international copyright laws.
Trademark Acknowledgements
Microsoft® is a U.S. registered trademark of Microsoft Corporation.
Windows U.S. registered trademarks of Microsoft Corporation.
Adobe Reader trademark of Adobe System Incorporated.
Java™ is a U.S. trademark of Sun Microsystems, Inc.
MATLAB® is a U.S. registered trademark of Math Works, Inc.
Norton Ghost™ is a U.S. trademark of Symantec Corporation.
®
and MS Windows® are
®
is a U.S. registered
Manual Part Number
N9010-90025
Supersedes: August 2009
Print Date
February 2010
Printed in USA Agilent Technologies, Inc.
1400 Fountaingrove Parkway Santa Rosa, CA 95403
Warranty
The material contained in this doc­ument is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of mer­chantability and fitness for a par­ticular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in con­nection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the mate­rial in this document that conflict with these terms, the warranty terms in the separate agreement shall control.
Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.
Restricted Rights Legend
If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and
licensed as “Commercial computer soft­ware” as defined in DF AR 252.227-7014 (June 1995), or as a “commercial item” as defined in F AR 2.101(a) or as “Restricted computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Gov­ernment users will receive no greater than Limited Rights as defined in FAR 52.227­14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.
Safety Notices
CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly per­formed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.
WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indi­cated conditions are fully understood and met.
2

Notice

Warranty

This Agilent technologies instrument product is warranted against defects in material and workmanship for a period of one year from the date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products that prove to be defective.
For warranty service or repair, this product must be returned to a service facility designated by Agilent T echnologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However , Bu yer shall pay all shipping char ges, duties, and taxes for products returned to Agilent Technologies from another country.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about this analyzer, including firmware upgrades, application information, and product information, see the following URLs:

http://www.agilent.com/find/exa

To receive the latest updates by email, subscribe to Agilent Email Updates:

http://www.agilent.com/find/emailupdates

Information on preventing analyzer damage can be found at:

http://www.agilent.com/find/tips

3
4
Contents
1. Agilent EXA Signal Analyzer
Definitions and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Conditions Required to Meet Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Certification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Standard Frequency Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Precision Frequency Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Frequency Readout Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Frequency Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Frequency Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Sweep Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Gated Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Nominal Measurement Time vs. Span [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Number of Frequency Display Trace Points (buckets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Resolution Bandwidth (RBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Video Bandwidth (VBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Amplitude Accuracy and Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Maximum Safe Input Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Display Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Marker Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
IF Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Input Attenuation Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Nominal VSWR [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Resolution Bandwidth Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Reference Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Display Scale Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Available Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Dynamic Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Gain Compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Displayed Average Noise Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Displayed Average Noise Level (DANL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Spurious Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Second Harmonic Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Third Order Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Nominal Dynamic Range at 1 GHz [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Nominal Dynamic Range Bands 1-4 [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Phase Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Nominal Phase Noise of Different LO Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Nominal Phase Noise at Different Center Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5
Contents
Power Suite Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Adjacent Channel Power (ACP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Fast ACPR Test [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Burst Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Rear Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Declaration of Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2. Option B25 (25 MHz) - Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
IF Spurious Response, 25 MHz IF Bandwidth (Option B25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
SFDR (Spurious-Free Dynamic Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
IF Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
IF Phase Linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3. Option EA3 - Electronic Attenuator, 3.6 GHz
Specifications Affected by Electronic Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Other Electronic Attenuator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Range (Frequency and Attenuation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Distortions and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Electronic Attenuator Switching Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4. Option P03 - Preamplifier
Specifications Affected by Preamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Other Preamp Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Preamp (Option P03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Noise figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
1 dB Gain Compression Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Displayed Average Noise Level (DANL) Preamp On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Frequency Response Preamp On
(Option P03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Nominal VSWR Preamp On (Plot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Third Order
Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Nominal Dynamic Range at 1 GHz, Preamp On (Plot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6
Contents
5. Option PFR - Precision Frequency Reference
Specifications Affected by Precision Frequency Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6. I/Q Analyzer
Specifications Affected by I/Q Analyzer:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Clipping-to-Noise Dynamic Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7. Phase Noise Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Maximum Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Measurement Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Measurement Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Amplitude Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Offset Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Nominal Phase Noise at Different Center Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8. 802.16 OFDMA Measurement Application
Measurement Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Modulation Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9. W-CDMA Measurement Application
Conformance with 3GPP TS 25.141 Base Station Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Spurious Emissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Code Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
QPSK EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Modulation Accuracy (Composite EVM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10. GSM/EDGE Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
EDGE Error Vector Magnitude
7
Contents
(EVM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Power vs. Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
EDGE Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Power Ramp Relative Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Phase and Frequency Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Output RF Spectrum (ORFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
EDGE Output RF Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
In-Band Frequency Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11. Analog Demodulation Measurement Application
Analog Demodulation Performance – Pre-Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Maximum Safe Input Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Demodulation Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Capture Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Analog Demodulation Performance – Post-Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Maximum Audio Frequency Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Frequency Modulation - Level and Carrier Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
FM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
FM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Carrier Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Carrier Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Frequency Modulation - Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Absolute Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
AM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Residual FM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Amplitude Modulation - Level and Carrier Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
AM Depth Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
AM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Carrier Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Amplitude Modulation - Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Absolute Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
FM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Residual AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Phase Modulation - Level and Carrier Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
PM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
PM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Carrier Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Carrier Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Phase Modulation - Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Absolute Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8
Contents
AM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Residual PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12. Noise Figure Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Noise Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Noise Figure Uncertainty Calculator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Nominal Instrument Noise Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Nominal Instrument Input VSWR, DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
13. cdma2000 Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Code Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
QPSK EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Modulation Accuracy (Composite Rho). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
In-Band Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
14. 1xEV-DO Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Spectrum Emission Mask and Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
QPSK EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Code Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Modulation Accuracy (Composite Rho). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
In-Band Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Alternative Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15. TD-SCDMA Measurement
Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Transmit Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Single Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9
Contents
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Modulation Accuracy (Composite EVM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
16. LTE Measurement Application
Supported Air Interface Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Power vs. Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Modulation Analysis Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
17. Single Acquisition Combined Fixed WiMAX Measurement Application
N9074A-XFP, Single Acquisition Combined Fixed WiMAX Measurements. . . . . . . . . . . . . . . . . . . . . . 200
Transmit Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
64QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
18. Single Acquisition Combined WLAN Measurement Application
N9077A, Combined WLAN 802.11a or 802.11g-OFDM Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 204
Transmit Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
64QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
N9077A, Combined WLAN 802.11b or 802.11g-DSSS Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Transmit Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
CCK 11 Mbps (DSSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
19. iDEN/WiDEN/MotoTalk Measurement Application
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Amplitude Accuracy and Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Application Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Parameter Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
iDEN Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
iDEN Signal Demod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
MotoTalk Signal Demod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10
Contents
20. DVB-T/H Measurement Application
N6153A, DVB-T/H Measurements Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Spurious Emission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
64 QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
21. ISDB-T Measurement Application
N6155A, ISDB-T/TSB Measurement Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Modulation Analysis Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Modulation Analysis Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
ISDB-T Modulation Analysis Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
22. DTMB Measurement Application
N6156A, DTMB Measurement Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
16 QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
16 QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
23. CMMB Measurement Application
N6158A, CMMB Measurements Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Modulation Analysis Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Modulation Analysis Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
CMMB Modulation Analysis Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
24. VXA Measurement Application
Basic VSA-Lite Performance (89601X Option 205) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Center Frequency Tuning Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Frequency Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
11
Contents
Frequency Points per Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Resolution Bandwidth (RBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
ADC overload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Amplitude Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Amplitude Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
IF Flatness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Dynamic Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Third-order intermodulation distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Noise Density at 1 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Image Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
LO related spurious. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Other spurious. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Analog Modulation Analysis (89601X Option 205) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
AM Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
PM Demodulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
FM Demodulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Vector Modulation Analysis (89601X Option AYA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Video Modulation Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
25. Option EMC Precompliance Measurements
Requirements for X-Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Conditions Required to Meet Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
EMI Resolution Bandwidths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
EMI Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Quasi-Peak Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
RMS Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
12

1 Agilent EXA Signal Analyzer

This chapter contains the specifications for the core signal analyzer. The specifications and characteristics for the measurement applications and options are covered in the chapters that follow.
13
Agilent EXA Signal Analyzer

Definitions and Requirements

Definitions and Requirements
This book contains signal analyzer specifications and supplemental information. The distinctio n amon g specifications, typical performance, and nominal values are described as follows.

Definitions

Specifications describe the performance of parameters covered by the product warranty (temperature
= 5 to 50°C, unless otherwise noted).
95th percentile values indicate the breadth of the population (≈2σ) of performance tolerances
expected to be met in 95% of the cases with a 95% confidence, for any ambient temperature in the range of 20 to 30°C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.
Typical describes additional product performance information that is not covered by the product
warranty. It is performance beyond specification that 80% of the units exhibit with a 95% confidence level over the temperature range 20 to 30°C. Typical performance does not include measurement uncertainty.
Nominal values indicate expected performance, or describe product performance that is useful in the
application of the product, but is not covered by the product warranty.

Conditions Required to Meet Specifications

The following conditions must be met for the analyzer to meet its specifications.
The analyzer is within its calibration cycle. See the General section of this chapter.
Under auto couple control, except that Auto Sweep Time Rules = Accy.
For signal frequencies < 10 MHz, DC coupling applied.
Any analyzer that has been stored at a temperature range inside the allowed storage range but outside
the allowed operating range must be stored at an ambient temperature within the allowed operating range for at least two hours before being turned on.
The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or if Auto Align
is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from “Time and Temperature” to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user.

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute’s calibration facility, and to the calibration facilities of other International Standards Organization members.
14 Chapter 1
Agilent EXA Signal Analyzer

Frequency and Time

Frequency and Time
Description Specifications Supplemental Information Frequency Range
Maximum Frequency
Option 503 3.6 GHz Option 507 7 GHz Option 513 13.6 GHz Option 526 26.5 GHz
Preamp Option P03 3.6 GHz
Minimum Frequency
Preamp AC Coupled DC Coupled Off 10 MHz 9 kHz On 10 MHz 100 kHz

Band

Band Overlaps 0 (9 kHz to 3.6 GHz)
1 (3.5 GHz to 7 GHz) 1 (3.5 GHz to 8.4 GHz) 2 (8.3 GHz to 13.6 GHz) 3 (13.5 GHz to 17.1 GHz) 4 (17 GHz to 26.5 GHz)
a
Harmonic Mixing Mode
1 1 1 1 2 2
b
LO Multiple (N
1 Options 503,507, 513, 526 1 Option 507 1 Options 513, 526 2 Options 513, 526 2 Option 526 4 Option 526
)
Chapter 1 15
Agilent EXA Signal Analyzer
Frequency and Time
a. In the band overlap regions, for example, 3.5 to 3.6 GHz, the analyzer may use either band for
measurements, in this example Band 0 or Band 1. The analyzer gives preference to the band with the better overall specifications (which is the lower numbered band for all frequencies below 26 GHz), but will choose the other band if doing so is necessary to achieve a sweep having minimum band crossings. For example, with CF = 3.58 GHz, with a span of 40 MHz or less, the analyzer uses Band 0, because the stop frequency is 3.6 GHz or less, allowing a span without band crossings in the preferred band. If the span is between 40 and 160 MHz, the analyzer uses Band 1, because the start frequency is above 3.5 GHz, allowing the sweep to be done without a band crossing in Band 1, though the stop frequency is above 3.6 GHz, pre­venting a Band 0 sweep without band crossing. With a span greater than 160 MHz, a band crossing will be required: the analyzer sweeps up to 3.6 GHz in Band 0; then executes a band crossing and continues the sweep in Band 1.
Specifications are given separately for each band in the band overlap regions. One of these specifications is for the preferred band, and one for the alternate band. Continuing with the example from the previous paragraph (3.58 GHz), the preferred band is ba nd 0 (indicated as frequencies under 3.6 GHz) and the alternate band is band 1 (3.5 to 8.4 GHz). The specifica­tions for the preferred band are warranted. The specifications for the alternate band are not warranted in the band overlap region, but performance is nominally the same as those war­ranted specifications in the rest of the band. Again, in this example, consider a signal at 3.58 GHz. If the sweep has been configured so that the signal at 3.58 GHz is measured in Band 1, the analysis behavior is nominally as stated in the Band 1 specification line (3.5 – 8.4 GHz) but is not warranted. If warranted performance is necessary for this signal, the sweep should be reconfigured so that analysis occurs in Band 0. Another way to express this situation in this example Band 0/Band 1 crossing is this: The specifications given in the “Specifications” col­umn which are described as “3.5 to 8.4 GHz” represent nominal performance from 3.5 to 3.6 GHz, and warranted performance from 3.6 to 8.4 GHz.
b. N is the LO multiplication factor. For negative mixing modes (as indicated by the “” in the
“Harmonic Mixing Mode” column), the desired 1st LO harmonic is higher than the tuned fre­quency by the 1st IF (5.1225 GHz for band 0, 322.5 MHz for all other bands).
Description Specifications Supplemental Information Standard Frequency Reference
Accuracy ±[(time since last adjustment × aging
rate) + temperature stability +
a
]
b
Temperature Stability 20 to 30 °C
5 to 50 °C
Aging Rate
calibration accuracy
±2 × 10
±2 × 10
±1 × 10
16 Chapter 1
6
6
6
/year
Agilent EXA Signal Analyzer
Frequency and Time
Description Specifications Supplemental Information
Achievable Initial Calibration
±1.4 × 10
6
Accuracy Settability
Residual FM Center Frequency = 1 GHz
±2 × 10
8
10 Hz × N p-p in 20 ms nominal
10 Hz RBW, 10 Hz VBW
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10
MHz. If the adjustment procedure is followed, the calibration accuracy is given by the specifi-
cation “Achievable Initial Calibration Accuracy.” b. For periods of one year or more. c. N is the LO multiplication factor.
c
,
Chapter 1 17
Agilent EXA Signal Analyzer
Frequency and Time
Description Specifications Supplemental Information Precision Frequency Refere nce
(Option PFR) Accuracy ±[(time since last adjustment
× aging rate) + temperature stability + calibration
accuracy
a]b
Temperature Stability
8
8
±5 × 10
10
20 to 30 °C
5 to 50 °C
Aging Rate
±1.5 × 10
±5 × 10
Total Aging 1 Year
2 Years
Settability
Warm-up and Retrace 300 s after turn on
900 s after turn on
±1 × 10
±1.5 × 10
±2 × 10
c
7
9
7
±1 × 10
7
(nominal)
±1 × 10
8
of final frequency
of final frequency
(nominal)
Achievable Initial Calibration Accuracy
d
±4 × 10
8
Standby power to reference oscillator Not supplied Residual FM
Center Frequency = 1 GHz
0.25 Hz x N p-p in 20 ms (nominal)
/day (nominal)
e
10 Hz RBW, 10 Hz VBW
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10
MHz. If the adjustment procedure is followed, the calibration accuracy is given by the specifi-
cation “Achievable Initial Calibration Accuracy.” b. The specification applies af ter the analyzer has been powered on for four hours. c. Standby mode does not apply power to the oscillator. Therefore warm-up applies every time
the power is turned on. The warm-up reference is one hour after turning the power on. Retrac-
ing also occurs every time the power is applied. The effect of retracing is included within the
“Achievable Initial Calibration Accuracy” term of the Accuracy equation.
18 Chapter 1
Agilent EXA Signal Analyzer
Frequency and Time
d. The achievable calibration accuracy at the beginning of the calibration cycle includes these
effects:
1) Te mperature difference between the calibration environment and the use environment
2) Orientation relative to the gravitation field changing between the calibration environment and the use environment
3) Retrace effects in both the calibration environment and the use environment due to turning the instrument power off.
4) Settability
e. N is the LO multiplication factor.
Chapter 1 19
Agilent EXA Signal Analyzer
Frequency and Time
Description Specifications Supplemental
Information

Frequency Readout Accuracy ±(marker freq. × freq. ref. accy. + 0.25%

a
+ 2 Hz + 0.5 ×
b
)
Example for EMC
× span + 5% × RBW horizontal resolution
d
Single detector only
±0.0032% (nominal)
a. The warranted performance is only the sum of all errors under autocoupled conditions. Under
non-autocoupled conditions, the frequency readout accuracy will nominally meet the specifica-
tion equation, except for conditions in which the RBW term dominates, as explained in exam-
ples below. The nominal RBW contribution to frequency readout accuracy is 2% of RBW for
RBWs from 1 Hz to 390 kHz, 4% of RBW from 430 kHz through 3 MHz (the widest autocou-
pled RBW), and 30% of RBW for the (manually selected) 4, 5, 6 and 8 MHz RBWs.
First example: a 120 MHz span, with autocoupled RBW. The autocoupled ratio of span to
RBW is 106:1, so the RBW selected is 1.1 MHz. The 5% × RBW term contributes only 55 kHz
to the total frequency readout accuracy, compared to 300 kHz for the 0.25% × span term, for a
total of 355 kHz. In this example, if an instrument had an unusually high RBW centering error
of 7% of RBW (77 kHz) and a span error of 0.20% of span (240 kHz), the total actual error
(317 kHz) would still meet the computed specification (355 kHz).
Second example: a 20 MHz span, with a 4 MHz RBW. The specification equation does not
apply because the Span: RBW ratio is not autocoupled. If the equation did apply, it would
allow 50 kHz of error (0.25%) due to the span and 200 kHz error (5%) due to the RBW. For
this non-autocoupled RBW, the RBW error is nominally 30%, or 1200 kHz. b. Horizontal resolution is due to the marker reading out one of the trace points. The points are
spaced by span/(Npts - 1), where Npts is the number of sweep points. For example, with the
factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However,
there is an exception: When both the detector mode is “normal” and the span > 0.25 × (Npts -
1) × RBW, peaks can occur only in even-numbered points, so the effective horizontal resolu-
tion becomes doubled, or span/500 for the factory preset case. When the RBW is autocoupled
and there are 1001 sweep points, that exception occurs only for spans > 750 MHz c. Specifications apply to traces in two cases: when all active traces use the same detector, and to
any trace that uses the peak detector. When multiple simultaneous detectors are in use, addi-
tional errors of 0.5, 1.0 or 1.5 display points will occur in some detectors, depending on the
combination of detectors in use. In one example, with positive peak, negative peak and average
detection, there is an additional error only in the average detection trace, which shifts the
apparent signal position left by 0.5 display points.
c
20 Chapter 1
Agilent EXA Signal Analyzer
Frequency and Time
d. In most cases, the frequency readout accuracy of the analyzer can be exceptionally good. As an
example, Agilent has characterized the accuracy of a span commonly used for Electro-Mag­netic Compatibility (EMC) testing using a source frequency locked to the analyzer. Ideally, this sweep would include EMC bands C and D and thus sweep from 30 to 1000 MHz. Ideally, the analysis bandwidth would be 120 kHz at 6 dB, and the spacing of the points would be half of this (60 kHz). With a start frequency of 30 MHz and a stop frequency of 1000.2 MHz and a total of 16168 points, the spacing of points is ideal. The detector used was the Peak detector. The accuracy of frequency readout of all the points tested in this span was with ±0.0032% of the span. A perfect analyzer with this many points would have an accuracy of ±0.0031% of span. Thus, even with this large number of display points, the errors in excess of the bucket quantization limitation were negligible.
Chapter 1 21
Agilent EXA Signal Analyzer
Frequency and Time
Description Specifications Supplemental
Information

Frequency Counter

Count Accuracy ±(marker freq. × freq. Ref. Accy. + 0.100 Hz) Delta Count Accuracy ±(delta freq. × freq. Ref. Accy. + 0.141 Hz) Resolution 0.001 Hz
a
See note
b
a. Instrument conditions: RBW = 1 kHz, gate time = auto (100 ms), S/N 50 dB,
frequency = 1 GHz b. If the signal being measured is locked to the same frequency reference as the analyzer, the
specified count accuracy is ±0.100 Hz under the test conditions of footnote a. This error is a
noisiness of the result. It will increase with noisy sources, wider RBWs, lower S/N ratios, and
source frequencies >1 GHz.
Description Specifications Supplemental Information Frequency Span
Range Swept and FFT
Option 503 0 Hz, 10 Hz to 3.6 GHz Option 507 0 Hz, 10 Hz to 7 GHz Option 513 0 Hz, 10 Hz to 13.6 GHz Option 526 0 Hz, 10 Hz to 26.5 GHz Resolution 2 Hz Span Accuracy
Swept
FFT
±(0.25% × span + horizontal resolution
±(0.10% × span + horizontal resolution
a
)
a
)
a. Horizontal resolution is due to the marker reading out one of the trace points. The points are
spaced by span/(Npts 1), where Npts is the number of sweep points. For example, with the
factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However,
there is an exception: When both the detector mode is “normal” and the span > 0.25 × (Npts
1) × RBW, peaks can occur only in even-numbered points, so the effective horizontal resolu-
tion becomes doubled, or span/500 for the factory preset case. When the RBW is auto coupled
and there are 1001 sweep points, that exception occurs only for spans > 750 MHz.
22 Chapter 1
Agilent EXA Signal Analyzer
Frequency and Time
Description Specifications Supplemental Information Sweep Time
Range Span = 0 Hz Span ≥ 10 Hz
Accuracy Span ≥ 10 Hz, swept Span ≥ 10 Hz, FFT Span = 0 Hz
1 μs to 6000 s 1 ms to 4000 s
±0.01% (nominal) ±40% (nominal) ±0.01% (nominal)
Sweep Trigger Free Run, Line, Video,
External 1, External 2, RF Burst, Periodic Timer
Delayed Trigger
a
Range Span 10 Hz, swept 1 μs to 500 ms Span = 0 Hz or FFT 150 ms to +500 ms Resolution 0.1 μs
a. Delayed trigger is available with line, video, RF burst and external triggers.
Description Specifications Supplemental Information Triggers Additional information on some of the triggers and
gate sources
Video
Independent of Display Scaling and Reference
Level Minimum settable level 170 dBm Useful range limited by noise Maximum usable level
Highest allowed mixer level
a
+ 2 dB (nominal)
Detector and Sweep Type relationships
Sweep Type = Swept Detector = Normal, Peak,
Sample or Negative Peak
Triggers on the signal before detection, which is
similar to the displayed signal Detector = Average Triggers on the signal before detection, but with a
single-pole filter added to give similar smoothing to
that of the average detector
Chapter 1 23
Agilent EXA Signal Analyzer
Frequency and Time
Description Specifications Supplemental Information
Sweep Type = FFT Triggers on the signal envelope in a bandwidth
wider than the FFT width
RF Burst
Level Range 50 to 10 dBm plus attenuation (nominal) Bandwidth (10 dB) Most cases 16 MHz (nominal) Sweep Type = FFT;
FFT Width = 25 MHz; Span 8 MHz
Frequency Limitations If the start or center frequency is too close to zero,
External Triggers
30 MHz (nominal)
LO feedthrough can degrade or prevent triggering. How close is too close depends on the bandwidth.
See “Inputs/Outputs” on page 71
a. The highest allowed mixer level depends on the attenuation and IF Gain. It is nominally
–10 dBm + input attenuation for Preamp Off and IF Gain = Low.
24 Chapter 1
Agilent EXA Signal Analyzer
Frequency and Time
Description Specifications Supplemental Information Gated Sweep
Gate Methods Gated LO
Gated Video
Gated FFT Span Range Any span Gate Delay Range 0 to 100.0 s Gate Delay Settability 4 digits, 100 ns Gate Delay Jitter 33.3 ns p-p (nominal) Gate Length Range
Except Method = FFT Gated Frequency and
Amplitude Errors
Gate Sources External 1
100.0 ns to 5.0 s
External 2
Line
RF Burst
Periodic
Nominally no additional error for gated measurements when the Gate Delay is greater than the MIN FAST setting
Pos or neg edge triggered
Chapter 1 25
Agilent EXA Signal Analyzer
Frequency and Time
Nominal Measurement Time vs. Span [Plot]
Description Specifications Supplemental Information Number of Frequency Display Trace
Points (buckets)
Factory preset 1001 Range 1 to 40,001 Zero and non-zero spans
26 Chapter 1
Agilent EXA Signal Analyzer
Frequency and Time
Description Specifications Supplemental
Information

Resolution Bandwidth (RBW)

Range (3.01 dB bandwidth) 1 Hz to 8 MHz
Bandwidths above 3 MHz are 4, 5, 6, and 8 MHz. Bandwidths 1 Hz to 3 MHz are spaced at 10% spacing using the E24 series (24 per decade): 1.0, 1.1, 1.2, 1.3, 1.5,
1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6,
3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2,
9.1 in each decade.
Power bandwidth accuracy RBW Range CF Range 1 Hz - 750 kHz All ±1.0% (0.044 dB) 820 kHz - 1.2 MHz <3.6 GHz ±2.0% (0.088 dB)
1.3 - 2.0 MHz <3.6 GHz ±0.07 dB (nominal)
2.2 - 3 MHz <3.6 GHz ±0.15 dB (nominal) 4 - 8 MHz <3.6 GHz ±0.25 dB (nominal)
Accuracy (3.01 dB bandwidth) 1 Hz to 1.3 MHz RBW ±2% (nominal)
1.5 MHz to 3 MHz RBW (CF 3.6 GHz) (CF > 3.6 GHz)
4 MHz to 8 MHz RBW (CF 3.6 GHz) (CF > 3.6 GHz)
a
b
±7% (nominal) ±8% (nominal)
±15% (nominal) ±20% (nominal)
Selectivity (60 dB/3 dB) 4.1:1 (nominal)
a. The noise marker, band power marker , channel power and ACP all comp ute their results using
the power bandwidth of the RBW used for the measurement. Power bandwidth accuracy is the power uncertainty in the results of these measurements due only to bandwidth-related errors. (The analyzer knows this power bandwidth for each RBW with greater accuracy than the RBW width itself, and can therefore achieve lower errors.) The warranted specifications shown apply to the Gaussian RBW filters used in swept and zero span analysis. There are four different kinds of filters used in the spectrum analyzer: Swept Gaussian, Swept Flattop, FFT Gaussian and FFT Flattop. While the warranted performance only applies to the swept Gauss­ian filters, because only they are kept under statistical process control, the other filters nomi­nally have the same performance.
Chapter 1 27
Agilent EXA Signal Analyzer
Frequency and Time
b. Resolution Bandwidth Accuracy can be observed at slower sweep times than auto-coupled
conditions. Normal sweep rates cause the shape of the RBW filter displayed on the analyzer screen to widen by nominally 6%. This widening declines to 0.6% nominal when the Swp Time Rules key is set to Accuracy instead of Normal. The true bandwidth, which determines the response to impulsive signals and noise-like signals, is not affected by the sweep rate.
Description Specification Supplemental information

Analysis Bandwidth

Standard 10 MHz With Option B25 25 MHz
a
a. Analysis bandwidth is the instantaneous bandwidth available about a center frequency over
which the input signal can be digitized for further analysis or processing in the time, fre­quency, or modulation domain.
Description Specifications Supplemental Information Video Bandwidth (VBW)
Range Same as Resolution Bandwidth
range plus wide-open VBW (labeled 50 MHz)
Accuracy ±6% (nominal)
in swept mode and zero span
a. For FFT processing, the selected VBW is used to determine a number of averages for FFT
results. That number is chosen to give roughly equivalent display smoothing to VBW filtering in a swept measurement. For example, if VBW=0.1 × RBW, four FFTs are averaged to gener­ate one result.
a
28 Chapter 1
Agilent EXA Signal Analyzer

Amplitude Accuracy and Range

Amplitude Accuracy and Range
Description Specifications Supplemental
Information

Measurement Range Displayed Average Noise Level to +23 dBm

Preamp On Displayed Average Noise Level to +23 dBm Option P03 Input Attenuation Range 0 to 60 dB, in 10 dB steps Standard Input Attenuation Range 0 to 60 dB, in 2 dB steps With Option FSA
Description Specifications Supplemental Information Maximum Safe Input Level Applies with or without preamp
(Option P03)
Average Total Power +30 dBm (1 W)
Peak Pulse Power <10 μs pulse width, <1% duty cycle input attenuation ≥ 30 dB
DC volts DC Coupled ±0.2 Vdc AC Coupled ±70 Vdc
Description Specifications Supplemental Information Display Range
Log Scale Ten divisions displayed;
+50 dBm (100 W)
0.1 to 1.0 dB/division in 0.1 dB steps, and 1 to 20 dB/division in 1 dB steps
Linear Scale Te n divisions
Chapter 1 29
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
Description Specifications Supplemental Information

Marker Readout

Log units resolution Average Off, on-screen 0.01 dB Average On or remote 0.001 dB Linear units resolution ≤1% of signal level (nominal)
a
a. Reference level and off-screen performance: The reference level (RL) behavior differs from
some earlier analyzers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the signal analyzer can make measure­ments largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below , without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation and compression) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.
30 Chapter 1
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range

Frequency Response

Description Specifications Supplemental Information Frequency Response Refer to the footnote for
Band Overlaps on page 15.
Maximum error relative to reference condition (50 MHz)
Mechanical attenuator only Swept operation
b
a
Attenuation 10 dB 20 to 30 °C 5 to 50 °C
th
Percentile (≈2σ)
95
9 kHz to 10 MHz ±0.8 dB ±1.0 dB ±0.40 dB 10 MHz to 3.6 GHz ±0.6 dB ±0.65 dB ±0.21 dB
3.5 to 7 GHz
7 to 13.6 GHz
c d
c d
13.5 to 22.0 GHz
22.0 to 26.5 GHz
c d
c d
±2.0 dB ±3.0 dB
±2.5 dB ±3.2 dB
±3.0 dB ±3.7 dB
±3.2 dB ±4.2 dB
a. See the Electronic Attenuator (Option EA3) chapter for Frequency Response using the elec-
tronic attenuator.
b. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response
errors. An additional error source, the error in switching between swept and FFT sweep types,
is nominally ±0.01 dB and is included within the “Absolute Amplitude Error” specifications. c. Specifications for frequencies > 3.5 GHz apply for sweep rates 100 MHz/ms. d. Preselector centering applied.
Chapter 1 31
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
Description Specifications Supplemental Information
IF Frequency Response
Demodulation and FFT response relative to the center frequency
Freq (GHz)
3.6 10 0.40 dB 0.12 dB 0.10 0.03 dB
3.6 to 26.5 ≤ 10 0.25 dB 3.6 10 to 25 0.45 dB 0.12 dB 0.05 0.04 dB
3.6 to 26.5 10 to 25 0.80 dB
a
FFT Width (MHz)
b
Max Errorc
(Exceptions
th
95
Percentile
Midwidth
d
)
Error
Slope (dB/MHz)
e
Rms (nominal)
a. The IF frequency response includes effects due to RF circuits such as input filters, that are a
function of RF frequency, in addition to the IF pass-band effects.
b. This column applies to the instantaneous analysis bandwidth in use. The range available
depends on the hardware options and the Mode. The Spectrum analyzer Mode does not allow all bandwidths. The I/Q Analyzer is an example of a mode that does allow all bandwidths.
c. The maximum error at an offset (f) from the center of the FFT width is given by the expres-
± [Midwidth Error + (f ×Slope)], but never exceeds ±Max Error. Usually, the span is no
sion larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer . When the analyzer span is w ider than the FFT width, the span i s made up of mul­tiple concatenated FFT results, and thus has multiple centers of FFT widths so the f in the equation is the offset from the nearest center. These specifications include the ef fect of RF fre­quency response as well as IF frequency response at the worst case center frequency. Perfor­mance is nominally three times better at most center frequencies.
d. The specification does not apply for frequencies greater than 3.6 MHz from the center in FFT
widths of 7.2 to 8 MHz.
e. The “RMS” nominal performance is the standard deviatio n of th e response relative to the cen-
ter frequency, integrated across a 10 or 25 MHz span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
32 Chapter 1
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
Description Specifications Supplemental Information Input Attenuation Switching Uncertainty Refer to the footnote for
Band Overlaps on page 15.
Relative to 10 dB (reference setting) Frequency Range 50 MHz (reference frequency) ±0.20 dB ±0.08 dB (typical) Attenuation > 2 dB, preamp off 9 kHz to 3.6 GHz ±0.3 dB (nominal)
3.5 to 7.0 GHz ±0.5 dB (nominal)
7.0 to 13.6 GHz ±0.7 dB (nominal)
13.5 to 26.5 GHz ±0.7 dB (nominal)
Chapter 1 33
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
Description Specifications Supplemental Information Absolute Amplitude Accuracy
At 50 MHz
a
20 to 30°C 5 to 50°C
At all frequencies
a
20 to 30°C 5 to 50°C
th
95
Percentile Absolute
Amplitude Accuracy
±0.40 dB ±0.43 dB
±(0.4 dB + frequency response) ±(0.43 dB + frequency response)
b
±0.15 dB (95th percentile)
±0.27 dB
Wide range of signal levels, RBWs, RLs, etc.
0.01 to 3.6 GHz, Atten = 10 dB Amplitude Reference Accuracy ±0.05 dB (nominal)
Preamp On
Option P03
c
±(0.39 dB + frequency response) (nominal)
a. Absolute amplitude accuracy is the total of all amplitude measurement errors, and applies over
the following subset of settings and conditions: 1 Hz RBW 1 MHz; Input signal 10 to
50 dBm; Input attenuation 10 dB; span <5 MHz (nominal additional error for span 5 MHz is 0.02 dB); all settings auto-coupled except Swp Time Rules = Accuracy; combinations of low signal level and wide RBW use VBW 30 kHz to reduce noise. This absolute amplitude accuracy specification includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity, Reference Level Accuracy, Display Scale Switching Uncertainty, Resolution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy , and the accuracy with which the instrument aligns its internal gains to the 50 MHz Amplitude Reference.
34 Chapter 1
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
b. Absolute Ampl itude Accuracy for a wide range of signal and measurement settings, covers the
95th percentile proportion with 95% confidence. Here are the details of what is covered and how the computation is made:
The wide range of conditions of RBW, signal level, VBW, reference level and display scale are discussed in footnote a. There are 44 quasi-random combinations used, tested at a 50 MHz signal frequency. We compute the 95th p ercentile prop ortion with 95 % confidence for this set observed over a statistically significant number of instruments. Also, the frequency response relative to the 50 MHz response is characterized by varying the signal across a large number of quasi-random verification frequencies that are chosen to not correspond with the frequency response adjustment frequencies. We again compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments. We also compute the 95th percentile accuracy of tracing the calibration of the 50 MHz absolute ampli­tude accuracy to a national standards organization. We also compute the 95th percentile accu­racy of tracing the calibration of the relative frequency response to a national standards organization. We take the root-sum-square of these four independent Gaussian parameters. To that rss we add the environmental effects of temperature variations across the 20 to 30 °C range. These computations and measurements are made with the mechanical attenuator only in circuit, set to the reference state of 10 dB.
A similar process is used for computing the result when using the electronic attenuator under a wide range of settings: all even settings from 4 through 24 dB inclusive, with the mechanical attenuator set to 10 dB. Then the worse of the two computed 95th percentile results (they were very close) is shown.
c. Same settings as footnote a, except that the signal level at the preamp input is 40 to
80 dBm. T otal power at preamp (dBm) = total power at input (dBm) minus input attenuation (dB). This specification applies for signal frequencies above 100 kHz.
Chapter 1 35
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
Description Specifications Supplemental Information RF Input VSWR
at tuned frequency, DC Coupled
Nominal
a
10 dB attenuation, 50 MHz 1.07:1
Input Attenuation
Frequency 0 dB 10 dB 10 MHz to 3.6 GHz < 2.2:1 See nominal VSWR plots
3.6 to 26.5 GHz See nominal VSWR plots
Internal 50 MHz calibrator is On Open input Alignments running Open input
a. The nominal SWR stated is the worst case RF frequency in three representative instruments.
36 Chapter 1
Nominal VSWR [Plot]
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
Chapter 1 37
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
Description Specifications Supplemental
Information
Resolution Bandwidth Switching Uncertainty
relative to reference BW of 30 kHz
1.0 Hz to 3 MHz RBW ±0.10 dB Manually selected wide RBWs:
4, 5, 6, 8 MHz
Description Specifications Supplemental
Reference Level
Range Log Units 170 to +23 dBm, in 0.01 dB steps Linear Units 707 pV to 3.16 V, with 0.01 dB resolution (0.11%) Accuracy
a
b
0 dB
±1.0 dB
Information
a. Reference level and off-screen performance: The reference level (RL) behavior differs from
some earlier analyzers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation and compression) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.
b. Because reference level affects only the display, not the measurement, it causes no additional
error in measurement results from trace data or markers.
38 Chapter 1
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
Description Specifications Supplemental Information Display Scale Switching Uncertainty
Switching between Linear and Log
Log Scale Switching
0 dB
0 dB
a
a
a. Because Log/Lin and Log Scale Switching affect only the display, not the measurement, they
cause no additional error in measurement results from trace data or markers.
Description Specifications Supplemental Information
Display Scale Fidelity
Log-Linear Fidelity (relative to the reference condition of −25 dBm input through the 10 dB attenuation, or
35 dBm at the input mixer) Input mixer level
80 dBm ML 10 dBm ±0.15 dB ML < 80 dBm ±0.25 dB
abc
d
Linearity
Relative Fidelity
e
Applies for mixer leveld range from −10 to 80 dBm, mechanical attenuator only,
preamp off, and dither on. Sum of the following terms: high level term
Up to ±0.045 dB instability term Up to ±0.018 dB slope term
prefilter term
From equation
Up to ±0.005 dB
g
f
h
Chapter 1 39
Agilent EXA Signal Analyzer
3
σ
320dB()110
SN 3dB+()20dB()
+〈〉log=
Amplitude Accuracy and Range
a. Supplemental information: The amplitude detection linearity specification applies at all levels
below 10 dBm at the input mixer; however, noise will reduce the accur acy of low level mea­surements. The amplitude error due to noise is determined by the signal-to-noise ratio, S/N. If the S/N is large (20 dB or better), the amplitude error due to noise can be estimated from the equation below, given for the 3-sigma (three standard deviations) level.
The errors due to S/N ratio can be further reduced by averaging results. For large S/N (20 dB or better), the 3-sigma level can be reduced proportional to the square root of the number of averages taken.
b. The scale fidelity is warranted with ADC dither set to On. Dither increases the noise level by
nominally only 0.24 dB for the most sensitive case (preamp Off, best DANL frequencies). With dither Off, scale fidelity for low level si gnals, around 60 dBm or lower, will nominally degrade by 0.2 dB.
c. Reference level and off-screen performance: The reference level (RL) behavior differs from
some earlier analyzers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input atten­uator setting: When the input attenuator is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation and compression) and small signal effects (noise), the measurement results can change with RL
changes when the input attenuation is set to auto. d. Mixer level = Input Level Input Attenuator e. The relative fidelity is the error in the measured difference between two signal levels. It is so
small in many cases that it cannot be verified without being dominated by measurement
uncertainty of the verification. Because of this verification difficulty, this specification gives
nominal performance, based on numbers that are as conservatively determined as those used
in warranted specifications. We will consider one example of the use of the error equation to
compute the nominal performance.
Example: the accuracy of the relative level of a sideband around −60 dBm, with a carrier at −5
dBm, using attenuator = 10 dB, RBW = 3 kHz, evaluated with swept analysis. The high level
term is evaluated with P1 = 15 dBm and P2 = 70 dBm at the mixer. This gives a maximum
error within ±0.025 dB. The instability term is ±0.018 dB. The slope term evaluates to ±0.050
dB. The prefilter term applies and evaluates to the limit of ±0.005 dB. The sum of all these
terms is ±0.098 dB. f. Errors at high mixer levels will nominally be well within the range of ±0.045 dB × {exp[(P1
x
Pref)/(8.69 dB)] exp[(P2 Pref)/(8.69 dB)]} (exp is the natural exponent function, e
). In this expression, P1 and P2 are the powers of the two signals, in decibel units, whose relative power is being measured. Pref is 10 dBm (10 dBm is the highest power for which linearity is specified). All these levels are referred to the mixer level.
40 Chapter 1
Agilent EXA Signal Analyzer
Amplitude Accuracy and Range
g. Slope error will nominally be well within the range of ±0.0009 × (P1 P2). P1 and P2 are
defined in footnote f.
h. A small additional error is possible. In FFT sweeps, this error is possible for spans under 4.01
kHz. For non-FFT measurements, it is possible for RBWs of 3.9 kHz or less. The error is well within the range of ±0.0021 × (P1 - P2) subject to a maximum of ±0.005 dB. (The maximum dominates for all but very small differences.)P1 and P2 are defined in footnote f.
Description Specifications Supplemental Information Available Detectors Normal, Peak, Sample,
Negative Peak, A verage
A verage detector works on RMS, Voltage and Logarithmic scales
Chapter 1 41
Agilent EXA Signal Analyzer

Dynamic Range

Dynamic Range

Gain Compression

Description Specifications Supplemental Information 1 dB Gain Compression Point
(Two-tone)
20 MHz to 26.5 GHz +9 dBm (nominal)
Clipping (ADC Over Range)
Any signal offset 10 dBm
IF Gain set to Low Signal offset >5 times IF prefilter bandwidth
IF Prefilter Bandwidth
Zero Span or Swept: Sweep Type = FFT:
RBW FFT Width 3 dB Bandwidth, nominal
3.9 kHz < 4.01 kHz 8.9 kHz
4.3 - 27 kHz < 28.81 kHz 79 kHz 30 - 160 kHz < 167.4 kHz 303 kHz
abc
Maximum power at
d
(nominal)
mixer
Low frequency exceptions +12 dBm (nominal)
d
180 - 390 kHz < 411.9 kHz 966 kHz 430 kHz - 8 MHz < 7.99 MHz 10.9 MHz
a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to incor-
rectly measure on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
b. Specified at 1 kHz RBW with 100 kHz tone spacing. The compression point will nominally
equal the specification for tone spacing greater than 5 times the prefilter bandwidth. At smaller spacings, ADC clipping may occur at a level lower than the 1 dB compression point.
42 Chapter 1
Agilent EXA Signal Analyzer
Dynamic Range
c. Reference level and off-screen performance: The reference level (RL) behavior differs from
some earlier analyzers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input atten­uation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation, com­pression, and display scale fidelity) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.
d. The ADC clipping level declines at low frequencies (below 50 MHz) when the LO feed
through (the signal that appears at 0 Hz) is within 5 times the prefilter bandwidth (see table) and must be handled by the ADC. For example, with a 300 kHz RBW and prefilter bandwidth at 966 kHz, the clipping level reduces for signal frequencies below 4.83 MHz. For signal fre­quencies below 2.5 times the prefilter bandwidth, there will be additional reduction due to the presence of the image signal (the signal that appears at the negative of the input signal fre­quency) at the ADC.
Chapter 1 43
Agilent EXA Signal Analyzer
Dynamic Range

Displayed Average Noise Level

Description Specifications Supplemental Information Displayed Average Noise Level
(DANL)
Option 503, 507, 513, 526
1 to 10 MHz 10 MHz to 2.1 GHz 148 dBm 146 dBm 150 dBm
2.1 GHz to 3.6 GHz 147 dBm 145 dBm 148 dBm
Option 507,513, 526
3.6 GHz to 7 GHz 147 dBm 145 dBm 149 dBm
Option 513, 526
7.0 GHz to 13.6 GHz 143 dBm 141 dBm 147 dBm
Option 526
13.5 GHz to 17.1 GHz 137 dBm 134 dBm 142 dBm
a
b
Input terminated Sample or Average detector Averaging type = Log 0 dB input attenuation IF Gain = High
1 Hz Resolution Bandwidth
20 to 30°C5 to 50°C Typical
147 dBm 145 dBm 149 dBm
Refer to the footnote for
Band Overlaps on page 15.
17.0 GHz to 20.0 GHz 137 dBm 134 dBm 142 dBm
20.0 GHz to 26.5 GHz 134 dBm 130 dBm 140 dBm
Additional DANL, IF Gain=Low
c
160.5 dBm (nominal)
a. DANL for zero span and swept is normalized in two ways and for two reasons. DANL is mea-
sured in a 1 kHz RBW and normalized to the narrowest available RBW, because the noise fig­ure does not depend on RBW and 1 kHz measurements are faster. The second normalization is that DANL is measured with 10 dB input attenuation and normalized to the 0 dB input attenuation case, because that makes DANL and third order intermodulation test conditions congruent, allowing accurate dynamic range estimation for the analyzer.
b. DANL below 10 MHz is dominated by phase noise around the LO feedthrough signal. Speci-
fications apply with the best setting of the Phase Noise Optimization control, which is to choose the “Best Phase Noise at offset < 20 kHz” for frequencies below 25 kHz, and “Best Phase Noise at offset > 30 kHz” for frequencies above 25 kHz. The difference in sensitivity with Phase Noise Optimization changes is about 10 dB at 10 and 100 kHz, d eclining to under 1 dB for signals below 400 Hz, above 800 kHz, and near 25 kHz.
44 Chapter 1
Agilent EXA Signal Analyzer
Dynamic Range
c. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer
without overload, better compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto coupling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case. That excess noise appears as an addi­tional noise at the input mixer . This level has sub-decibel dependen ce on center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the powers of the DANL for IF Gain = High with this additional DANL. To do that summation, compute DANLtotal = 10 × log (10^(DANLhigh/10) + 10^(AdditionalDANL / 10)). In FFT sweeps, the same behavior occurs, except that FFT IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low settings.
Chapter 1 45
Agilent EXA Signal Analyzer
Dynamic Range

Spurious Responses

Description Specifications Supplemental
Information
Spurious Responses
Mixer Level
a
Response
Preamp Off
b
Refer to the footnote for
Band Overlaps on page 15.
Residual Responses
c
200 kHz to 8.4 GHz (swept) Zero span or FFT or other frequencies
N/A
100 dBm
100 dBm (nominal)
Image Responses Tuned Freq. (f) Excitation
Freq.
10 MHz to 26.5 GHz f+45 MHz 10 dBm 75 dBc 99 dBc (typical) 10 MHz to 3.6 GHz f+10245 MHz 10 dBm 80 dBc −103 dBc (typical) 10 MHz to 3.6 GHz f+645 MHz 10 dBm 80 dBc −107 dBc (typical)
3.5 GHz to 13.6 GHz f+645 MHz 10 dBm 75 dBc 87 dBc (typical
13.5 GHz to 17.1 GHz f+645 MHz 10 dBm 71 dBc 85 dBc (typical)
17.0 GHz to 22 GHz f+645 MHz 10 dBm 68 dBc 82 dBc (typical) 22 GHz to 26.5 GHz f+645 MHz 10 dBm 66 dBc 78 dBc (typical) LO Related Spurious Responses
f > 600 MHz from carrier 10 MHz to 3.6 GHz
10 dBm
60 dBc
90 dBc (typical)
Other Spurious Responses
First RF Order
d
f 10 MHz from carrier
10 dBm 68 dBc Includes other LO spurious, IF feedthrough, LO harmonic mixing responses
Higher RF Order
e
f 10 MHz from carrier
40 dBm 80 dBc Includes higher order mixer responses
Sidebands, offset from CW signal ≤ 200 Hz
200 Hz to 3 kHz
60 dBc
68 dBc
f
(nominal)
f
(nominal) 3 kHz to 30 kHz 68 dBc (nominal) 30 kHz to 10 MHz 80 dBc (nominal)
46 Chapter 1
Agilent EXA Signal Analyzer
Dynamic Range
a. Mixer Level = Input Level Input Attenuation. b. The spurious response specifications only apply with the preamp turned off. When the preamp
is turned on, performance is nominally the same as long as the mixer level is interpreted to be:
Mixer Level = Input Level Input Attenuation Preamp Gain c. Input terminated, 0 dB input attenuation. d. With first RF order spurious products, the indicated frequency will change at the same rate as
the input, with higher order, the indicated frequency will change at a rate faster than the input. e. RBW=100 Hz. With higher RF order spurious responses, the observed frequency will change
at a rate faster than the input frequency. f. Nominally 40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) envi-
ronmental stimuli.
Chapter 1 47
Agilent EXA Signal Analyzer
Dynamic Range

Second Harmonic Distortion

Description Specifications Supplemental
Information
Second Harmonic Distortion
Mixer Level
a
SHIb (nominal)
Source Frequency 10 MHz to 1.8 GHz 15 dBm +45 dBm
1.75 to 7 GHz 15 dBm + 65 dBm 7 GHz to 11 GHz 15 dBm +55 dBm 11 to 13.25 GHz 15 dBm +50 dBm
a. Mixer level = Input Level Input Attenuation b. SHI = second harmonic intercept. The SHI is given by the mixer power in dBm minus the sec-
ond harmonic distortion level relative to the mixer tone in dBc.

Third Order Intermodulation Distortion

Description Specifications Supplemental Information Third Order
Intermodulation Distortion
Tone separation > 5 times IF Prefilter Bandwidth Verification conditions
a
b
Refer to the footnote for
Band Overlaps on page 15.
20 to 30°C
Intercept
c
Extrapolated Distortion
d
Intercept (typical)
100 to 400 MHz +10 dBm 80 dBc +14 dBm 400 MHz to 1.7 GHz +11 dBm 82 dBc +15 dBm
1.7 to 3.6 GHz +13 dBm 86 dBc +17 dBm
3.6 to 5.1 GHz +11 dBm 82 dBc +17 dBm
5.1 to 7 GHz +13 dBm 86 dBc +17 dBm 7 to 13.6 GHz +11 dBm 82 dBc +15 dBm
13.6 to 26.5 GHz +9 dBm 78 dBc +14 dBm
5 to 50°C
10 to 100 MHz 100 to 400 MHz +9 dBm 78 dBc
48 Chapter 1
Agilent EXA Signal Analyzer
Dynamic Range
Description Specifications Supplemental Information
400 MHz to 1.7 GHz +10 dBm 80 dBc
1.7 to 3.6 GHz +12 dBm 84 dBc
3.6 to 5.1 GHz +10 dBm 80 dBc
5.1 to 7 GHz +12 dBm 86 dBc 7 to 13.6 GHz +10 dBm 80 dBc
13.6 to 26.5 GHz +7 dBm 74 dBc
a. See the IF Prefilter Bandwidth table in the Gain Compression specifications on page 42.
When the tone separation condition is met, the effect on TOI of the setting of IF Gain is negli-
gible. TOI is verified with IF Gain set to its best case condition, which is IF Gain = Low. b. TOI is verified with two tones, each at 18 dBm at the mixer, spaced by 100 kHz. c. TOI = third order intercept. The TOI is given by the mixer tone level (in dBm) minus (distor-
tion/2) where distortion is the relative level of the distortion tones in dBc. d. The distortion shown is computed from the warranted intercept specifications, based on two
tones at 30 dBm each, instead of being measured directly. The choice of 30 dBm is based
on historic and continuing industry practice.
Chapter 1 49
Agilent EXA Signal Analyzer
Dynamic Range
Nominal Dynamic Range at 1 GHz [Plot]
50 Chapter 1
Nominal Dynamic Range Bands 1-4 [Plot]
Agilent EXA Signal Analyzer
Dynamic Range
Chapter 1 51
Agilent EXA Signal Analyzer
Dynamic Range
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot]
52 Chapter 1
Agilent EXA Signal Analyzer
Dynamic Range

Phase Noise

Description Specifications Supplemental Information Phase Noise
Noise Sidebands
b
a
20 to 30°C5 to 50°C
Center Frequency = 1 GHz Best-case Optimization Internal Reference
Offset 100 Hz 84 dBc/Hz 82 dBc/Hz 88 dBc/Hz (typical) 1 kHz 98 dBc/Hz (nominal) 10 kHz 99 dBc/Hz 98 dBc/Hz 102 dBc/Hz (typical) 100 kHz 112 dBc/Hz 111 dBc/Hz 114 dBc/Hz (typical)
c
1 MHz 132 dBc/Hz 131 dBc/Hz 135 dBc/Hz (typical) 10 MHz 143 dBc/Hz (nominal)
a. The nominal performance of the phase noise at frequencies above the frequency at which the
specifications apply (1 GHz) depends on the band and the offset. For low offset frequencies,
offsets well under 100 Hz, the phase noise increases by 20 × log(f). For mid-offset frequen-
cies, such as [10 kHz, band 0 phase noise increases as 20 × log[(f + 5.1225)/6.1225]. For
mid-offset frequencies in other bands, phase noise changes as 20 × log[(f + 0.3225)/6.1225],
except if in this expression should never be lower than 5.8. For wide offset frequencies, [off-
sets well above 100 kHz], phase noise increases as 20 × log(N). N is the LO Multiple as
shown on page 15; f is in GHz units in all these relationships; all increases are in units of
decibels. b. Noise sidebands for lower offset frequencies, for example, 10 kHz, as apply with the phase
noise optimization (
Pn Noise Opt) set to Best Close-in φ Noise. Noise sidebands for higher
offset frequencies, for example, 1 MHz, as shown apply with the phase noise optimization set
Best Wid-offset φ Noise.
to c. Specifications are given with the internal precision frequency reference. The phase noise at
offsets below 100 Hz is impacted or dominated by noise from the reference. Thus, perfor-
mance with external references will not follow the curves and specifications. The internal 10
MHz reference phase noise is about –120 dBc/Hz at 10 Hz offset; external references with
poorer phase noise than this will cause poorer performance than shown.
Chapter 1 53
Agilent EXA Signal Analyzer
Dynamic Range
Nominal Phase Noise of Different LO Optimizations
54 Chapter 1
Nominal Phase Noise at Different Center Frequencies
Agilent EXA Signal Analyzer
Dynamic Range
Chapter 1 55
Agilent EXA Signal Analyzer

Power Suite Measurements

Power Suite Measurements
Description Specifications Supplemental Information Channel Power
Amplitude Accuracy
Case: Radio Std = 3GPP W-CDMA, or IS-95
Absolute Power Accuracy 20 to 30 °C Attenuation = 10 dB
±0.94 dB
Absolute Amplitude Accuracy Power Bandwidth Accuracy
±0.27 dB (95th percentile)
a. See “Absolute Amplitude Accuracy” on page 34. b. See “Frequency and Time” on page 15. c. Expressed in dB.
Description Specifications Supplemental Information Occupied Bandwidth
Frequency Accuracy ±(Span/1000) (nominal)
a
+
bc
56 Chapter 1
Agilent EXA Signal Analyzer
Power Suite Measurements
Description Specifications Supplemental Information Adjacent Channel Power (ACP)
Case: Radio Std = None
Accuracy of ACP Ratio (dBc)
Accuracy of ACP Absolute Power (dBm or dBm/Hz)
Accuracy of Carrier Power (dBm), or Carrier Power PSD (dBm/Hz)
Passbandwidth
e
Case: Radio Std = 3GPP W-CDMA
Display Scale Fidelity
Absolute Amplitude Accuracy Power Bandwidth Accuracy
Absolute Amplitude Accuracy Power Bandwidth Accuracy
3 dB
(ACPR; ACLR)
a
b
+
cd
b
+
cd
f
Minimum power at RF Input 36 dBm (nominal)
ACPR Accuracy
g
Radio Offset Freq
RRC weighted, 3.84 MHz noise bandwidth, method = IBW or Fast
h
MS (UE) 5 MHz ±0.22 dB At ACPR range of 30 to 36 dBc with
optimum mixer level
i
MS (UE) 10 MHz ±0.34 dB At ACPR range of 40 to 46 dBc with
j
k
BTS 5 MHz
±1.07 dB
optimum mixer level
h
At ACPR range of 42 to 48 dBc with optimum mixer level
BTS 10 MHz ±1.00 dB At ACPR range of 47 to 53 dBc with
j
l
BTS 5 MHz ±0.44 dB
optimum mixer level
At 48 dBc non-coherent ACPR
Dynamic Range RRC weighted, 3.84 MHz noise
bandwidth
Noise Correction
Offset Freq
Method
Off 5 MHz Filtered
ACLR (typical)
68 dB 8 dBm
m
Optimal ML (Nominal)
IBW Off 5 MHz Fast 67 dB 9 dBm Off 10 MHz Filtered
74 dB 2 dBm
IBW
Chapter 1 57
Agilent EXA Signal Analyzer
x
Power Suite Measurements
Description Specifications Supplemental Information
On 5 MHz Filtered
IBW
On 10 MHz Filtered
IBW
RRC Weighting Accuracy White noise in Adjacent Channel
TOI-induced spectrum rms CW error
n
73 dB 8 dBm
76 dB 2 dBm
0.00 dB nominal
0.001 dB nominal
0.012 dB nominal
a. The effect of scale fidelity on the ratio of two powers is called the relative scale fidelity. The
scale fidelity specified in the Amplitude section is an absolute scale fidelity with –35 dBm at the input mixer as the reference point. The relative scale fidelity is nominally only 0.01 dB
larger than the absolute scale fidelity. b. See Amplitude Accuracy and Range section. c. See Frequency and Time section. d. Expressed in decibels. e. An ACP measurement measures the power in adjacent channels. The shape of the response
versus frequency of those adjacent channels is occasionally critical. One parameter of the
shape is its 3 dB bandwidth. When the bandwidth (called the Ref BW) of the adjacent channel
is set, it is the 3 dB bandwidth that is set. The passband response is given by the convolution
of two functions: a rectangle of width equal to Ref BW and the power response versus fre-
quency of the RBW filter used. Measurements and specifications of analog radio ACPs are
often based on defined bandwidths of measuring receivers, and these are defined by their
6 dB widths, not their 3 dB widths. To achieve a passband whose 6 dB width is x, set the
Ref BW to be .
0.572 RBW×
f. Most versions of adjacent channel power measurements use negative numbers, in units of
dBc, to refer to the power in an adjacent channel relative to the power in a main channel, in
accordance with ITU standards. The standards for W-CDMA analysis include ACLR, a posi-
tive number represented in dB units. In order to be consistent with other kinds of ACP mea-
surements, this measurement and its specifications will use negative dBc results, and refer to
them as ACPR, instead of positive dB results referred to as ACLR. The ACLR can be deter-
mined from the ACPR reported by merely reversing the sign. g. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and
whether the distortion products from the analyzer are coherent with those in the UUT. These
specifications apply even in the worst case condition of coherent analyzer and UUT distortion
products. For ACPR levels other than those in this specifications table, the optimum mixer
drive level for accuracy is approximately 37 dBm (ACPR/3), where the ACPR is given in
(negative) decibels. h. The Fast method has a slight decrease in accuracy in only one case: for BTS measurements at
5 MHz offset, the accuracy degrades by ±0.01 dB relative to the accuracy shown in this table.
58 Chapter 1
Agilent EXA Signal Analyzer
Power Suite Measurements
i. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE)
within 3 dB of the required −33 dBc ACPR, the mixer level (ML) must be optimized for accu- racy. This optimum mixer level is 22 dBm, so the input attenuation must be set as close as possible to the average input power − (−19 dBm). For example, if the average input power is
6 dBm, set the attenuation to 16 dB. This specification applies for the normal 3.5 dB peak-to-average ratio of a single code. Note that if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
j. ACPR accuracy at 10 MHz of fset is warranted when the input attenuator is set to give an aver-
age mixer level of 14 dBm.
k. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when
measuring node B Base Transmission Station (BTS) within 3 dB of the required 45 dBc ACPR. This optimum mixer level is 19 dBm, so the input attenuation must be set as close as possible to the average input power − (−22 dBm). For example, if the average input power is
5 dBm, set the attenuation to 14 dB. This specification applies for the normal 10 dB peak-to-average ratio (at 0.01% probability) for Test Model 1. Note that, if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
l. Accuracy ca n be excellent even at low ACPR levels assuming that the user sets the mixer
level to optimize the dynamic range, and assuming that the analyzer and UUT distortions are incoherent. When the errors from the UUT and the analyzer are incoherent, optimizing dynamic range is equivalent to minimizing the contrib ution of analyzer noise and distortion to accuracy, though the higher mixer level increases the display scale fidelity errors. This inco­herent addition case is commonly used in the industry and can be useful for comparison of analysis equipment, but this incoherent addition model is rarely justified. This derived accu­racy specification is based on a mixer level of 14 dBm.
m..Agilent measures 100% of the signal analyzers for dynamic range in the factory production
process. This measurement requires a near-ideal signal, which is impractical for field and cus­tomer use. Because field verification is impractical, Agilent only gives a typical result. More than 80% of prototype instruments met this “typical” specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical. The ACPR dynamic range is verified only at 2 GHz, where Agilent has the near -perfect signal available. The dynamic range is specified for the optimum mixer drive level, which is differ­ent in different instruments and different conditions. The test signal is a 1 DPCH signal. The ACPR dynamic range is the observed range. This typical specification includes no mea­surement uncertainty.
Chapter 1 59
Agilent EXA Signal Analyzer
Power Suite Measurements
n. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The
accuracy of the passband shape of the filter is not specified in standards, nor is any method of
evaluating that accuracy. This footnote discusses the performance of the filter in this instru-
ment. The effect of the RRC filter and the effect of the RBW used in the measurement interact.
The analyzer compensates the shape of the RRC filter to accommodate the RBW filter. The
effectiveness of this compensation is summarized in three ways:
White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent
channel has a spectrum that is flat across its width.
TOIinduced spectrum: If the spectrum is due to thirdorder intermodulation, it has a dis-
tinctive shape. The computed errors of the compensated filter are 0.001 dB for the 100 kHz
RBW used for UE testing with the IBW method. It is also −0.001 dB for the 390 kHz RBW
used with the Fast method, and 0.000 dB for the 27 kHz RBW filter used for BTS testing with
the Filtered IBW method. The worst error for RBWs between these extremes is 0.05 dB for a
330 kHz RBW filter.
rms CW error: This error is a measure of the error in measuring a CWlike
spurious component. It is evaluated by computing the root of the mean of the square of the
power error across all frequencies within the adjacent channel. The computed rms error of the
compensated filter is 0.012 dB for the 100 kHz RBW used for UE testing with the IBW
method. It is 0.034 dB for the 390 kHz RBW used with the Fast method and 0.000 dB for the
27 kHz RBW filter used for BTS testing. The worst error for RBWs between 27 kHz and
470 kHz is 0.057 dB for a 430 kHz RBW filter-like spurious component. It is evaluated by
computing the root of the mean of the square of the power error across all frequencies within
the adjacent channel. The computed rms error of the compensated filter is 0.012 dB for the
100 kHz RBW used for UE testing with the IBW method. It is 0.034 dB for the 390 kHz RBW
used with the Fast method and 0.000 dB for the 27 kHz RBW filter used for BTS testing. The
worst error for RBWs between 27 kHz and 470 kHz is 0.057 dB for a 430 kHz RBW filter.
60 Chapter 1
Agilent EXA Signal Analyzer
Power Suite Measurements
Description Specifications Supplemental Information Case: Radio Std = IS-95 or J-STD-008
Method
ACPR Relative Accuracy
Offsets < 750 kHz Offsets > 1.98 MHz
b
c
±0.08 dB ±0.10 dB
RBW method
a
a. The RBW method measures the power in the adjacent channels within the defined resolution
bandwidth. The noise bandwidth of the RBW filter is nominally 1.055 times the 3.01 dB bandwidth. Therefore, the RBW method will nominally read 0.23 dB higher adjacent channel power than would a measurement using the integration bandwidth method, because the noise bandwidth of the integration bandwidth measurem ent is equal to that integration bandwidth. For cmdaOne ACPR measurements using th e RBW method, the main channel is measured in a 3 MHz RBW, which does not respond to all the power in the carrie r. Therefore, the carrier power is compensated by the expected under-response of the filter to a full width signal, of
0.15 dB. But the adjacent channel power is not compensated for the noise bandwidth ef fect. The reason the adjacent channel is not co mpensated is subtle. The RBW method of measuring ACPR is very similar to the preferred method of making measurements for compliance with FCC requirements, the source of the specifications for the cdmaOne Spur Close specifica­tions. ACPR is a spot measurement of Spur Close, and thus is best done with the RBW method, even though the results will disagree by 0.23 dB from the measurement made with a rectangular passband.
b. The specified ACPR accuracy applies if the measured ACPR substantially exceeds the ana-
lyzer dynamic range at the specified offset. When this condition is not met, there are addi­tional errors due to the addition of analyzer spectral components to UUT spectral components. In the worst case at these offsets, the analyzer spectral components are all coher­ent with the UUT components; in a more typical case, one third of the analyzer spectral power will be coherent with the distortion components in the UUT. Coherent means that the phases of the UUT distortion components and the analyzer distortion components are in a fixed rela­tionship, and could be perfectly in-phase. This coherence is not intuitive to many users, because the signals themselves are usually pseudo-random; nonetheless, they can be coher­ent. When the analyzer components are 100% coherent with the UUT components, the errors add in a voltage sense. That error is a function of the signal (UUT ACPR) to noise (analyzer ACPR dynamic range limitation) ratio, SN, in decibels.
The function is error = 20 × log(1 + 10
SN/20
) For example, if the UUT ACPR is 62 dB and the measurement floor is 82 dB, the SN is 20 dB and the error due to adding the analyzer distortion to that of the UUT is 0.83 dB.
Chapter 1 61
Agilent EXA Signal Analyzer
Fast ACP - Standard Deviat ion vs. Time
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Nominal M e asurem ent and Tr ansf er Ti m e ( log)
Standard Devi ation (dB)
5 ms 10 ms 20 ms
40 ms
Sweep Time = 6.2 ms
Power Suite Measurements
c. As in footnote b, the specified ACPR accuracy applies if the ACPR measured substantially
exceeds the analyzer dynamic range at the specified offset. When this condition is not met, there are additional errors due to the addition of analyzer spectral components to UUT spec­tral components. Unlike the situation in footnote b, though, the spectral components from the analyzer will be non-coherent with the components from the UUT. Therefore, the errors add in a power sense. The error is a function of the signal (UUT ACPR) to noise (analyzer ACPR dynamic range limitation) ratio, SN, in decibels.
SN/10
The function is error = 10 × log(1 + 10
). For example, if the UUT ACPR is 75 dB and the measurement floor is 85 dB, the SN ratio is 10 dB and the error due to adding the analyzer's noise to that of the UUT is 0.41 dB.
Fast ACPR Test [Plota]
a. Observation conditions for ACP speed:
Display Off, signal is Test Model 1 with 64 DPCH, Method set to Fast. Measured with an IBM compatible PC with a 3 GHz Pentium 4 running Windows XP Professional Version
2002. The communications medium was PCI GPIB IEEE 488.2. The Test Application Lan­guage was .NET C#. The Application Communication Layer was Agilent T&M Program­mer’s Toolkit For Visual Studio (Version 1.1), Agilent I/O Libraries (Version M.01.01.41_beta).
62 Chapter 1
Agilent EXA Signal Analyzer
Power Suite Measurements
Description Specifications Supplemental Information Power Statistics CCDF
Histogram Resolution
a
0.01 dB
a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histo-
gram of the power envelope. The width of the amplitude bins used by the histogram is the his­togram resolution. The resolution of the CCDF will be the same as the width of those bins.
Description Specifications Supplemental Information Burst Power
Methods P ower above threshold
Power within burst width
Results Output power, average
Output power, single burst Maximum power Minimum power within burst Burst width
Chapter 1 63
Agilent EXA Signal Analyzer
Power Suite Measurements
Description Specifications Supplemental Information Spurious Emissions Table-driven spurious signals;
search across regions
Case: Radio Std = 3GPP W-CDMA
Dynamic Range 1 to 3.6 GHz
a
Sensitivity, absolute
93.1 dB 98.4 dB (typical)
79.4 dBm 85.4 dBm (typical)
1 to 3.6 GHz Accuracy
Attenuation = 10 dB Frequency Range 9 kHz to 3.6 GHz
3.5 GHz to 8.4 GHz
8.3 GHz to 13.6 GHz
±0.41 dB (95th Percentile) ±1.22 dB (95th Percentile) ±1.59 dB (95th Percentile)
a. The dynamic is specified with the mixer level at +3 dBm, where up to 1 dB of compression
can occur, degrading accuracy by 1 dB.
Description Specifications Supplemental Information Spectrum Emission Mask Table-driven spurious signals;
measurement near carriers
Case: Radio Std = cdma2000
Dynamic Range, relative 750 kHz offset
a b
Sensitivity, absolute 750 kHz offset
c
Accuracy 750 kHz offset
Relative
Absolute
d
e
20 to 30 °C
64 Chapter 1
74.0 dB 81.0 dB (typical)
94.7 dBm 100.7 dBm (typical)
±0.11 dB
±1.05 dB
±0.34 dB (95th Percentile ≈ 2σ)
Agilent EXA Signal Analyzer
Power Suite Measurements
Description Specifications Supplemental Information Case: Radio Std = 3GPP W−CDMA
Dynamic Range, relative
2.515 MHz offset Sensitivity, absolute
2.515 MHz offset Accuracy
2.515 MHz offset
Relative
Absolute 20 to 30 °C
d
e
a d
c
76.5 dB 83.9 dB (typical)
94.7 dBm 100.7 dBm (typical)
±0.12 dB
±1.05 dB
±0.34 dB (95th Percentile ≈ 2σ)
a. The dynamic range specification is the ratio of the channel power to the power in the offset
specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about
18 dBm. Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of
the analyzer . It is tested without an input signal. The sensitivity at this of fset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz.
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel
power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.
e. The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spec-
trum analyzer. See “Absolute Amplitude Accuracy” on page 34 for more information. The numbers shown are for 0 - 3.6 GHz, with attenuation set to 10 dB.
Chapter 1 65
Agilent EXA Signal Analyzer

Options

Options
The following options and applications affect instrument specifications.
Option 503: Frequency range, 9 kHz to 3.6 GHz Option 507: Frequency range, 9 kHz to 7 GHz Option 513: Frequency range, 9 kHz to 13.6 GHz Option 526: Frequency range, 9 kHz to 26.5 GHz Option B25: Analysis bandwidth, 25 MHz Option EA3: Electronic attenuator, 3.6 GHz Option EMC: EMC Precompliance Measurements Option FSA: 2 dB fine step attenuator Option P03: Preamplifier, 3.6 GHz Option PFR: Precision frequency reference Option PC2: Upgrade to dual core processor with removable hard drive Option SSD: Removable solid state drive substitution N6149A: iDEN/WiDEN/MotoTalk measurement application N6153A: DVBT/H measurement application N6156A: DTMB measurement application N9063A: Analog Demodul ation measurement application N9068A: Phase Noise measurement application N9069A: Noise Figure measurement application N9071A: GSM/EDGE measurement application N9072A: cdma2000 measurement application N9073A-1FP: W-CDMA measurement application N9073A-2FP: HSDPA/HSUPA measurement application N9074A: Single Acquisit ion Com bined Fixed WiMAX measurement application N9075A: 802.16 OFDMA measurement application N9076A: 1xEV-DO measurement application N9077A: Single Acquisition Combined WLAN measurement application N9079A: TD-SCDMA measurement application N9080A: LTE measurement application I/Q Analyzer: I/Q Analyzer measurement application 89601X: VXA measurement application
66 Chapter 1
Agilent EXA Signal Analyzer

General

General
Description Specifications Supplemental Information Calibration Cycle 1 year
Description Specifications Supplemental Information Temperature Range
Operating 5 to 50°CStandard Storage 40 to 65°C
Altitude 3,000 meters (approx. 10,000 feet)
Description Specifications Supplemental Information Environmental and Military
Specifications
Description Specifications EMC Complies with European EMC Directive 2004/108/EC
— IEC/EN 61326-1 or IEC/EN 61326-2-1 — C ISPR Pub 11 Group 1, class A
— AS/NZS CISPR 11 — ICES/NMB-001
This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB-001 du Canada.
a
Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.
a. The N9010A/N9020A meets CISPR 11, Class B emissions limits when no USB cable/device
connections are made to the front or rear panel. The N9010A/N9020A is in full compliance with CISPR 11, Class A emissions and is declared as such. Any information regarding the Class B emission performance of the N9010A/N9020A is provided as a convenience to the user and is not intended to be a regulatory declaration.
Chapter 1 67
Agilent EXA Signal Analyzer
General
Acoustic Noise Emission/Geraeuschemission
LpA <70 dB Operator position Normal position Per ISO 7779
Description Specifications Safety Complies with European Low Voltage Directive 2006/95/EC
— IEC/EN 61010-1 2nd Edition — Canad a: CSA C22.2 No. 61010-1 — USA: UL 61010-1 2nd Edition1
Description Specification Supplemental Information Power Requirements
Low Range
LpA <70 dB Am Arbeitsplatz Normaler Betrieb Nach DIN 45635 t.19
Voltage 100 to 120 V Frequency Serial Prefix < MY4801,
SG4801, or US4801 Serial Prefix MY4801,
SG4801, or US4801 High Range Voltage 220 to 240 V Frequency 50/60 Hz Power Consumption, On 270 W Fully loaded with options Power Consumption, Standby 20 W Standby power is not supplied to
50/60 Hz
50/60/400 Hz
frequency reference oscillator.
68 Chapter 1
Description Supplemental Information
Agilent EXA Signal Analyzer
General
Measurement Speed
a
Nominal
Standard w/ Option PC2
Local measurement and display update
bc
rate Remote measurement and LAN transfer
bc
rate
11 ms (90/s) 4 ms (250/s)
6 ms (167/s) 5 ms (200/s)
Marker Peak Search 5 ms 1.5 ms Center Frequency Tune and Transfer
22 ms 20 ms
(RF) Center Frequency Tune and Transfer
49 ms 47 ms
(µW) Measurement/Mode Switching 75 ms 39 ms W-CDMA ACLR measurement time
Measurement Time vs. Span
See page 57 See page 26
a. Sweep Points = 101. b. Factory preset, fixed center frequency, RBW = 1 MHz, span >10 MHz and 600 MHz, stop
frequency 3.6 GHz, Auto Align Off.
c. Phase Noise Optimization set to Fast Tuning, Display Off, 32 bit integer format, markers Off,
single sweep, measured with IBM compatible PC with 2.99 GHz Pentium® 4 with 2 GB RAM running Windows® XP, Agilent I/O Libraries Suite Version 14.1, one meter GPIB cable, National Instruments PCI-GPIB Card and NI-488.2 DLL.
Description Specifications Supplemental Information
Display
a
Resolution 1024 × 768 XGA Size 213 mm (8.4 in) diagonal (nominal) Scale Log Scale 0.1, 0.2, 0.3...1.0, 2.0, 3.0...20 dB per
division Linear Scale 10% of reference level per division Units dBm, dBmV, dBm A, Watts, Volts,
Amps, dBμV, dBμA
Chapter 1 69
Agilent EXA Signal Analyzer
General
a. The LCD display is manufactured using high precision technology . However , there may be up
to six bright points (white, blue, red or green in color) that constantly appear on the LCD screen. These points are normal in the manufacturing process and do not affect the measure­ment integrity of the product in any way.
Description Specifications Supplemental Information Data Storage
Standard Internal Total Integrated 40 GB HDD 15 GB available on primary partition for
applications and secondary data
Internal User 6 GB available on separate partition for user
data With Option PC2 Internal Total Removable 160 GB HDD 126 GB available on primary partition for
applications and secondary data Internal User 9 GB available on separate partition for user
data With Options SSD Requires Option PC2 Internal Tot al Removable 32 GB solid
state drive
Internal User 2 GB available on separate partition for user
Description Specifications Supplemental Information Weight
(without options) Net 16 kg (35 lbs) (nominal) Shipping 28 kg (62 lbs) (nominal)
14 GB available on primary partition for
applications and secondary data
data
Cabinet Dimensions Cabinet dimensions exclude front and rear
protrusions. Height 177 mm (7.0 in) Width 426 mm (16.8 in) Length 368 mm (14.5 in)
70 Chapter 1
Agilent EXA Signal Analyzer

Inputs/Outputs

Front Panel

Description Specifications Supplemental Information RF Input
Connector Standard Type-N female Impedance 50 Ω (nominal)
Inputs/Outputs
Description Specifications Supplemental Information Probe Power
Voltage/Current +15 Vdc, ±7% at 150 mA max (nominal)
12.6 Vdc, ±10% at 150 mA max (nominal)
GND
Description Specifications Supplemental Information USB 2.0 Ports
Master (2 ports) Connector USB Type “A” (female) Output Current 0.5 A (nominal)
Chapter 1 71
Agilent EXA Signal Analyzer
Inputs/Outputs
Description Specifications Supplemental Information Headphone Jack
Connector 3.5 mm (1/8 inch) miniature
stereo audio jack
Output Power 90 mW per channe l int o 16 Ω (nominal)

Rear Panel

Description Specifications Supplemental Information 10 MHz Out
Connector BNC female Impedance 50 Ω (nominal) Output Amplitude ≥ 0 dBm (nominal) Output Configuration AC coupled, sinusoidal Frequency 10 MHz ±
(10 MHz × frequency reference accuracy)
Description Specifications Supplemental Information Ext Ref In
Connector BNC female Note: Analyzer noise sidebands and spurious
response performance may be affected by the quality of the external reference used. See footnote “c” in the phase noise specifications
within the Dynamic Range section. Impedance 50 Ω (nominal) Input Amplitude Range
Sine Wave Square Wave
5 to +10 dBm (nominal)
0.2 to 1.5 V peak-to-peak (nominal) Input Frequency 10 MHz (nominal) Lock range
±5 × 10 reference input frequency
72 Chapter 1
6
of selected external
Agilent EXA Signal Analyzer
Inputs/Outputs
Description Specifications Supplemental Information Sync Reserved for future use
Connector BNC female
Description Specifications Supplemental Information Trigger Inputs Either trigger source may be selected.
Trigger 1 In, Trigger 2 In Connector BNC female Impedance 10 kΩ (nominal) Trigger Level Range 5 to +5 V 1.5 V (TTL) factory preset
Description Specifications Supplemental Information Trigger Outputs
Trigger 1 Out, Trigger 2 Out Connector BNC female Impedance 50 Ω (nominal) Level 5 V TTL
Description Specifications Supplemental Information Monitor Output
Connector
Format
Resolution
VGA compatible, 15-pin mini D-SUB
1024 × 768
XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB
Chapter 1 73
Agilent EXA Signal Analyzer
Inputs/Outputs
Description Specifications Supplemental Information Noise Source Drive +28 V (Pulsed)
Connector BNC female
Description Specifications Supplemental Information SNS Series Noise Source For use with Agilent
Technologies SNS Series noise sources
Description Specifications Supplemental Information Digital Bus
Connector MDR-80 This port is intended for use with
the Agilent N5105 and N5106 products only. It is not available for general purpose use.
Description Specifications Supplemental Information Analog Out
Connector BNC female Impedance 50 Ω (nominal)
74 Chapter 1
Agilent EXA Signal Analyzer
Description Specifications Supplemental Information USB 2.0 Ports
Master (4 ports) Connector USB Type “A” (female) Output Current 0.5 A (nominal)
Slave (1 port) Connector USB Type “B” (female) Output Current 0.5 A (nominal)
Description Specifications Supplemental Information
Inputs/Outputs
GPIB Interface
Connector IEEE-488 bus connector GPIB Codes SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2,
C3 and C28, DT1, L4, C0
Mode Controller or device
Description Specifications Supplemental Information LAN TCP/IP Interface RJ45 Ethertwist 100BaseT (Standard)
or 1000 BaseT (with Option PC2)
Chapter 1 75
Agilent EXA Signal Analyzer

Regulatory Information

Regulatory Information
This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 61010 2nd ed, and 664 respectively.
This product has been designed and tested in accordance with accepted industry standards, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies wi t h al l relevant directives.
ICES/NMB-001 “This ISM device complies with Canadian ICES-001.”
“Cet appareil ISM est conforme a la norme NMB du Canada.”
ISM 1-A (GRP.1 CLASS A)
This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)
The CSA mark is the Canadian Standards Association. This product complies with the relevant safety requirements.
The C-Tick mark is a registered trademark of the Australian/New Zealand Spectrum Management Agency. This product complies with the relevant EMC regulations.
This symbol indicates separate collection for electrical and electronic equipment mandated under EU law as of August 13, 2005. All electric and electronic equipment are required to be separated from normal waste for disposal (Reference WEEE Directive 2002/96/EC).
To return unwanted products, contact your local Agilent office, or see
http://www.agilent.com/environment/product/index.shtml for more information.
76 Chapter 1
Agilent EXA Signal Analyzer

Declaration of Conformity

Declaration of Conformity
A copy of the Manufacturer’s European Declaration of Conformity for this instrument can be obtained by contacting your local Agilent Technologies sales representative.
Chapter 1 77
Agilent EXA Signal Analyzer
Declaration of Conformity
78 Chapter 1
2 Option B25 (25 MHz) - Analysis
Bandwidth
This chapter contains specifications for the Option B25 (25 MHz) Analysis Bandwidth, and for convenience, also has specifications for the standard bandwidths of 10 MHz and below.
79
Option B25 (25 MHz) - Analysis Bandwidth

Specifications Affected by Analysis Bandwidth

Specifications Affected by Analysis Bandwidth
Specification Name Information
IF Frequency Response Specifications presented in the core chapter (“Agilent EXA Signal
Analyzer” on page 13) are redundantly contained within this
chapter. IF Phase Linearity See specifications in this chapter. Spurious Responses The “Spurious Responses” on page 46 still apply. Further,
bandwidth-option-dependent spurious responses are contained
within this chapter. Third-Order Intermodulation, Displayed
Average Noise Level and Phase Noise
The performance of the analyzer will degrade by an unspecified
extent when using wideband analysis. This extent is not substantial
enough to justify statistical process control.
80 Chapter 2
Option B25 (25 MHz) - Analysis Bandwidth

Other Analysis Bandwidth Specifications

Other Analysis Bandwidth Specifications
Description Specification

IF Spurious Response, 25 MHz IF Bandwidth (Option B25)

IF second harmonic
Apparent Freq. (f)
Any on-screen f (f + f
IF conversion image Apparent
Freq. (f)
Any on-screen f 2 × f
20 dBm High 70 dBc (nominal)
a
d
Excitation Freq.
+ 22.5 MHz)/2 15 dBm Low 54 dBc (nominal)
c
e
Excitation Freq.
f + 45 MHz 10 dBm Low 70 dBc (nominal)
c
Mixer Level
25 dBm High 54 dBc (nominal)
IF
b
Gain
Supplemental
Information
Preamp Off
c
a. To save test time, the levels of these spurs are not warranted. However, the relationship
between the spurious response and its excitation is described so the user can distinguish whether a questionable response is due to these mechanisms or is subject to the specifications in “Spurious Responses” in the core specifications. f is the apparent frequency of the spurious,
fc is the measurement center frequency. b. Mixer Level = Input Level Input Attenuation. c. The spurious response specifications only apply with the preamp turned off. When the preamp
is turned on, performance is nominally the same as long as the mixer level is interpreted to be:
Mixer Level = Input Level Input Attenuation Preamp Gain d. IF second harmonic significant only for Pre-FFT BW 10 MHz. e. IF conver sion image significant only for Pre-FFT BW 10 MHz.
Chapter 2 81
Option B25 (25 MHz) - Analysis Bandwidth
Other Analysis Bandwidth Specifications
Description Specifications Supplemental Information SFDR (Spurious-Free Dynamic Range)
Signal Frequency within ±12 MHz of center –75 dBc Signal Frequency anywhere within analysis BW –70 dBc (nominal)
Test conditions
a
a. Signal level is –6 dB relative to dBfs where: FS = –10 dBm at mixer, IF Gain = 0..
Description Specifications Supplemental Information

IF Frequency Response

Demodulation and FFT response relative to the center frequency
Freq (GHz)
3.6 10 0.40 dB 0.12 dB 0.10 0.03 dB
3.6 to 26.5 ≤ 10 0.25 dB
a
FFT Width (MHz)
b
Max Errorc
(Exceptions
th
95
Percentile
Midwidth
d
)
Error
Slope (dB/MHz)
e
Rms (nominal)
3.6 10, 25 0.45 dB 0.12 dB 0.05 0.04 dB
3.6 to 26.5 10, ≤ 25 0.80 dB
a. The IF frequency response includes effects due to RF circuits such as input filters, that are a
function of RF frequency, in addition to the IF pass-band effects.
b. This column applies to the instantaneous analysis bandwidth in use. The range available
depends on the hardware options and the Mode. The Spectrum analyzer Mode does not allow all bandwidths. The I/Q Analyzer is an example of a mode that does allow all bandwidths.
c. The maximum error at an offset (f) from the center of the FFT width is given by the expres-
sion
± [Midwidth Error + (f ×Slope)], but never exceeds ±Max Error. Usually, the span is no
larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer . When the analyzer span is w ider than the FFT width, the span i s made up of mul­tiple concatenated FFT results, and thus has multiple centers of FFT widths so the f in the equation is the offset from the nearest center. These specifications include the ef fect of RF fre­quency response as well as IF frequency response at the worst case center frequency. Perfor­mance is nominally three times better at most center frequencies.
d. The specification does not apply for frequencies greater than 3.6 MHz from the center in FFT
widths of 7.2 to 8 MHz.
e. The “RMS” nominal performance is the standard deviation of the response relative to the cen-
ter frequency, integrated across a 10 or 25 MHz span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
82 Chapter 2
Description Specification Supplemental Information

IF Phase Linearity

Relative to mean phase linearity
Option B25 (25 MHz) - Analysis Bandwidth
Other Analysis Bandwidth Specifications
Freq (GHz)
Span (MHz)
Peak (nominal)
rms (nominal)
3.6 10 ±0.5 deg 0.2 deg
3.6 to 26.5 10 ±1.5 deg 0.4 deg
a. The listed performance is the r.m.s. of the phase deviation relative to the a best-fit linear phase
condition, where the r.m.s. is computed over the range of offset frequencies and center fre-
quencies shown.
a
Chapter 2 83
Option B25 (25 MHz) - Analysis Bandwidth
Other Analysis Bandwidth Specifications
84 Chapter 2
3 Option EA3 -
Electronic Attenuator, 3.6 GHz
This chapter contains specifications for the Option EA3 Electronic Attenuator, 3.6 GHz.
85
Option EA3 - Electronic Attenuator, 3.6 GHz

Specifications Affected by Electronic Attenuator

Specifications Affected by Electronic Attenuator
Specification Name Information
Frequency Range See “Range (Frequency and Attenuation)” on page 87.
1 dB Gain Compression Point See “Distortions and Noise” on page 88.
Displayed Average Noise Level See “Distortions and Noise” on page 88.
Frequency Response S ee “Frequency Response” on page 89.
Attenuator Switching Uncertainty The recommended operation of the electronic attenuator is with the
reference setting (10 dB) of the mechanical attenuator. In this operating condition, the Attenuator Switching Uncertainty specification of the mechanical attenuator in the core specifications does not apply, and any switching uncertainty of the electronic attenuator is included within the “Electronic Attenuator Switching
Uncertainty” on page 89.
Absolute Amplitude Accuracy Use “Frequency” specifications from this chapter and the formula
from the ““Absolute Amplitude Accuracy” on page 34 of the core specifications.
Second Harmonic Distortion See “Distortions and Noise” on page 88.
Third Order Intermodulation Distortion See “Distortions and Noise” on page 88.
86 Chapter 3
Option EA3 - Electronic Attenuator, 3.6 GHz

Other Electronic Attenuator Specifications

Other Electronic Attenuator Specifications
Description Specifications Supplemental Information

Range (Frequency and Attenuation)

Frequency Range 9 kHz to 3.6 GHz
Attenuation Range Electronic Attenuator Range 0 to 24 dB, 1 dB steps Calibrated Range 0 to 24 dB, 2 dB steps Electronic attenuator is
calibrated with 10 dB mechanical attenuation
Full Attenuation Range 0 to 84 dB, 1 dB steps Sum of electronic and
mechanical attenuation
Chapter 3 87
Option EA3 - Electronic Attenuator, 3.6 GHz
Other Electronic Attenuator Specifications
Description Specifications Supplemental Information

Distortions and Noise When using the electronic attenuator, the

mechanical attenuator is also in-circuit. The full mechanical attenuator range is available
1 dB Gain Compression Point The 1 dB compression point will be nominally
higher with the electronic attenuator “Enabled” than with it not Enabled by the loss high settings of electronic attenuation
Displayed Average Noise Level Instrument Displayed Average Noise Level will
nominally be worse with the electronic attenuator “Enabled” than with it not Enabled by the loss
Second Harmonic Distortion Instrument Second Harmonic Distortion will
nominally be better in terms of the second harmonic intercept (SHI) with the electronic attenuator “Enabled” than with it not Enabled by
b
the loss
.
a
.
b
, except with
c
.
b
.
Third-order Intermodulation Distortion
Instrument TOI will nominally be better with the electronic attenuator “Enabled” than with it not
Enabled by the loss high attenuation setting and high signal frequency
b
except for the combination of
a. The electronic attenuator is calibrated for its frequency response only with the mechanical
attenuator set to its preferred setting of 10 dB.
b. The loss of the electronic attenuator is nominally given by its attenuation plus its excess loss.
That excess loss is nominally 2 dB from 0 500 MHz and increases by nominally another 1 dB/GHz for frequencies above 500 MHz.
c. An additional compression mechanism is present at high electronic attenuator settings. The
mechanism gives nominally 1 dB compression at +20 dBm at the internal electronic attenua­tor input. The compression threshold at the RF input is higher than that at the internal elec­tronic attenuator input by the mechanical attenuation. The mechanism has negligible effect for electronic attenuations of 0 through 14 dB.
d. The TOI performance improvement due to electronic attenuator loss is limited at high fre-
quencies, such that the TOI reaches a limit of nominally +45 dBm at 3.6 GHz, with the pre­ferred mechanical attenuator setting of 10 dB, and the maximum electronic attenuation of 24 dB. The TOI will change in direct proportion to changes in mechanical attenuation.
d
88 Chapter 3
Description Specifications Supplemental Information

Frequency Response

Maximum error relative to reference condition (50 MHz)
Option EA3 - Electronic Attenuator, 3.6 GHz
Other Electronic Attenuator Specifications
20 to 30 °C 5 to 50 °C
Attenuation = 4 to 24 dB, even steps
9 kHz to 10 MHz ±0.75 dB ±0.90 dB ±0.32 dB 10 MHz to 50 MHz ±0.65 dB ±0.69 dB ±0.27 dB 50 MHz to 2.2 GHz ±0.48 dB ±0.60 dB ±0.19 dB
2.2 GHz to 3.6 GHz ±0.55 dB ±0.67 dB ±0.20 dB
Attenuation = 0, 1, 2 and odd steps, 3 to 23 dB
10 MHz to 3.6 GHz ±0.30 dB
Description Specifications Supplemental Information
Electronic Attenuator Switching Uncertainty
th
Percentile (≈2σ)
95
Er r or r e lat i ve t o ref e ren c e condition (50 MHz, 10 dB mechanical attenuation, 10 dB electronic attenuation)
Attenuation = 0 to 24 dB 9 kHz to 3.6 GHz
See note
a
a. The specification is ±0.14 dB. Note that this small relative uncertainty does not apply in esti-
mating absolute amplitude accuracy . It is included within the absolute amplitude accuracy for
measurements done with the electronic attenuator. (Measurements made without the elec-
tronic attenuator are treated differently; the absolute amplitude accuracy specification for
these measurements does not include attenuator switching uncertainty.)
Chapter 3 89
Option EA3 - Electronic Attenuator, 3.6 GHz
Other Electronic Attenuator Specifications
90 Chapter 3

4 Option P03 - Preamplifier

This chapter contains specifications for the EXA Signal Analyzer Option P03 preamplifier.
91
Option P03 - Preamplifier

Specifications Affected by Preamp

Specifications Affected by Preamp
Specification Name Information
Frequency Range See “Frequency Range” on page 15 of the core specifications. Nominal Dynamic Range vs.
Offset Frequency vs. RBW Measurement Range The measurement range depends on DANL.
Gain Compression See specifications in this chapter. DANL See specifications in this chapter. Frequency Response See specifications in this chapter. Absolute Amplitude Accuracy See ““Absolute Amplitude Accuracy” on page 34 of the core
Does not apply with Preamp On.
See “Amplitude Accuracy and Range” on page 29.
specifications.
RF Input VSWR See plot in this chapter.
Input Attenuation Switching Uncertainty
Display Scale Fidelity See “Display Scale Fidelity” on page 39 of the core specifications.
Third Order Intermodulation Distortion
Other Input Related Spurious See “Spurious Responses” on page 46 of the core specifications.
Dynamic Range See plot in this chapter.
Gain See “Preamp” specifications in this chapter.
Noise Figure See “Preamp” specifications in this chapter.
See “Input Attenuation Switching Uncertainty” on page 33 of the core specifications.
See specifications in this chapter.
92 Chapter 4
Option P03 - Preamplifier

Other Preamp Specifications

Other Preamp Specifications
Description Specifications Supplemental Information

Preamp (Option P03)

Gain

100 kHz to 3.6 GHz +20 dB (nominal)

Noise figure

100 kHz to 3.6 GHz 15 dB (nominal)
a. The preamp follows the input attenuator, AC/DC coupling switch, and precedes the input mixer. In
low-band, it follows the 3.6 GHz low-pass filter. b. Preamp Gain directly affects distortion and noise performance, but it also affects the range of levels that
are free of final IF overload. The user interface has a designed relationship between input attenuation
and reference level to prevent on-screen signal levels from causing final IF overloads. That design is
based on the maximum preamp gains shown. Actual preamp gains are modestly lower, by up to nomi-
nally 5 dB for frequencies from 100 kHz to 3.6 GHz.
a
Maximum
b
Chapter 4 93
Option P03 - Preamplifier
Other Preamp Specifications
Description Specifications Supplemental Information
1 dB Gain Compression Point (Two-tone)
ab
Preamp On (Option P03) Maximum power at the
preamp
c
for 1 dB gain compression
10 MHz to 3.6 GHz 10 dBm (nominal)
a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to mismeasure
on-screen signals because of two-tone gain compression. This specification tells how large an interfer­ing signal must be in order to cause a 1 dB change in an on-screen signal.
b. Reference level and off-screen performance: The reference level (RL) behavior differs from some ear-
lier analyzers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in this signal analyzer, however, is implemented dig­itally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only excep­tion to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the trade-off between large signal behaviors (third-order intermodulation and compression) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.
c. Total power at the preamp (dBm) = total power at the input (dBm) input attenuation (dB).
94 Chapter 4
Option P03 - Preamplifier
Other Preamp Specifications
Description Specifications Supplemental Information
Displayed Average Noise Level (DANL) Preamp On
(Option P03)
a
Input terminated, Sample or Average detector Averaging type = Log 0 dB input attenuation
Refer to the footnote for
Band Overlaps on page 15.
IF Gain = Any setting 1 Hz Resolution Bandwidth Preamp On
20 to 30 °C 5 to 50 °CTypical Nominal
Option P03
100 kHz to 1 MHz
b
146 dBm
1 MHz to 10 MHz 161 dBm 10 MHz to 2.1 GHz 161 dBm 159 dBm 163 dBm
2.1 GHz to 3.6 GHz 160 dBm 158 dBm 162 dBm
a. DANL for zero span and swept is normalized in two ways and for two reasons. DANL is measured in a
1 kHz RBW and normalized to the narrowest available RBW, because the noise figure does not depend on RBW and 1 kHz measurements are faster. The second normalization is that DANL is measured with 10 dB input attenuation and normalized to the 0 dB input attenuation case, because that makes DANL and third order intermodulation test conditions congruent, allowing accurate dynamic range estimation for the analyzer.
b. Specifications apply only when the Phase Noise Optimization control is set to “Best Phase Noise at off-
set > 30 kHz.”
Chapter 4 95
Option P03 - Preamplifier
Other Preamp Specifications
Description Specifications Supplemental Information
Frequency Response Preamp On
(Option P03)
Refer to the footnote for
Band Overlaps on page 15.
Maximum error relative to reference condition (50 MHz)
Input attenuation 0 dB Swept operation
a
20 to 30 °C 5 to 50 °C
th
95
Percentile (≈2σ)
20 to 30 °C
100 kHz to 3.6 GHz
b
±0.28 dB (nominal)
a. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An
additional error source, the error in switching between swept and FFT sweep types, is nominally ±0.01 dB and is included within the “Absolute Amplitude Error” specifications.
b. Electronic attenuator (Option EA3) may not be used with preamp on.
96 Chapter 4
Nominal VSWR Preamp On (Plot)
VSW R vs. F req uency , 3 Units, Preamp On, 0 dB Attenuation
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
GHz
VSWR
Option P03 - Preamplifier
Other Preamp Specifications
Description Specifications Supplemental Information
Third Order Intermodulation Distortion
Tone separation 5 times IF Prefilter Bandwidth
a
Sweep type not set to FFT
Preamp On
(Option P03)
Preamp
b
Level
30 MHz to 3.6 GHz 45 dBm 90 dBc 0.0 dBm
a. See the IF Prefilter Bandwidth table in the specifications for “Gain Compression” on page 42. When
the tone separation condition is met, the effect on TOI of the setting of IF Gain is negligible. b. Preamp Level = Input Level Input Attenuation. c. TOI = third order intercept. The TOI is given by the preamplifier input tone level (in dBc) minus (dis-
tortion/2) where distortion is the relative level of the distortion tones in dBc.
Chapter 4 97
Distortion
(nominal)
c
TOI
(nominal)
Option P03 - Preamplifier
Other Preamp Specifications
Nominal Dynamic Range at 1 GHz, Preamp On (Plot)
98 Chapter 4
5 Option PFR - Precision Frequency
Reference
This chapter contains specifications for the Option PFR Precision Frequency Reference.
99
Option PFR - Precision Frequency Reference

Specifications Affected by Precision Frequency Reference

Specifications Affected by Precision Frequency Reference
Specification Name Information
Precision Frequency Reference See “Precision Frequency Reference” on page 18 in the core
specifications.
100 Chapter 5
Loading...