The information contained in this
operation and maintenance manual is
subject to change without notice from
AERCO International, Inc.
AERCO makes no warranty of any
kind with respect to this material,
including but not limited to implied
warranties of merchantability and
fitness for a particular application.
AERCO International is not liable for
errors appearing in this manual. Nor
for incidental or consequential
damages occurring in connection with
the furnishing, performance, or use of
this material.
CONTENTS
GF-109 - THE AERCO KC1000 GAS FIRED BOILER
Operating & Maintenance Instructions
FOREWARD A
SECTION 1 – SAFETY PRECAUTIONS 1-1
Para. Subject Page
1.1 Warnings & Cautions 1-1
1.2 Emergency Shutdown 1-2
SECTION 2 – INSTALLATION PROCEDURES 2-1
Para. Subject Page
2.1 Receiving the Unit 2-1
2.2 Unpacking 2-1
2.3 Installation 2-2
2.4 Gas Supply Piping 2-4
2.5 Electrical Supply 2-5
2.6 Mode of Operation and Field
Control Wiring
2-6
Para.Subject Page
1.3 Prolonged Shutdown 1-2
Para.Subject Page
2.7 I/O Box Connections 2-8
2.8 Auxiliary Relay Contacts 2-10
2.9 Flue Gas Vent Installation 2-10
2.10 Combustion Air 2-10
SECTION 3 – CONTROL PANEL OPERATING PROCEDURES 3-1
Para. Subject Page
3.1 Introduction 3-1
3.2 Control Panel Description 3-1
3.3 Control Panel Menus 3-3
3.4 Operating Menu 3-4
3.5 Setup Menu 3-4
Para.Subject Page
3.6 Configuration Menu 3-5
3.7 Tuning Menu 3-6
3.8 Start Sequence 3-7
3.9 Start/Stop Levels 3-9
SECTION 4 – INITIAL START-UP 4-1
Para. Subject Page
4.1 Initial Startup Requirements 4-1
4.2 Tools and Instrumentation for
Combustion Calibration
4.3 Combustion Calibration
4-1
4-2
Para.Subject Page
4.4 Propane Combustion Calibration 4-5
4.5 Unit Reassembly 4-6
4.6 Over-Temperature Limit Switch
Adjustments
4-6
Section 5 – MODE OF OPERATION 5-1
Para. Subject Page
5.1 Introduction 5-1
5.2 Indoor/Outdoor Reset Mode 5-1
5.3
5.4 Remote Setpoint Modes 5-2
5.5 Direct Drive Modes 5-3
Constant Setpoint Mode 5-2
Para.Subject Page
5.6 Boiler Management System
(BMS)
5.7 Combination Control System
(CCS)
5-4
5-5
i
CONTENTS
SECTION 6 – SAFETY DEVICE TESTING PROCEDURES 6-1
Para. Subject Page
6.1 Testing of Safety Devices 6-1
6.2 Low Gas Pressure Fault Test 6-1
6.3 High Gas Pressure Fault Test 6-1
6.4 Low Water Level Fault Test 6-2
6.5 Water Temperature Fault Test 6-2
6.6 Interlock Fault Tests 6-3
6.7 Flame Fault Test 6-3
Para.Subject Page
6.8 Air Flow Fault Test 6-4
6.9 SSOV Proof of Closure Switch 6-4
6.10 Purge Switch Open During
Purge
6.11 Ignition Switch Open During
Ignition
6.12 Safety Pressure Relief Valve
Test
6-5
6-6
6-6
SECTION 7 – MAINTENANCE 7-1
Para. Subject Page
7.1 Maintenance Schedule 7-1
7.2 Spark Ignitor 7-1
7.3 Flame Detector 7-2
7.4 Combustion Calibration 7-2
Para.Subject Page
7.5 Safety Device Testing 7-2
7.6 Man if old and Exhaust Tubes 7-2
7.7 Heat Exchanger Water Side
Injection
7.8 Condensate Drain Assembly 7-6
7-5
SECTION 8 – TROUBLESHOOTING 8-1
Para. Subject Page
8.1 Introduction 8-1
Para.Subject Page
SECTION 9 – RS232 COMMUNICATION 9-1
Para. Subject Page
9.1 Introduction 9-1
9.2 RS232 Communication Setup 9-1
Para.Subject Page
9.3 Menu Processing Utilizing
RS232 Communication
9.4 Data Logging 9-2
9-1
APPENDICES
App Subject Page
A Boiler Menu Item Descriptions A-1
B
C Temperature Sensor Resistance
D Indoor/Outdoor Reset Ratio
Startup, Status and Fault
Messages
Chart
Charts
B-1
C-1
D-1
App Subject Page
E Boiler Default Settings E-1
F Dimensional and Part Drawings F-1
G Piping Drawings G-1
H Wiring Schematics H-1
I KC10 00 Contr o l Pan el V ie ws I-1
J Recommended Spare Parts J-1
WARRANTIES W-1
ii
FOREWORD
Foreword
The AERCO KC boiler is a true industry advance that meets the needs of today's energy and
environmental concerns. Designed for application in any closed loop hydronic system, the load
tracking capability relates energy input directly to fluctuating system loads through a 20:1
modulating turndown ratio for natural gas units and 14:1 for propane units. The boiler’s
condensing capability offers extremely high efficiencies and makes the KC boiler ideally suited
for modern low temperature, as well as, conventional heating systems.
The KC boiler can be used singular or in modular arrangements for inherent standby with
minimum space requirements. Venting capabilities offer maximum flexibility and allow
installation without normal restrictions. The advanced electronics of each boiler module offer
selectable modes of operation and interface capabilities.
After prolonged shutdown, it is recommended that the startup procedures in Section 4 and test
procedures in Section 6 of this manual be performed, to verify system operating parameters. If
there is an emergency, turn off the electrical power supply to the Aerco boiler or close the
manual gas valve located before the unit. The installer is to identify the emergency shut-off
device. FOR SERVICE OR PARTS, contact your local sales representative or AERCO
INTERNATIONAL.
Installers and operating personnel MUST, at all
times, observe all safety regulations. The
following warnings and cautions are general and
must be given the same attention as specific
precautions included in these instructions. In
addition to all the requirements included in this
AERCO Instruction Manual, the installation of
units MUST conform with local building codes,
or, in the absence of local codes, ANSI Z223.1
(National Fuel Gas Code Publication No. NFPA-
54) for gas-fired boilers and ANSI/NFPASB for
LP gas-fired boilers. Where applicable, the
equipment shall be installed in accordance with
the current Installation Code for Gas Burning
Appliances and Equipment, CGA B149, and
applicable Provincial regulations for the class;
which should be carefully followed in all cases.
Authorities having jurisdiction should be
consulted before installations are made.
See pages 1-2 and 1-3 for important
information regarding installation of units
within the Commonwealth of Massachusetts.
IMPORTANT
This Instruction Manual is an integral
part of the product and must be
maintained in legible condition. It must
be given to the user by the installer
and kept in a safe place for future
reference.
WARNINGS!
MUST BE OBSERVED TO PREVENT
SERIOUS INJURY.
WARNING!
BEFORE ATTEMPTING TO
PERFORM ANY MAINTENANCE ON
THE UNIT, SHUT OFF ALL GAS AND
ELECTRICAL INPUTS TO THE UNIT.
WARNING
DO NOT USE MATCHES, CANDLES,
FLAMES, OR OTHER SOURCES OF
IGNITION TO CHECK FOR GAS
LEAKS.
WARNING!
THE EXHAUST VENT PIPE OF THE
UNIT OPERATES UNDER A POSITIVE PRESSURE AND THEREFORE MUST BE COMPLETELY
SEALED TO PREVENT LEAKAGE
OF COMBUSTION PRODUCTS INTO
LIVING SPACES.
WARNING!
FLUIDS UNDER PRESSURE MAY
CAUSE INJURY TO PERSONNEL
OR DAMAGE TO EQUIPMENT
WHEN RELEASED. BE SURE TO
SHUT OFF ALL INCOMING AND
OUTGOING WATER SHUTOFF
VALVES. CAREFULLY DECREASE
ALL TRAPPED PRESSURES TO
ZERO BEFORE PERFORMING
MAINTENANCE.
WARNING!
ELECTRICAL VOLTAGES OF 120
VAC ARE USED IN THIS EQUIPMENT. THEREFORE THE COVER
ON THE UNIT’S POWER BOX
(LOCATED ON THE FRONT RIGHT
SIDE OF THE UNIT UNDER THE
HOOD AND SHEET METAL SIDE
PANEL) MUST BE INSTALLED AT
ALL TIMES, EXCEPT DURING
MAINTENANCE AND SERVICING.
CAUTIONS!
Must be observed to prevent equipment damage or loss of operating
effectiveness.
CAUTION!
Many soaps used for gas pipe leak
testing are corrosive to metals. The
piping must
be rinsed thoroughly with
clean water after leak checks have
been completed.
CAUTION!
DO NOT use this boiler if any part has
been under water. Call a qualified
service technician to inspect and
replace any part that has been under
water.
1-1
SAFETY PRECAUTIONS
1.2 EMERGENCY SHUTDOWN
If overheating occurs or the gas supply fails to
shut off, close the manual gas shutoff valve
(Figure 1-1) located external to the unit.
IMPORTANT
The Installer must identify and indicate
the location of the emergency shutdown
manual gas valve to operating personnel.
1.3 PROLONGED SHUTDOWN
After prolonged shutdown, it is recommended
that the startup procedures in Chapter 4 and the
safety device test procedures in Chapter 5 of
this manual be performed, to verify all systemoperating parameters. If there is an emergency,
turn off the electrical power supply to the
AERCO boiler and close the manual gas valve
located upstream the unit. The installer must
identify the emergency shut-off device.
Figure 1-1
Manual Gas Shutoff Valve
IMPORTANT – FOR MASSACHUSETTS INSTALLATIONS
Boiler Installations within the Commonwealth of Massachusetts must conform to the following
requirements:
• Boiler must be installed by a plumber or a gas fitter who is licensed within the Commonwealth of
Massachusetts.
• Prior to unit operation, the complete gas train and all connections must be leak tested using a
non-corrosive soap.
• If a glycol solution is used as anti-freeze protection, a backflow preventer must be installed
upstream of the Fill/Makeup Valve.
• The vent termination must be located a minimum of 4 feet above grade level.
• If side-wall venting is used, the installation must conform to the following requirements extracted
from 248 CMR 5.08 (2):
(a) For all side wall horizontally vented gas fueled equipment installed in every dwelling, building or
structure used in whole or in part for residential purposes, including those owned or operated by the
Commonwealth and where the side wall exhaust vent termination is less than seven (7) feet above
finished grade in the area of the venting, including but not limited to decks and porches, the following
requirements shall be satisfied:
1. INSTALLATION OF CARBON MONOXIDE DETECTORS
side wall horizontal vented gas fueled equipment, the installing plumber or gasfitter shall observe
that a hard wired carbon monoxide detector with an alarm and battery back-up is installed on the
floor level where the gas equipment is to be installed. In addition, the installing plumber or
gasfitter shall observe that a battery operated or hard wired carbon monoxide detector with an
alarm is installed on each additional level of the dwelling, building or structure served by the side
wall horizontal vented gas fueled equipment. It shall be the responsibility of the property owner to
secure the services of qualified licensed professionals for the installation of hard wired carbon
monoxide detectors.
. At the time of installation of the
1-2
Extracted Information From 248 CMR 5.08 (2) – Continued
a. In the event that the side wall horizontally vented gas fueled equipment is installed in
a crawl space or an attic, the hard wired carbon monoxide detector with alarm and
battery back-up may be installed on the next adjacent floor level.
b. In the event that the requirements of this subdivision can not be met at the time of
completion of installation, the owner shall have a period of thirty (30) days to comply with
the above requirements; provided, however, that during said thirty (30) day period, a
battery operated carbon monoxide detector with an alarm shall be installed.
SAFETY PRECAUTIONS
2. APPROVED CARBON MONOXIDE DETECTORS.
required in accordance with the above provisions shall comply with NFPA 720 and be ANSI/UL
2034 listed and IAS certified.
3. SIGNAGE
of the building at a minimum height of eight (8) feet above grade directly in line with the exhaust
vent terminal for the horizontally vented gas fueled heating appliance or equipment. The sign
shall read, in print size no less than one-half (1/2) inch in size, "GAS VENT DIRECTLY BELOW.
KEEP CLEAR OF ALL OBSTRUCTIONS".
4. INSPECTION
equipment shall not approve the installation unless, upon inspection, the inspector observes
carbon monoxide detectors and signage installed in accordance with the provisions of 248 CMR
5.08(2)(a)1 through 4.
(b) EXEMPTIONS
1. The equipment listed in Chapter 10 entitled "Equipment Not Required To Be Vented" in the
most current edition of NFPA 54 as adopted by the Board; and
2. Product Approved side wall horizontally vented gas fueled equipment installed in a room or
structure separate from the dwelling, building or structure used in whole or in part for residential
purposes.
(c) MANUFACTURER REQUIREMENTS - GAS EQUIPMENT VENTING SYSTEM PROVIDED.
the manufacturer of Product Approved side wall horizontally vented gas equipment provides a venting
system design or venting system components with the equipment, the instructions provided by the
manufacturer for installation of the equipment and the venting system shall include:
1. Detailed instructions for the installation of the venting system design or the venting system
components; and
2. A complete parts list for the venting system design or venting system.
. A metal or plastic identification plate shall be permanently mounted to the exterior
. The state or local gas inspector of the side wall horizontally vented gas fueled
: The following equipment is exempt from 248 CMR 5.08(2)(a)1 through 4:
Each carbon monoxide detector as
When
(d) MANUFACTURER REQUIREMENTS - GAS EQUIPMENT VENTING SYSTEM NOT PROVIDED.
When the manufacturer of a Product Approved side wall horizontally vented gas fueled equipment does
not provide the parts for venting the flue gases, but identifies "special venting systems", the following
requirements shall be satisfied by the manufacturer:
1. The referenced "special venting system" instructions shall be included with the appliance or
equipment installation instructions; and
2. The "special venting systems" shall be Product Approved by the Board, and the instructions
for that system shall include a parts list and detailed installation instructions.
(e) A copy of all installation instructions for all Product Approved side wall horizontally vented gas fueled
equipment, all venting instructions, all parts lists for venting instructions, and/or all venting design
instructions shall remain with the appliance or equipment at the completion of the installation.
_______________________________ [End of Extracted Information From 248 CMR 5.08 (2)]
1-3
SECTION 2 -INSTALLATION PROCEDURES
2.1. RECEIVING THE UNIT
Each KC1000 Boiler is shipped as a single
crated unit. The crated unit shipping weight is
approximately 1500 pounds. It must be moved
with the proper riggin g equipment f or safety and
to avoid unit damages. The unit should be
completely inspected for shipping damage and
completeness at the time of receipt from the
carrier and before the bill of lading is signed.
Each unit has Tip-N-Tell indic ator on the outside
of the crate, that indicates if the unit has been
turned on its side. If the Tip-N-Tell indicator is
tripped, do not sign for the s hipment. Request a
freight claim and inspecti on by a claims adjus ter
before proceeding or refuse delivery of the
equipment.
2.2. UNPACKING
Carefully unpack the unit. Take care not to
damage the unit jacket when cutting away
packaging materials. An inspection of the unit
should be made to deter mine if damage during
shipment occurred th at was not indicated by the
Tip-N-Tell. The freight c arrier should be notif ied
INSTALLATION
immediately if any damage is detected. The
following accessories come standard with each
unit and are packed separ ately within the unit’s
packing container
• Spare Spark Ignitor
• Spare Flame Detector
• Manual 1-1/4" Gas Shu t of f Valve
• Drain Valve As s embly
• ASME Pressure Relief Valve
• Ignitor Removal Tool (One per Site)
• Temperature/Pressure Gauge and Fittings
• 2 Lifting Lugs
• Stainless Steel Condensate Cup
• Shell Cap
• Wing Nut for Shell Cap
Optional accessories ar e als o separatel y pack ed
within the unit’s packing container. Sta ndard and
optional accessories shipped with the unit
should be identif ied and put in a s afe place until
installation or use.
Figure 2.1. Boiler Clearances
2-1
INSTALLATION
2.3 INSTALLATION
The unit must be installed with the prescribed
clearances for service as shown in Figure 2.1.
The minimum
AERCO, are listed below. Local building codes
may require more clearance and take
precedence
Minimum clearances required:
Sides 24"
Front 18"
Rear 18"
Top 18"
All gas piping, water piping, and electrical
conduit or cable m ust be arranged so that they
do not interfere with the removal of any cover, or
inhibit service or maintenance of the unit.
clearance dimensions, required by
WARNING!
KEEP UNIT AREA CLEAR AND FREE
FROM COMBUSTIBLE MATERIALS AND
FLAMMABLE VAPORS AND LIQUIDS.
MASSACHUSETTS INSTALLATIONS
For boiler installations within the
Commonwealth of Massachusetts, the
boiler must be installed by a plumber or
gas fitter who is licensed within the
Commonwealth. In addition, the boiler
installation must comply with all
requirements specified in Section 1
(Safety Precautions), pages 1-2 and 1-3.
2.3.1. SETTING THE UNI T
Remove the unit from the wooden skid and
place in position using a block and tackle or
hoist attached to the lifting lugs, (see Figure
2.2). USE ONLY THE LIFTING LUGS TO
MOVE THE UNIT.
The KC-1000 is U /L approved f or installation o n
combustible flooring. A 4” to 6" high housekeeping concrete pad is recommended and
allows for sufficient drainage of the condensate.
It is suggested that u nits be secured using the
holes provided in the frame base. Piping must
not be used to secure the unit in place. See
drawing AP-A-568 in Appendix F for the base
frame dimensions.
In multiple unit installations, it is important to
plan the position of each unit. Sufficient space
for piping connections and future maintenance
requirements must be given. All piping must
include ample provision for expansion.
If installing a Combination Control (CCP)
system, it is important to identify and place the
Combination Mode units in the proper physical
location.
Figure 2.2
Lifting Lug Location
2.3.2 SUPPLY AND RETURN PIPING
The locations of the 4" flanged system supply,
and return piping connections, to the unit are
shown in Figure 2.3. The return connection is
located on the left side near the base of the
unit’s shell. T he supp l y connection is l ocated on
the left side near the top of the unit’s shell.
Whether installin g single or m ultiple units , install
the piping and accessories as shown in the
appropriate piping diagram located in the
Appendix G. For applications other than standard space heating, consult the AERCO Boiler
Application Guide, GF-1070, or AER CO for the
appropriate piping schematics.
The minimum flow rate through the unit is 25
GPM and the maximum flow rate is 150 GPM.
Each unit is fitted with 4" flanges for high flow
application and the system velocity at the unit
return should not exceed 5 feet per second.
Each unit must have individual valves on the
supply, and return, for m aintenance. In multiple
unit installations, the f lo w through eac h u nit must
be balanced.
2-2
INSTALLATION
Every boiler plan t must have a so urce of makeup water to it. As with an y closed loop hydronic
system, air elimination and expansion equipment must be provided as part of the overall
installation. All piping MUST include ample
provision for expansion.
The relief piping must be full size without
reduction. No valves, restrictions, or other
blockages should be allowed in the discharge
line. In multiple un it installations the relief val ve
discharge lines must not
(connected), together . Each m ust be individu ally
run to a suitable discharge location. The drain
valve provided should be installed on the right
hand side of the unit towar ds the bottom of the
shell. The valv e should be pointed in th e down
position, (see Figure 2.4).
be manifolded,
Figure 2.3
Supply and Return Location
NOTE:
The maximum working pressure for
installations within the Province of Alberta is
87 psig. Therefore a pressure relief valve
with a setting of 75 psig (or lower) should be
installed for these installations. See Drawing
AP-A-863 in Appendix F.
2.3.3 PRESSURE RELIEF AND DRAIN
VALVE INSTALLATION
An ASME rated Relief Valve is supplied with
each unit. The supplied pressure relief valve
setpoint will be 30, 50 , 75, 100, or 150
ordered from the factory. Install the pressure
relief valve in the tapping provided opposite the
system supply connection , (see Figure 2.4). T he
pressure relief valve should be piped in the
vertical positionusing the fittings supplied. A
suitable pipe com pound should be used on the
threaded connections, and excess should be
wiped off to avoid getting any into the valve
body. The discharg e from the relief valve shou ld
be piped to within 12 inches of the floor to
prevent injury in the event of a discharge.
psig as
Figure 2.4
Relief and Drain Valve Location
2.3.4 TEMPERATURE/PRESSURE
INDICATOR
The unit is supplied with one of two styles of
Temperature/Pressure Indicators that must be
installed in the tapping on the supply flange of
the unit (see Figures. 2.5a and 2.5b). A suitable
pipe compound should be used sparingly to the
threaded connection.
2-3
INSTALLATION
PARTIAL TOP VIEW OF BOILER
FOR INSTALLATION OF PRESS./TEMP. GAUGE
PART NO. 122994-1 (PRESS. RANGE 0 – 75 PSI)
SHELL
CAP
SYSTEM
SUPPLY
REDUCING BUSHING
PRESS./TEMP. GAUGE
Pressure /Temperature Gauge Installation
1/2" x 1 /4"
Figure 2.5a
route it to a floor drain. If a floor drain is not
available, a condensate pump can be used to
remove the condensate to drain. The
condensate drain line must be removable for
routine maintenance. Therefore, DO NOT hardpipe.
4. Replace the rear cover and side panel on the
unit.
Figure 2.5b
Pressure/Temperature Gauge Installation
2.3.5 CONDENSATE PIPING
The KC Boiler is designed to condense.
Therefore, the installation site must include
suitable provisions for condensate drainage or
collection. A stainless steel condensate cup is
separately packed within the unit’s shipping
container. To install the condensate cup,
proceed as follows:
1. Remove the l eft side panel and only the lef t
half of the rear cover to provi de acces s to the
exhaust manifold and burner (Figure 2.6).
2. Insert the 1-3/4 inc h manifold drai n hose into
the condensate cup. A llow the cup to rest on
the floor directly beneath the manifold drain
hole (Figure 2.6).
3. Attach a length of 3/4 inch I.D. polyprop ylene
tubing to the condensate c up drain tube and
Figure 2.6
Condensate Drain System Location
2.4. GAS SUPPLY PIPING
The AERCOGas Fired Equipment Gas Components and Supply Design Guide (GF-1030) must be
consulted before any gas piping is designed or
started.
WARNING!
DO NOT USE MATCHES, CANDLES,
FLAMES OR OTHER SOURCES OF
IGNITION TO CHECK FOR GAS LEAKS.
CAUTION!
Soaps used for gas pipe leak testing can be
corrosive to metals. Piping must be rinsed
thoroughly with clean water after leak
checks have been completed.
NOTE:
All gas piping must be arranged so that it
does not interfere with removal of any
cover, inhibit service or maintenance, or
prevent access between the Unit and walls,
or another unit.
2-4
INSTALLATION
The location of the 1-1/4 " inlet gas connect ion is
on the right side of the unit as s hown in Figure
2.7.
All pipe should be de-burred and internally
cleared of any scale or iron chips before
installation. No flexible connectors or nonapproved gas fittings s hould be installed. Piping
should be supported f rom floor or wal ls onl y and
must not be secured to the unit.
A suitable piping compound, approved for use
with gas, should be used s paringly. Any excess
must be wiped off to prevent clogging of
components.
To avoid damage to the unit, when pressure
testing gas piping, isolate the unit from the
supply gas piping. At no time should there be
more than 14” W.C. the unit. Bubble test all
external piping thoroughly for leaks using a
soap and water solution or suitable equivalent.
The gas piping must meet all applicable codes.
2.4.1 GAS SUPPLY PRESSURE
REGULATOR
An external, in-line, supply gas regulator
(supplied by others) should be positioned as
shown in Figure 2.7. Union connections should
be placed in the proper locations to allow
maintenance of the regulator if required
NOTE:
An individual gas pressure regulator must
be installed upstream of each KC1000. The
regulator must regulate gas pressure to 8.5”
W.C. at 1,000,000 BTU/H for natural gas
and propane units.
The maximum static inlet pressure to the unit
must be no more than 14” water column.
Minimum gas pres sure is 8.5” W.C. for FM gas
trains and 8.9” W .C. for IRI gas trains when the
unit is firing at maximum input. Gas pressure
should not exceed 10.5” W.C. at any tim e when
firing. Proper sizing of the gas supply regulat or
in delivering the correct gas flow and outlet
pressure is mandator y. The gas supply pres sure
regulator must maintain the gas pressure at a
regulated 8.5” W. C. minimum for FM gas trains
and 8.9” W.C. for IRI gas trains at maximum
BTU input (1,000,000 BTU/HR) for natural gas
and propane installations. The supply gas
regulator must be of suff icient capacity volume,
(1000 cfh), for the unit and shoul d have no mor e
than 1" droop from minimum to full fire. The
supply gas regulator must also be rated to
handle the maximum incoming gas pressure to
it. When the gas supp l y pressur e will not ex cee d
14” W.C. a non-lock up or flow through style
regulator may be used. When supply gas
pressure will exceed 14” W.C., a lock up style
regulator must be used. The gas supply
regulator must be propery vented to outdoors.
Consult the local gas utility for exact
requirements concerning venting of supply gas
regulators.
CAUTION!
A lockup style regulator must be used when
gas supply pressure exceeds 14” W.C.
2.4.2 MANUAL GAS SHUTOFF VALVE
A 1-1/4” manual gas shut-off valve is furnished
with each unit. The valve should be positioned
as shown in Figure 2.7 . The manual g as shut-of
valve must be installed upstream of the supply
regulator in a readily accessible location.
Figure 2.7
Gas Supply Regulator and Manual Shut -Off
Valve Location
2.4.3 IRI GAS TRAIN KIT
The IRI gas train is an optional gas train
required in some ar eas by code or f or insurance
purposes. The IRI gas tra in is factory pre-piped
and wired. (Refer to Appendix F, Drawing No.
SD-A-584).
2.5 ELECTRICAL SUPPLY
The AERCO Gas Fired Equipment Electrical
Power Wiring Guide, (GF-1060), must be
consulted in addition to the following material
before wiring to the unit is started. AC power
connection to the unit are made at the Power
Box.This box is loc ated on the fr ont right side of
the unit as shown in Figure 2.8. Condu it should
2-5
INSTALLATION
be run from the knockouts in the side of the box
in such a manner th at it does not interfere with
the removal of an y s heet metal covers. A f lex ib le
electrical connecti on ma y be utilized t o allow th e
covers to be easily removed.
POWER BOX
FRAME
SSOV
ACTUATOR
Figure 2.8
AC Power Box Location
BLOWER
Figure 2.9
AC Power Wiring Diagram
2.6 MODE OF OPERATION and FIE L D
CONTROL WIRING
The KC Boiler is available in several different
modes of operation. While each unit is factory
configured and wired f or the mode specified on
the equipment order, som e field wiring may be
required to complete th e installation. This wir ing
is typically routed to the Input/Output (I/O) Box
located on the left side of the unit beneath the
removable side panel (see Figure 2.10). Field
wiring for each particular mode of operation is
described in the following paragraphs. For
additional information concerning modes of
operations, refer to Section 5.
NOTE:
All electrical conduit and hardware should
be installed so that it does not interfere with
the removal of any cover, inhibit service or
maintenance, or prevent access between
the unit and walls or another unit.
2.5.1 ELECTRICAL REQUIREMENTS
Electrical requirements for each unit are 120
VAC, 1 Phase, 60 Hz, 20 Amps from a
dedicated electrical circuit. No other devices
should be on the same electrical circuit as a
KC1000 unit. A means for disconnecting AC
power from the unit (such as a service switch)
must be installed near the unit for normal operation and maintenanc e. All electrical connections
should be made in accorda nce with the Natio nal
Electrical Code and/ or with any applicable local
codes.
The Constant Setpoi nt Mode is used when it is
desired to have a fixed setpoint that does not
deviate. No wiring connections other than
electrical supply connections are required for
this mode. However, if des ired, fault monitoring
or enable/disable in terlock wiring c an be utilized
(see paragraphs 2.7.9 and 2.7.10).
This mode of operation increases supply water
temperature as outdoor te mperatures decrease.
An outside air tem perature sensor (AERCO PN
122790) is required. The sensor MUST BE
wired to the I/O Box wiring term inals (see Figure
2.11). For more information concerning the
outside air sensor ins talla tion, ref er to paragra ph
2.7.1. For programming and setup instructions
concerning the indoor/outdoor-reset mode of
operation, refer to Section 5, paragraph 5.1.
.
Figure 2.11
I/O Box Terminal Strip
2.6.3 BOILER MANAGEMENT SYSTEM
(BMS) MODE
NOTE
BMS Model 168 can utilize either pulse
width modulation (PWM) or RS485
Modbus signaling to the Boiler. BMS II
Model 5R5-384 can utilize only RS485
signaling to the Boiler.
When using an AERCO Boiler Management
System (BMS), the field wiring is connected
between the BMS Panel and each Boiler’s I/O
Box terminal strip (Figure 2-11). Twisted
shielded pair wire f rom 18 to 22 AWG must be
utilized for the connections. The BMS Mode can
utilize either pulse width modulation (PWM)
signaling, or RS485 Modbu s s ignaling. F or PWM
signaling, connections are made from the
AERCO Boiler Management System to the
B.M.S. (PWM) IN terminals on the I/O Box
terminal strip. For RS485 Modbus signaling,
connections are made from the BMS to the
RS485 COMM term inals on the I/O Box ter minal
strip. Polarity m ust be maintain ed and the shie ld
must be connected only at the AERCO BMS.
The boiler end of the shi eld m ust be left f loating.
For additional instructions, refer to Chapter 5,
paragraph 5.6 in t his manual. Also, ref er to GF108M (BMS Model 168) and GF-124 (BMS II
Model 5R5-384), BMS -Operations Guides.
2-7
INSTALLATION
2.6.4 REMOTE SETPOINT and DIRECT
DRIVE MODES
The KC1000 Boiler c an accept several types of
signal formats from an Energy Management
System or other source to control either the
setpoint (Remote Setpoint Mode) or valve
position (Direct Dr ive Mode ) of the Boi ler. Thes e
formats are:
4 to 20 mA/1 to 5 Vdc
0 to 20 mA/0 to 5 Vdc
PWM – (Pulse Width Modulated signal. See
paragraph 2.7.4)
Network – (RS485 Modbus. See para. 2.7.7)
While it is possib le to control one or m or e boi lers
using one of the above modes of operation, it
may not be the method best suited for the
application. Prior to s electing one of the above
modes of operation, it is recommended that you
consult with your loca l AERCO representa tive or
the factory for the mode of operation that will
work best with your application. For more
information on wiring th e 4 to 20 mA / 1to 5VDC
or the 0 to 20 mA / 0 to 5 VDC, see paragraph
2.7.3.
2.6.5 COMBINATION MODE
NOTE
Only BMS Model 168 can be utilized for
the Combination Mode, not the BMS II
(Model 5R5-384).
With a Combination Mode unit, field wiring is
between the unit’s I/O Box, the CCP
(Combination Control Panel), and the BMS
Model 168 (Boiler Management System). The
wiring must be done using a shielded twisted
pair of 22 AWG wire. Polarity must be
maintained between the unit, the CCP, and the
BMS. For further instructions and wiring
diagrams, refer to the GF-108 Boiler
Management System Operations Guide and the
CCP-1 data sheet.
2.7 I/O BOX CONNECTIONS
The types of input and output/signals and
devices to be connecte d to the I/O Box terminals
shown in Figure 2.11 are described in the
following paragraphs.
CAUTION!
DO NOT make any connections to the I/O
Box terminals labeled “NOT USED”.
Attempting to do so may cause equipment
damage.
2.7.1 OUTDOOR SENSOR IN
An outdoor air temperature sensor (AERCO Part
No. 122790) will be required mainly for the
Indoor/Outdoor Reset m ode of operation. It can
also be used with anoth er m ode if it is desired to
use the outdoor sensor enable/disable feature.
This feature allows the boiler to be enabled or
disabled based on the outdoor air tem perature.
The factory default for the outdoor sensor is
DISABLED. To enable the sensor and/or select
an enable/disable o utdoor temperature, see the
Configuration menu in Section 3.
The outdoor sensor m ay be wired up t o 200 feet
from the boiler and is connected to the
OUTDOOR SENSOR IN and the SENSOR
COMMON terminals in the I/O box (see Figures
2.10 and 2.11). W ire the sensor using a twisted
shielded pair cabl e of 18-22 AW G wire. There is
no polarity when terminating the wires. The
shield is to be connected only to the terminals
labeled SHEILD in t he I/O Box. The sensor end
of the shield must be left free and ungrounded.
When mounting the sensor, it must be located
on the North side of the building where an
average outside air temperature is expected.
The sensor must be shield ed f orm dir ec t sunli ght
as well as impingement by the elements. If a
shield is used, it must allow for free air
circulation.
2.7.2 AUX SENSOR IN
The AUX SENSOR IN terminals can b e used to
add an additional temperature sensor for
monitoring purposes. This input is always
enabled and is a view only input that can be
seen in the operating m enu. The sensor m us t be
wired to the AUX SENSOR IN and SENSOR
COMMON and must be similar to AERCO
BALCO wire sensor P/N 12449. A resistance
chart for this sensor can be found in Appendix
C.
2-8
INSTALLATION
2.7.3 ANALOG IN
The ANALOG IN + and – terminals are used
when an external signal is used to drive the
valve position (Direc t Drive Mode) or change the
setpoint (Remote Setpoint Mode) of the Boiler.
Either a 4 to 20 mA / 1 to 5 VDC or a 0 to 20 mA
/ 0 to 5 VDC signal may be used to vary the
setpoint or valve position. The factory default
setting is 4 to 20 mA / 1 to 5 VDC, however this
may be changed to 0 to 20 mA / 0 to 5 VDC
using the Configuration Menu described in
Section 3. If voltage rather than current is
selected as the dr ive signal, a DIP switch mus t
be set on the PMC Board located inside the
Control Box. Contact the AERCO factory for
information on setting DIP switches.
All supplied signals must be floating
(ungrounded) signals . Connectio ns bet ween the
source and the Boiler’s I/O Box must be made
using twisted shie lded pair of 18 –22 AW G wire
such as Belden 9841(se e Figure 2.11). Polarit y
must be maintained and the shield must be
connected only at the source end and must be
left floating (not connected) at the Boiler’s I/O
Box.
Whether using voltage or current for the drive
signal, they are linearly mapped to a 40°F to
240°F setpoint or a 0% to 100% valve position.
No scaling for these signals is provided.
2.7.4 B.M.S. (PWM) IN
NOTE
Only BMS Model 168 can utilize Pulse
Width Modulation (PW M), not the BMS II
(Model 5R5-384).
These terminals are used to connect the
AERCO Boiler Management System (BMS)
Model 168 to the unit. The BMS Model 168
utilizes a 12 millisecond, ON/OFF duty cycle.
This duty cycle is Puls e Width Modulated (PWM)
to control valve pos ition. A 0% valve positio n =
a 5% ON pulse and a 100% valve positio n = a
95% ON pulse.
2.7.5 SHIELD
The SHIELD terminals are us ed to terminate any
shields used on sensor wires connected to the
unit. Shields must only be connected to these
terminals.
2.7.6 mA OUT
These terminals provide a 4 to 20 mA output
that can be used to monitor setpoint ( 40°F to
220°F), outlet temperature (30°F to 245°F), or
valve position (0% to 100%). This function is
enabled in the Configuration Menu (Section 3,
Table 3-4).
2.7.7 RS-485 COMM
These terminals are used for RS-485 MODBUS
serial communication between the unit and an
external “Master”, s uch as a Boiler M anagement
System or other suitable device.
2.7.8 EXHAUST SWITCH IN
These terminals permit an external exhaust
switch to be connected to the exhaust manifold
of the boiler. The exhaust sensor should be a
normally open t ype sw itch (such as AERCO Par t
No. 123463) that closes (trips) at 500
o
F.
2.7.9 INTERLOCKS
The unit offers two interlock circuits for
interfacing with Energy Management Systems
and auxiliary equipment such as pumps or
louvers. These interlock s are called the Rem ote
Interlock and Delayed Interlock (Figure 2.11).
The wiring terminals for these interlocks are
located inside the I/O Box on the lef t side of the
unit. The I/O Box cover contains a wiring
diagram which s hows th e ter m inal str ip locat ions
for these interlock s which are labeled R EMOTE
INTL’K IN and DELAYED INTL’K IN. Both
interlocks, described in the following
paragraphs, are factory wired in the closed
position.
NOTE:
Both the Delayed Interlock and Remote
Interlock must be in the closed position to
allow the unit to fire.
2.7.9.1 REMOTE INTERLOCK IN
The remote interlock circuit (REMOTE INTL’K
IN) is provided to remotely start (enable) and
stop (disable) the Boiler if desired. The circuit is
24 VAC and comes factory pre-wired closed
(jumpered).
2-9
INSTALLATION
2.7.9.2 DELAYED INTERLOCK IN
The delayed interl ock circuit (DELAYED INTL’K
IN) is typically used in conjunction with the
auxiliary rela y described in paragraph 2.8. This
interlock circuit is located in the pur ge section of
the start string. It can be connected to the
proving device (end switch, flow switch etc.) of
an auxiliary piece of equipment started by the
boiler’s auxiliary relay. The delayed interlock
must be closed for the boiler to fire. If the
delayed interlock is connected to a proving
device that requir es tim e to clos e (mak e), a tim e
delay (Aux Start On Dly) that holds the start
sequence of the boiler long enough for for a
proving switch to make can be programmed.
Should the proving switch not prove within the
programmed time frame, the boiler will shut
down. The Aux Start On Dly can be
programmed from 0 to 120 sec onds . This optio n
is locate in the Configuration Menu (Section 3).
2.7.10 FAULT RELAY
The fault relay is a single pole double throw
(SPDT) relay having a normally open and
normally close set of relay contacts that are
rated for 5 amps at 12 0 VAC and 5 amps at 30
VDC. The relay energizes when any fault
condition occurs and remains energized until the
fault is cleared and the CLEAR button is
depressed. The fault relay connections are
shown in Figure 2.11.
2.8 AUXILIARY RELAY CONTACTS
Each Boiler is equipped with a single pole
double throw (SPDT) relay that is energized
when there is a demand for heat and deenergized after the dem and for heat is satisf ied.
The relay is prov ided for the control of auxiliary
equipment, such as pumps and louvers, or can
be used as a Boiler status indictor (firing or n ot
firing). Its contacts are r ated for 120 VAC @ 5
amps. Refer to Figure 2.11 to locate the AUX
RELAY terminals for wiring connections.
2.9 FLUE GAS VENT INSTALLATION
The AERCO Venting a nd Combustion Air Gu id e,
GF-1050, must be cons ulted before any flue or
inlet air venting is designed or installed.
Suitable, U/L approved, positive pressure,
water-tight vent materials as specified in
AERCO’s GF-1050, m ust be used for safety and
UL certification. Because the unit is capable of
discharging low tem perature exhaust gas es, the
flue must be pitched bac k to the un it a minimum
of 1/4" per foot to avoid an y condensate pooli ng
and to allow for proper drainage.
While there is a positive flue pressure during
operation, the combined pressure drop of vent
and combustion air systems must not exceed
140 equivalent feet of 0.81” W.C.. Fittings as
well as pipe lengths m ust be calculated as part
of the equivalent length. For a natural draft
installation the draft must not exceed - 0.25”
W.C..These factors must be planned into the
vent installation. If the maximum allowable
equivalent lengths of piping are exceeded, the
unit will not operate properl y or reliably.
For Massachusetts boiler installations, the
Heatfab Division of the Selkirk Corporation
provides vent systems which conform to all
applicable requirements for installations within
the Commonwealth of Massachusetts. Contact
information for this supplier is as follows:
Selkirk Corporation
Heatfab Division
130 Industrial Blvd.
Turners Falls, MA 01376
Phone: 1-800-772-0739
www.heat-fab.com
2.10 COMBUSTION AIR
The AERCO Venting a nd Combustion Air Gu id e,
GF-1050, MUST be co nsulted before any flue or
combustion supply air venting is designed or
started. Combustion air supply is a direct
requirement of ANSI 223.1, NF PA-54, and local
codes. These codes sh ould be consulted before
a permanent design is determined.
The combustion air must be free of chlorine,
halogenated hydrocarbons, or other chemicals
that can become ha zardous when used in gasfired equipment. Common sources of these
compounds are swimming pools, degreasing
compounds, plastic proc essing and refrigerants.
Whenever the env ironment c ontains thes e t ypes
of chemicals, combustion air must be supplied
from a clean area outdoors for the protection
and longevity of the equipment.
The more common methods of combustion air
supply venting are outlined below. For
combustion air suppl y from ducting, consult the
AERCO GF-1050, Venting and Combustion Air
Guide.
2-10
INSTALLATION
2.10.1 COMBUSTION AIR FROM
OUTSIDE THE BUILDING
Air supplied from outside the building must be
provided through two permanent openings. For
each unit these two open ings must have a free
area of not less than one square inch for each
4000 BTUs input of the equipment or 250
square inches of free area. The free area mus t
take into account restrictions such as louvers
and bird screens.
2.10.2 COMBUSTION AIR FROM INSIDE
THE BUILDING
When combustion air is provided f rom within the
building, it must be supplied through two
permanent openings in an interior wall. Each
opening must have a free area of not less than
one square inch per 1000 BT UH of total input or
1000 square inches of f ree area. The free area
must take into account any restrictions such as
louvers.
2.10.3 SEALED COMBUSTION
The KC Boiler is UL a pproved for 100% sealed
combustion application when installed properly.
When a sealed combustion air application is
installed, the se aled combustion air pipi ng must
be deducted from the maximum allowable
discharge piping amounts . Each unit must have
a minimum 6" diam eter connection made to th e
special Inlet Air Adapter # GP-18917 available
from AERCO. This adapter bolts directly on to
the air inlet of the unit ’s blower. See installati on
instructions with adapt er. All inlet air ducts m ust
be sealed air tight.
2-11
CONTROL PANEL OPERATING PROCEDURES
SECTION 3 - CONTROL PANEL OPERATING PROCEDURES
3.1. INTRODUCTION
The information in this Section provides a guide
to the operation of the KC1000 Boiler using the
Control Panel mounted on the front of the unit.
It is imperative that the initial startup of this unit
be performed by factory trained personnel.
Operation prior to initial startup by factory
trained personnel will void the equipment
warranty. In addition, the following WARNINGS
and CAUTIONS must be observed at all times.
CAUTION:
All initial installation procedures must be
satisfied before attempting to start the unit.
WARNING:
ELECTRICAL VOLTAGES IN THIS
SYSTEM INCLUDE 120 AND 24 VOLTS
AC. IT MUST NOT BE SERVICED OR
ACCESSED BY OTHER THAN FACTORY
CERTIFIED SERVICE TECHNICIANS.
1
2
3
WARNING:
DO NOT ATTEMPT TO DRY FIRE THE
BOILER. STARTING THE UNIT WITHOUT
A FULL WATER LEVEL CAN SERIOUSLY
DAMAGE THE UNIT AND MAY RESULT IN
PERSONNEL INJURY OR PROPERTY
DAMAGE. THIS SITUATION WILL VOID
ANY WARRANTY.
3.2. CONTROL PANEL DESCRIPTION
The KC1000 Control Panel shown in Figure 3-1
contains all of the controls, indicators and
displays necessary to operate, adjust and
troubleshoot the KC1000 Boiler. These operating controls, indicators and displays are listed
and described in Table 3-1. Additional information on these items are provided in the individual
operating procedures provided in this Section.
4
12
11
10
9
8
7
Figure 3-1. Control Panel Front View
5
6
3-1
CONTROL PANEL OPERATING PROCEDURES
Table 3-1. Operating Controls, Indicators and Displays
ITEM
NO.
CONTROL, INDICATOR
OR DISPLAY
1 LED Status Indicators Four Status LEDs indicate the current operating status as
follows:
COMM
MANUAL
REMOTE
DEMAND
2 VFD Display Vacuum Fluorescent Display (VFD) consists of 2 lines, each
OUTLET
3
TEMPERATURE
Display
RS-232 Port
4
READY Indicator
5
ON/OFF Switch
6
LOW WATER LEVEL
7
TEST/RESET Switches
FAULT Indicator Red FAULT LED indicator lights when a boiler alarm
8
CLEAR Key
9
10 MENU Keypad Consists of 6 keys which provide the following functions for
MENU
BACK
Lights when RS-232 communication is occurring
Lights when the unit is being controlled using the front panel
keypad.
Lights when the unit is being controlled by an external signal
from an Energy Management System
Lights when there is a demand for heat.
capable of displaying up to 16 alphanumeric characters. The
information displayed includes:
Startup Messages
Alarm Messages
Operating Status Messages
Menu Selection
3–Digit, 7–Segment LED display continuously displays the
outlet water temperature. The °F or °C LED next to the
display lights to indicate whether the displayed temperature is
in degrees Fahrenheit or degrees Celsius.
Port permits a Laptop Computer or External Modem to be
connected to the boiler Control Panel.
Lights when all Pre-Purge conditions have been satisified.
Enables and disables boiler operation.
Allow the operator to test the operation of the water level
monitor.
Pressing TEST opens the water level probe circuit and
simulates a Low Water Level alarm.
Pressing RESET resets the water level monitor circuit.
Pressing CLEAR resets the display.
condition occurs. An alarm message will appear in the VFD.
Turns off the FAULT indicator and clears trhe alarm message
if the alarm is no longer valid. Lockout type alarms will be
latched and cannot be cleared by simply pressing this key.
Troubleshooting may be required to clear these types of
alarms
the Control Panel Menus:
Steps through the main menu categories shown in Figure 3-2.
The Menu categories wrap around in the order shown.
Allows you to go back to the previous menu level without
changing any information. Continuously pressing this key will
bring you back to the default status display in the VFD. Also,
this key allows you to go back to the top of a main menu
category.
FUNCTION
3-2
ITEM
NO.
10
(Cont.)
CONTROL PANEL OPERATING PROCEDURES
Table 3-1. Operating Controls, Indicators and Displays - Continued
CONTROL, INDICATOR
OR DISPLAY
▲ (Up) Arrow When in one of the main menu categories (Figure 3-2),
pressing this key will select the displayed menu category. If
the CHANGE key was pressed and the menu item is flashing,
pressing the ▲ arrow key will increment the selected setting.
▼ (Down) Arrow When in one of the main menu categories (Figure 3-2),
pressing this key will select the displayed menu category. If
the CHANGE key was pressed and the menu item is flashing,
pressing the ▼ (Down) arrow key will increment the selected
setting.
FUNCTION
CHANGE
ENTER
11
12
AUTO/MAN Switch
VALVE POSITION
Bargraph
Permits a setting to be changed (edited). When the
CHANGE key is pressed, the displayed menu item will begin
to flash. Pressing the ▲ or ▼ arrow key when the item is
flashing will increment or decrement the displayed setting.
Saves the modified menu information in memory. The
display will stop flashing.
This switch toggles the boiler between the Automatic and
Manual modes of operation. When in the Manual (MAN)
mode, the front panel controls are enabled and the MANUAL
status LED lights.
When in the Automatic (AUTO) mode, the MANUAL status
LED will be off and the front panel controls disabled.
20 segment red LED bargraph continuously shows the
Air/Fuel Valve Position (% open) in 5% increments from 0 to
100%
3.3. CONTROL PANEL MENUS
The Control Panel incorporates an extensive
menu structure which permits the operator to set
up, and configure the unit. The menu structure
consists of four major menu categories as
shown in Figure 3-2. Each of the menus shown,
contain options which permit operating
parameters to be viewed or changed. The
menus are protected by a password to prevent
unauthorized use.
Prior to entering the correct password, the
options contained in the Operating, Setup,
Configuration and Tuning Menu categories can
be viewed. However, with the exception of
Internal Setpoint Temperature (Configuration
Menu), none of the viewable menu options can
be changed.
Once the valid password (159) is entered, the
options listed in the Setup, Configuration and
Tuning menus can be viewed and changed, if
desired.
3.3.1. Menu Processing Procedure
Accessing each menu and option is
accomplished using the Menu Keys shown in
Figure 3-1. Therefore, it is imperative that you
be thoroughly familiar with the following basic
steps before attempting to perform specific
menu procedures.
1. The Control Panel will normally be in the
Operating Menu and the VFD will display the
current unit status. Pressing the ▲ or ▼
arrow key will display the other available data
items in the Operating Menu.
2. Press the MENU key. The display will show
the Setup Menu which is the next menu
category shown in Figure 3-2. This menu
contains the Password option which must be
entered if other menu options will be
changed.
3-3
CONTROL PANEL OPERATING PROCEDURES
3. Continue pressing the MENU key until the
desired menu is displayed.
4. With the desired menu displayed, press the
▲ or ▼ arrow key. The first option in the
selected menu will be displayed.
5. Continue to press the ▲ or ▼ arrow key until
the desired menu option is displayed.
Pressing the ▲arrow key will display the
available menu options in the Top-Down
sequence. Pressing the ▼ arrow key will
display the options in the Bottom-Up
sequence. The menu options will wraparound after the first or last available option
is reached.
6. To change the value or setting of a displayed
menu option, press the CHANGE key. The
displayed option will begin to flash. Continue
to press the ▲ or ▼ arrow key for the option
to be changed. The available menu option
choices will be displayed. The menu option
choices do not wrap around.
7. To select and store a changed menu option,
press the ENTER key.
OPERATION
PASSWORD
SETUP
CONFIGURATION
NOTE:
The following paragraphs provide brief
descriptions of the options contained in each
menu. Refer to Appendix A for detailed
descriptions of each menu option. Refer to
Appendix B for listings and descriptions of
displayed startup, status and error messages.
3.4. OPERATING MENU
The Operating Menu displays a number of key
operating parameters for the unit as listed in
Table 3-2. This menu is “Read-Only” and does
not allow personnel to change or adjust any of
the displayed items. Since this menu is “ReadOnly”, it can be viewed at any time without
entering a password. Press the ▲ arrow key to
display the menu items in the order listed (TopDown). Pressing the ▼ arrow key will display
the menu items in reverse order (Bottom-Up).
3.5. SETUP MENU
The Setup Menu (Table 3-3) permits the
operator to set the unit password which is
required to change any of the menu options. To
prevent unauthorized use, a previously entered
password entry will time-out after 1 hour. Therefore, the password must be reentered when
required. In addition to permitting password
entries, the Setup Menu is also used to enter
date and time, language to be used for display
messages, units of temperature measurements
and entries required for external communication
and control of the unit via the RS-232 port. A
view-only software version display is also
provided to indicate the current Control Box
software version.
3-4
TUNING
Figure 3-2. Menu Structure
CONTROL PANEL OPERATING PROCEDURES
NOTE
The Outdoor Temp display item shown with an asterisk in Table
3-2 will not be displayed unless the Outdoor Sensor function has
been enabled in the Configuration Menu (Table 3-4).
Table 3-2. Operating Menu
Available Choices or Limits
Menu Item Display Minimum Maximum Menu Item
Status Message
Active Setpoint 40°F 240°F
AIR Temp -70°F 245°F
Outdoor Temp* -70°F 130°F
Valve Position In 0% 100% Valve
Flame Strength 0% 100%
Run Cycles 0 999,999,999
Display
Position
Run Hours 0 999,999,999
Fault Log 0 19 0
Table 3-3. Setup Menu
Available Choices or Limits
Menu Item Display Minimum Maximum Default
Passsword 0 9999 0
Language English English
Time 12:00 am 11:59 pm
Date 01/01/00 12/31/99
Unit of Temp Fahrenheit or Celsius Fahrenheit
Comm Address 0 127 0
Baud Rate 2400, 4800, 9600, 19.2K 9600
Software Ver 0.00 Ver 9.99
3-5
CONTROL PANEL OPERATING PROCEDURES
3.6. CONFIGURATION MENU
The Configuration Menu shown in Table 3-4
permits adjustment of the Internal Setpoint
(Setpt) temperature regardless of whether the
valid password has been entered. Setpt is
required for operation in the Constant Setpoint
mode. The remaining options in this menu
require the valid password to be entered, prior to
changing existing entries. This menu contains a
number of other configuration settings which
may or may not be displayed, depending on the
current operating mode setting.
Table 3-4. Configuration Menu
Available Choices or Limits
Menu Item Display Minimum Maximum Default
Internal Setpt Lo Temp Limit Hi Temp Limit 130°F
Unit Type KC Boiler, KC Boiler LN,
BMK Boiler, BMK Boiler LN,
BMK Boiler Dual, KC Water
Heater, KC Water Heater LN,
Water Heater 2010
Unit Size 0.5 MBTU, 1.0 MBTU
1.5 MBTU, 2.0 MBTU
3.0 MBTU, 3.5 MBTU
4.0 MBTU, 5.0 MBTU
Fuel Type Natural Gas, Propane Natural Gas
Boiler Mode Constant Setpoint,
Remote Setpoint,
Combination
Outdoor Reset
Remote Signal
(If Mode = Remote
Setpoint, Direct Drive
or Combination)
Bldg Ref Temp
(If Mode = Outdoor
Reset)
Reset Ratio
(If Mode = Outdoor
Reset)
Outdoor Sensor Enabled or Disabled Disabled
System Start Tmp
(If Outdoor Sensor =
Enabled)
4 – 20 mA/1 – 5V
0 -20 mA/0 – 5V
PWM Input (BMS)
40°F 230°F 70°F
0.1 9.9 1.2
30°F 100°F 60°F
NOTE:
The Configuration Menu settings shown in
Table 3-4 are Factory-Set in accordance
with the requirements specified for each
individual order. Therefore, under normal
operating conditions, no changes will be
required.
KC Boiler
1.0 MBTU
6.0 MBTU
Constant
Setpoint
Direct Drive
4 – 20 mA,
1-5V
Network
3-6
CONTROL PANEL OPERATING PROCEDURES
Table 3-4. Configuration Menu - Continued
Available Choices or Limits
Menu Item Display Minimum Maximum Default
Setpt Lo Limit 40°F Setpt Hi Limit 60°F
Setpt Hi Limit Setpt Lo Limit 220°F 200°F
Temp Hi Limit 40°F 240°F 210°F
Max Valve Position 40% 100% 100%
Pump Delay Timer 0 min. 30 min. 0 min.
Aux Start On Dly 0 sec. 120 sec. 0 sec.
Failsafe Mode Shutdown or Constant Setpt Shutdown
*Analog Output
(See CAUTION at
end of Table 3-4 )
Low Fire Timer 2 sec. 600 sec. 2 sec.
Setpt Limiting Enabled or Disabled Disabled
Setpt Limit Band 0°F 10°F 5°F
Network Timeout 5 Sec 999 Sec 30 Sec
HI DB Setpt EN 0% 100% 30%
Demand Offsert 0 25 10
Deadband High 0 25 2
Deadband Low 0 25 2
Off, Setpoint, Outlet Temp,
Valve Position 4-20 mA,
Valve Position 0-10V
*CAUTION:
DO NOT CHANGE the Analog Output Menu Item from its Default setting
(Valve Position 0-10V).
3.7. TUNING MENU
The Tuning Menu items in Table 3-5 are Factory
set for each individual unit.
Table 3-5. Tuning Menu
Available Choices or Limits
Menu Item Display Minimum Maximum Default
Prop Band 1°F 120°F 70°F
Integral Gain 0.00 2.00 1.00
Derivative Time 0.0 min 2.0 min 0.0 min
Reset Defaults? Yes
*Valve
Position
0-10V
Do not change these menu entries unless
specifically requested to do so by FactoryTrained personnel.
No
No
Are You Sure?
3-3-7
CONTROL PANEL OPERATING PROCEDURES
3.8. START SEQUENCE
When the Control Box ON/OFF switch is set to
the ON position, it checks all pre-purge safety
switches to ensure they are closed. These
switches include:
• Safety Shut-Off Valve Proof of Closure
(POC) switch
• Low Water Level switch
• High Water Temperature switch
• High Gas Pressure switch
• Low Gas Pressure switch
If all of the above switches are closed, the
READY light above the ON/OFF switch will light
and the unit will be in the Standby mode.
When there is a demand for heat, the following
events will occur:
NOTE:
If any of the Pre-Purge safety device switches
are open, the appropriate fault message will be
displayed. Also, the appropriate fault messages
will be displayed throughout the start sequence,
if the required conditions are not observed.
3. With all required safety switches closed, a
purge cycle will be initiated and the following
events will occur:
(a) Blower relay energizes and turns on
blower.
(b) Air/Fuel Valve rotates to the full-open
purge position and closes purge position
switch. The dial on the Air/Fuel Valve
(Figure 3-4) will read 100 to indicate that
the valve is full-open (100%).
STEPPER
MOTOR
DIAL
(DETAIL “A”)
1. The DEMAND LED status indicator will light.
2. The unit checks to ensure that the proof of
closure switch in the Safety Shut-Off Valve
(SSOV) is closed (Figure 3-3).
100
DETAIL "A"
Figure 3-4.
Air/Fuel Valve In Purge Position
4. Next, the blower proof switch (Figure 3-5)
closes and the display will show Purging and
indicate the elapsed time of the purge cycle
in seconds. The normal (default) time for the
purge cycle is 7 seconds.
3-8
Figure 3-3.
Safety Shut-Off Valve
Loading...
+ 78 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.