Agilent 8960 Reference Manual

Agilent Technologies 8960 Series 10 E5515A,B Wireless Communications Test Set
Agilent Technologies E1960A GSM Mobile T e st Application
Reference Manual
Test Application Revision A.04
© Copyright Agilent Technologies 1998, 1999
Printed in U.S.A March 2000
Agilent Part Number: E1960-90001
Revison H
Notice
Information contained in this document is subject to change without notice. All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited,
except as allowed under the copyright laws. This material may be reproduced by or for the U.S. Government pursuant to the C opyright License under the
clause at DFARS 52.227-7013 (APR 1988).
Agilent Technologies, Inc. Learning Products Department 24001 E. Mission Liberty Lake, WA 99019-9599 U.S.A.
Legal Information
Legal Information
Manufacturer’s Declaration
This statement is provided to comply with the requirements of the German Sound Emission Directive, from 18 January 1991.
This product has a sound pressure emission (at the operator position) < 70 dB(A).
• Sound Pressure Lp < 70 dB(A).
• At Operator Position.
• Normal Operation.
• According to ISO 7779:1988/EN 27779:1991 (Type Test).
Herstellerbescheinigung
• Schalldruckpegel Lp < 70 dB(A).
• Diese Information steht im Zusammenhang mit den Anforderungen der Maschinenlärminformationsverordnung vo m 18 Januar 1991.
• Am Arbeitsplatz.
• Normaler Betrieb.
• Nach ISO 7779:1988/EN 27779:1991 (Typprüfung).
3
Legal Information
Safety Consideratio ns
GENERAL This product and related documentation must be reviewed for familiarization with safety markings and
instructio ns before operation. This product has been designed and tested in accordance with IEC Publication 1010, "Safety Requirements
for Electronic Measuring Apparatus," and has been supplied in a safe condition. This instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
SAFETY EARTH GROUND A uninterruptible safety earth ground must be provided from the main power source to the product input
wiring terminals, power cord, or supplied power cord set. SAFETY SYMBOLS Indicates instrument damage c an occur if indicated operating limits are exceeded.
!
Indicates hazardous voltages. Indicates earth (ground) terminal
WARNING A WARNING note denotes a hazard. It calls attention to a procedure, practice, or the
like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.
CAUTION A CAUTION note denotes a hazard. It calls attention to an operation procedure, practice, or the
like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond an CAUTION note until the indicated conditions are fully understood and met.
4
Legal Information
WARNING This product is a Safety Class I instrume nt (pr ovi ded wi th a pr otec ti ve earthing
ground incorporated in the power cor d). The mains plug shall only be inserted in a socket outlet provided with a protectiv e ear th contact. Any interruption of the protective conductor inside or outside of the product is likely to make the product dangerous. Intentional interruption is prohib ited .
Whenever it is likely that the protection has been impaired, the instrument mus t be made inoperative and be sec ur ed against any unintended operatio n.
If this instrument is to be energized via an autotransformer (for voltage re duc tion), make sure the common terminal is connected to the earth terminal of the power source.
If this product is not used as specified, the pr otec ti on provided by the equipment could be impaired . This product must be used in a no rmal condition (in whic h all means for protection are intact) only.
No operator serviceable parts in this pr odu ct . Refer servicing to qualified personnel. To prevent electrical shock, do not rem ove covers.
Servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.
The opening of covers or removal of parts is like ly to expose dangerous voltages. Disconnect the product from all volta ge sou r ce s whi le it is being opened.
The power cord is connected to internal capacitors that my remain live for 5 seconds after disconnecting the plug from its power supply.
For Continued protection against fire hazard, replace the line fuse(s) only with 250 V fuse(s) or the same current rating and type (for example, normal blow or time delay). Do not use repaired fuses or short circuited fuseholders.
Always use the three-prong ac power cord supplied with this product. Failure to ensure adequate earth grounding by not using this cord may cause product damage.
This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and IEC 664 respectively. FOR INDOOR USE ONLY.
This product has autoranging l ine volta ge input, be sure the supply voltage is within the specified range.
To prevent electrical shock, disconnect instrument from mains (line) before cleaning. Use a dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally.
Ventilation Requirements: When installing the product in a cabine t, the c onv ec ti on into and out of the product must not be restricte d . The am bient temperature (outside the cabinet) must be less than the max imu m oper ating temperature of the product by
4° C for every 100 watts dissipated in the ca bi net. If the total power dissipated in the cabinet is greater than 800 watts, then forced convection mu st be used.
5
Legal Information
Product Markings
CE - the CE mark is a registered trademark of the European Community. A CE mark accompanied by a year indicated the year the design was proven.
CSA - the CSA mark is a registered trademark of the Canadian Standards Association.
CERTIFICATION
Agilent Technologies, Inc. certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurement s are traceable to the
United States National Insti t ute of Standards and Technology, to the extent allowed by the Institute’s calibration facility, and to the calibration facilities of other International Standards Organization members
WARRANTY
This Agilent Technologies instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Agilent Technologies, Inc. will at its option, either repair or replace products which prove to be defective.
For w arranty service or repair, this product must be returned to a service facility designated by Agilent. Buyer shall prepay shipping charges to Agilent and Agilent shall pay shipping charges, duties, and taxes for products returned to Agilent from another country.
Agilent warrants that its software and firmware designated by Agilent for use with an instrument will execute its programming instructions when properly installed on that instrument. Agilent does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.
LIMITATION OF WARRANTY
The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.
NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
EXCLUSIVE REMEDIES
THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. AGILENT SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASE ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.
ASSISTANCE
Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products. For any assistance, contact your nearest Agilent Technologies Sales and Service Office.
6
DECLARATION OF CONFORMITY
acc ording to ISO/IEC Guide 22 and EN 45014
Manufacturer’s Name: Agilent Technologies Inc. Manufacturer’s Address: 24001 E. Mission Avenue
Liberty Lake, Washington 99019-9599 USA
declares that the product
Product Name: Agilent Technologies 8960 Series 10
Wireless Communications Test Set Model Number: Agilent Technologies E5515A,B Product Options: This declaration covers all options of
the above product.
conforms to the following Product specifications:
Safety: IEC 1010-1:1990+A1+A2 / EN 61010-1:1993
Legal Information
EMC: CISPR 11:1990/EN 55011:1991- Group 1, Class A
EN 50082-1 : 1992 IEC 801-2:1991 - 4kV CD,8kV AD IEC 801-3:1984 3V/m IEC 801-4:1988 0.5 kV Sig. Lines, 1 kV Power Lines
Supplementary Information:
This product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carries the CE-marking accordingly.
Spokane, Washington USA November 20,1998
European Contact: Your local Agilent Technologies Sales and Service Office or Agilent Technologies GmbH Department ZQ/Standards Europe, Herrenberger Strasse 130, D-71034 Böblinger, Germany (FAX+49-7031-14-3143)
Vince Rola nd Reliability & Regulatory Engineering Manager
7
Legal Information
Table 1. Regional Sales and Service Offices
United States of America: Agilent Technologies T est and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026
(tel) 1 800 452 4844
Japan: Agilent Technologies Japan Ltd. Measurement A ssi stanc e Ce nt er 9-1 Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan
(tel) (81) 456-56-7832 (fax) (81) 426-56-7840
Asia Pacific: Agilent Technologies 19/F, Cityplaza One, 111 Kings Road, Taikoo shing, Hong Kong, SAR
Canada: Agilent Technologies Canada Inc. 5159 Spectrum Way Mississauga, Ontario L4W 5G1
(tel) 1 877 894 4414
Latin America: Agilent Technologies Latin America Region Headquarters 5200 Blue Lagoon Drive, Suite #950 Miami, Florida 33126 U.S. A.
(tel) (305) 267 4245 (fax) (305) 267 4286
Europe: Agilent Technologies European Marketing Organization P.O. Box 999 1180 AZ Amstelveen The Netherlands
(tel) (3120) 54 7 999 9
Australia/New Zealan d: Agilent Technologies Australia Pty Ltd 347 Burwood Hightway Forest Hill, Wictoria 3131
(tel) 1 800 629 485 (Australia) (fax) (61 3) 9272 0749 (tel) 0 800 738 378 (New Zealand) (fax) (64 4) 802 6881
(tel) (852) 2599 7899 (fax) (852) 2506 9233
8
Contents
Establishing an Active Link with the Mobile Station
Making a Base Station Originated Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Making a Mobile Station Originated Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Operating Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Call Processing Event Synchronization
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Call Processing Subsystem Overlapped Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Call Processing State Synchronization
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
STATus:OPERation:CALL:GSM Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Call State STATus:OPERation:CALL:GSM Program Example . . . . . . . . . . . . . . . . . . .37
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Test System Synchronization Overview
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Commands used for synchronization: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Analog Audio Measurement Description
How is an analog audio measurement made? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Programming an Analog Audio Measurement
Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Returned Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
AAUDio Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Bit Error Measurement Description
Bit Error Measurements versus Fast Bit Error Measurements . . . . . . . . . . . . . . . . . . .48
How is a bit error (BER) measurement made? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
BER measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Programming a Bit Error Measurement
9
Contents
Program Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Returned values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
BERR Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Decoded Audio Measurement Description
How is a decoded audio (DAUDIO) measurement made? . . . . . . . . . . . . . . . . . . . . . . . 55
Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Programming a Decoded Audio Measurement
Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Returned Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Decoded Audio (DAUDio) Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Dynamic Power Measurement Description
How is a Dynamic Power Measurement Made? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Single or Multi Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Types of Signals Dynamic Power can Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Input Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
I/Q Tuning Measurement Description
How is an I/Q Tuning Measurement Made? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Single or Multi Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Types of Signals I/Q Tuning can Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
I/Q Tuning Input Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Programming an I/Q Tuning Measurement
Program Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Returned Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10
Contents
I/Q Tuning Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Interpreting Integrity Indicator Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Fast Bit Error Measurement Description
Bit Error Measurements vs. Fast Bit Error Measurements . . . . . . . . . . . . . . . . . . . . . .69
How is a fast bit error (FBER) measurement made? . . . . . . . . . . . . . . . . . . . . . . . . . . .69
FBER measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Programming a Fast Bit Error Measurement
Program Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Returned values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
FBER Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Output RF Spectrum Measurement Description
How is an output RF spectrum (ORFS) measurement made? . . . . . . . . . . . . . . . . . . . .75
Types of Signals ORFS can Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Input Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Programming an Output RF Spectrum Measurement
Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Returned values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
ORFS Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Phase and Frequency Error Measurement Description
How is a phase and frequency error (PFER) measurement made? . . . . . . . . . . . . . . . .82
Burst Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Programming a Phase and Frequency Error Measurement
Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
11
Contents
Returned values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
PFER Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Power versus Time Measurement Description
How is a power versus time (PvT) measurement made? . . . . . . . . . . . . . . . . . . . . . . . . 88
Types of Signals Power vs. Time Can Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Power vs. Time Input Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Burst Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Programming a Power versus Time Measurement
Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Returned values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
PVT Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
RACH Measurement Description
What is a RACH? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Measurements that can be performed on a RACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Overview of Measurement Procedure in Active Cell Mode . . . . . . . . . . . . . . . . . . . . . . 97
Overview of Measurement Procedure in Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Example Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Programming a RACH Measurement
Overview of Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Example Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
RACH Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
SACCH Report Measurement Descriptions
12
Contents
When are SACCH Report Measurements Made? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
SACCH Report Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
Neighbour Report Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Transmit Power Measurement Description
How is a transmit power (TXP) measurement made? . . . . . . . . . . . . . . . . . . . . . . . . . .106
Types of Signals TX Power can Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Input Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Programming a Transmit Power Measurement
Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Returned Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Transmit Power Troubleshooting
Possible Setup Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Interpreting Integrity Indicator values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Test Adherence to Standards
Frequency Error and Phase Error - ETSI GSM 11.10 section 13.1 . . . . . . . . . . . . . . .110
Transmitter Output Power and Burst Timing Error - ETSI GSM 11.10 section 13.3 110
Output RF Spectrum Testing Method of Test - ETSI GSM 11.10 section 13.4.4 . . . .110
Reference Sensitivity - ETSI GSM 11.10 section 14.2 . . . . . . . . . . . . . . . . . . . . . . . . . .111
I/Q Tuning Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
Dynamic Power Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
Burst Synchronization of Measurements
Measurement Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Programming a Channel Mode Change
Program Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
Returned Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Programming a Dualband Handover
How the Test Set Performs a Dualband Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
13
Contents
Dealing With Semicolon Separated Response Data Lists
Discription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Concurrent Measurements
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Concurrent Measurements For The E1960A Test Application . . . . . . . . . . . . . . . . . . 123
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Integrity Indicator
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Measurement Timeouts
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Timeout Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Program Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Invalid Measurement Results
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Measurement Progress Report
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Measurement Event Synchronization
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
INITiate:DONE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
STATUS:OPERATION:NMRREADY:GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Operating Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Statistical Measurement Results
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Status Subsystem Overview
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
14
Contents
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Triggering of Measurements
E1960A Operating Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Trigger Qualifier Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Introduction
Conventions Used in This Programming Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
Purpose of This Programming Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
How This Programming Guide Is Organized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
How to Use This Programming Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
About the Programming Examples Presented in This Programming Guide . . . . . . . .156
Step 1: Set the Test Set’s Operating Mode to Active Cell
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
Overview of Active Cell Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
Setting the Test Set’s Operating Mode to Active Cell . . . . . . . . . . . . . . . . . . . . . . . . . .158
Step 2: Configure the Base Station Emulator (BSE)
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
Configuring the Broadcast Channel Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Configuring the Traffic Channel Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Things That Can Go Wrong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Step 3: Configure the Measurement Execution Parameters
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Configuring Measurement Averaging Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Configuring Measurement Triggering Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Configuring the Burst Synchronization Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Configuring Measurement Timeout Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
Configuring Measurement Specific Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
Step 4: Establish an Active Link with Mobile Station
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
Process for Making a Base Station Originated Call . . . . . . . . . . . . . . . . . . . . . . . . . . .176
Process for Making a Mobile Station Originated Call . . . . . . . . . . . . . . . . . . . . . . . . . .179
Step 5: Set the Mobile Station’s Operating Conditions
15
Contents
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Step 6: Make Measurements
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Things That Can Go Wrong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Step 6a: Start Set Of Concurrent Measurements
Starting Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Step 6b: Determine if a Measurement Is Done
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Step 6c: Obtain a Set of Measurement Results
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Step 7: Perform an Intra-Cell Handover
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Performing an Intra-Cell Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Performing a Dual-Band Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Step 8: Disconnect the Mobile Station from the BSE
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Terminating an Active Call from the Base Station Emulator . . . . . . . . . . . . . . . . . . . 197
Terminating an Active Call from the Mobile Station . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Comprehensive Program Example
Example Program With Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Example Program Without Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Diagram Conventions
Diagram Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Developing Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
ABORt Subsystem
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Syntax Diagram and Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
ABORt AFGenerator Subsystem
16
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
AFGenerator CALibration Subsystem
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Syntax Diagram and Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
CALibration CALL Subsystem
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
Syntax Diagrams and Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
CALL:ACTivated CALL:BA CALL:BAND CALL:BCCode CALL:BCHannel CALL:BURSt CALL:CONNected CALL:COUNt CALL:END CALL:FUNCtion CALL:IMEI CALL:LACode CALL:MCCode CALL:MNCode CALL:MS CALL:NCCode CALL:OPERating CALL:ORIGinate CALL:PAGing CALL:PMNCode
17
Contents
CALL:POWer CALL:RFGenerator CALL:SIGNaling
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
CALL:STATus CALL:TCHannel DISPlay Subsystem
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Syntax Diagram and Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
DISPlay FETCh? Subsystem
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Syntax Diagrams and Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
FETCh:AAUDio FETCh:BERRor FETCh:DAUDio FETCh:DPOWer FETCh:FBERror FETCh:IQTuning FETCh:ORFSpectrum FETCh:PFERror FETCh:PVTime FETCh:TXPower INITiate Subsystem
Syntax Diagrams and Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
INITiate Programming Examples (how INIT commands are used) . . . . . . . . . . . . . . 353
INITiate READ? Subsystem
Syntax Diagram and Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
18
Contents
Description 359
Program Example - READ:TXPower? 359
READ RFANalyzer Subsystem
Description 370
RFANalyzer SETup Subsystem
Description 379
Syntax Diagrams and Command Descriptions 379
SETup:AAUDio SETup:BERRor SETup:FBERror SETup:CONTinuous SETup:DAUDio SETup:DPOWer SETup:IQTuning SETup:ORFSpectrum SETup:PFERror SETup:PVTime SETup:TXPower STATus Subsystem Description
Description 437
Syntax Diagrams and Command Descriptions 437
STATus:OPERation
Related Topics 453
STATus:PRESet STATus:QUEStionable Status Byte Register Standard Event Status Register
19
Contents
SYSTem Subsystem
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Syntax Diagrams and Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
SYSTem:APPLication
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
SYSTem:BEEPer SYSTem:COMMunicate SYSTem:CONFigure
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
SYSTem:CORRection SYSTem:CURRent:TA SYSTem:ERRor? SYSTem:FTRigger SYSTem:MEASurement SYSTem:PRESet SYSTem:ROSCillator SYSTem:SYNChronized IEEE 488.2 Common Commands
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
Frequency Banded Parameters
List of Frequency Banded Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Cell Band Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Traffic Band Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Manual Band Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Block Diagram
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Active Cell Operating Mode
Active Cell Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
20
Contents
Configuring the Broadcast Channel (BCH)
BCH Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .511
Examples: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .511
Operating Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .514
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .514
Setting Frame Trigger Parameters
Frame Trigger Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515
Operating Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516
Configuring Mobile Station Operating Parameters
Mobile Station Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517
Examples: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517
Operating Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517
Receiver Control
Selecting Manual or Automatic Receiver Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . .518
Operating Mode and Receiver Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .518
Expected Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .520
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .520
Configuring the Traffic Channel (TCH)
TCH Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .521
Examples: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .521
Operating Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .523
Test Mode Operating Mode
Test Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .524
Expected Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .526
BCH Test Function Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .526
BCH + TCH Test Function Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .529
CW Test Function Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .531
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532
Testing a Mobile for Enhanced Full Rate Speech Channel Mode
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533
Preset Descriptions
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .535
21
Contents
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
Instrument Status Area
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
How Do I Change Call Parameters? How Do I Change Cell Parameters?
A. Select the cell parameters menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
B. Set a cell parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
How Do I Make Measurements on a Mobile?
A. Establish a call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
B. Select measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
How Do I Change Measurement Setup?
A. Select a measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
B. Set up the measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
How Do I Turn Off a Measurement? Programming Overview
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
Rear Panel Connectors
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Remote/Local Mode
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Display Brightness
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Test Set Beeper
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
Configuring the Test Set’s GPIB Address
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Obtaining Identification Information *IDN?
22
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .558
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559
Configuring the Test Set’s LAN
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561
Hardware Configuration Report
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .562
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .562
Measurement Related Configuration
Amplitude Offset (RF In/Out port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .563
Display Mode (Track/Fast)
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .566
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .566
Obtaining Test Application Information
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .567
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .567
Timebase Description/Configuration
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568
Selecting a Radio Personality
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .569
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572
Error Messages
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576
GSM Mobile Test Maskable Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577
Fixed Timer Messages
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578
Manual User Error Messages
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .581
GSM Mobile Test Manual User Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .582
-100 to -199 Command Errors
23
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
-200 to -299 Execution Errors
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
-300 to -399 SCPI Specified Device-Specific Errors
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
-400 to -499 Query Errors
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
+100 to +199 Core Device-Specific Error
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
+200 to +299 Call Processing Device-Specific Error +300 to +399 Link Control Device-Specific Error +400 to +499 Core Hardware Device-Specific Error
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
+500 to +599 Test Application Hardware Device-Specific Error
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
+600 to +699 Instrument Device-Specific Error
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
+700 to +799 Test Application Measurement Device-Specific Error +800 to +899 Core Measurement Device-Specific Error
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Error Message Log
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Revision Information
A.04 Release - March 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
24
Contents
A.03 Release - December 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .607
A.02 Release - July 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .608
A.01 Release - March 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .609
A.00 Initial Release - January 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .609
25
Contents
26
1 Call Processing
Call Processing
27
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\ch_call_processing.fm

Establishing an Active Link with the Mobile Station

Establishing an Active Link with the Mobile Station

Making a Base Station Originated Call

The process for making a base station originated call is to:
1. If necessary, configure the traffic channel parameters for the call assignment. See “CALL:TCHannel” on
page 286.
2. If necessary, set the IMSI state. See “CALL:PAGing:IMSI” on page 268.
Example 1.
OUTPUT 714;"CALL:PAGING:IMSI ““01012345678901””"
would set the paging IMSI to 01012345678901.
3. If necessary, set the repeat paging state. See “CALL:PAGing:REPeat[:STATe]” on page 269.
Example 2.
OUTPUT 714;"CALL:PAGING:REPEAT ON"
would turn on repeat paging.
4. Configure the necessary ca ll processing connect/disconnect synchronization conditions. See “Call Processing State Synchronization” on page 35.
5. Page the mobile station by sending the call originate command to the test set.
Example 3.
OUTPUT 714;"CALL:ORIGINATE"
would start the process of making a base station originated call.
IMPORTANT To verify that the origination is successfully completed, see “Call Processing State
Synchronization” on page 35
28
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_call_setup.fm
Establishing an Active Link with the Mobile Station

Making a Mobile Station Originated Call

The process for making a mobile station originated call is to:
1. If necessary, configure the necessary traffic channel parameters for the call assignment. See
“CALL:TCHannel” on page 286.
2. Configure the necessary ca ll processing connect/disconnect synchronization conditions. See “Call Processing State Synchronization” on page 35.
3. Initiate a call from the mobile station.
NOTE There is no facility in the test set to initiate a call from the mobile station. This mus t be
accomplished manually or through a test bus built-in to the mobile station.
IMPORTANT To verify that the origination is successfully completed, see “Call Processing State
Synchronization” on page 35

Operating Considerations

The test set must be in active cell operating mode. The correct frequen cy band must be selected.
29
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_call_setup.fm

Call Processing Event Synchronization

Call Processing Event Synchronization
February 14, 2000

Description

Synchronizing the test set with an external controller ensures that neither device does something before it is supposed to, which can cause errors, or does something well after it could have, which wastes time.
Using the call processing subsystem overlapped command synchronization commands, the user can query the test set to find out when an overlapped command operation is done (:DONE?, :OPC?), force the test set to not execute any more commands u ntil an overlapped command operation has completed (:WAIT), or simply force an overlapped command to behave as a sequential command (:SEQ).
Pending Operation Flags
Associated with each overlapped command, the test set maintains a binary indicator known as a pending operation flag. A pending operation flag is set true when the operation started by the overlapped command is executing, and is set false when the operation is no longer executing.
NOTE In addition to the call processing subsystem overlapped commands, the test set also provides the
measurement-related INITiate <measurement> overlapped commands.
30
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callproc.fm
Call Processing Event Synchronization
Call Processing Subsystem Overlapped Command Synchronization Commands
Table 1 of 2
Command Purpose Of Command Example
:DONE? Returns a 0 if the associated command’s
pending operation flag is true, or a 1 if it is false.
:SEQuential Force s an over lapped co mmand to e xecute
in a sequential manner. No subsequent commands will be executed until the pending operation flag for this operation is false.
10 OUTPUT 714;”CALL:TCH 65” 20 OUTPUT 714;”SETUP:TXP:CONT OFF” 30 OUTPUT 714;”SETUP:PFER:CONT OFF” 40 REPEAT 50 OUTPUT 714;”CALL:TCH:DONE?” 60 ENTER 714;Proce ss _done 70 UNTIL Process_d on e 80 OUTPUT 714;INIT:TXP;PFER” 90 END
The example shown is from the E1960A GSM test application. Commands the test set to perform a traffic channel handover and execut e two setup commands. After the two setup commands have finished, the :DONE? command is used to find o ut if the handover is finished
OUTPUT 714;”CALL :T CH:SEQ 65”
The example shown is from the E1960A GSM test application. Commands the test set to perform a traffic channel handover and to not execute any more commands until the pending operation flag associated with the CALL:TCH command is false.
31
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callproc.fm
Call Processing Event Synchronization
Table 2 of 2
Command Purpose Of Command Example
:WAIT Forces the test set to wait until the
associated command’s pending operation flag is false before executing any more commands.
:OPComplete? Places a 1 in the test set’s output queue
when the associated command’s pending operation flag goes false. Controlling program hangs on this qu ery until t he 1 is retrieved.
10 OUTPUT 714;”CALL:TCH 65” 20 OUTPUT 714;”SETUP:TXP:CONT OFF” 30 OUTPUT 714;”SETUP:PFER:CONT OFF” 40 OUTPUT 714;”CALL:TCH:WAIT” 50 OUTPUT 714;”INIT:TXP;PFER” 60 END
The example shown is from the E1960A GSM test application. Commands the test set to perform a traffic channel handover and execute two setup commands. After the two setup commands have finished, the :WAIT command is sent to prevent the test set from executing the INITiate command until the handover is finished.
10 OUTPUT 714;”CALL:TCH 65” 20 OUTPUT 714;”SETUP:TXP:CONT OFF” 30 OUTPUT 714;”SETUP:PFER:CONT OFF” 40 OUTPUT 714;”CALL:TCH:OPC?” 50 ENTER 714;Op_co mp lete 60 OUTPUT 714;”INIT:TXP;PFER” 70 END
The example shown is from the E1960A GSM test application. Commands the test set to perform a traffic channel handover and execute two setup commands. After the two setup commands have finished, the :OPC? command is sent to ha ng program
execution until a 1 is put in the test set’s output queue, satisfying the ENTER statement and allowing program execution to continue with the INITiate command.
Operating Considerations When using the call processing subsystem overlapped command
synchronization commands, check the conditions that set the operation’s pending operation flag (POF) false to avoid unexpected results.
32
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callproc.fm
Call Processing Event Synchronization

Call Processing Subsystem Overlapped Commands

Table 1 of 2
Call Processing Command Purpose Of Command Pending Operation Flag (POF) is
false when
CALL:ORIGinate See “CALL:ORIGina te” on page 267.
CALL:END See “CALL:END” on page 247.
CALL[:CELL[1]]:BCHannel[:ARFCn][:SELected] See “CALL[:CELL]:BCHannel[:ARFCn][:SELected]” on
page 236.
CALL[:CELL[1]]:BCHannel[:ARFCn]:<broadcast band> See “CALL:BCHannel” on page 236.
Performs a base station call origination.
Performs a base station call termination.
Sets the BCH ARFCN for currently selected broadcast band.
Sets the BCH ARFCN for a broadcast band not currently selected.
The call processing state leaves the Idle stat e (when the operating mode is active cell), or
The test set has noted this parameter change (when the operating mode is test mode).
The call processing state reaches the Idle state (when the operating mode is active cell), or
The test set has noted this parameter change (when the operating mode is test mode).
The downlink signal is transmitting on the new broadcast channel.
The test set has noted this parameter change.
33
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callproc.fm
Call Processing Event Synchronization
Table 2 of 2
Call Processing Command Purpose Of Command Pending Operation Flag (POF) is
false when
CALL:TCHannel[:ARFCn][:SELected] See “CALL:TCHannel[:ARFCn][:SELected]” on page 287.
CALL:TCHannel[:ARFCn]:<traffic band> See “CALL:TCHannel” on page 286.
CALL:TCHannel:TSLot See “CALL:TCHannel:TSLot” on page 291.
CALL:MS:TADVance See “CALL:MS:TADVance” on page 262.
CALL:MS:TXLevel[:SELected] See “CALL:MS:TXLevel[:SELected]” on page 262.
CALL:MS:TXLevel:<traffic band>. Sets the mobile
CALL:CONNected:ARM[:IMMediate] See “CALL:CONNected:ARM[:IMMediate]” on page 241.
Sets the TCH ARFCN for currently selected traffic band.
Sets the TCH ARFCN for a traffic band not currently selected.
Sets the TCH timeslot.
Sets the mobile station timing advance.
Sets the mobile station transmit level for currently selected band.
station transmit level for a traffic band not currently selected.
Arms the call control status change detector.
At least one of the following conditions has been me t for all occurrences of these call processing commands that have begun execution:
The channel assignment has been successfully completed (when a call is established), or
The test set has noted this parameter change (no call established), or
The test set has noted this parameter change (not currently selected band), or
An error message was generated.
The call control status chang e detector has been disarmed.
See “Connected/Idle Query” on
page 35.

Related Topics

*******************************************************
“Call Processing State Synchronization” on page 35 “Measurement Event Synchronization ” on page 132 “Test System Synchronization Overview” on page 39
*******************************************************
34
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callproc.fm

Call Processing State Synchronization

Call Processing State Synchronization

Description

Call Processing State Query
The CALL:STATUS:STATE query returns the current call processing state. There are six possible call processing states that the test se t can be in. Query returns one of the following:
•“IDLE”
•“SREQ”
•“PROC”
•“ALER”
•“CONN”
•“DISC”
The following command returns the current state of a call:
OUTPUT 714;”CALL:STATUS:STATE?” ENTER 714;Inst_state$
The call processing states are shown in the <Operating Mode> section of the instrument status area.
Connected/Idle Query
This query will determine if a call is connected or disconnected by returning an integer value. The value indicates if the call state is idle or connected, not if any call state change has occured.
Query returns one of the following:
• 0 = idle
• 1 = connected
If the call is in the setup request, proceeding, alerting, or disconnecting state, this command will not return a value until the call status proceeds to either connected or idle.
OUTPUT 714;”CALL:CONNECTED:STATE?”
Example 4. Using the Connected/Idle Query - Base Station Originated Call
The following example illustrates the use of the connected/idle query for a base station originated call. This code originates a call, then waits for the connected/idle query to return a result.
Note that this code does not include the CALL:CONNECTED:TIME (timeout timer) or the CALL:CONNECTED:ARM (change detector arm) commands. These commands are unnecessary since the change detector is armed automatically by the CALL:ORIGINATE command, and the timeout timer value is never applicable since a base station originated call guarantees a state change.
10 OUTPUT 714;”CALL:ORIGINATE” ! Begin the BS originated call.
35
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callstate.fm
Call Processing State Synchronization
20 OUTPUT 714;”CALL:CONNECTED:STATE?” ! The connect/idle query. 30 ENTER 714;Call_connected ! Program will hang here until state 40 ! change or protocol timer expires. 50 !************************************************************ 60 ! If mobile is not set to auto-answer, answer the call. 70 !************************************************************ 80 IF NOT Call_connected THEN 90 DISP “CALL NOT CONNECTED.” 100 ELSE 110 DISP “CALL IS CONNECTED.” 120 END IF 130 END
Call State Change Detector
This method provides the advantage of indicating that a call state change has occured. The change detector works in conjunction with the Connected /Idle Query. Arming the CALL:CONNECTED query provides a way for the test set to know when the call state change process is done.
The call state change detector becomes disarmed when any of the following conditions have been met:
• the call processing state has progressed to either connected or idle or...
• the attempt to connect or disconnect a call failed and one of the test set’s Fixed Timers has timed out or...
• no call processing state changes occurred within the time period specified by the timeout timer
The following command arms the call state change detector, but does not cause any call processing function to start:
OUTPUT 714;”CALL:CONNECTED:ARM[:IMMEDIATE]” !Used for mobile station originated calls.
These commands automatically arm the call state change detector, and start the base station originated call processing functions:
OUTPUT 714;”CALL:ORIGINATE” !Used for base station originated call connect. OUTPUT 714;”CALL:END” !Used for base station originated call disconnect (idle).
Call State Change Detector Timeout If a state change does not occur, the user needs a w a y to control how long to wait for the change detector. The change detector is disarmed by the timeout timer. After a timeout, the connected/idle query will return a 1 for connected or a 0 for idle. The timeout timer is user settable, but the user setting is only applied during mobile station origin ated call processing operations. For base station originated call processing operations, the timeout timer is automatically set to 60 seconds by the test set.
Example 5. Using the Change Detector - Mobile Station Originated Call
The following example illustrates the use of the call state change detector and connect ed/idle query for a mobile station originated call. This program prompts the operator to make a call from the mobile station being tested. When the CALL:CONNECTED:ARM command is sent, it causes the reply from the CALL:CONNECTED:STATE? query to be held-off temporarily until the connected or idle state is reached. The timeout is provided for cases where an expected call state change does not happen, for instance if the user does not make the call when prompted by the program.
36
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callstate.fm
Call Processing State Synchronization
10 OUTPUT 714;”CALL:CONNECTED:TIMEOUT 10S” ! Sets the time out 20 ! time to 10 seconds. 30 OUTPUT 714;”CALL:CONNECTED:ARM” ! Arm the change detector. 40 DISP “Make a mobile station orginated call. Continue when done.” 50 PAUSE 60 OUTPUT 714;”CALL:CONNECTED:STATE?” ! The connected/idle query. 70 ENTER 714;Call_connected 80 IF Call_connected=1 THEN 90 DISP “Call is connected.” 100 WAIT 2 110 ELSE 120 DISP “Call is not connected.” 130 WAIT 2 140 END IF 150 END

STATus:OPERation:CALL:GSM Status Register

The STATus subsystem provides a status register group that allows the user to query call processing states. Call processing state synchronization can be performed using the bit transitions of STATUS:OPERATION:CALL:GSM to generate interrupts to the external controller. Refer to
“STATus:OPERation:CALL:GSM Condition Register Bit Assignment” on page 446 for status bit definitions
and GPIB command syntax. See “Call State STATus:OPERation:CALL:GSM Program Example” on page 37.

Call State STATus:OPERation:CALL:GSM Program Example

Example 6. G enerating a Service Request (SRQ) Interrupt - Dropped Call
The following example illustrates the use of the status subsystem to generate a service request when a call has been dropped.
10 OUTPUT 714;”*CLS” 20 OUTPUT 714;”STATUS:OPERATION:CALL:ENABLE 4” !Enable the 30 !connected bit 40 ! to generate a 50 !summary message. 60 OUTPUT 714;”STATUS:OPERATION:CALL:PTR 0;NTR 4” !Enable the 70 !negative 80 !transition 90 !filter for the 100 !GSM Summary bit. 110 OUTPUT 714;”STATUS:OPERATION:CALL:GSM:PTR 0;NTR 4” !Enable the 120 !negative 130 !transition 140 !filter for the 150 !GSM connected bit. 160 OUTPUT 714;”STATUS:OPERATION:CALL:GSM:ENABLE 4” !Enable the 170 !connected bit for 180 !GSM to generate a 190 !summary message. 200 OUTPUT 714;”STATUS:OPERATION:ENABLE 1024” !Enable the call sumary 210 !bit to generate a summary
37
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callstate.fm
Call Processing State Synchronization
220 !message.
230 OUTPUT 714;”*SRE 128” !Enable the service request enable register to 240 !generate an SRQ. 250 ON INTR 7,15 CALL Err !Define the interrupt-initiated branch wiht a 260 !priority of 15, the highest. 270 ENABLE INTR 7;2 !Enable interrupt on interface card 7 with a bit mask 280 !(for the interface’s interrupt-enable register) of 2. 290 PRINT “Make a call, type CONT when connected.” !Make a Mobile Station 300 !originated call. 310 PAUSE 320 PRINT “End the call from the mobile station and then type CONT.” 330 PAUSE 340 LOOP 350 OUTPUT 714;”STATUS:OPERATION:CALL:GSM:EVENT?” !Query the event register. 360 ENTER 714;Eve 370 IF Eve=0 THEN 380 PRINT “The call is still connected, press the end key.” 390 END IF 400 END LOOP 410 END 420 SUB Err 430 DISP “The call has ended.” 440 Clear_interrupt=SPOLL(714) 450 OUTPUT 714;”*CLS” 460 STOP 470 SUBEND

Related Topics

*******************************************************
“Call Processing Event Synchronization” on page 30 “CALL:STATus[:STATe]?” on page 283 “CALL:CONNected:ARM[:IMMediate]” on page 241 “CALL:CONNected:TIMeout” on page 241 “Instrument Status Area” on page 537
*******************************************************
38
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_callstate.fm

Test System Synchronization Overview

Test System Synchronization Overview
February 14, 2000

Description

Typical test systems include an external controller with a GPIB connection to the test set, an RF (and possible AF) connection between the test set and a mo bile station under test, and a serial connection between the mobile station and the external controller.
Synchronizing an external controller with the test set and a mobile station under test ensures that no device does something before it is supposed to, which can cause errors, or does something well after it could have, which wastes time.
Figure 1. Test System
GPIB
External Controller
RS-232
Sequential versus overlapped commands
I/O CONTROL
CALL:ORIGINATE
CALL:CONNECTED:STATE?
INITIALIZE:TXPOWER
8960A
E5515A WIRELESS COMMUNICATIONS TEST SET
F1
F2
F3
F4
F5
F6
MORE
FULL
PRESET
GPIB Input Buffer
Test Set
SCREENS
MEAS
REGISTERS
UTILITIES
CONTROL
Last
MEASUREMENT
MEASUREMENT
SAVE
HELP
RESET
Stop
Print
START
SAVE
CALL SETUP
F7
SYSTEM CONFIG
F8
F9
F10
F11
F12
High Low
MORE
MAIN MENUS
MEASUREMENT
INSTRUMENT
REGISTER
SELECTION
SELECTION
RECALL
LOCAL
SINGLE
SINGLE
Reference Set
CONTINUOUS
SHIFT
DELETE
ALL
DATA ENTRY
INCR
789
SET
456
123
+
/
0.
-
ONCANCEL OFF ENTER
DVM
AUDIO IN
AUDIO OUT
High Low
MAX
MAX
42 V Pk
MAX
30 V Pk
12 V Pk
RF IN / OUT
Max power 10 W continuous
Mobile Station
ABC
1
ABC
ABC
4
ABC
2
ABC
7
ABC
5
ABC
3
RCL
ABC
8
OPR
PW
6
STO
ABC
R
0
9
VOL
CLR
FCN
RCL
END
sys synch.eps
The test set uses both sequential and overlapped commands. Sequential commands are easiest to synchronize
39
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_gen.fm
Test System Synchronization Overview
to because subsequent commands are not executed until the previous sequential command is finished. Once the test set has begun execution of an overlapped command, however, another command or commands may begin executing, allowing the test set to use its internal resources as efficiently as possible. Overlapped commands are more difficult to synchronize to beca use an overlapped operation that started several commands earlier may still be executing as subsequent commands are being parsed out from the input buffer and executed. This can present a problem unless the external controller is properly synchronized to the test
set’s execution of commands. The test set’s GPIB command set supports the fo llo wing methods to achieve synchronization. In some cases,
combinations of these methods will provide the best results:
Methods for synchronization
Methods one and two do not require the external controller to query the test set, nor to perform any branching or decision-making associated with information acqu ired from the test set.
1. Force the test set to execute overlapped commands sequentially.
2. Force the test set to wait until an overlapped command is done executing before e xecuting any more commands.
Methods three through six rely on responses from the test set to an external controller, indicating that some event has occurred. The external controller can then make decisions based on these responses to control the flow of commands to the test set and other devices in the test system.
3. Query the test set to determine when a command has finished executing.
4. Query the test set to determine when all commands sent to it have at least begun executing.
5. Query the test set to determine the current call proc essing state.
3. Program the test set to generate a service request when an operation has completed or the test set is in a certain state

Commands used for synchronization:

“CALL:STATus[:ST ATe]?” on page 283 This command queries the test set’s current call processing state. This command supports synchronization
method five. (See “Call Processing State Query” on page 35).
“CALL:CONNected[:STATe]?” on page 240 This command determines the connected/idle state of a call. A feature called the change detector provides
the user with a way to hold off the response to this query until a c all processing state transition has taken place. (See “Connected/Idle Query” on page 35). This command suppor ts synchronization method five.
• :DONE? and :OPC? These specialized commands can be appe nded to call processing overlapped command s to support synchronization method three. (See “Call Processing Subsystem Overlapped Command Synchronization
Commands” on page 31.)
40
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_gen.fm
Test System Synchronization Overview
•:WAIT This specialized command can be appended to call processing overlapped commands to support synchronization method two. (See “Call Processing Subsystem Overlapped Command Synchronization Commands” on page 31.)
•:SEQ This specialized command can be appended to call processing overlapped commands to support synchronization method one. (See “Call Processing Subsystem Overlapped Command Synchronization Commands” on page 31.)
“INITiate:DONE?” on page 357 This specialized command causes the test set to return a mnemonic indicating if a measurement is done. If not, the returned mnemonic will indicate if the measurement is still executing. This command supports synchronization method three. (See “INITiate:DONE?” on page 132.)
• STATUS:<register> Status bits in the “STATus:OPERation:CALL:GSM Condition Register Bit Assignment” on page 446 register are provided to indicate the test set’s call processing state. These bits support synchronization methods five and six.
Status bits in the “STATus:OPERation:NMRReady:GSM Condition Register Bit Assignment” on page 451 register are provided to indicate when a measur ement is ready to be fetched. These bits support synchronization method three and six. Many other status bits are provided in the GPIB status subsystem that are useful for synchronization. See“STATus Subsystem Description” on page 437.
“SYSTem:SYNChronized” on page 496 This specialized command puts a 1 in the test set’s output queue when the test set responds to the query by sending a 1 to the external controller, all prior sequential comman ds have completed and all prior overlapped commands have at least begun execution. This command supports synchronization method four.
“SYSTem:SYNChronized” on page 496 This specialized command causes a condition bit to be set then cleared when all prior sequential commands have completed and all prior overlapped c ommands have at least begun execution. (See
“STATus:OPERation Condition Register Bit Assignment” on page 442). This command supports
synchronization four and six.
“*OPC” on page 497, “*OPC?” on page 497, and “*WAI” on page 498 (not recommended) Note: These commands look at all of the test set’s operations collectively. Because multiple processes are
likely to be executing at the same time, it is recommended that the other comman ds above be used instead.
41
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_gen.fm
Test System Synchronization Overview

Related Topics

*******************************************************
“Call Processing State Synchronization” on page 35 “Measurement Event Synchronization ” on page 132 “Call Processing Event Synchronization” on page 30 “SYSTem:SYNChronized” on page 496
*******************************************************
42
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_synch_gen.fm
2 Measurements
Measurements
43
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\ch_measurements.fm

Analog Audio Measurement Description

Analog Audio Measurement Description
February 14, 2000

How is an anal og audio measurement made ?

Analog audio measurement response is measured from the mobile station’s audio output, which also may be an acoustic coupler or electrical connection from the mobile station connected to the test set’s AUDIO IN connector.
The expected voltage is the absolute peak audio input signal voltage at the front panel BNC. The expected voltage sets the analog audio clipping level and must be set. The expected voltage is peak voltage and the results are returned as rms, so a 1-volt rms input signal would need a 1.414 V
The trigger source for analog audio is always set to Immediate. The test set has a tunable bandpass filter with a 100 Hz bandwidth that can be used to tune out ambient noise
for making 217 Hz buzz or 8 kHz whine tests. The filter’s range is from 200 Hz to 8.0 kHz. The analog audio measurement returns the follow i ng measurement results:
• Audio Measurement Integrity Indic ator
expected voltage value.
peak
• Audio Measurement Result (0 V
• Audio Multi-measurement Maximum (0 V
• Audio Multi-measurement Minimum (0 V
to +20 V
rms
rms
to +20 V
rms
to +20 V
rms
)
) when multi-measurement count is on.
rms
) when multi-measurement count is on.
rms
• Audio Multi-measurement Standard Deviation (0 V to +14.14214 V) when multi-measurement count is on.
None of the analog audio measurement results are affected by amplitude offset. When making an audio measurement on a single port you should terminate the other audio port with either a
50 ohm load or a short. This improves the accuracy of the measurement by reducing sensitivity to stray signals at the unused port.
If noise is making your audio measurement difficult, use the 100 Hz bandwidth tunable band pass filter. This narrow band filter reduces the noise significantly. Refer to “SETup:AAUDio:FILTer[:SFRequency]” on page
382.

Trigger Source

Analog audio measurements are triggered immediately after being armed. Arming is not necessary if the trigger state is set to continuous.

Related Topics

*******************************************************
“Programming an Analog Audio Measurement” on page 45 “Test Adherence to Standards” on page 110
*******************************************************
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_aaud_desc.fm
44

Programming an Analog Audio Measurement

Programming an Analog Audio Measurement
This section provides an example of how to make the analog audio (AAUDio) measurement via GPIB. The following procedure assumes that an audio source is connected to the AUDIO IN connector. See “Analog
Audio Measurement Descr i ption” on page 44.
1. Configure analog audio measurement parameters using the SETup subsystem.
2. Start the analog audio measurement using the INITiate subsystem.
3. Use the INITiate:DONE? command to find out if analog audio measurement results are available.
4. Use the FETCh? command to obtain analog audio measurement results.

Programming Example

10 OUTPUT 714;”SETUP:AAUDIO:CONTINUOUS OFF” !Configures the analog audio 20 !measurement to single trigger mode. 30 OUTPUT 714;”SETUP:AAUDIO:EXPECTED:VOLTAGE:PEAK 3” !Set the clipping level for 40 !audio input. 50 OUTPUT 714;”SETUP:AAUDIO:FILTER:SFREQUENCY 8KHZ” !Specifies the tunable 60 !bandpass filter frequency to 70 !be 8 kHz and turns the filter 80 !state ON. 90 OUTPUT 714;”INITIATE:AAUDIO”!Start the analog audio measurement. 100 REPEAT 110 OUTPUT 714;”INITIATE:DONE?”!Check to see if analog audio measurement is done. 120 ENTER 714;Meas_complete$ 130 UNTIL Meas_complete$=”AAUD” 140 OUTPUT 714;”FETCH:AAUDIO?”! Fetch analog audio measurement results. 150 ENTER 714;Integrity, Analog_audio 160 END

Returned Values

The measurements returned by this program are:
Integrity returns the measurement “Integrity Indicator” on page 125 (0 means a successful measurement with no errors).
Analog_audio retur ns the analog audio level in volts rms.
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_aaudio.fm
45
Programming an Analog Audio Measurement

Related Topics

*******************************************************
“Analog Audio Measurement Description” on page 44 “INITiate” on page 355 “SETup:AAUDio” on page 380 “FETCh:AAUDio” on page 296 “Comprehensive Program Example” on page 200
*******************************************************
46
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_aaudio.fm

AAUDio Troubleshooting

AAUDio Troubleshooting

Possible Setup Issues

During remote operation of the analog audio measurement the user should configure the trigger arm to single, see “SETup:AAUDio:CONTinuous” on page 381.
Failure to set trigger arm to single may result in the measurement never giving a result. When trigger arm is continuous the measurement rearms itself and starts another measurement cycle, during re mote operation the fetch query may not be synchronized to the measurement cycle, see “Measurement States” on page 150.
The analog audio measurement results are rms values, the Expected Peak Audio Amplitude is a peak value.

Interpreting Integrity Indicator values

See “Integrity Indicator” on page 125. If over range (5) is returned then the input level is greater than 3dB above the Expected Peak Audio
Amplitude value or the maximum input level of 20 v olts peak. If under range (6) is returned then the input level is greater than 20dB below the Expected Peak Audio
Amplitude value maximum value. If the signal has both over range and under range conditions only the over range (5) will be indicated.
47
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_aaud.fm

Bit Error Measurement Description

Bit Error Measurement Description
February 14, 2000

Bit Error Measurements versus Fast Bit Error Measurements

There are three commonly used types of bit error measurements in GSM:
• ‘‘BER with Frame Erasure” or ‘‘Residual BER” when the mobile station has been configured to loopback Type A.
• ‘‘BER without Frame Erasure” or ‘‘Non-residual BER” when the mobile station has been configured to loopback Type B.
• BER using burst-by-burst loopback when the mobile station has be en configured to loopback Type C.
The test set allows the user to select between Loopback Type A or B, and the fast bit error measurement, which uses Loopback Type C. Refer also to “Fast Bit Error Measurement Description” on page 69.
NOTE If the test set has codeware version A.02.00 or above, unnecessary loopback commands and
delays can be eliminated by taking advantage of enhancements available. Previous versions of the test set required the user to set the loopback type, and did not have a
feature that allowed time for the loop to close.

How is a bit error (BER) measurement made?

During BER measuremen ts, the test set gen erates a downlink TCH with pseudo-random binary sequence, PRBS-15, data at a known level. The mobile station receives the data, loops it back to its transmitter, and returns the data to the test set. The test set compares da ta sent to data received, and BER is calculated.
SETup subsystem commands are sent to the test set to specify the time taken to close it’s loopback path, whether to open or close a loop during downlink signaling operations (for example, channel assignment), the number of bits to test, measurement type, speech frames delay, measurements units, trigger arm, and measurement timeout values.
When a call is established on the TCH, the loopback type corresponding to one of the BER measurement types must be sent to the mobile station. The test set closes the loopback automatically and re-opens it when the measurement is closed (that is, when INITiate:BERRor is OFF).
The user must set the measurement type fr om one of the 6 measurement types available, (see
“SETup:BERRor[:TYPE]” on page 387). If the user queries a residual result when a non-residual
measurement is initiated, the test set returns 9.91 E+37 (NAN). Measurement type must be set before initiating a BER measurement. See “Measurements type” on page 49
The loop must be closed before a BER test can start, using the close loop signalling delay time feature allows time for the loop to close. See “SETup:BERRor:CLSDelay[:STIMe]” on pa ge 386 for more details.
Each mobile station may have a different time delay between receiving a speech frame and re-sending it on the uplink. By default, the test set is configured to LDControl:AUTO:ON, and the amount of delay needed is determined automatically when the test set has, for two frames, correctly received 80% of the downlink bits back on the uplink. The test set can be queried for the speech frames delay value.
48
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_ber_desc.fm
Bit Error Measurement Description
If necessary, the user may manually set the delay (see “SETup:BERRor:LDControl:AUTO” on page 388).
NOTE In case the test set is not able to correlate the data it transmits on the downlink with the data it
receives on the uplink, a Measurement Timeout value sh ould be set. If a timeout is not set and the test set is unable to correlate, the measurement will appear to “hang”.
The BER measurement trigger source is always set to immediate. The BER measurement does not offer multi-measurement results. See “Statistical Measurement Results” on page 136
BER, FBER, and DAUDIO (uplink speech level) measurements are mutually exclusive measurements. Whichever of these measurements is activate d last forces the others to become inactive.
Measurements type
Residual:
• Residual Type IA (50 bits per speech fr ame)
• Residual Type IB (132 bits per speech frame)
• Residual Type II (78 bits per speech frame)
Loopback Type A is sent to the mobile station when one of these resi dual measurement types is selected. A BER measurement with FE will return the frame erasure count or ratio results. The mobile station will indicate in the speech frame, if the downlink frame was received with CRC (cyclic redundancy check) errors the speech frames are erased. The mobile station sets all bits in the uplink speech frame to 0, indicating speech frames were erased.
Non-residual:
• Type IA (50 bits per speech frame)
• Type IB (132 bits per speech frame)
• Type II (78 bits per speech frame)
Loopback Type B is sent to the mobile station when one of thes e non-residual measurement types is selected. A BER measurement with CRC’s (cyclic redundancy check) will return the CRC cou nt or ratio results. The mobile station will not indicate if any speech frames in the downlink were erased.

BER measurement results

The results of a BER measurement can be displayed in two ways, (number of errors counted) or (the ratio bad bits (errors) to total bits counted). The manual user will need to select either Count or % from the Measurement Units field. For the remote user these results are available by using the FETCh command, see
“FETCh:BERRor:COUNt[:BITS]?” on page 303 or “FETCh:BERRor:RATio[:BITS]?” on page 306. Alternatively
the “FETCh:BERRor[:ALL]?” on page 302 or “FETCh:BERRor:FULL?” on page 305 can also be used to return the results.
49
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_ber_desc.fm
Bit Error Measurement Description
Type A Residual Measurement Results
• Integrity Indicator
• Bit Error Ratio
• Bits Tested
• Bit Error Count
• Frame Erasure Ratio
• Frame Erasure Count
Type B Non-Residual Measurem ent Results
• Integrity Indicator
• Bit Error Ratio
• Bits Tested
• Bit Error Count
• CRC Ratio
• CRC Count

Related Topics

*******************************************************
“Programming a Bit Error Measurement” on page 51 “Test Adherence to Standards” on page 110 “Fast Bit Error Measurement Description” on page 69 “Programming a Fast Bit Error Measurement” on page 72 “CALL:TCHannel:LOOPback” on page 291 “BERR Troubleshooting” on page 54
*******************************************************
50
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_ber_desc.fm

Programming a Bit Error Measurement

Programming a Bit Error Measurement
February 14, 2000 This section provides an example of how to make the bit error (BER) measurement via GPIB. The following procedure assumes that an active link is established between the test set and the mobile station.
See “Establishing an Active Link with the Mobile Station” on page 28.
1. Set the cell power to a good level.
2. Configure BER measurement parameters using the SETup subsystem.
3. Set the measurement type (either r esidual Type IA, Type IB, Type II, or non-residual Type IA, Type IB, Type II).
4. Set the cell power to a low level for BER measurement.
5. Use the INITiate command to begin a BER measurement.
6. Use the INITiate:DONE? command to find out if the BER measu rement results are available.
7. Use the FETCh? command to obtain BER measu rement results.
8. Set the cell power to a good level
51
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_berr_proc.fm
Programming a Bit Error Measurement

Program Example

10 OUTPUT 714;”SETUP:BERROR:TIMEOUT:TIME 5” ! BER measurement times out after 20 ! 5 seconds. 30 OUTPUT 714;”CALL:CELL:POWER:AMPLITUDE -102 DBM” ! Sets the cell power level 40 ! to a “low” level for the 50 ! BER measurement. 60 OUTPUT 714;”SETUP:BERROR:CONTINUOUS OFF” ! Configures a BER measurement to 70 ! Single Trigger. 80 OUTPUT 714;”SETUP:BERROR:COUNT 10000” ! Sets the number of bits to measure 90 ! at 10,000. 100 OUTPUT 714;”SETUP:BERROR:CLSDELAY:STIME 500 MS” ! Sets the Close Loop Delay 110 ! to 500 ms. 120 OUTPUT 714;”SETUP:BERROR:SLCONTROL ON” ! Sets the Signal Loop Control state to on. 130 OUTPUT 714;”SETUP:BERROR:TYPE TYPEIA” ! Sets the Measurement Type to IA. 140 OUTPUT 714;”SETUP:BERROR:LDCONTROL:AUTO OFF” ! Configure loopback delay 150 ! control to manual. 160 OUTPUT 714;”SETUP:BERROR:MANUAL:DELAY 6” ! Set frame delay to 6 frames in order 170 ! to correlate uplink and downlink bits. 180 OUTPUT 714;”INITIATE:BERROR” ! Start a BER measurement. 190 REPEAT 200 OUTPUT 714;”INITIATE:DONE?” 210 ENTER 714;Meas_comp$ 220 PRINT Meas_comp$ 230 UNTIL Meas_comp$=”BERR” 240 OUTPUT 714;”FETCH:BERROR?” ! BERR results. 250 ENTER 714;Integrity,Bits_tested,Bit_err_ratio,Bit_err_count 260 OUTPUT 714;”FETCH:BERROR:COUNT:CRC?” ! Query CRC Count results. 270 ENTER 714;Crc_count 280 OUTPUT 714;”CALL:CELL:POWER:AMPLITUDE -85 DBM” ! Sets the cell power level 290 ! to a good level. 300 END
Alternatively, you could use the “FETCh:BERRor :FU LL?” query to return the same results but for all bit types
simultaneously.
52
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_berr_proc.fm
Programming a Bit Error Measurement

Returned values

The measurements returned by this program are:
• Integrity Indicator returns the “Integrity Indicator” on page 125 (0 means a successful measurement with no errors).
• Bits_tested returns the number of bits tested.
• Bit_err_ratio returns the ratio of bit errors to total bits tested.
• Bit_err_count returns the number of bit errors.
• Crc_count returns the CR C count (cyclic redundancy check).

Related Topics

*******************************************************
“Bit Error Measurement Description” on page 48 “SETup:BERRor” on page 385 “INITiate” on page 355 “FETCh:BERRor” on page 300 “Comprehensive Program Example” on page 200 “BERR Troubleshooting” on page 54
*******************************************************
53
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_berr_proc.fm

BERR Troubleshooting

BERR Troubleshooting
February 14, 2000

Possible Setup Issues

During remote operation of the bit error measurement the user should configure the trigger arm to single, see
“SETup:BERRor:CONTinuous” on page 387.
Failure to set trigger arm to single may result in the measurement never giving a result. When trigger arm is continuous the measurement rearms itself and starts another measurement cycle, during re mote operation the fetch query may not be synchronized to the measurement cycle, see
“Measurement States” on page 150.
If you have a BER measurement active and your mobile drops the call it may be that you have the
“SETup:BERRor:SLControl” on page 389 command set to OFF . This is likely to occur with mobiles that do not
respond to downlink signalling when loopback is closed. To solve this problem set the command to ON.

Interpreting Integrity Indicator values

See “Integrity Indicator” on page 125.
54
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_ber.fm

Decoded Audio Measurement Description

Decoded Audio Measurement Description
June 2, 1999

How is a decoded audio (DAUDIO) measurement made?

This measurement is also known as decoded audio or uplink speech level measurement. The DAUDIO measurement tests the ability of the mobile station to encode an audio signal onto the uplink traffic channel.
1. The audio signal originates from the test set’s AUDIO OUT connector. The audio signal is connected to the
mobile station (MS) by means of an audio frequency input connector, or acoustically through a speaker placed near the microphone of the mobile station. See “AFGenerator” on page 220 for set up commands for the test set’s audio generator.
2. The mobile station digitizes and encodes the audio signal that is transmitted on the uplink TCH.
3. The uplink TCH is decoded with a bit accurate GSM RPE-LTP decoder to yield a block of 13-bit PCM samples within the DSP. As described in ETSI GSM 06.10.
NOTE The MS needs to be stimulated with a pulsed audio signal during a DAUDIO measurement. The
audio signal must be pulsed at a 10 Hz rate with 50% duty cycle. See
“AFGenerator:PULSe[:STATe]” on page 221.
The decoded audio measurement returns the rms value, in percent of full scale, of the speech signal present on the uplink (encoded) audio signal over a 100 ms (10 Hz) period of time.
The DAUDIO measurement performs an rms level measur ement of a speech signal on the uplink TCH with optional bandpass filtering. Speech data can be filtered using a tunable 100 Hz bandpass filter prior to analysis. The center frequency of the 100 Hz bandpass filter may be tuned from 200 Hz to 3.6 kHz . Setting the frequency will activate the filter.
The trigger source for a DAUDIO measurement is always set to Immediate. The DAUDIO measurement, BER and Fast BER measurements are mutually exclusive. Whichever of these
measurements is activated last forces the other to become inactive.
Single or Multi-Measurements
The DAUDIO measurement can return single or averaged measurements defined by the multi-measurement count. A single measurement (multi-measurement count off) returns an estimate of the rms value of the decoded speech signal after removal of any dc component. The measurement units are in percent of full scale (%FS), ranging from 0 to 100%. Values greater than 70.70% may only result from non-sinusoidal signals. Multiple measurements (multi-measurement count >1) provide average, minimum, maximum, and standard deviation results. An integrity indicator is returned for both multi-measurement states. None of the results are affected by amplitude offset.

Trigger Source

DAUDIO measurement does not support any trigger source other than immediate.
55
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_daud_desc.fm
Decoded Audio Measurement Description

Related Topics

*******************************************************
“Programming a Decoded Audio Measurement” on page 57 “Test Adherence to Standards” on page 110
*******************************************************
56
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_daud_desc.fm

Programming a Decoded Audio Measurement

Programming a Decoded Audio Measurement
June 2, 1999 This section provides an example of how to make a Decoded Audio (DAUDio) measurement. The following
procedure assumes that an active link is established between the test set and the mobile station. See
“Establishing an Active Link with the Mobile Station” on page 28.
1. Configure decoded audio measurement pa rameters using the SETup subsystem.
2. Setup the audio source to stimulate the MS with a pulsed audio signal.
3. Start the decoded audio measurement using the INITiate subsystem.
4. Use the INITiate:DONE? command to find out if decoded audio measurement results are available.
5. Use the FETCh? command to obtain decoded audio measurement resu lts.

Programming Example

10 OUTPUT 714;”SETUP:DAUDIO:CONTINUOUS OFF” ! Configures the decoded audio 20 ! measurement to single trigger mode. 30 OUTPUT 714;”AFGENERATOR:PULSE:STATE ON” ! Audio signal must be pulsed. 40 OUTPUT 714;”AFGENERATOR:VOLTAGE:SAMPLITUDE 100MV” 50 OUTPUT 714;”AFGENERATOR:FREQUENCY 2.1KHZ” 60 OUTPUT 714;”SETUP:DAUDIO:FILTER:SFREQUENCY 2.1KHZ”! Specifies the tunable 70 ! bandpass filter frequency 80 ! and set the filter state to on. 90 OUTPUT 714;”INITIATE:DAUDIO” 100 REPEAT 110 OUTPUT 714;”INITIATE:DONE?” ! Check to see if measurement done. 120 ENTER 714;Meas_complete$ 130 UNTIL Meas_complete$=”DAUD” 140 OUTPUT 714;”FETCH:DAUDIO?” ! Fetch the decoded audio results. 150 ENTER 714;Ingerity,Decoded_audio 160 END

Returned Values

The measurements returned by this program are:
Integrity returns the measurement “Integrity Indicator” on page 125 (0 means a successful measurement with no errors).
Decoded_audio returns the decoded audio measurement results in percent (%).
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_daudio.fm
57
Programming a Decoded Audio Measurement

Related Topics

*******************************************************
“Decoded Audio Measurement Description” on page 55 “SETup:DAUDio” on page 398 “INITiate” on page 355 “FETCh:DAUDio” on page 308 “Comprehensive Program Example” on page 200
*******************************************************
58
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_daudio.fm

Decoded Audio (DAUDio) Troubleshooting

Decoded Audio (DAUDio) Troubleshooting
February 14, 2000

Possible Setup Issues

During remote operation of the analog audio measurement the user should configure the trigger arm to single, see “SETup:DAUDio:CONTinuous” on page 399.
Failure to set trigger arm to single may result in the measurement never giving a result. When trigger arm is continuous the measurement rearms itself and starts another measurement cycle, during re mote operation the fetch query may not be synchronized to the measurement cycle, see “Measurement States” on page 150.
The audio signal expected by the DAUDio measurement is, pulsed at a 10 Hz rate and has a 50% duty cycle. The device under test should have echo cancellation disabled.
The signal measured is whatever is coming back in the speech frames, this includes any electrical or acoustical coupling from the downlink signal, earpiece or any noise coupled from the microphone of the MS.

Interpreting Integrity Indicator values

See “Integrity Indicator” on page 125. If PCM Full Scale Warning (14) is returned the measurement is accurate, however the user may want to
reduce the signal level applied to the test set to achieve an integrity indicator of zero. If the DAUDio measurement is active when the channel mode is set to EFRSpeech (see
“CALL:TCHannel:CMODe” on page 290), Questionable Result Due To Channel Mode (16) is returned. This is
because the DAUDio measurement is not supported in this channel mode.
59
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_daud.fm
Decoded Audio (DAUDio) Troubleshooting
60
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_daud.fm

Dynamic Power Measurement Description

Dynamic Power Measurement Description

How is a Dynamic Power Measurement Made?

The Dynamic Power measurement performs a series of consecutive power measurements on a mobile station returning a power measurement and an integrity value for each burst measured. Dynamic Power is only
available via the test set’s remote user interface. Dynamic Power is not an ETSI specified measurement. The signal is measured at the RF IN/OUT port.

Single or Multi Measurements

The Dynamic Power measurement does not use the multi-measurement state p ara meter. Instead, you specify the number of bursts that you want to measure using the Number of Bur sts parameter (see
“SETup:DPOWer:COUNt:NUMBer” on page 404).

Types of Signals Dynamic Power can Measure

Dynamic Power measurements can be made on these types of input signals:
• Normal GSM TCH burst with mobile station in active cell mode.
• Normal GSM TCH burst with mobile station in test mode (no protocol).

Input Signal Requirements

The Dynamic Power measurement will complete and meet its measurement accuracy specifications when the signal meets the following input signal conditions.
• Input signal level is between -20 dBm and +43 dBm.
• Input signal level is within +3 dB and -3 dB of the expected input level.
• Input signal is within 100 kHz of the measurement frequency.
• The measurement frequency is within the currently selected band.

Trigger Source

The only trigger source that the Dynamic Power measurement supports is RF Rise.
61
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_dynp_desc.fm
Dynamic Power Measurement Description

Related Topics

*******************************************************
“SETup:DPOWer” on page 403 “FETCh:DPOWer” on page 312 “Test Adherence to Standards” on page 110
*******************************************************
62
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_dynp_desc.fm

I/Q Tuning Measurement Description

I/Q Tuning Measurement Description

How is an I/Q Tuning Measurement Made?

The I/Q Tuning measurement is used in the p roduction process (normally at mobile pre-test) where the I/Q modulator of the mobile is being calibrated. The measurement is normally performed with the mobile station in test mode and transmitting a GMSK modulated sequence of all 0s or all 1s. The mobile can be transmitting either a bursted signal or a continuous wave signal. I/Q Tuning is not an ETSI s pecified measurement.
The carrier frequency is shifted up or down 67.7083 kHz by transmitting a sequence of all 0s (+67.7083 kHz)
or all 1s (-67.7083 kHz). The accuracy of the mobile’s I/Q modulator is determined by measuring the level of spurious signals relative to the desired signal (the desired signal being the carrier frequency ±67.7083 kHz). The signals the test set measures are: the carrier frequency (Fc); Fc±67.7083 kHz; Fc±135.417 kHz; Fc±203.125 kHz and Fc±270.833 kHz. These signals are measured at the RF IN/OUT port.
The figure below shows a typical spectrum generated by a mobile transmitting a sequence of all 0s. The peak at the +67.7083 kHz offset is the one used as the reference.
The I/Q Tuning measurement also allows you to make an additional relative power measurement at any frequency you want between -13.0 MHz to -1.0 MHz and +1.0 MHz to +13.0 MHz relative to the carrier frequency.
Figure 2. Spectrum of a mobile transmitting a sequence of all 0s
Relative Level (dB)
-270.84 -203.13 -135.42 -67.71 0 67.71 135.42 203.13 270.84
Offset Frequency (kHz)
63
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_iq_desc.fm
I/Q Tuning Measurement Description

Single or Multi Measurements

The I/Q Tuning measurement can return either single or averaged measurement results.
• If you set the multi-measurement state OFF then only a single measurement is made at each offset.
• If you set the multi-measurement state ON, and the multi-measurement count number to a value greater than one, then multiple measurements are made at each offset. The returned results are an average of these measurements.

Types of Signals I/Q Tuning can Measure

I/Q Tuning measurements can be made on these types of input signals.
• Normal GSM TCH burst without a midamble.
• CW signal.

I/Q Tuning Input Signal Requirements

The I/Q Tuning measurement will complete and meet its measurement accuracy specifications under the following input signal conditions.
• Input signal level is between -15 dBm and +43 dBm.
• Input signal level is within +3 dB and -10 dB of the expected input level.
• Signal must be within 500 kHz of expected frequency for RF Rise triggering to function.

Trigger Source

The trigger source depends on the type of input signal.
Recommended Trigger Source Settings
Input Signal Type Recommended Trigger Source
Normal GSM TCH burst without a midamble
CW signal Immediate
RF Rise

Related Topics

*******************************************************
“Programming an I/Q Tuning Measurement” on page 65 “Test Adherence to Standards” on page 110
*******************************************************
64
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_iq_desc.fm

Programming an I/Q Tuning Measurement

Programming an I/Q Tuning Measurement
This section provides an example of how to make an I/Q Tuning measurement via the GPIB.
1. Ensure that the mobile is in test mode and is transmitting all 1s or all 0s.
2. Ensure that the expected frequency, expected power level and trigger are appropriately set.
3. Configure the I/Q Tuning measurement parameters using the SETup subsystem.
4. Start the I/Q Tuning measurement using the INITiate subsystem.
5. Use the INITiate:DONE? command to determine if I/Q Tuning measurement results are available.
6. Use the FETCh? command to obtain I/Q Tuning measurement results.

Program Example

The following program shows how to make an I/Q Tuning measurement on a normal GSM TCH burst. If you want to test a CW signal all you need to change in this program is the trigger type, which should be set to Immediate, rather than RF Rise.
10 PRINT “Ensure your mobile is transmitting:” !On-screen prompts. 20 PRINT “-all 1s or all 0s.” 30 PRINT “-on ARFCN 30.” 40 PRINT “-a power level of 10 dBm.” 50 PRINT “ “ 60 PRINT “Press any key to continue.” 70 LOOP 80 ON KBD GOTO Key_exit 90 END LOOP 100 Key_exit: ! 110 OUTPUT 714;”RFANALYZER:MANUAL:CHANNEL:SELECTED 30” !Configures the 120 !test set to expect a transmission on ARFCN 30. 130 OUTPUT 714;”RFANALYZER:EXPECTED:POWER:SELECTED 10 DBM” !Configures 140 !the test set to expect a power level of 10 dBm. 150 OUTPUT 714;”SETUP:IQTUNING:CONTINUOUS OFF” !Configures trigger 160 !mode to single for an I/Q Tuning measurement. 170 OUTPUT 714;”SETUP:IQTUNING:COUNT:SNUMBER 50” !Configures the 180 OUTPUT 714;”SETUP:IQTUNING:SPUR:STATE ON” !Configures spur on. 190 OUTPUT 714;”SETUP:IQTUNING:SPUR:FREQUENCY 10MHZ” !Configures a 200 !power measurement at 10MHz from the carrier. 210 !multi_measurement state to ON with a measurement count value 220 !of 50. 230 OUTPUT 714;”SETUP:IQTUNING:TRIGGER:SOURCE RISE” !Configures the 240 !trigger source to RF RISE. 250 OUTPUT 714;”SETUP:IQTUNING:REFERENCE:FREQUENCY AUTO” !Sets the 260 !set to choose which offset frequency is to be used as the ref. 270 OUTPUT 714;”INITIATE:IQTUNING” !Start I/Q Tuning measurement. 280 REPEAT 290 OUTPUT 714;”INITIATE:DONE?”!Check to see if I/Q Tuning 300 !measurement complete. 310 ENTER 714;Meas_complete$
65
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_iq_proc.fm
Programming an I/Q Tuning Measurement
320 UNTIL Meas_complete$=”IQT” 330 OUTPUT 714;”FETCH:IQTUNING:ALL?”!Fetches the measurement integrity 340 !value and the relative power levels at the offset frequencies. 350 ENTER 714;Integrity,N270,N203,N135,N67,Carrier,P67,P135,P203,P270,Sr 360 PRINT “I/Q Tuning Measurement Results” 370 PRINT “Integrity = “;Integrity 380 PRINT “Spur Power = “;Sr 390 PRINT “Offset (kHz) Level (dB)” 400 PRINT “------------ ----------” 410 PRINT “-270.334 “;N270 420 PRINT “-203.125 “;N203 430 PRINT “-135.417 “;N135 440 PRINT “-67.708 “;N67 450 PRINT “0.000 “;Carrier 460 PRINT “+67.708 “;P67 470 PRINT “+135.417 “;P135 480 PRINT “+203.125 “;P203 490 PRINT “+270.334 “;P270 500 END

Returned Values

The measurements returned by this program are:
• Integrity returns the measurement “Integrity Indicator” on page 125 (0 means a successful measurement with no errors).
• The signal level of the following offsets are measured relative to the signal level at the reference offset (either Fc + 67.7083 kHz for all 0s or Fc -67.7083 kHz for all 1s). Note, if the TX I/Q Tuning measurement multi-measurement command is set to ON the average of all the individual results at each offset are returned.
— -270.833 kHz — -203.125 kHz — -135.417 kHz — -67.7083 kHz — Carrier Frequency — +67.7083 kHz — +135.417 kHz — +203.125 kHz — +270.833 kHz
66
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_iq_proc.fm

Related Topics

*******************************************************
“I/Q Tuning Measurement Description” on page 63 “SETup:IQTuning” on page 406 “INITiate” on page 355 “FETCh:IQTuning” on page 318
*******************************************************
Programming an I/Q Tuning Measurement
67
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_iq_proc.fm

I/Q Tuning Troubleshooting

I/Q Tuning Troubleshooting

Possible Setup Issues

On most occasions the test set will be able to select the correct reference frequency w hen
“SETup:IQTuning:REFerence[:FREQuency]” is set to AUTO. However, if the I/Q Modulator is very badly
calibrated, it is possible that the test set selects the wrong offset. This could be confirmed by using the
“SETup:IQTuning:REFerence[:FREQuency]” query.
If your measurement results are invalid or look as if they are centered around the wrong frequency it may be that the carrier frequency is not corre ctly specified. You must input the carrier frequency into the test set. Invalid measurements may be also be caused by modulation data other than all 1s or all 0s, for example, it may be that a midamble is being transmitted.

Interpreting Integrity Indicator Values

See “Integrity Indicator” on page 125.
68
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_iq.fm

Fast Bit Error Measurement Description

Fast Bit Error Measurement Description
July 8, 1999

Bit Error Measurements vs. Fast Bit Erro r Measurements

There are three commonly used types of bit error measurements in GSM:
• ‘‘BER with Frame Erasure” or ‘‘Residual BER” when the mobile station has been configured to loopback Type A.
• ‘‘BER without Frame Erasure” or ‘‘Non-residual BER” when the mobile station has been configured to loopback Type B.
• BER using burst-by-burst loopback when the MS has been configured to loopback Type C.
The test set allows the user to select between Loopback Type A or B, and the Fast Bit Error Measurement, which uses Loopback Type C. Refer also to “Bit Error Measurement Description” on page 48.
NOTE If the test set has codeware version A.02.00 or above, unnecessary loopback commands and
delays can be eliminated by taking advantage of enhancements available. Previous versions of the test set required the user to set the loopback type, and did not have a
feature that allowed time for the loop to close.

How is a fast bit error (FBER) measurement made?

During FBER measurements, the test set generates a downlink TCH with (Pseudo Random Binary Sequence) PRBS-15 data at a known low level. The mobile station receives the data, loops it back to its transmitter, and returns the data to the test set. The test set compares da ta sent to data received, and FBER is calculated. see
“CALL:TCHannel” on page 286
SETup subsystem commands are sent to the test set to specify close loop delay, signal loopback control, the number of bits to test, TDMA frames delay, measurement unit, trigger arm, and measurement timeout values.
When a call is established on the TCH, the loopback type is sent to the mobile station if the signal loopback control is on, see “SETup:FBERror:SLControl” on page 395. If the user sets signal loopback control to off, the loopback type is controlled using “CALL:TCHannel:LOOPback” on page 291, manually the Mobile Loopback F12 key provides user access.
FBER measurements use MS burst-by-burst loopback, referred to as loopback type C. In loopback type C the comparison is made between the 114 bits of data sent from th e test set to the MS, then looped back and received by the test set.
The loop must be closed before a FBER test can start, using the close loop signalling delay time feature allows time for the loop to close. See “SETup:FBERror:CLSDelay[:STIMe]” on page 392 for more details.
Each MS may have a different delay between receiving a TDMA frame and re-sending it on the uplink. By default, the test set is configured to LDControl:AUTO:ON, and the amount of delay needed is determined automatically when the test set has, for two frames, correctly received 80% of the downlink bits back on the uplink. The test set can be queried for the TDMA frames delay value.
If necessary, the user may manually set the delay. See “SETup:FBERror:LDControl:AUTO” on page 394 or
“SETup:FBERror:MANual:DELay” on page 395
69
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_fber_desc.fm
Fast Bit Error Measurement Description
NOTE In case the test set is not able to correlate the data it transmits on the downlink with the data it
receives on the uplink, a Measurement Timeout value sh ould be set. If a timeout is not set and
the test set is unable to correlate, the measurement will appear to “hang”.
The FBER, BERR and the DAUDIO (uplink speech level) measurements are mutually exclusive, that is which ever of these measurements is activated last forces the other to become inactive. see “Decoded Audio
Measurement Description” on page 55
FBER measurement trigger source is always set to immediate. The FBER measurement does not offer multi-measurement results. see “Statistical Measur ement Results” on page 136

FBER measurement results

These the measurement results available from an FBER measurement. The results of a FBER measurement can be displayed in two ways, (number of errors counted) or (the ratio bad
bits (errors) to total bits counted). For the remote user these results are available by using the FETCh command, see “FETCh:FBERror:COUNt?” on page 316 or “FETCh:FBERror:RATio?” on page 317. The manual user will need to select either Count or % from the Measurement Units field.
Manual user results :
• Fast BER Ratio (bad bits to total bits tested)
• Fast BER Count (bad bits found during a measurement)
• TDMA frame Delay (if TDMA Frame Loopback Delay Control = Manual)
•RX Level
• RX Quality
Remote user results:
• Fast BER Ratio (bad bits to total bits tested)
• Fast BER Count (bad bits found during a measurement)
• TDMA Frame Delay (if TDMA Frame Loopback Delay Control = Manual)
• Integrity Indicator
• Intermediate Count
70
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_fber_desc.fm

Related Topics

*******************************************************
“Programming a Fast Bit Error Measurement” on page 72 “Test Adherence to Standards” on page 110 “Bit Error Measurement Description” on page 48 “Programming a Bit Error Measurement” on page 51 “CALL:TCHannel:LOOPback” on page 291
*******************************************************
Fast Bit Error Measurement Description
71
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_fber_desc.fm

Programming a Fast Bit Error Measurement

Programming a Fast Bit Error Measurement
This section provides an example of how to make the fast bit error (FBER) measurement via GPIB. The following procedure assumes that an active link is established between the test set and the mobile station.
See “Establishing an Active Link with the Mobile Station” on page 28.
1. Set the cell power to a good level.
2. Configure FBER measurement parameters using the SETup subsystem.
3. Set the cell power to a low level for a FBER measurement.
4. Start the FBER measurement using the INITiate subsystem.
5. Use the INITiate:DONE? command to find out if the FBER measurement results are available.
6. Use the FETCh? command to obtain FBER measu rement results.
7. Set the cell power to a good level.

Program Example

10 OUTPUT 714;”SETUP:FBERROR:TIMEOUT:TIME 5” ! BER measurement times out after 20 ! 5 seconds. 30 OUTPUT 714;”CALL:CELL:POWER:AMPLITUDE -85 DBM” ! Sets the cell power level to 40 ! a good level. 50 OUTPUT 714;”SETUP:FBERROR:CONTINUOUS OFF” ! Configures a BER measurement to 60 ! Single Trigger. 70 OUTPUT 714;”SETUP:FBERROR:COUNT 10000” ! Sets the number of bits to measure 80 ! at 10,000. 90 OUTPUT 714;”SETUP:FBERROR:CLSDELAY:STIME 500 MS” ! Sets the Close Loop Delay 100 ! to 500 ms. 110 OUTPUT 714;”SETUP:FBERROR:SLCONTROL ON” ! Sets the Signal Loop Control state to on. 120 OUTPUT 714;”SETUP:FBERROR:LDCONTROL:AUTO OFF” ! Configure loopback delay 130 ! control to manual. 140 OUTPUT 714;”SETUP:FBERROR:MANUAL:DELAY 6” ! Set frame delay to 6 frames in order 150 ! to correlate uplink and downlink bits. 160 OUTPUT 714;”CALL:CELL:POWER:AMPLITUDE -102 DBM” ! Sets the cell power level 170 ! to a “low” level for the 180 ! BER measurement. 190 OUTPUT 714;”INITIATE:FBERROR” ! Start a FBER measurement. 200 REPEAT 210 OUTPUT 714;”INITIATE:DONE?” 220 ENTER 714;Meas_comp$ 230 PRINT Meas_comp$ 240 UNTIL Meas_comp$=”FBER” 250 OUTPUT 714;”FETCH:FBERROR?” 260 ENTER 714;Integrity,Bits_tested,Fas_bit_ratio,Fas_bit_err_cnt 270 OUTPUT 714;”CALL:CELL:POWER:AMPLITUDE -85 DBM” ! Sets the cell power level 280 ! to a good level. 290 END
72
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_fber_proc.fm
Programming a Fast Bit Error Measurement

Returned values

The measurements returned by this program are:
Integrity returns the measurement “Integrity Indicator” on page 125 (0 means a successful measurement with no errors).
Bits_tested returns the number of bits tested.
Bit_error_ratio retuns the ratio of bit errors to total bits tested, in percent (%).
Bit_error_count returns the number of bit errors.

Related Topics

*******************************************************
“Fast Bit Error Measurement Description” on page 69 “SETup:FBERror” on page 391 “INITiate” on page 355 “FETCh:FBERror” on page 314 “Comprehensive Program Example” on page 200
*******************************************************
73
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_fber_proc.fm

FBER Troubleshooting

FBER Troubleshooting
July 8, 1999

Possible Setup Issues

During remote operation of th e Fast BER measurement the user should configure the trigger arm to single, see “SETup:FBERror” on page 391.
Failure to set trigger arm to single may result in the measurement never giving a result. When trigger arm is continuous the measurement rearms itself and starts another measurement cycle, during re mote operation the fetch query may not be synchronized to the measurement cycle, see “Measurement States” on page 150.
Set signalling loopback control to on; if signalling loopback control is off, set loopback to Type C, see
“CALL:TCHannel:LOOPback” on page 291.
The test set may never correlate the uplink and downlink, see “SETup:FBERror:LDControl:AUTO” on page
394 so that the measurement appears to hang. The MS may not have closed its loop after the loopback type
was set, the user needs to allow sufficient time for the MS to close its loop and set time out mechanisms see
“SETup:FBERror:TIMeout[:STIMe]” on page 396.

Interpreting Integrity Indicator values

See “Integrity Indicator” on page 125. Questionable Result for PGSM (15) Fast BER measurement appears to work but it is only possible on a Phase
2 GSM system.
74
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_fber.fm

Output RF Spectrum Measurement Description

Output RF Spectrum Measurement Description

How is an output RF spectrum (ORFS) measurement made?

ORFS is a narrow-band measurement that provides information about the distribution of the mobile station
transmitter’s out-of-channel spectral energy due to modulation and switching as defined in ETSI 05.05, section 4.2.1 and ETSI 11.10, section 13.4.2.
The test set’s measurements include both ORFS due to modulation and ORFS due to switching. Switching and modulation measurements may be performed from the same burst, if the user requests both modulation and switching results at the same frequency offsets measurement throughput is improve d. Measurements are made using a 30 kHz IF bandwidth, 5-pole synchronously tuned filter.
ORFS due to modulation measures out of channel interference during the useful part of the burst excluding the midamble. The measurement returns relative results in (dB) using the power in a 30 kHz bandwidth at zero offset as the reference. The user may set from 0 to 22 offsets.
ORFS due to switching measures out of channel interferenc e over the entire burst, plus up to 10 additional bits on either side of the 147 bit wide normal burst. The measurement returns absolute power results (dBm) for each offset indicating the maximum value over the entire burst. The user may set from 0 to 8 ORFS due to switching offsets.
The number of measurements to be average d for each offset may be different. The test set internally controls all other aspects of the measurement, including calibration, there is no user calibration required.
TX power (average power), 30 kHz bandwidth power at zero offset, ORFS due to modulation average power, and ORFS due to switching maximum power are included in an ORFS me asurement, when both modulation and switching measurements are made. (TX power is performed using the same method as the “Transmit
Power Measurement Description” on page 106, which synchronizes the measurement with the burst
amplitude).
ORFS due to modulation
When multiple offsets for the ORFS due to modulation measurement are set, the DSP averages the power across the appropriate time segments (40 bits) of the burst with a 30 kHz resolution bandwidth, 5-pole, synchronously tuned filter placed at the center frequency of the burst and compares it to a time segment of the response of the same filter placed at some frequency offset. The result is a relative power measurement using the 30 kHz bandwidth power at zero offset as a reference. For each user specified offset, the DSP retunes the filter and measures the 30 kHz bandwidth power and compares it to the reference, giving a relative power measurement of signal power over the entire burst. The DSP processes the data and makes the results available to the user. The 30 kHz bandwidth power at zero offset is measured only if the user requests at least one ORFS due to modulation measurement.
For offsets up to 1.799999 MHz, an ORFS due to modulation measurement uses the 30 kHz resolution bandwidth filter required in GSM 05.05. At 1800 kHz offset frequency the ORFS due to modulation measurement is made using 30 kHz resolution bandwidth filter, not the 100 kHz resolution bandwidth filter required by ETSI.
The ORFS due to modulation measurement measures both the front and back data portions of the burst. Measurements occur from bit 15 to 60 and from bit 87 to 132. GSM 11.10 recommends that this measurement be performed on only the back section of the burst. Measuring both the front and back of the burst has the speed advantage of providing two modulation measurements per burst.
75
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_orfs_desc.fm
Output RF Spectrum Measurement Description
ORFS due to switching
When multiple offsets for the ORFS due to switching measurement are set, the DSP tunes the 30 kHz resolution bandwidth, 5-pole, synchronously tuned filter to the first requested offset and samples the power of the signal over the entire burst. The result for this measurement is the maximum of these sampled values and is reported as an absolute power measurement. The DSP then retunes the filter , samples the signal, processes the data for each requested offset, then makes the results available to the user.
The 30 kHz bandwidth power at zero offset measurement is not made during ORFS due to switching measurements. In order to make that measurement, the user must request at least one ORFS due to modulation measurement.
Single or Multi-Measurements
To obtain statistical measurement results, the multi-measurement count must be set for both switching and modulation measurements. (See “Statistical Measurement Results” on page 136 for more information.)
Changing the multi-measurement modulation or switching count number or setting multi-measurement to ON allows the test set to make multiple measurements at each frequency offset, thereby providing average power results across the number of frequency offsets selected. Multi-measurement count state OFF means only one ORFS measurement will be completed at each offset (that is, one ORFS due to modulation, and one ORFS due to switching measurement).
• If the user wants to make multiple ORFS due to modulation measurements and no ORFS due to switching measurements, a number must be entered in the multi-measurement modulation count, and all the switching offset frequencies must be off.
• In order to make multiple ORFS due to switching measurements and no ORFS due to modulation measurements, a number must be entered in the multi-measurement switching count, and all modulation offset frequencies must be off.

Types of Signals ORFS can Measure

ORFS measurements can be made on these types of input signals:
• Normal GSM TCH burst with mobile station in active cell mode.
• Normal GSM TCH burst with mobile station in test mode.
• Non-bursted signal including GMSK modulation with mobile station in test mode. For a non-bursted signal, an ORFS due to switching measurement result is not useful.

Input Signal Requirements

The ORFS measurement will complete and meet its accuracy specification under the following conditions:
• Level is between 10 dBm and +43 dBm.
• Level within ±3 dB of the expected input level.
• Frequency is within ±200 Hz of expected input frequency.
76
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_orfs_desc.fm
Output RF Spectrum Measurement Description

Trigger Source

Auto triggering is the recommended trigger source for each measurement, allowing the test set to choose the preferred trigger source. However, the user may want to select the trigger source.
Table 1. Recommended Trigger Source Settings
Input Signal Type Recommended Trigger Source
Normal GSM TCH burst with
station
Normal GSM TCH burst with
station
Non-bursted signal inclu ding GMSK data with
in active cell mode
in test mode
mobile station in test mode
mobile
mobile
Protocol
RF Rise
RF Rise

Related Topics

*******************************************************
“Programming an Output RF Spectrum Measurement” on page 78 “Test Adherence to Standards” on page 110
*******************************************************
77
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_orfs_desc.fm

Programming an Output RF Spectrum Measurement

Programming an Output RF Spectrum Measurement
This section provides an example of how to make the output RF spectrum (ORFS) measurement via GPIB. The following procedure assumes that an active link is established between the test set and the mobile station.
See “Establishing an Active Link with the Mobile Station” on page 28.
1. Configure the ORFS measurement parameters using the SETup subsystem.
2. Start the ORFS measurement using the INITiate subsystem.
3. Use the INITiate:DONE? command to find out if ORFS measurement results are available.
4. Use the FETCh? command to obtain ORFS Power measurement results.

Example Program

10 OUTPUT 714;”SETUP:ORFSPECTRUM:CONTINUOUS OFF” !Configures a ORFS measurement 20 !to single trigger mode. 30 OUTPUT 714;”SETUP:ORFSPECTRUM:COUNT:STATE ON” !Configures a multi-measurement 40 !state to on. 50 OUTPUT 714;”SETUP:ORFSPECTRUM:TRIGGER:SOURCE AUTO” !Configure trigger source 60 !to auto. 70 OUTPUT 714;”SETUP:ORFSPECTRUM:SWITCHING:COUNT:NUMBER 50” !Configures ORFS due 80 !to switching 90 !multi-measurement 100 !count. 110 OUTPUT 714;”SETUP:ORFSPECTRUM:SWITCHING:FREQUENCY 200KHZ,400KHZ” !Configure 120 !switching 130 !offsets. 140 OUTPUT 714;”SETUP:ORFSPECTRUM:MODULATION:COUNT:NUMBER 100” !Configure ORFS 150 !due to modulation 160 !multi-measurement 170 !count. 180 OUTPUT 714;”SETUP:ORFSPECTRUM:MODULATION:FREQUENCY 200KHZ” !Configure 190 !modulation offset. 200 OUTPUT 714;”INITIATE:ORFSPECTRUM” !Start ORFS measurement. 210 REPEAT 220 OUTPUT 714;”INITIATE:DONE?” !Check to see if ORFS measurement is done. 230 ENTER 714;Meas_complete$ 240 UNTIL Meas_complete$=”ORFS” !”ORFS” must be all upper case. 250 OUTPUT 714;”FETCH:ORFSPECTRUM:ALL?” !Fetch ORFS results. 260 ENTER 714;Integrity,Tx_pwr,Max_swit_200,Max_swit_400,Bw_pwr,Avg_mod_200 270 END
78
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_orfs_proc.fm
Programming an Output RF Spectrum Measurement

Returned values

The measurements returned by this program are:
Integrity returns the measurement “Integrity Indicator” on page 125 (0 means a successful measurement with no errors).
Tx_pwr returns the transmit power in dBm.
Max_swit_200,Max_swit_400
returns maximum ORFS power due to switching in dBm (one maximum
power level at a 200 kHz offset and one maximum power level at a 400 kHz offset).
Bw_pwr returns the power level in a 30 kHz bandwidth at zero offset in dBm (this is the reference level for ORFS power due to switching and ORFS power due to modulation).
Avg_mod_200 returns the average ORFS power due to modulation in dBm (one average power level at a 200 kHz offset).

Related Topics

*******************************************************
“Output RF Spectrum Measurement Descri ption” on page 75 “SETup:ORFSpectrum” on page 412 “INITiate” on page 355 “FETCh:ORFSpectrum” on page 322 “Comprehensive Program Example” on page 200
*******************************************************
79
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_orfs_proc.fm

ORFS Troubleshooting

ORFS Troubleshooting

Possible Setup Issues

During remote operation of th e Output RF Spectrum measurement the user should configure the trigger arm to single, see “SETup:ORFSpectrum” on page 412.
Failure to set trigger arm to single may result in the measurement never giving a result. When trigger arm is continuous the measurement rearms itself and starts another measurement cycle, during re mote operation the fetch query may not be synchronized to the measurement cycle, see “Measurement States” on page 150.
ORFS due to modulation measurements: Averaging for each measurement, including the z ero offset measurement, is performed over 40 or more bits on the front and back of the burst, from bit 15 to 60 and bit 87 to 132. ETSI standards only require measuring the back bits 87 to 132. By making measurements on the front and back of the burst, two measurements per burst are achieved.
When fetching (frequency offsets) for ORFS due to modulation or switching remotely , the values for the offsets are entered after the “ ? ”, see “FETCh:ORFSpectrum:MODulation:FREQuency[:OFFSet]?” on page 325 or
“FETCh:ORFSpectrum:SWITChing:FREQuency[:OFFSet][:MAXimum]?” on page 327 for GPIB commands.
The ORFS Transmit Power, 30 kHz BW Power, Max switching offset level and Average switching offset level results are shifted in proportion to the value of Amplitude Offset that a user may set. The following table shows the measurements that are affected and how amplitude offset affects them. For more information about amplitude offset commands, see “Measurement Related Configuration” on pag e 563.
Table 2. Measurements affected by amplitude offset
Amplitude Offset Command Power
OUTPUT 714;”SYSTEM:CORRECTION:SGAIN -3” !Offset for 3 dB of loss in the network.
OUTPUT 714;”SYSTEM:CORRECTION:SGAIN 3” !Offset for 3 dB of gain in the network.
OUTPUT 714;”SYSTEM:CORRECTION:SGAIN 0” !Zero dB of offset.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Switching Offset
(dBm)
ORFS
Transmit
6.74 -1.42 -35.60 -36.07 -82
6.75 -1.66 -35.71 -36.09 -88
6.67 -1.18 -35.64 -36.09 -85
30 kHz BWMax Average
Level
(dBm)
(up to 8)
Power
Setting
(dBm)
Cell
80
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_orfs.fm
ORFS Troubleshooting

Interpreting Integrity Indicator values

See “Integrity Indicator” on page 125.
If over range (5) is returned the input signal is likely to clip during the useful part of the burst or the ORFS TX Power measurement has detected an over range.
If signal too noisy (10) is returned, the actual power at ce rtain offsets is > 8 dB off from the expected level. If under range (6) is returned; the measured power result is more than 10 dB below the expected input power
level. Under range is also indicated if, the input power is more than 2 dB below the calibrated range of the test set’s power detector for the RF Range setting. RF Range is automatically set based on the input power setting. Input power is a combination of amplitude offset and expected power settings. See “Receiver example” on page
564.
81
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_orfs.fm

Phase and Frequency Error Measurement Description

Phase and Frequency Error Measurement Description

How is a phase and frequency error (PFER) measurement made?

The PFER measurement performs a narrow-band (<200 kHz) measurement of the modulation quality and
frequency accuracy of the GSM mobile station’s transmitter. The test set measures frequency error, rms phase error and peak phase error over the useful part of the burst.
The PFER measurement demodulates the data and compares the measured wave form with the “ideal” waveform that was expected for the data received. The frequency error is the difference in frequency, after adjustment for the effect of the modulation and phase error, between the RF transmission from the mobile station and the test set. The phase error is the difference in phase, after adjustment for the effect of the frequency error, between the mobile station and the theoretical “ideal” transmission. This measurement conforms to the ETSI 05.05 and 11.10 standards.
The PFER measurement is controlled by the DSP in the test set. No calibration is required by the user, the DSP gets calibration information during test set power up. PFER measurements can be initiated with any measurement made by the test set.
Single or Multi-Measurements
The DSP demodulates the data and compares the measured waveform with the “ideal” waveform created by the DSP.
A single burst for a PFER measurement calculates the following:
• peak phase error
• rms phase error
• frequency error
A multiple burst PFER measurement is made when th e multi-measurement state is on and calculates the maximum, minimum and average values for the following:
• peak phase error
• rms phase error
• frequency error
• worst frequency error (worst frequency error is the frequency furthest from zero.)
All of these results are available to the user with the FETCh com mand. If the most positive and the most negative frequency error are the same value, the most positive frequency will be returned. Worst frequency error is only accessible through GPIB. The test set always has integrity indicator available to the user regardless of single or multiple burst measurements.
82
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_pfer_desc.fm
Phase and Frequency Error Measurement Description
Types of Signals PFER can Measure
PFER measurements can be made of these types of input signals.
• Normal GSM TCH burst with mobile station in active cell mode.
• Access (RACH) burst with mobile station in active cell mode.
• Normal GSM TCH burst with mobile station in test mode.
• Access (RACH) burst with mobile station in test mode.
• Bursted signal with GMSK modulation without a valid midamble.
Input Signal Requirements
The PFER measurement will complete and meet its accuracy specification of:
• Frequency error measurement accuracy of ±12 Hz + timebase reference.
• rms phase error measurement accuracy of less than ±1 degree.
• Peak phase error measurement accuracy of less than ±4 degrees.
under these conditions
• Level is between −15 dBm and +43 dBm.
• Level within ±3 dB of the expected input level.
• Frequency is within ±100 kHz of expected input frequency.
Trigger Source
Auto triggering is the recommended trigger source for each measurement allowing the test set may choose the preferred trigger source. However, the user may want to select the trigger source. Immediate trigger source is not recommended for PFER measurements.
Table 3. Recommended Trigger Source settings
Input Signal Type Recommended Trigger Source
Normal GSM TCH burst with mobile station in active cell mode
RACH burst with mobile station in active cell mode
Normal GSM TCH burst with mobile station in test mode
RACH burst with mobile station in test mode
Bursted signal with GMSK modulation but no valid midamble
Non-bursted non-GMSK signals with a manual frequency offset of +/- 67.7083 kHz
Midamble or Amplitude
Midamble or Amplitude
Amplitude
Amplitude
Amplitude
Immediate
83
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_pfer_desc.fm
Phase and Frequency Error Measurement Description

Burst Synchronization

The PFER measurement provides the u ser a choice for the time reference (burst synchronization). see “Burst
Synchronization of Measurements” on page 115
Table 4.
Burst Synchronization Description
Midamble References measurement timing to the midamble
transmitted within a timeslot.
RF Amplitude The amplitude rise and fall of a transmitted burst
determines the measurement time reference.
None No edge of the burst will be detected, the
measurement will be made using the first 87 or 147 bits of data fo und c enter ed ar ound the middl e of t he expected burst position. For may be used when measuring non-bursted si gnals

Related Topics

*******************************************************
“Programming a Phase and Frequency Error Measurement” on page 85 “Test Adherence to Standards” on page 110
*******************************************************
84
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_pfer_desc.fm

Programming a Phase and Frequency Error Measurement

Programming a Phase and Frequency Error Measurement
This section provides an example of how to make the phase an d frequency error (PFER) measurement via GPIB.
The following procedure assumes that an active link is established between the test set and the mobile station. See “Establishing an Active Link with the Mobile Station” on page 28.
1. Configure PFER measurement parameters using the SETup subsystem.
2. Start the PFER measurement using the INITiate subsystem.
3. Use the INITiate:DONE? command to find out if PFER measurement results are available.
4. Use the FETCh? command to obtain PFER measurement results.

Example Program

10 OUTPUT 714;”SETUP:PFERROR:CONTINUOUS OFF” !Configures a PFER measurement to 20 !single trigger mode. 30 OUTPUT 714;”SETUP:PFERROR:COUNT:NUMBER 100 !Configures a multi-measurment 40 !of 100. 50 OUTPUT 714;”SETUP:PFERROR:TRIGGER:SOURCE AUTO”!Configure trigger source 60 !to auto. 70 OUTPUT 714;”SETUP:PFERROR:BSYNC:MIDAMBLE !Configures a PFER measurement so 80 !that burst synchronization, which 90 !will synchronize the timing of the 100 !measurement algorithm relative to 110 !the data sample, will be set 120 !to midamble. 130 OUTPUT 714;”INITIATE:PFERROR” !Starts the PFER measurement. 140 REPEAT 150 OUTPUT 714;”INITIATE:DONE?” !Query to see if PFER measurement is done 160 ENTER 714;Meas_complete$ 170 UNTIL Meas_complete$=”PFER” 180 OUTPUT 714;”FETCH:PFERROR:ALL?” 190 ENTER 714;Integrity, Max_phase_err, Max_peak_error, Worst_freq_err 200 END

Returned values

The measurements returned by this program are:
Integrity returns the measurement “Integrity Indicator” on page 125 (0 means a successful measurement with no errors).
Max_phase_err returns the maximum rms phase error in degrees
Max_peak_phase_error returns the maxi mum peak phase error in degrees
Worst_freq_err returns the the frequency, in Hz, that is the furthest from zero, if the most positive and the most negative frequency error are the same value, the most positive will be returned.
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_pfer_proc.fm
85
Programming a Phase and Frequency Error Measurement

Related Topics

*******************************************************
“Phase and Frequency Error Measurement Description” on page 82 “SETup:PFERror” on page 421 “INITiate” on page 355 “FETCh:PFERror” on page 329 “Comprehensive Program Example” on page 200
*******************************************************
86
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_pfer_proc.fm

PFER Troubleshooting

PFER Troubleshooting
June 29, 1999

Possible Setup Issues

During remote operation of th e Phase and Frequency Error measurement the user should configure the trigger arm to single, see “SETup:PFERror:CONTinuous” on page 422.
Failure to set trigger arm to single may result in the measurement never giving a result. When trigger arm is continuous the measurement rearms itself and starts another measurement cycle, during re mote operation the fetch query may not be synchronized to the measurement cycle, see “Measurement States” on page 150.
The Manual Frequency must be offset by +/- 67.7083 kHz in order to measure non-bursted or non-GMSK modulated signals.
If the Trigger Source is set to RF Rise and the signal measured is not burst modulated the measurement will wait until aborted or timed out.
If the input signal is more than 10 dB below the Expec ted Power, see “Expected P ower” on page 520 or if the input signal is below -30 dBm there is not enough p ower to generate an RF Rise trigger so the measurement will hang.

Interpreting Integrity Indicator values

See “Integrity Indicator” on page 125. If the signal has both over range (5) and under range (6) conditions only the over range (5) will be indicated. Syn Not Found (11) will be returned if the measurement Burst Synchronization is set to Midamble
synchronized and Expected Bur st pattern is not set to TSC0 through TSC7, or RACH. see “CALL:BURSt” on
page 239
87
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_pfer.fm

Power versus Time Measurement Description

Power versus Time Measurement Description
July 6, 1999

How is a power versus time (PvT) measurement made?

PvT measurements determine if the mobile station’s transmitter power falls within specified power and timing ranges. Refer to the “Typical GSM PvT Measurement” on page 91.
During a PvT measurement, the test set makes a narrowband poin t-by-point measurement of the instantaneous power received during the GSM burst. A pass or fail result is returned based on a mask comparison (defined in “ETSI GSM 05.05 Ver 4.21.0 Annex B”).
Included with the narrowband point-by-point measurement is a broad-band PvT carrier power measurement, labeled as Transmit Power on the Summary screen. The PvT Transmit Power measurement is synchronized to the burst midamble as recommended in ETSI GSM 11.10. (The test set also provides a faster transmit power measurement that is synchronized to the burst’s amplitude. See “Transmit Power Measurement Description”
on page 106).
The dynamic range of the PvT measuremen t is approximately a 70 dB. This measurement conforms to “ETSI GSM 11.10 Ver 4.21.1 Sect 13.3” which is based on “ETSI GSM 05.05
Ver. 4.21.0 Annex B”.
Power versus Time Measurement Results
The primary result of a PvT measurement is the pass/fa il result. The pass/fail result that the test set returns to the user indicates whether the entire burst fell within power and timing ranges determined by a point-by-point comparison of the power versus time measurement mask.
The PvT measurement examines the burst to determine the points where the burst fails by the most or is closest to failing the upper and lower limits. These worst case points provide the upper and lower limit margin results. A negative value, along with the offset time, is returned for the result if the burst fails the mask. A positive value indicates the burst is within th e mask. See “FETCh:PVTime:MASK:ALL?” on page 340.
For statistical analysis, the test set allows the user to set up to 12 time markers. These markers do not define the mask, but are merely used to get results from specified points on the mask. See
“SETup:PVTime:TIME[:OFFSet]” on page 429. Note that these points are not the same as those used in the
point-by-point comparison which determines the pass/fail result.
•Results for a single PvT measurement include:
1. PvT pass/fail result (0 = Pass, 1 & NaN = Fail)
2. PvT measurement integrity indicator
3. Transmit carrier power with midamble synchronization (average power during the burst)
4. Upper limit power margin worst case (how close to or where the signal exceeded upper power limit)
5. Lower limit power margin worst case (how close or where the signal exceeded lower power lim i t)
6. Upper limit timing margin worst case (the time offset where the signal came close to or exceeded upper
timing limit)
7. Lower limit timing margin worst case (the time offset where the signal came close to or exceeded lower
timing limit)
88
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_pvt_desc.fm
Power versus Time Measurement Description
•Results for multi-measurement PvT measurements include:
1. Average of transmit carrier power measurements (average of averages)
2. Maximum transmit carrier power measured across each bur st
3. Minimum transmit carrier power measured across each burst
4. Standard deviation of transmit carrier power measured across each burst
• Statistical PvT measurement results, calculated from measurements taken at each of the active time offset markers or across a subset of the markers and available only through programming commands, include:
1. Average Power (in dBc) measured at the marker(s) relative to transmit power (carrier power)
2. Maximum power (in dBc) measured at the marker(s) relative to tr ansmit power (carrier power)
3. Minimum power (in dBc) measured at the marker(s) relative to transmit power (carrier power)
4. Standard deviation of power (in dBc) measured at the marker(s) relative to transmit power (carri er
power)
• The measurement integrity indicator is another result available for any completed PvT measurement. This result provides information about error conditions which occurred and may have affected the accuracy of the most recently completed measurement. For more information about measurement integrity, refer to
“Integrity Indicator” on page 125.
• Measurement progress report is a feature that allows the user to periodically see how far multi-measurement cycle has progressed. When the multi-measurement count is greater than 1, the progress report will indicate the number of individual sub-measurements that have been completed, n, out of the total number to be completed, m. “n” is referred to as ICOunt remotely. “m,” the total number of measurements to be made, is based on the PvT user settings and input signal attributes.
The progress report is displayed on the test set’s screen in an “n of m” format. The number of measurements completed, n, increases from zero to the total number of measureme nts which need to be made, m.

Types of Signa ls Power vs. Time Can Measure

The following list summarizes the input signal attributes and mobile station operating modes for which PvT can be measured with the test set.
1. Normal GSM TCH burst with mobile station in active cell mode
2. Normal GSM TCH burst with mobile station in test mode (no protocol)
3. RACH burst with valid midamble with mobile station in active cell mode

Power vs. Time Input Signal Requirements

The PvT measurement will complete and meet the PvT measurement accuracy specifications when the signal meets the following input signal conditions.
1. Input signal level is between 15 dBm and +43 dBm.
2. Transmit power is within
3. Input signal frequency is within
±3 dB of expected input level.
±10 kHz of expected input frequen cy.
89
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_pvt_desc.fm
Power versus Time Measurement Description

Trigger Source

Triggering choices available for the PvT measurement are R F rise, protocol, immediate, and auto. In most cases, auto triggering provides the optimum measur ement triggering condition for the PvT measurement.
When auto triggering is selected, the test set chooses a trigger source based on the optimum trigger source available. For example, PvT measurements w ill automatically be triggered by a prot ocol trigger if a call is connected or call processing even ts provide the protocol trigger source.
In situations where no protocol trigger is available, the test set will choose RF rise triggering for the PvT measurement. An example of this situation might be when the test set is in test mode operating mode.
Table 5. Recommended Trigger Source Settings
Input Signal Type Recommended Trigger Source
Normal GSM TCH burst with mobile station in active cell mode
RACH burst with mobile station in active cell mode
Normal GSM TCH burst with mobile station in test mode
RACH burst with mobile station in test mode
Bursted signal with GMSK modulation but no valid midamble
CW signal Immediate
RF Rise or Protocol
RF Rise or Protocol
RF Rise
RF Rise
RF Rise
For more information on measurement triggering, refer to “Triggering of Measurements” on page 149.
90
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_pvt_desc.fm
Figure 3. Typical GSM PvT Measureme nt
mask position error
Power versus Time Measurement Description
+4 dBc
meas. level error
meas. timing error
+1 dBc
-1 dBc
542.8 µs - TCH
312.2
µs - RACH
Useful part of the burst.
10 µs10 µs8 µs
91
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_pvt_desc.fm
Power versus Time Measurement Description

Burst Synchronization

The PvT measurement provides the user a choice for the time reference (burst synchronization). see “Burst
Synchronization of Measurements” on page 115
Table 6.
Burst Synchronization Description
Midamble References measurement timing to the midamble
transmitted within a timeslot.
RF Amplitude The amplitude rise and fall of a transmitted burst
determines the measurement time reference.
None No edge of the burs t will be detected, the
measurement will be made using the first 87 or 147 bits of data found center ed around the middle of th e expected burst position. For may be used when measuring non-bursted signals

Related Topics

*******************************************************
“Programming a Power versus Time Measurement” on page 93 “Test Adherence to Standards” on page 110
*******************************************************
92
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_pvt_desc.fm

Programming a Power versus Time Measurement

Programming a Power versus Time Measurement
This section provides an example of how to make the power versus time (PvT) measurement via GPIB. The following procedure assumes that an active link is established between the test set and the mobile station.
See “Establishing an Active Link with the Mobile Station” on page 28.
1. Configure PvT measurement parameters using the SETup subsystem.
2. Start the PvT measurement using the INITiate subsystem.
3. Use the INITiate:DONE? command to find out if the PvT measurement results are available.
4. Use the FETCh? command to obtain PvT measurement results.

Example Program

10 OUTPUT 714;”SETUP:PVTIME:CONTINUOUS OFF” !Configures a PvT measurement to 20 !single trigger mode. 30 OUTPUT 714;”SETUP:PVTIME:COUNT:NUMBER 100 !Configures a multi-measurment 40 !of 100. 50 OUTPUT 714;”SETUP:PVTIME:TRIGGER:SOURCE AUTO” !Configure trigger source 60 !to auto. 70 OUTPUT 714;”SETUP:PVTIME:BSYNC MIDAMBLE” !Configures a PvT measurement so 80 !that burst synchronization, which 90 !will synchronize the time of the 100 !measurement algorithm relative to 110 !the data sample, will be set 120 !to midamble. 130 OUTPUT 714;”SETUP:PVTIME:TIME:OFFSET -28US,-18US !Turns on time markers 140 !-28 and -18 microseconds. 150 OUTPUT 714;”INITIATE:PVTIME” !Start PvT measurement. 160 REPEAT 170 OUTPUT 714;”INITIATE:DONE?” !Check to see if PvT measurement is done. 180 ENTER 714;Meas_complete$ 190 UNTIL Meas_complete$=”PVT” 200 OUTPUT 714;”FETCH:PVTIME:ALL?” !PvT results for time measurements. 210 ENTER 714;Integrity,Pvt_mask, Pvt_power, Max_offset 220 END

Returned values

The measurements returned by this program are:
Integrity returns the measurement “Integrity Indicator” on page 125 (0 means a successful measurement with no errors).
Pvt_mask returns the mask pass/fail indicator. When the multi-measurement count is greater than 1, the PvT mask pass/fail result will return Fail (1) if any single measurement fails.
Pvt_power returns the PvT carrier power in dBm.
Max_offset returns the maximum offset level in dB, relative to the PvT carrier power.
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_pvt_proc.fm
93
Programming a Power versus Time Measurement

Related Topics

*******************************************************
“Power versus Time Measurement Description” on page 88 “SETup:PVTime” on page 426 “INITiate” on page 355 “FETCh:PVTime” on page 336 “Comprehensive Program Example” on page 200
*******************************************************
94
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_pvt_proc.fm

PVT Troubleshooting

PVT Troubleshooting
June 29, 1999

Possible Setup Issues

During remote operation of th e Power vs. Time measurement the user should configure the trigger arm to single, see “SETup:PVTime:CONTinuous” on page 427.
Failure to set trigger arm to single may result in the measurement never giving a result. When trigger arm is continuous the measurement rearms itself and starts another measurement cycle, during re mote operation the fetch query may not be synchronized to the measurement cycle, see “Measurement States” on page 150.
If the Trigger Source is set to RF Rise and the signal measured is not burst modulated the measurement will wait until aborted or timed out.
If the input signal does not rise above the threshold set at 20 to 30 d B below the Expected Power, see
“Expected Power” on page 520 there is not enough power to generate an RF Rise trigger so the measurement
may hang. The PvT Transmit Power measurement results are shifted in proportion to the value of Amplitude Offset that
a user may set. The following table shows the measurements that are affected and how amplitude offset affects them. For more information about amplitude offset commands, see “Measurement Related
Configuration” on page 563.
Table 7. Measurements affected by amplitude offset
Amplitude Offset Command PVT Transmit Power (dB) Cell Power
OUTPUT 714;”SYSTEM:CORRECTION:SGAIN -3” !Offset for 3 dB of loss in the network.
OUTPUT 714;”SYSTEM:CORRECTION:SGAIN 3” !Offset for 3 dB of gain in the network.
OUTPUT 714;”SYSTEM:CORRECTION:SGAIN 0” !Zero dB of offset.
XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX
Setting
(dBm)Minimum Maximum Average
7.123 7.152 7.136 -82
7.129 7.16 7.14 -88
7.112 7.147 7.124 -85
95
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_pvt.fm
PVT Troubleshooting

Interpreting Integrity Indicator values

See “Integrity Indicator” on page 125.
If over range (5) is returned; the PvT input power has exceeded the test set’s internal sampler maximum value during some part of the sampling or the input power has exceeded the calibrated range of the test set’s power detector for the RF Range setting. RF Range is automatically set based on the input power setting. Input power is a combination of amplitude offset and expected power settings. See “Receiver example” on page 564.
If the signal has both over range and under range conditions only the over range (5) will be indicated. If under range (6) is returned; the PvT Transmit Power result is more than 10 dB below the expected input
power level. Under range is also indicated if, the input power is more than 2 dB below the calibrated range of the test set’s power detector for the RF Range setting. RF Range is automatically set based on the input power setting. Input power is a combination of amplitude offset and expected power settings. See “Receiver example”
on page 564.
Syn Not Found (11) will be returned if the measurement Burst Synchronization is set to Midamble synchronized and Expected Bur st pattern is not set to TSC0 through TSC7, or RACH. see “CALL:BURSt” on
page 239
96
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\ts_pvt.fm

RACH Measurement Description

RACH Measurement Description

What is a RACH?

When a mobile first attempts to originate a call it sends a RACH (Random Access Channel) burst. The RACH is transmitted on the uplink frequency of the channel number used by the Broadcast channel (BCH). The RACH is the first burst sent by the mobile. This burst is short, only 312.2 ms, as opposed to the normal G SM burst of 542.8 ms. The RACH is used by the base station to determine the timing advance which it then sends back to the mobile. Once the mobile receives this information it starts to transmit normal bursts.

Measurements that can be performed on a RACH

The test set can perform the following three measurements on a RACH in Active Cell or Test mode:
• Power versus Time
• Transmit Power
• Phase and Frequency Error
NOTE Only one measurement at a time can be made on the RACH even if two measurements are
initiated.

Triggering

The type of triggering used is dependent on whether you are in Active Cell or Test mode: Active Cell mode:
The default triggering of Auto is acceptable for most signals. (In Active Cell mode Auto is equ i valent to Protocol.) However, if the mobile’s RACH timing is outside the specified limits you may need to use RF Rise triggering.
Test mode: The default triggering of Auto should be used. (In Test mode Auto is equivalent to RF Rise.)

Overview of Measurement Procedure in Active Cell Mode

1. Set operating mode to Active Cell.
2. Set the receiver control to manual.
3. Set the test set’s measurement receiver to the frequency the RACH will arrive on. The simplest way to do this is to set the manual channel (that is, the expected ARFCN) to the ARFCN of the BCH. Alternatively you could set the expected frequency to the uplink frequency of the BCH A RFCN.
4. Ensure trigger mode is set to Auto.
Once the RACH measurement is completed, in ord er to make further measurements on the TCH, ensure you reset the receiver control to Auto.
97
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_rach_desc.fm
RACH Measurement Description

Overview of Measurement Procedure in Test Mode

1. Set operating mode to Test.
2. Set the test function to either BCH, or, BCH + TCH.
3. Set the Broadcast Channel to the channel you wish to use.
4. Using your proprietary commands, initiate the mobile to generate a sequence of RACH bursts on the BCH.
5. Start the appropriate measurement.

Example Procedure

The following procedure details how to make a power versus time RACH measurement manu ally while in Active Cell mode.
1. Press
2. Press the
3. Press
4. Press
SHIFT PRESET. The “Call Setup Screen” is displayed.
More key which is positioned immediately below F12 two times. This displays screen 3 of 4.
F7 and set the Receiver Cont ro l to Manual.
F9 and chan ge th e Manual Channel from 30 to 20. (This sets it to the same channel as the Broadcast
Chan on screen 1 of 4.)
5. Press
Measurement selection. (This key is positioned below the display.)
6. Select Power vs Time.
7. Press
8. Press
F1, Power vs Time Setup. F1, Measurement Setup.
9. Set Trigger Arm to Single.
10.Press
START SINGLE on the front panel of the test set. (Note, you are starting the measurement before
originating a call. This is to ensure that it is the RACH burst that is measured.)
11.Connect the mobile, then originate a call from the mobile.
12.Immediately you press send on the mobile the power versus time measurement result is displayed. Y ou can confirm that the measurement has occurred on th e RACH by examining the measurement results. With a RACH measurement, since the burst is shor ter than normal, the power drops of rapidly after 331 µs. To examine the results select 2 and
F3, Numeric 2 of 2.
F6, Return to PvT Control, F2, Change View, then select F2, Numeric 1 of
13.To do further measurements on the TCH ensure that the Receiver Control is returned to Auto.

Related Topics

*******************************************************
“Programming a RACH Measurement” on page 99 “RACH Troubleshooting” on page 102
*******************************************************
98
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\meas_rach_desc.fm

Programming a RACH Measurement

Programming a RACH Measurement
This section provides an example of how to make a power v ersus time measurement on a RACH. The same principles as used in this example can also be used for transmit power and phase and frequency error
measurements.

Overview of Measurement Procedure

1. Ensure that the mobile is switched off.
2. Set the test set’s measurement receiver to the frequency the RACH will arrive on. The simplest way to do
this is to set the manual channel (that is, the expected ARFCN) to the ARFCN of the BCH. Alternatively you could set the expected frequency to the uplink frequency of the BCH A RFCN.
3. Set triggering to single.
4. Set trigger mode to Auto.
Once the RACH measurement is completed, in ord er to make further measurements on the TCH, ensure you reset the receiver control to Auto.
NOTE Only one measurement at a time can be made on the RACH even if two measurements are
initiated.
99
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_rach_proc.fm
Programming a RACH Measurement

Example Procedure

The following example details how to make a power versus time RACH measurement on a mobile originated call in Active Cell mode.
Alternatively, the same measurement could be made on a base station originated call by replacing lines 160 and 170 with the CALL:ORIGinate command.
10 INTEGER Int 20 DIM Results(11) 30 REAL Mask,Power
40 OUTPUT 714;”*RST” 50 OUTPUT 714;”RFANALYZER:MANUAL:CHANNEL:SELECTED 20” !Configures the 60 !test set to expect a transmission on ARFCN 20. 70 OUTPUT 714;”RFANALYZER:EXPECTED:POWER:SELECTED 10 DBM” !Configures 80 !the test set to expect a power level of 10 dBm. 90 OUTPUT 714;”SETUP:PVTIME:CONTINUOUS OFF” !Configures trigger 100 !mode to single for a pvt measurement. 110 OUTPUT 714;”SETUP:PVTIME:COUNT:STATE OFF” !Configures the 120 !multi_measurement state to OFF. 130 OUTPUT 714;”SETUP:PVTIME:TRIGGER:SOURCE AUTO” !Configures the 140 !trigger source to AUTO. 150 OUTPUT 714;”INITIATE:PVTIME” !Start a pvt measurement. 160 PRINT “Connect your mobile to the Test Set and initiate a call” 170 PRINT “from the mobile.” 180 OUTPUT 714;”FETCH:PVTIME:ALL?”!Fetches the measurement integrity 190 !value, mask indicator, tx power, and pvt offsets. 200 ENTER 714;Int,Mask,Power,Results(*) 210 PRINT “****************************************” 220 PRINT “*Power vs Time RACH Measurement Results*” 230 PRINT “****************************************” 240 PRINT “Integrity = “;Integrity 250 PRINT “Mask = “;Mask 260 PRINT “Carrier Power =”;Power 270 PRINT “Offset Level (dB)” 280 PRINT “(micro sec) (dB)” 290 PRINT “------- ----------” 300 PRINT “-28 “;Results(0) 310 PRINT “-18 “;Results(1) 320 PRINT “-10 “;Results(2) 330 PRINT “0 “;Results(3) 340 PRINT “321.2 “;Results(4) 350 PRINT “331.2 “;Results(5) 360 PRINT “339.2 “;Results(6) 370 PRINT “349.2 “;Results(7) 380 PRINT “542.8 “;Results(8) 390 PRINT “552.8 “;Results(9) 400 PRINT “560.8 “;Results(10) 410 PRINT “570.8 “;Results(11) 420 EN
100
S:\Hp8960\E1960A GSM Mobile Test Application\A.04 Release\Reference_Manual\Chapters\prog_rach_proc.fm
Loading...