Protected Terminals | 181
11. Protected Terminals
Monitored Hot Stand By (MHSB)
This section describes configuring the protected terminal in MHSB mode.
A protected terminal in MHSB mode comprises two radios interconnected using a MHSB switch. This MHSB switch comprises one RF switch and up to four tributary switches depending on the number of tributaries requiring switching:
The MHSB switch protect terminals against any single failure in one radio. It also monitors the alarm output of each radio and switches between radios if major radio link alarms occur. The MHSB switch will not allow a switch to a faulty radio.
The MHSB switch uses a CPU to monitor the alarm status received from both the connected radios' alarm ports. When a relevant major radio link alarm is detected on the active radio (that is, transmitter, receiver, power supply or modem), the CPU switches a bank of relays that switches all the interfaces and the transmit port from the main radio to a functioning stand-by radio. The stand-by radio now becomes the active radio.
The MHSB switch has a hysteresis of 30 seconds to prevent switching on short alarm transients.
The tributary switch and the RF switch are both a 19-inch rack-mount 1U high chassis. The MHSB switch option is available for all Aprisa XE frequency bands.
Aprisa XE User Manual
182 | Protected Terminals
Tributary Switch Front Panel
No. |
Description |
Explanation |
|
|
|
1 |
Power supply input |
Input for DC power or AC power |
|
|
|
2 |
Protective earth |
M5 terminal intended for connection to an external protective |
|
|
conductor for protection against electric shock in case of a fault |
|
|
|
3 |
Interface ports |
Port for connecting to customer interface equipment |
|
|
|
4 |
Radio A interfaces |
These connect to the interface ports on radio A |
|
|
|
5 |
Radio B interfaces |
These connect to the interface ports on radio B |
|
|
|
6 |
Console |
For factory use only |
|
|
|
7 |
Ethernet |
Port for connecting to customer Ethernet network. This port is |
|
|
also used to set up and manage the radios remotely over an IP |
|
|
network |
|
|
|
8 |
Radio A Ethernet |
Connects to an Ethernet port on radio A |
|
|
|
9 |
Radio B Ethernet |
Connects to an Ethernet port on radio B |
|
|
|
10 |
Alarms |
Alarm input/output connections for customer equipment |
|
|
|
11 |
Radio A alarms |
Connects to the alarm port on radio A |
|
|
|
12 |
Radio B alarms |
Connects to the alarm port on radio B |
|
|
|
13 |
RF SW |
Provides power and signalling to the RF switch |
|
|
|
14 |
Mode switch |
Three-position locking toggle switch to set the MHSB switch into |
|
|
automatic mode or radio A / radio B test mode |
|
|
|
15 |
LEDs |
Mode and status LEDs |
|
|
|
Aprisa XE User Manual
|
|
|
|
Protected Terminals | 183 |
|
Tributary Protection Switch LEDs |
|
|
|||
|
|
|
|
|
|
|
LED |
Colour |
Appearance |
Explanation |
|
|
|
|
|
|
|
|
A |
Green |
Solid |
The radio is active and is OK |
|
|
|
|
|
|
|
|
|
Green |
Flashing |
The radio is in standby mode and is OK |
|
|
|
|
|
|
|
|
|
Red |
Solid |
The radio is active and there is a fault |
|
|
|
|
|
|
|
|
|
No colour (off) |
- |
The tributary switch is in 'slave' mode and the |
|
|
|
|
|
switching is controlled by the master tributary |
|
|
|
|
|
switch |
|
|
|
|
|
|
|
|
|
Red |
Flashing |
The radio is in standby mode, and there is a fault |
|
|
|
|
|
|
|
|
B |
Green |
Solid |
The radio is active and is OK |
|
|
|
|
|
|
|
|
|
Green |
Flashing |
The radio is in standby mode and is OK |
|
|
|
|
|
|
|
|
|
Red |
Solid |
The radio is active and there is a fault |
|
|
|
|
|
|
|
|
|
No colour (off) |
- |
The tributary switch is in 'slave' mode and the |
|
|
|
|
|
switching is controlled by the master tributary |
|
|
|
|
|
switch |
|
|
|
|
|
|
|
|
|
Red |
Flashing |
The radio is in standby mode, and there is a fault |
|
|
|
|
|
|
|
|
~ |
Green |
Solid |
The tributary protection switch is in 'auto' mode |
|
|
|
|
|
|
|
|
|
Green |
Flashing |
The tributary protection switch is in 'slave' mode |
|
|
|
|
|
|
|
|
|
Red |
Solid |
The tributary protection switch is in 'manual' |
|
|
|
|
|
mode (A or B) |
|
|
|
|
|
|
|
|
On |
Blue |
Solid |
Indicates that there is power to the tributary |
|
|
|
|
|
protection switch |
|
|
|
|
|
|
|
RF Switch Front Panel
No. |
Description |
Explanation |
|
|
|
1 |
Radio QMA |
QMA connectors for connecting the protected radios |
|
|
|
2 |
Protective earth |
M5 terminal intended for connection to an external protective |
|
|
conductor for protection against electric shock in case of a fault |
|
|
|
3 |
Antenna port |
N-type female connector for connection to the antenna feeder |
|
|
cable. This view shows an internally mounted duplexer. If an |
|
|
external duplexer is fitted, the antenna port will be on the |
|
|
external duplexer |
|
|
|
4 |
Slave tributary |
Connects to secondary tributary switch for control of additional |
|
switch outputs |
interfaces |
|
|
|
5 |
Tributary switch |
Connects the RF switch to the tributary switch (the master if |
|
|
more than one tributary switch is required) |
|
|
|
6 |
LEDs |
Status LEDs |
|
|
|
Aprisa XE User Manual
184 | Protected Terminals
RF Protection Switch LEDs
LED |
Colour |
Appearance |
Explanation |
|
|
|
|
Tx A |
Green |
Solid |
RF is being received from radio A |
|
|
|
|
Tx B |
Green |
Solid |
RF is being received from radio B |
|
|
|
|
On |
Blue |
Solid |
Indicates that there is power to the RF protection switch |
|
|
|
|
Slave Tributary Switches
Each tributary switch protects up to eight ports. Up to three slave tributary switches may be added to a MHSB terminal to protect up to 32 ports. Each slave tributary switch is interconnected by means of the slave tributary switch ports on the RF switch, as shown below.
Note: A tributary switch that is operating as a slave (rather than a master) has a RJ-45 V.24 loopback connector plugged into the console port. If the connector is missing, contact Customer Support. Alternatively, you can make this connector. Follow the standard pinouts for a V.24 RJ-45 connection (see ‘QV24 Interface connections’ on page 273).
Aprisa XE User Manual
Protected Terminals | 185
MHSB Cabling
The two radios are interconnected as follows:
CAUTION: Do not connect Transmit to Receive or Receive to Transmit as this may damage the radio or the MHSB switch.
Cables supplied with MHSB
The following cables are supplied with a MHSB terminal:
Ethernet interface: RJ-45 ports standard TIA-568A patch cables .
Alarm interface: RJ-45 ports standard TIA-568A patch cables.
RF ports: two QMA male patch cables are supplied.
MHSB Power Supply
See ‘DC Power Supply’ on page 37 and ‘AC Power Supply’ on page 40.
Aprisa XE User Manual
186 | Protected Terminals
Configuring the Radios for Protected Mode
The MHSB switch does not require any special software. However, the radios connected to the MHSB switch must be configured to work with the MHSB switch. This sets the alarm outputs and inputs to function in MHSB mode.
You must configure the interfaces of both radios connected to the MHSB switch identically. To perform this, you can either connect directly to the radio or use the test mode of the MHSB switch.
MHSB Terminal IP Addresses
Before configuring the link, you must ensure that the two independent links have correctly configured IP address details.
All four radios in the protected link must be on the same subnet.
Example of MHSB IP addressing
Aprisa XE User Manual
Protected Terminals | 187
Mounting the MHSB Radios and Switches
Once the IP addresses are correctly configured, it is important to connect the A and B radios' Ethernet and Alarm ports correctly. In general, mount radio A above the MHSB switch and radio B below the MHSB switch:
There is an Ethernet connection between any of the four Ethernet ports on each radio and the Ethernet port on the Tributary switch. There is also a connection between radio A and radio B, which ensures Ethernet traffic is maintained if a radio loses power.
The Ethernet port on the protection switch can be connected to an Ethernet hub or switch to allow multiple connections.
Important: The management Ethernet capacity on each of the four radios in the protected terminal must be identical for remote communications to work and there should only be one IP connection to the management network (via the tributary switch Ethernet port).
Aprisa XE User Manual
188 | Protected Terminals
Configuring the Terminals for MHSB
It is recommended that you configure the local and remote A side first, then the local and remote B side. Both the local A and B radios must be configured identically, and both the remote A and B radios must be configured identically.
Tip: As illustrated below, you may find it helpful to have two browser sessions running simultaneously. You can then easily see both the A and B sides of the protected link.
To configure MHSB operation:
1. Select Link > Maintenance > MHSB.
2.Enable MHSB mode.
3.Select whether the radio is A or B.
Ensure that the radio connected to the A side of the protection switch (normally above the MHSB switch) is set to Radio A and the radio connected to the B side of the protection switch (normally below the MHSB switch) is set to Radio B.
In the event of a power outage, the radios will switch over to the A side of the protection switch when the power is restored. The A side is also the default active side.
4.When you have made your changes, click Apply to apply changes or Reset to restore the previous configuration.
5.Repeat steps 2 to 4 for the other side of the protected link.
Aprisa XE User Manual
Protected Terminals | 189
Clearing MHSB Alarms
If a switchover event occurs, the OK LED on the front panel and on the Terminal status and menu bar in SuperVisor changes to amber.
1. Select Clear Switched Alarm from the MHSB Command drop-down list.
2. Click Apply to apply changes or Reset to reset the page.
Note: When MHSB mode is enabled, external alarm input 2 is used by the protection system to carry alarms from the protection switch to the radio. In MHSB mode, therefore, only external alarm input 1 is available for user alarms.
Aprisa XE User Manual
190 | Protected Terminals
Hitless Space Diversity (HSD)
HSD provides hitless RF receive path protection and hot standby transmitter redundancy. It is typically deployed for paths where high path availability is required.
An Aprisa XE hitless space diversity terminal comprises two radio terminals, radio A and radio B.
Radio A is the primary radio which is fitted with the interface cards and connects to antenna A.
Antenna A always carries the transmitted signal and the received signal for Radio A.
Radio B is the secondary radio the receiver of which connects to antenna B. The transmitter in this radio is the standby transmitter.
In the event of a radio A active transmitter failure, radio B transmitter becomes active.
Antenna B only carries the received signal for Radio B. This antenna is physically separated on the tower by a pre-determined distance from Antenna A.
As both radios have a receive path, traffic from the path with the best received bit error rate is routed to the customer interfaces in radio A.
In an HSD terminal, a HSD Protection Switch Card (PSC) is always fitted in slot H in Radio A and a HSD Protection Interface Card (PIC) is always fitted in slot H in Radio B. The PSC card has a card front switch which controls the hardware setting of the HSD system Active Radio (Auto Select, Radio A or Radio B).
Customer interfaces are provided on radio A only in interface slots A to G. Interface connections to Ethernet and the external alarm inputs and outputs are also provided on radio A only.
Aprisa XE User Manual
Protected Terminals | 191
HSD Terminal Cabling
The two HSD radios are interconnected as follows:
Cables Supplied with HSD Terminal
The following cables are supplied with a HSD terminal:
RF cable
A 110 mm QMA female to QMA female low loss RF cable is required to interconnect between the TX ports of both radio A and radio B. This cable carries the radio B transmitter output to the radio A transmitter switch.
Ethernet Cable
A 200 mm RJ45 to RJ45 Ethernet cable between the Ethernet ports of radio A and radio B. This cable carries management IP traffic between radio A and radio B.
Traffic Cable
A 200 mm RJ45 to RJ45 Ethernet cable between the PSC and PIC. This cable carries all user traffic between Radio A and Radio B.
Aprisa XE User Manual
192 | Protected Terminals
HSD Terminal IP Addresses
Each radio in the HSD link is assigned a unique IP address. All four radios in the HSD link must be on the same subnet.
The IP address of the four terminals can only be changed by logging into the relevant radio A or radio B.
When the IP addresses have been setup, an ethernet connection to any of the four radios can access all four radios in the HSD link. The usual ethernet connection is to the near end Radio A (see ‘IP Addressing of Terminals’ on page 53).
Example of IP addressing
Aprisa XE User Manual
Protected Terminals | 193
Configuring HSD Terminals
To simplify the management and configuration of the HSD terminals, SuperVisor provides four windows which display the parameters for all four radios, the local and remote, radios A and B. The HSD System menu item displays the four windows.
When a parameter is changed in the four window mode, the relevant parameter is automatically changed to the same setting on the corresponding radio e.g. if a radio A modulation type is changed, the radio B modulation type is also changed to the same setting.
The Local and Remote menus continue to display the parameters for the local and remote radios for the near end terminal logged into.
The majority of SuperVisor HSD System pages contain the same parameters and controls as the standard 1+0 XE terminal. The main exceptions are the HSD Control page and the HSD Performance Summary page.
Aprisa XE User Manual
194 | Protected Terminals
HSD Active Radio Control
The HSD system ‘Active Radio’ control determines if the selection of Radio A or Radio B is automatic or manual. This controls both the radio transmitters and receivers.
The Active Radio can be set with the hardware switch on the PSC card front or with the SuperVisor software control. The last change of hardware / software control determines the state of the HSD system.
The SuperVisor software control will always reflect the state of the HSD system.
After terminal startup or reboot, the state of the PSC mode switch determines the setting used by the system and the SuperVisor software control is set to reflect the state of the HSD system.
The PSC card has two card front LEDs which indicate the status of the HSD system:
PSC Mode |
|
Hardware Control Change |
|
|
Software Control Change |
|||||
Switch |
|
|
|
|
|
|
|
|
|
|
|
LED A |
|
|
LED B |
|
|
LED A |
|
LED B |
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
Radio A |
|
Solid Amber |
|
|
Off |
|
|
Flashing Amber |
|
Off |
|
|
|
|
|
|
|
|
|
|
|
Auto Select |
|
Solid Green |
|
|
Solid Green |
|
|
Flashing Amber |
|
Flashing Amber |
|
|
|
|
|
|
|
|
|
|
|
Radio B |
|
Off |
|
|
Solid Amber |
|
|
Off |
|
Flashing Amber |
|
|
|
|
|
|
|
|
|
|
|
To set the HSD controls:
1. Select HSD System > Maintenance > Control.
2. Set the Active Radio parameter.
Active Radio |
Mode of Operation |
|
|
Auto Select |
Automatic mode: |
(default) |
The hitless receive will select traffic from the receive path of best |
|
performance |
|
The HSD system will switch to the standby transmitter if the active |
|
transmitter fails (TX failure alarm) |
|
|
Radio A Only |
Manual selection of radio path A only for both the transmitter and |
|
receiver i.e. no automatic switching |
|
|
Radio B Only |
Manual selection of radio path B only for both the transmitter and |
|
receiver i.e. no automatic switching |
|
|
Note: There is no timeout for a manual selection of the Active Radio setting (Radio A only or Radio B only) but a ‘Mode Switch Software Override’ alarm will warn if the software has overwritten the PSC Mode Switch.
Aprisa XE User Manual
|
|
Protected Terminals | 195 |
|
3. Set the Parameter Compare Checking. |
|||
|
|
|
|
|
Parameter Compare Checking |
Option |
|
|
|
|
|
|
On |
Any mismatch in parameters shown in Terminal Settings |
|
|
(default) |
between Radio A and Radio B will generate a Parameter |
|
|
Mismatch alarm. |
|
|
|
|
|
|
|
|
|
|
|
Off |
No Parameter Mismatch alarm will be generated. |
|
|
|
|
|
To view the HSD System Performance Summary:
1. Select HSD System > Performance > Summary.
Field |
Explanation |
|
|
Terminal UCEs |
The total number of HSD terminal uncorrectable blocks since the last |
|
reset |
|
|
Terminal Errored |
The total number of HSD terminal operational seconds with errored |
seconds |
traffic since the last reset |
|
|
Terminal Error free |
The total number of HSD terminal error free operational seconds since |
seconds |
the last reset |
|
|
Terminal BER |
The system will report an estimated HSD terminal Bit Error Rate up to a |
|
maximum of 1 in 1021 |
Active Transmitter |
Dislays the current active transmitter (TxA or TxB) |
|
|
Click Reset Counters to reset the error counters to zero.
Aprisa XE User Manual
In-Service Commissioning | 197
12. In-Service Commissioning
Before You Start
When you have finished installing the hardware, RF and the traffic interface cabling, the system is ready to be commissioned. Commissioning the terminal is a simple process and consists of:
1.Powering up the terminals
2.Configuring both the local and remote terminals using SuperVisor
3.Aligning the antennas
4.Synchronizing the terminals
5.Testing the link is operating correctly. As a minimum, conduct the suggested tests to ensure correct operation. More extensive testing may be required to satisfy the end client or regulatory body requirements.
6.Connecting up the client or user interfaces
What You Will Need
Appropriately qualified commissioning staff at both ends of the link.
Safety equipment appropriate for the antenna location at both ends of the link. Communication equipment, that is, mobile phones or two-way radios.
SuperVisor software running on an appropriate laptop, computer, or workstation at one end of the link.
Tools to facilitate loosening and re-tightening the antenna pan and tilt adjusters.
Predicted receiver input levels and fade margin figures from the radio link budget (You can use Surveyor (see ‘Path planning’ on page 23) to calculate the RSSI, fade margin, and availability).
Aprisa XE User Manual
198 | In-Service Commissioning
Applying Power to the Terminals
WARNING:
Before applying power to a terminal, ensure you have connected the safety earth and antenna cable.
Apply power to the terminals at each end of the link.
When power is first applied, all the front panel LEDs will illuminate red for several seconds as the system initializes.
After the system is initialized, the OK LED on the front panel should illuminate green and if the terminals are correctly configured, the TX and RX LED should also be illuminated green.
If the RX LED is: |
|
Red |
the antennas are may be significantly mis-aligned with no signal being |
|
received |
Amber |
the antennas may be roughly aligned with some signal being received |
Green |
the antennas are well-aligned and adequate signal is being received to create |
|
a reliable path |
If the TX LED is: |
|
Red |
the transmitter is faulty |
Amber |
there is a fault in the antenna connection or feeder cable |
Green |
the transmitter is working normally |
Review the Link Configurations Using SuperVisor
1.Connect a PC, with SuperVisor installed, to both terminals in the link.
2.Log into the link.
3.Select Link > Summary and confirm the following basic information:
Terminal IP address(es)
Terminal TX and RX frequencies
RSSI (dBm)
TX power (dBm)
SNR (dBm)
Note: If the terminals have not already been configured, refer to ‘Configuring the terminal’ on page 69, ‘Configuring the traffic interfaces’ on page 91, and ‘Configuring the traffic cross connections’ on page 145.
Aprisa XE User Manual
In-Service Commissioning | 199
Antenna Alignment
For any point-to-point link, it is important to correctly align the antennas to maximize the signal strength at both ends of the link. Each antenna must be pointing directly at the corresponding antenna at the remote site, and they must both be on the same polarization. The antennas are aligned visually, and then small adjustments are made while the link is operating to maximize the received signal.
Directional antennas have a radiation pattern that is most sensitive in front of the antenna, in line with the main lobe of the radiation pattern. There are several other lobes (side lobes) that are not as sensitive as the main lobe in front of the antenna.
For the link to operate reliably, it is important that the main lobes of both antennas are aligned. If any of the side lobes are aligned to the opposite antenna, the received signal strength of both terminals will be lower, which could result in fading. If in doubt, check the radiation patterns of the antennas you are using.
Checking the Antenna Polarization
Check that the polarization of the antennas at each end of the link is the same.
Antenna polarization of grid antennas are normally indicated by an arrow or with ‘H’ and ‘V’ markers (indicating horizontal and vertical).
On Yagi antennas, ensure the orientation of the elements are the same at each end of the link.
Transmit frequency and power, and antenna polarization would normally be defined by a regulatory body, and typically licensed to a particular user. Refer to your license details when setting the antenna polarization.
Aprisa XE User Manual
200 | In-Service Commissioning
Visually Aligning Antennas
1.Stand behind the antenna, and move it from side to side until it is pointing directly at the antenna at the remote site. The remote antenna may be made more visible by using a mirror, strobe light, or flag.
If the remote end of the link is not visible (due to smoke, haze, or local clutter, etc), align the antenna by using a magnetic compass. Calculate the bearing using a scale map of the link path.
When setting the antenna on the desired bearing ensure that you use the appropriate true-north to magnetic-north offset. Also ensure that the compass reading is not affected by standing too close to metallic objects.
2.Once the antenna is pointing at the remote antenna, tighten the nuts on the U-bolt or antenna clamp just enough to hold it in position. Leave the nuts loose enough so that small adjustments can still be made. Check that the antenna is still pointing in the correct direction.
3.Move the antenna up or down until it is pointing directly at the remote site.
4.Tighten the elevation and azimuth adjustment clamps.
5.Mark the position of the antenna clamps so that the antenna can be returned to this rough aim point easily when accurately aligning the antennas.
6.Repeat steps 1-5 at the opposite site.
Note: Low gain antennas need less adjustment in elevation as they are simply aimed at the horizon. They should always be panned horizontally to find the peak signal.
Aprisa XE User Manual
In-Service Commissioning | 201
Accurately Aligning the Antennas
Once the antennas are visually aligned, accurately align both antennas by carefully making small adjustments while monitoring the RSSI. This will give the best possible link performance.
Note: Remember that it is important to align the main radiation lobes of the two antennas to each other, not any side lobes. It may be easier to perform this procedure if you can communicate with someone at the remote site by telephone, mobile, or two-way radio.
1.Connect a laptop PC running SuperVisor software and power up the terminals at both ends of the link. Select Link > Performance > Summary so that you can see the RSSI indication for the local terminal. Alternatively, use the RSSI test point on the front panel together with a multimeter (see ‘Measuring the RSSI’ on page 202).
2.Move the antenna through a complete sweep horizontally (known as a 'pan') either side of the point established in the visual alignment process above. Note down the RSSI reading for all the peaks in RSSI that you discover in the pan.
3.Move the antenna to the position corresponding to the maximum RSSI value obtained during the pan. Move the antenna horizontally slightly to each side of this maximum to find the two points where the RSSI drops slightly.
4.Move the antenna halfway between these two points and tighten the clamp.
5.If the antenna has an elevation adjustment, move the antenna through a complete sweep (known as a 'tilt') vertically either side of the point established in the visual alignment process above. Note down the RSSI reading for all the peaks in RSSI that you discover in the tilt.
6.Move the antenna to the position corresponding to the maximum RSSI value obtained during the tilt. Move the antenna slightly up and then down from the maximum to find the two points where the RSSI drops slightly.
7.Move the antenna halfway between these two points and tighten the clamp.
8.Recheck the pan (steps 2-4) and tighten all the clamps firmly.
9. Perform steps 1-8 at the remote site.
Aprisa XE User Manual
202 | In-Service Commissioning
Measuring the RSSI
Measure the RSSI value with a multimeter connected to the RSSI test port on the front of the terminal (see ‘Front panel connections and indicators’ on page 31).
1.Insert the positive probe of the multimeter into the RSSI test port, and clip the negative probe to the chassis of the terminal (earth).
2.Pan and tilt the antenna until you get the highest VDC reading. The values shown in the table below relate the measured VDC to the actual received signal level in dBm regardless of bandwidth and frequency.
RSSI test |
RSSI |
|
RSSI test |
RSSI |
|
RSSI test |
RSSI |
port value |
reading |
|
port value |
reading |
|
port value |
reading |
(VDC) |
(dBm) |
|
(VDC) |
(dBm) |
|
(VDC) |
(dBm) |
|
|
|
|
|
|
|
|
0.000 |
- 100 |
|
0.675 |
- 73 |
|
1.350 |
- 46 |
|
|
|
|
|
|
|
|
0.025 |
- 99 |
|
0.700 |
- 72 |
|
1.375 |
- 45 |
|
|
|
|
|
|
|
|
0.050 |
- 98 |
|
0.725 |
- 71 |
|
1.400 |
- 44 |
|
|
|
|
|
|
|
|
0.075 |
- 97 |
|
0.750 |
- 70 |
|
1.425 |
- 43 |
|
|
|
|
|
|
|
|
0.100 |
- 96 |
|
0.775 |
- 69 |
|
1.450 |
- 42 |
|
|
|
|
|
|
|
|
0.125 |
- 95 |
|
0.800 |
- 68 |
|
1.475 |
- 41 |
|
|
|
|
|
|
|
|
0.150 |
- 94 |
|
0.825 |
- 67 |
|
1.500 |
- 40 |
|
|
|
|
|
|
|
|
0.175 |
- 93 |
|
0.850 |
- 66 |
|
1.525 |
- 39 |
|
|
|
|
|
|
|
|
0.200 |
- 92 |
|
0.875 |
- 65 |
|
1.550 |
- 38 |
|
|
|
|
|
|
|
|
0.225 |
- 91 |
|
0.900 |
- 64 |
|
1.575 |
- 37 |
|
|
|
|
|
|
|
|
0.250 |
- 90 |
|
0.925 |
- 63 |
|
1.600 |
- 36 |
|
|
|
|
|
|
|
|
0.275 |
- 89 |
|
0.950 |
- 62 |
|
1.625 |
- 35 |
|
|
|
|
|
|
|
|
0.300 |
- 88 |
|
0.975 |
- 61 |
|
1.650 |
- 34 |
|
|
|
|
|
|
|
|
0.325 |
- 87 |
|
1.000 |
- 60 |
|
1.675 |
- 33 |
|
|
|
|
|
|
|
|
0.350 |
- 86 |
|
1.025 |
- 59 |
|
1.700 |
- 32 |
|
|
|
|
|
|
|
|
0.375 |
- 85 |
|
1.050 |
- 58 |
|
1.725 |
- 31 |
|
|
|
|
|
|
|
|
0.400 |
- 84 |
|
1.075 |
- 57 |
|
1.750 |
- 30 |
|
|
|
|
|
|
|
|
0.425 |
- 83 |
|
1.100 |
- 56 |
|
1.775 |
- 29 |
|
|
|
|
|
|
|
|
0.450 |
- 82 |
|
1.125 |
- 55 |
|
1.800 |
- 28 |
|
|
|
|
|
|
|
|
0.475 |
- 81 |
|
1.150 |
- 54 |
|
1.825 |
- 27 |
|
|
|
|
|
|
|
|
0.500 |
- 80 |
|
1.175 |
- 53 |
|
1.850 |
- 26 |
|
|
|
|
|
|
|
|
0.525 |
- 79 |
|
1.200 |
- 52 |
|
1.875 |
- 25 |
|
|
|
|
|
|
|
|
0.550 |
- 78 |
|
1.225 |
- 51 |
|
1.900 |
- 24 |
|
|
|
|
|
|
|
|
0.575 |
- 77 |
|
1.250 |
- 50 |
|
1.925 |
- 23 |
|
|
|
|
|
|
|
|
0.600 |
- 76 |
|
1.275 |
- 49 |
|
1.950 |
- 22 |
|
|
|
|
|
|
|
|
0.625 |
- 75 |
|
1.300 |
- 48 |
|
1.975 |
- 21 |
|
|
|
|
|
|
|
|
0.650 |
- 74 |
|
1.325 |
- 47 |
|
2.000 |
- 20 |
|
|
|
|
|
|
|
|
Aprisa XE User Manual
In-Service Commissioning | 203
Checking Performance
The amount of testing performed on the completed installation will depend on circumstances. Some customers may need to prove to a local licensing regulatory body that the link complies with the license provisions. This may require special telecommunications test equipment to complete these tests. Most customers simply want to confirm that their data traffic is successfully passing over the link, or that the customer interfaces comply with known quality standard.
However, the most important performance verification checks are:
Receive input level
Fade margin
Long-term BER
Checking the Receive Input Level
The received signal strength at the local terminal is affected by many components in the system and has a direct relationship with the resulting performance of the link. A link operating with a lower than expected signal strength is more likely to suffer from degraded performance during fading conditions. The receive input level of a link is normally symmetrical (that is, similar at both ends).
1.Compare the final RSSI figure obtained after antenna alignment with that calculated for the link.
2.If the RSSI figure is in excess of 3 dB down on the predicted level, recheck and correct problems using the table below and then recheck the RSSI. Alternatively, recheck the link budget calculations.
Possible cause |
Terminal(s) |
|
|
Is the terminal operating on the correct frequency? |
Local & remote |
|
|
Is the remote terminal transmit power correct? |
Remote |
|
|
Are all the coaxial connectors tight? |
Local & remote |
|
|
Is the antenna the correct type, that is, gain and frequency of operation? |
Local & remote |
|
|
Is the antenna polarized? |
Local & remote |
|
|
Is the antenna aligned? |
Local & remote |
|
|
Is the path between the terminals obstructed? |
|
|
|
Note: If following the above steps does not resolve the situation, contact Customer Support for assistance.
3.Record the RSSI figure on the commissioning form.
4.Repeat steps 1 to 2 for the other end of the link.
Aprisa XE User Manual
204 | In-Service Commissioning
Checking the Fade Margin
The fade margin is affected by many components in the system and is closely related to the received signal strength. A link operating with a lower than expected fade margin is more likely to suffer from degraded performance during fading conditions. A reduced fade margin can be due to operating the link too close to the noise floor, or the presence of external interference. The fade margin of a link can be asymmetrical (that is, different at each end).
Possible causes of low fade margin are as follows:
Problem |
Terminal |
|
|
Low receive signal strength (see above table) |
Local and Remote |
|
|
Interfering signals on the same, or very close to, the frequency of the |
Local |
local terminal receiver. |
|
|
|
Intermodulation products that land on the same or very close to the |
Local or Remote |
frequency of the local terminal receiver. |
|
|
|
Operating near the local receiver noise floor |
Local |
|
|
To check the fade margin:
1.Confirm (and correct if necessary) the receive input level (see the previous test).
Note: If the receive input level is lower than expected, the fade margin may also be low.
2.Select Link > Performance > Summary and check the current BER of the link in its normal condition is better than 10-6 (If necessary, clear out any extraneous errors by clicking Reset Counters).
3.Check the signal to noise (S/N) indication on the Link > Performance > Summary page. This shows the quality of the signal as it is being processed in the modem. It should typically be better than 30 dB. If it is less than 25 dB, it means that either the RSSI is very low or in-band interference is degrading the S/N performance.
4.Temporarily reduce the remote site's transmit power using either an external attenuator or SuperVisor (Remote > Terminal > Basic).
Note: Ideally, the transmit power of the remote site should be reduced by up to 20 dB, which will require the use of an external 50 ohm coaxial attenuator capable of handling the transmit power involved. In the absence of an attenuator, reduce the transmit power using SuperVisor.
5.Check and note the current BER of the link in its now faded condition (Again, if necessary, clear out any extraneous errors (introduced by the power reduction step above) by clicking Reset Counters).
6.Compare the unfaded and faded BER performance of the link (steps 2 and 4). Continue to reduce the remote transmit power until either the BER drops to 10-6 or the remote transmitter power has been reduced by 20 dB.
Note: The fade margin of the link is expressed as a number (of dB) that the link can be faded (transmitter power reduced) without reducing the BER below operating specifications (1 * 10-6 BER). A 20 dB fade margin is adequate for most links.
Aprisa XE User Manual
In-Service Commissioning | 205
7.Record the fade margin and SNR results on the commissioning form.
Note: If the transmit power is reduced using SuperVisor rather than an external attenuator, the fade margin should be recorded as ‘Greater than x dB’ (where x = the power reduction).
8.Restore the remote terminal transmit power to normal.
9.Repeat steps 1 to 7 for the other end of the link.
Note: If following all the guidelines above does not resolve the situation, contact Customer Support for assistance.
Checking the Long-Term BER
The BER test is a measure of the stability of the complete link. The BER results of a link can be asymmetrical (that is, different at each end).
1.Select Link > Performance > Summary and check the current BER and error counters of the link. If necessary, clear out any extraneous errors by selecting Reset Counters.
2.Wait 15 minutes, and check the BER display and error counters again. If there are a small number of errors and the BER is still better than 1 x 10-9, continue the test for 24 hours. If there are a significant number of errors, rectify the cause before completing the 24 hour test.
Note: It is normal to conduct the BER test in both directions at the same time, and it is important that no further work be carried out on the equipment (including the antenna) during this period.
3.The BER after the 24 hour test should typically be better than 1 x 10-8.
4.Record the BER results on the commissioning form.
Bit Error Rate Tests
A Bit Error Rate (BER) test can be conducted on the bench, (see ‘Bench Setup’ on page 43).
Attach the BER tester to the interface port(s) of one terminal, and either another BER tester or a loopback plug to the corresponding interface port of the other terminal.
This BER test can be carried out over the Ethernet, E1 / T1, V.24 or HSS interfaces. It will test the link quality with regard to user payload data.
CAUTION: Do not apply signals greater than -20 dBm to the antenna as they can damage the receiver. In a bench setup, there must be 60 - 80 dB at up to 2 GHz of 50 ohm coaxial attenuation (capable of handling the transmit power) between the terminals’ antenna connectors.
Aprisa XE User Manual
206 | In-Service Commissioning
Additional Tests
Depending on license requirements or your particular needs, you may need to carry out additional tests, such as those listed below.
Refer to the relevant test equipment manuals for test details.
Test |
Test equipment required |
|
|
TX power output measurements (at TX and |
Power meter |
duplexer outputs) |
|
|
|
TX spectrum bandwidth |
Spectrum analyzer |
|
|
TX spectral purity or harmonic outputs |
Spectrum analyzer |
|
|
TX center frequency |
Frequency counter or spectrum analyzer |
|
|
Bulk capacity BER test |
BER tester |
|
|
LAN throughput or errors |
LAN tester |
|
|
G.703 / HDB3 waveforms |
Digital oscilloscope |
|
|
Serial interface BER |
BER tester |
|
|
Audio quality |
PCM4 or SINAD test set |
|
|
Aprisa XE User Manual
In-Service Commissioning | 207
Checking the Link Performance
For a graphical indication of the link performance, you can use the constellation analyzer.
The 'dots' are a graphical indication of the quality of the demodulated signal. Small dots that are close together indicate a good signal. If the dots become spaced further apart, this indicates that the signal quality is degrading. This signal quality degradation can be caused by low Rx signal level due to, for example:
external interference
failure of any of the following: modem, receiver, far end transmitter, an antenna (either end), a feeder or connector (for example, due to water damage)
path issues such as multipath fading or obstructions
To check the performance of the link using the constellation analyzer:
1. Select Link or Local or Remote > Performance > Constellation.
2.Click Start to start the constellation analyzer.
While the constellation analyzer is running, the terminal will temporarily stop collecting error performance statistics. If you want to run the constellation analyzer anyway, click OK when you see this warning message:
3.Click Stop to stop the constellation analyzer.
The terminal automatically resumes collecting error performance statistics.
Aprisa XE User Manual
208 | In-Service Commissioning
Viewing a Summary of the Link Performance
To view the performance summary for a terminal:
Select Link or Local or Remote > Performance > Summary.
Field |
Explanation |
|
|
Link Performance |
|
|
|
Correctable errors |
The total number of correctable blocks since the last reset |
|
|
Uncorrectable errors |
The total number of uncorrectable blocks since the last reset |
|
|
SNR (dB) |
The Signal to Noise Ratio of the link in dB |
|
|
RSSI (dBm) |
The Received Signal Strength Indication at the Rx input in dBm |
|
|
Errored seconds |
The total number of operational seconds with errored traffic since the |
|
last reset |
|
|
Error free seconds |
The total number of error free operational seconds since the last reset |
|
|
BER |
The system will report an estimated Bit Error Rate up to a maximum of |
|
1 in 1021 |
TX temperature |
The measured temperature in the transmitter module in °C |
|
|
RX temperature |
The measured temperature in the receiver module in °C |
|
|
Ethernet performance |
|
|
|
Transmitted packets |
The total number of transmitted Ethernet packets |
|
|
Received packets |
The total number of received Ethernet packets |
|
|
Received packet errors |
The total number of packets received with errors |
|
|
Click Reset Counters to reset the error counters to zero.
Aprisa XE User Manual
In-Service Commissioning | 209
Saving the History of the Link Performance
Link performance history data is stored in a rolling buffer which can be saved as a *.cvs file (default filename is savedPerformanceHistory.csv). The maximum history data buffer is 1 week of 1 hour records and the last hour is displayed in minute records.
The parameters saved are:
Date / Time
SNR (minimum over period)
SNR (average over period)
SNR (maximum over period)
RSSI (minimum over period)
RSSI (average over period)
RSSI (maximum over period)
BER (value at end of period)
UCEs count (value at end of period)
Transmitter temperature (value at end of period)
To save the history of the link performance for a terminal:
Select Local > Performance > Save History.
Example of file (simulated fade data):
PREVIOUS WEEK
TIME |
|
SNR min |
SNR avg |
SNR max |
RSSI min |
RSSI avg |
RSSI max |
BER |
UCEs |
Tx Temp |
|
|
(dB) |
(dB) |
(dB) |
(dBm) |
(dBm) |
(dBm) |
|
|
(deg C) |
Mon Apr |
6 09:44:50 2009 |
35.14 |
35.26 |
35.39 |
-54.00 |
-54.00 |
-54.00 |
3.40E-12 |
144 |
50 |
Mon Apr |
6 10:44:50 2009 |
35.14 |
35.26 |
35.40 |
-54.00 |
-53.90 |
-53.90 |
3.39E-12 |
144 |
50 |
Mon Apr |
6 11:44:50 2009 |
35.14 |
35.26 |
35.40 |
-54.00 |
-53.90 |
-53.90 |
3.38E-12 |
144 |
50 |
Mon Apr |
6 12:44:51 2009 |
15.31 |
25.77 |
58.54 |
-114.00 |
-77.00 |
-54.00 |
1.58E-05 |
1045 |
50 |
Mon Apr |
6 13:44:51 2009 |
22.52 |
22.75 |
22.89 |
-84.10 |
-83.70 |
-83.60 |
6.92E-06 |
9912 |
51 |
Mon Apr |
6 14:44:51 2009 |
16.20 |
26.05 |
54.61 |
-87.10 |
-77.40 |
-60.20 |
9.67E-05 |
72125 |
52 |
… |
|
|
|
|
|
|
|
|
|
|
PREVIOUS HOUR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TIME |
|
SNR min |
SNR avg |
SNR max |
RSSI min |
RSSI avg |
RSSI max |
BER |
UCEs |
Tx Temp |
|
|
(dB) |
(dB) |
(dB) |
(dBm) |
(dBm) |
(dBm) |
|
|
(deg C) |
Mon Apr |
6 14:11:51 2009 |
22.52 |
28.38 |
22.75 |
-84.10 |
-78.19 |
-83.80 |
5.89E-06 |
22821 |
52 |
Mon Apr |
6 14:12:51 2009 |
22.55 |
25.67 |
22.75 |
-84.10 |
-80.89 |
-83.80 |
5.86E-06 |
23369 |
52 |
Mon Apr |
6 14:13:51 2009 |
22.50 |
23.52 |
22.75 |
-84.10 |
-83.07 |
-83.70 |
5.84E-06 |
23847 |
52 |
Mon Apr |
6 14:14:51 2009 |
22.50 |
24.35 |
22.78 |
-84.10 |
-82.23 |
-83.70 |
5.81E-06 |
24338 |
52 |
Mon Apr |
6 14:15:51 2009 |
22.54 |
22.73 |
22.77 |
-84.10 |
-83.86 |
-83.80 |
5.78E-06 |
24855 |
52 |
Mon Apr |
6 14:16:51 2009 |
22.52 |
26.67 |
22.75 |
-84.10 |
-79.90 |
-83.80 |
5.75E-06 |
25374 |
52 |
Mon Apr |
6 14:17:51 2009 |
22.48 |
30.19 |
22.79 |
-84.10 |
-76.38 |
-83.70 |
5.73E-06 |
25918 |
52 |
Mon Apr |
6 14:18:51 2009 |
22.49 |
28.87 |
22.74 |
-84.10 |
-77.68 |
-83.80 |
5.71E-06 |
26473 |
52 |
Mon Apr |
6 14:19:51 2009 |
22.48 |
30.65 |
22.74 |
-84.10 |
-75.94 |
-83.80 |
5.68E-06 |
27007 |
52 |
Mon Apr |
6 14:20:51 2009 |
22.50 |
29.99 |
22.75 |
-84.00 |
-76.59 |
-83.80 |
5.66E-06 |
27561 |
52 |
Mon Apr |
6 14:21:51 2009 |
22.61 |
29.78 |
22.76 |
-84.00 |
-76.82 |
-83.80 |
5.64E-06 |
28167 |
52 |
Mon Apr |
6 14:22:51 2009 |
22.46 |
25.70 |
22.74 |
-84.10 |
-80.86 |
-83.90 |
5.62E-06 |
28717 |
52 |
Mon Apr |
6 14:23:51 2009 |
22.46 |
26.96 |
22.75 |
-84.10 |
-79.61 |
-83.80 |
5.59E-06 |
29237 |
52 |
Mon Apr |
6 14:24:51 2009 |
22.47 |
24.71 |
22.75 |
-84.10 |
-81.86 |
-83.80 |
5.57E-06 |
29776 |
52 |
Mon Apr |
6 14:25:51 2009 |
22.48 |
30.19 |
22.73 |
-84.10 |
-76.36 |
-83.80 |
5.55E-06 |
30368 |
52 |
Mon Apr |
6 14:26:51 2009 |
22.49 |
25.97 |
22.75 |
-84.20 |
-80.61 |
-83.80 |
5.53E-06 |
30942 |
52 |
Mon Apr |
6 14:27:51 2009 |
16.20 |
22.94 |
54.61 |
-87.10 |
-83.76 |
-83.90 |
7.30E-06 |
71751 |
52 |
Mon Apr |
6 14:28:51 2009 |
16.23 |
26.84 |
49.90 |
-87.00 |
-73.31 |
-60.30 |
6.67E-03 |
72125 |
52 |
Mon Apr |
6 14:29:51 2009 |
35.10 |
40.60 |
35.24 |
-60.50 |
-54.96 |
-60.30 |
1.70E-03 |
72125 |
52 |
Mon Apr |
6 14:30:51 2009 |
35.08 |
39.17 |
35.28 |
-60.50 |
-56.40 |
-60.30 |
9.13E-04 |
72125 |
52 |
Mon Apr |
6 14:31:51 2009 |
35.07 |
36.63 |
35.26 |
-60.50 |
-58.95 |
-60.20 |
6.11E-04 |
72125 |
52 |
Mon Apr |
6 14:32:51 2009 |
35.06 |
36.68 |
35.24 |
-60.60 |
-58.90 |
-60.30 |
4.52E-04 |
72125 |
52 |
Mon Apr |
6 14:33:51 2009 |
35.06 |
35.34 |
35.25 |
-60.60 |
-60.24 |
-60.30 |
3.56E-04 |
72125 |
52 |
Mon Apr |
6 14:34:51 2009 |
35.09 |
36.28 |
35.24 |
-60.50 |
-59.28 |
-60.30 |
2.92E-04 |
72125 |
52 |
Mon Apr |
6 14:35:51 2009 |
35.07 |
42.56 |
35.28 |
-60.60 |
-53.03 |
-60.30 |
2.46E-04 |
72125 |
52 |
… |
|
|
|
|
|
|
|
|
|
|
Aprisa XE User Manual
210 | In-Service Commissioning
To save the alarm history from the Remote terminal, login to the Remote terminal and Select Local > Alarms > Save History.
Aprisa XE User Manual
In-Service Commissioning | 211
To create an Excel chart of the link performance for a terminal:
1.Open the *.csv file with Excel.
2.Select the ‘Time’ column and the column you wish to graph e.g. ‘SNR avg (dB)’ or ‘RSSI avg (dBm)’
3.Select ‘Insert Chart’ from the Excel menu.
Graph of Date / Time vs the average SNR
Aprisa XE Link Performance
|
45.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(dB) |
25.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
avg |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SNR |
20.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 14:11:51 2009 |
6 14:12:51 2009 |
6 14:13:51 2009 |
6 14:14:51 2009 |
6 14:15:51 2009 |
6 14:16:51 2009 |
6 14:17:51 2009 |
6 14:18:51 2009 |
6 14:19:51 2009 |
6 14:20:51 2009 |
6 14:21:51 2009 |
6 14:22:51 2009 |
6 14:23:51 2009 |
6 14:24:51 2009 |
6 14:25:51 2009 |
6 14:26:51 2009 |
6 14:27:51 2009 |
6 14:28:51 2009 |
6 14:29:51 2009 |
6 14:30:51 2009 |
6 14:31:51 2009 |
6 14:32:51 2009 |
6 14:33:51 2009 |
6 14:34:51 2009 |
6 14:35:51 2009 |
|
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
MonApr |
Graph of Date / Time vs the average RSSI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Date / Time
Aprisa XE Link Performance
6 14:11:51 2009 |
6 14:12:51 2009 |
6 14:13:51 2009 |
6 14:14:51 2009 |
6 14:15:51 2009 |
6 14:16:51 2009 |
6 14:17:51 2009 |
6 14:18:51 2009 |
6 14:19:51 2009 |
6 14:20:51 2009 |
6 14:21:51 2009 |
6 14:22:51 2009 |
6 14:23:51 2009 |
6 14:24:51 2009 |
6 14:25:51 2009 |
6 14:26:51 2009 |
6 14:27:51 2009 |
6 14:28:51 2009 |
6 14:29:51 2009 |
6 14:30:51 2009 |
6 14:31:51 2009 |
6 14:32:51 2009 |
6 14:33:51 2009 |
6 14:34:51 2009 |
6 14:35:51 2009 |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
Mon Apr |
|
0.00 |
|
|
-10.00 |
|
|
-20.00 |
|
(dBm) |
-30.00 |
|
-40.00 |
||
avg |
||
|
||
RSSI |
-50.00 |
-60.00
-70.00
-80.00
To clear the history of the link performance for a terminal:
-90.00 |
|
|
|
|
|
|
|
|
|
|
|
||
Select Link or Local or Remote > Performance > Clear History. |
Date / Time |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Aprisa XE User Manual |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Maintenance | 213
13. Maintenance
There are no user-serviceable components within the terminal.
All hardware maintenance must be completed by 4RF or an authorized service centre. Do not attempt to carry out repairs to any boards or parts.
Return all faulty terminals to 4RF or an authorized service centre.
For more information on maintenance and training, please contact Customer Services.
CAUTION: Electro Static Discharge (ESD) can damage or destroy the sensitive electrical components in the terminal.
Routine Maintenance
Every six or twelve months, for both ends of the link, you should record the RSSI and SNR levels as well as checking the following:
Item |
What to check or look for |
|
|
Equipment shelter environment |
Water leaks |
|
Room temperature |
|
Excessive vibration |
|
Vermin damage |
|
|
Terminal mounting |
Firmly mounted |
|
|
Antenna cable connections |
Tight and dry |
|
|
Antenna cable and its supports |
Not loose or suffering from ultra-violet degradation |
|
|
Antenna and its mounting hardware |
Not loose, rusty or damaged |
|
|
Safety earth |
Connections tight |
|
Cabling intact |
|
|
DC system |
Connections tight |
|
Voltage in normal limits |
|
|
Batteries (if installed) |
Connections tight |
|
Electrolyte levels normal |
|
|
Aprisa XE User Manual
214 | Maintenance
Terminal Upgrades
You can upgrade all software for both terminals remotely (through a management network), which eliminates the need to physically visit either end of the link.
A terminal is upgraded by accessing a running TFTP server (see ‘TFTP Upgrade Process’ on page 221). All the required files are uploaded from the TFTP server into the terminal and then activated following a terminal reboot.
System files can be manually uploaded (see ‘Uploading System Files’ on page 226‘).
Inventory File
Software release 8.2.10 and all future software releases, contains an inventory file (similar to a manifest file) which is used to validate the software files in the terminal.
To view the Software Status of the terminal:
Select Link, Local or Remote > Summary
Software status |
Function |
|
|
Standard Software |
The software status indicates ‘Standard Software Release’ if the |
Release |
following system software files have not been changed since the last |
|
TFTP Upgrade. |
|
Kernel image file |
|
Software image file |
|
Firmware image files |
|
Configuration files |
|
|
Modified Software |
The software status indicates ‘Modified Software Release’ if the system |
Release |
software files have been changed since the last TFTP Upgrade. |
|
This could be caused by: |
|
an image file which has been uploaded to the terminal since the |
|
last TFTP upgrade which is not part of that upgrade. |
|
an image file which was part of the last TFTP upgrade but was |
|
subsequently deleted. |
|
|
Upgrade Prerequisites
To minimize disruption of link traffic and prevent your terminals from being rendered inoperative, please follow the procedures described in this section together with any additional information or instructions supplied with the upgrade package.
Before upgrading the terminal, ensure that you have saved the configuration file (see ‘Saving the terminal's configuration’ on page 89) as well as the cross connection configuration (see ‘Saving cross connection configurations’ on page 155).
The Remote terminal upgrade process will be faster if the bandwidth allocated to the management ethernet capacity is maximized.
The terminal software must be identical at both ends of the link.
At the end of the terminal upgrade process, the versions of image files (kernel software, and firmware) that were in use before the upgrade are still in the terminal. You can restore them, if required, by editing the image tables and reactivating the old files (see ‘Changing the Status of an Image ’ on page 232).
IMPORTANT NOTE: Ensure you are logged into the Near end terminal as Admin before you start an upgrade.
Aprisa XE User Manual
Maintenance | 215
Software Upgrade Process
Unzip and save the following folders to your hard drive:
8.6.77 Software tftpd32.exe
The following steps are required for the software upgrade process:
1.Identify the correct TFTP upgrade type (see ‘Identifying the Correct TFTP Upgrade Type’ on page 217).
2.If the terminals are operating software prior to 8.3.40:
Upload the Root File System (see ‘Uploading the Root File System’ on page 216)
Upload the Motherboard Images (see ‘Uploading the Motherboard Images’ on page 216). Reboot the terminal.
3.Go through the steps of the TFTP upgrade process (see ‘TFTP Upgrade Process’ on page 221).
4.Upgrade for new FXO/FXS and modem images
5.Reboot the terminal.
6.Clear the Java and web browser caches (see ‘Step 7: Clear the Java and web browser caches’ on page 223).
If the TFTP upload process fails, an ‘Upload Fail’ alarm is raised. If the TFTP upload process fails due to a power failure, the alarm is raised upon power recovery.
Aprisa XE User Manual
216 | Maintenance
Uploading the Root File System
Note: Uploading of image files can only be performed to the local terminal i.e. not via the link to the remote terminal.
1.Logon to the local terminal as admin.
2.Go to SuperVisor > Local > Maintenance > Upload > Software.
3.Browse to the 8.6.77 Software folder and select ‘C-CC-R-8_6_7.img’.
4.Click Upload and wait for the upload status to display Succeeded.
5.Activate the ‘C-CC-R-8_6_7.img’ with SuperVisor Local > Maintenance > Image Table (see ‘Changing the Status of an Image File’ on page 232).
Uploading the Motherboard Images
The E1 and E2 motherboard images do not update as part of the TFTP upgrade.
Check if the correct motherboard images are loaded with SuperVisor Local > Maintenance > Image Table.
Example: Radio on V8.4.60 with a Rev C motherboard.
The Motherboard Firmware images for this software version are:
Motherboard Type |
Image Files Required |
|
|
|
|
Rev C |
C-fpga_E1-0-7-0.img |
(Motherboard 1 |
|
C-fpga_E2-0-5-3.img |
(Motherboard 2) |
|
|
|
Rev D |
C-fpga_E1-1-7-3.img |
(Motherboard 1 |
|
C-fpga_E2-1-5-4.img |
(Motherboard 2) |
|
|
|
If the motherboard image files are not correct, upload the relevant image files.
Note: Uploading of image files can only be performed to the local terminal i.e. not via the link to the remote terminal.
1.Logon to the local terminal as admin
2.Go to SuperVisor > Local > Maintenance > Upload > Firmware.
3.Browse to the 8.6.77 Software folder and select ‘C-fpga_Ex-x-x-x.img’.
4.Click Upload and wait for the upload status to display Succeeded.
5.Activate the ‘C-fpga_Ex-x-x-x.img’ with SuperVisor Local > Maintenance > Image Table (see ‘Changing the Status of an Image File’ on page 232).
Aprisa XE User Manual
Maintenance | 217
Identifying the Correct TFTP Upgrade Type
The correct TFTP upgrade type will depend on both the Bootloader Version and the Software Version Type.
Aprisa XE terminals running the older bootloader software (bootloader version 0) have a limitation on the number of software images that can be loaded simultaneously into a terminal.
Identifying the Bootloader Version
Determine which bootloader version your terminal is running by using the SuperVisor menu item Maintenance > Support Summary and look for the ‘Bootloader Version’ number:
(1)If your terminal is running bootloader version 1 or greater, use the TFTP full upgrade process.
(2)If your terminal is running bootloader version 0 and running a software version prior to 7.0.6, use the TFTP partial upgrade process.
(3)If your terminal is running bootloader version 0 and running a software version 7.0.6 or later, use the TFTP standard upgrade process.
(4)HSD terminals cannot run with bootloader version 0.
Aprisa XE User Manual
218 | Maintenance
Identifying the Software Version Type
There are six different software version types; ETSI type 1, ETSI type 1 HSD, ETSI type 2, ETSI type 2 HSD, FCC Part 101 and FCC Part 90.
To determine which Software Version Type is currently installed on the terminal, take note of the ‘Software Version’ on SuperVisor Summary page. The last three characters indicate the Software Version Type.
ETSI Compliance Body
8_6_77_E0 |
The E0 variant supports ETSI (Type 1) 1+0 and MHSB terminals with the same |
|
variants as Aprisa XE software version 8.4.40. |
||
|
||
|
|
|
8_6_77_E1 |
The E1 variant supports ETSI (Type 2) 1+0 and MHSB terminals with the same |
|
variants as Aprisa XE software version 8.4.40 except for the 400 MHz 25 kHz |
||
|
||
|
and 50 kHz which has been replaced with 900 MHz 25 kHz and 50 kHz. |
|
|
|
|
8_6_77_E0h |
The E0h variant supports ETSI (Type 1) Hitless Space Diversity (HSD) |
|
terminals with the same variants as Aprisa XE software version 8.4.40. |
||
|
||
|
|
|
8_6_77_E1h |
The E1 variant supports ETSI (Type 2) Hitless Space Diversity (HSD) terminals |
|
with the same variants as Aprisa XE software version 8.4.40 except for the |
||
|
||
|
400 MHz 25 kHz and 50 kHz which has been replaced with 900 MHz 25 kHz |
|
|
and 50 kHz. |
|
|
|
FCC Compliance Body
8_6_77_F0 |
The F0 variant supports FCC part 90 1+0 and MHSB terminals. |
|
|
||
|
|
|
8_6_77_F0h |
The F0h variant supports FCC part 90 Hitless Space Diversity (HSD) |
|
terminals. |
||
|
||
|
|
|
8_6_77_F1 |
The F1 variant supports FCC part 101 1+0 and MHSB terminals. |
|
|
||
|
|
|
8_6_77_F1h |
The F1h variant supports FCC part 101 Hitless Space Diversity (HSD) |
|
terminals. |
||
|
||
|
|
Aprisa XE User Manual
Maintenance | 219
Upgrade Version Files
The following table defines the purpose of the upgrade version files:
Upgrade Version File |
Upgrade Type |
Software Version Type |
|
|
|
8_6_77_E0a |
Full TFTP upgrade |
ETSI TYPE 1 |
|
|
|
8_6_77_E0 |
Standard TFTP upgrade |
ETSI TYPE 1 |
|
|
|
8_6_77_E0h |
Standard TFTP upgrade |
ETSI TYPE 1 HSD |
|
|
|
8_6_77_E0p |
Partial TFTP upgrade |
ETSI TYPE 1 |
|
|
|
8_6_77_E1a |
Full TFTP upgrade |
ETSI TYPE 2 |
|
|
|
8_6_77_E1 |
Standard TFTP upgrade |
ETSI TYPE 2 |
|
|
|
8_6_77_E1h |
Standard TFTP upgrade |
ETSI TYPE 2 HSD |
|
|
|
8_6_77_E1p |
Partial TFTP upgrade |
ETSI TYPE 2 |
|
|
|
8_6_77_F0a |
Full TFTP upgrade |
FCC Part 90 |
|
|
|
8_6_77_F0 |
Standard TFTP upgrade |
FCC Part 90 |
|
|
|
8_6_77_F1a |
Full TFTP upgrade |
FCC Part 101 |
|
|
|
8_6_77_F1 |
Standard TFTP upgrade |
FCC Part 101 |
|
|
|
Installing RF Synthesizer Configuration Files
If you are upgrading from a software version prior to 7_1_x, you will need to install new RF synthesizer files, refer to ‘Configuration Files’ on page 226.
You can then upgrade the terminal using TFTP (see page 221).
Frequency Band |
Synthesizer File(to be installed) |
Comments |
|
|
|
300, 400 MHz |
XE_300_400_type_1_synth.cfg |
BB synthesizer |
|
|
|
300, 400 MHz |
XE_300_400_type_2_synth.cfg |
E3 synthesizer |
|
|
|
300, 400 MHz |
XE_300_400_type_3_synth.cfg |
5 kHz sythesizer step |
|
|
|
600, 700, 800, 900 MHz |
XE_600_700_800_900_synth.cfg |
|
|
|
|
1400 MHz |
XE_1400_synth.cfg |
|
|
|
|
1400 MHz |
XE_1400TCVR_synth.cfg |
New transceiver (introduced |
|
|
April 2012) |
|
|
|
1800 MHz |
XE_1800_synth.cfg |
|
|
|
|
2000, 2500 MHz |
XE_2000_2500_synth.cfg |
|
|
|
|
Aprisa XE User Manual
220 | Maintenance
TFTP Upgrade Process Types
TFTP partial upgrade process
Run the TFTP upgrade process by typing 8_6_77_E0p in the Upgrade Version field.
This will perform a partial upgrade which will delete unnecessary image files that might be taking up space in the Image Table (which could prevent a standard upgrade succeeding).
Reboot the terminal.
Run a TFTP standard upgrade process on the terminal.
Reboot the terminal again.
TFTP standard upgrade process
This TFTP standard upgrade process excludes FPGA images for the newly introduced revisions of the Modem, DFXO and DFXS cards.
Run the TFTP upgrade process by typing ‘8_6_77_E0’ in the Upgrade Version field.
If the standard upgrade fails, it may be necessary to make space for the new images by manually deleting
‘Inactive’ firmware image files.
To delete a firmware image file, select the SuperVisor menu item Maintenance > Image Table, select the firmware image and click on Edit. Set the IMAGE DETAILS Command to ‘Delete’ and click ‘Apply’.
Reboot the terminal.
Additional TFTP upgrade options have been provided to load the new images separately. Run the TFTP upgrade process using the file:
‘F1_8_6_7’ to load images for the newest DFXO and DFXS cards (rev D).
‘F2_8_6_7’ to load images for all revisions of DFXO and DFXS cards.
‘F3_8_6_7’ to load images for the newest Modem card (rev D).
Reboot the terminal again.
TFTP full upgrade process
Run the TFTP upgrade process for 1+0 and MHSB terminals by typing ‘8_6_77_E0a’ in the Upgrade Version field.
Run the TFTP upgrade process for HSD terminals by typing ‘8_6_77_E0h’ in the Upgrade Version field.
Reboot the terminal.
Aprisa XE User Manual
Maintenance | 221
TFTP Upgrade Process
To upgrade a terminal using the TFTP:
1.Run the TFTP server.
2.Login to the Near end terminal / local terminal (see ‘IP Addressing of Terminals’ on page 53).
3.Run the TFTP upgrade process on the Remote terminal.
4.Reboot the Remote terminal.
5.Run the TFTP upgrade process on the Local terminal.
6.Reboot the Local terminal.
7.Clear the Java and web browser caches.
Step 1: Run the TFTP server
1.Double-click tftpd32.exe (located in the TFTPD directory) from the Aprisa CD supplied with the product. Leave the TFTPD32 application running until the end of the upgrade process.
2.Click Settings and make sure that both SNTP server and DHCP server are not selected (no tick), and click OK.
3.Click Browse and navigate to the root directory on the Aprisa CD (for example, D:\) supplied with the product, then click OK.
4.Note down the IP address of the TFTP server (shown in the Server Interfaces drop-down list in the TFTPD32 window) as you will need it later.
Aprisa XE User Manual
222 | Maintenance
Step 2: Log into the Local terminal
Use SuperVisor to log into the Near end terminal (now the Local terminal) (see ‘IP Addressing of Terminals’ on page 53) with either 'modify' or 'admin' privileges.
Step 3: Run the TFTP upgrade process on the Remote terminal
1. Select Remote > Maintenance > Upload > TFTP Upgrade.
2.Enter the IP address of the TFTP server.
3.Enter the version number of the software that you are upgrading to as a three digit number separated by underscores, for example, 8_6_77_E0 for ETSI variants.
4.Click Apply and check the TFTP server for download activity.
The Upgrade Result changes from 'Executing' to either 'Succeeded' or 'Failed'.
Note: This may take several minutes when upgrading the remote terminal.
If the upgrade has failed:
The TFTP server IP address may be set incorrectly
The 'Current Directory' on the TFTP server was not pointing to the location of the upload config file e.g. 'Rel_8_6_77_E0.cfg' .
There may not be enough free space in the image table to write the file. Inactive images can be deleted (and the terminal rebooted) to free up space for the new image (see ‘Changing the Status of an Image File’ on page 232).
Step 4: Reboot the Remote terminal
Reboot the remote terminal before proceeding with the next step of the upgrade process (see ‘Rebooting the Terminal’ on page 233).
1.Select Remote > Maintenance > Reboot and select [Hard Reboot]
Communications to SuperVisor remote page will fail until the remote terminal reboot has completed.
Aprisa XE User Manual
Maintenance | 223
Step 5: Run the TFTP upgrade process on the Local terminal.
1.Select Local > Maintenance > Upload > TFTP Upgrade.
2.Enter the IP address of the TFTP server (that you noted earlier)
3.Enter the version number of the software (that you are upgrading to) for example, 8_6_77_E0.
4.Click Apply and check the TFTP server for download activity.
The Upgrade Result changes from 'Executing' to either 'Succeeded' or 'Failed'.
Note: This may take several minutes when upgrading the remote terminal.
Step 6: Reboot the Local terminal
Reboot the local terminal before proceeding with the next step of the upgrade process (see ‘Rebooting the Terminal’ on page 233).
1.Select Local > Maintenance > Reboot and select [Hard Reboot]
2.Log back into the Local terminal when the reboot has completed.
Step 7: Clear the Java and web browser caches
After upgrading the terminal you should clear the Java and web browser caches. The files stored in them may cause the SuperVisor and Cross Connections applications to display incorrectly.
To clear the Java cache (Windows XP, Java 1.6):
1.Select Start > Control Panel.
2.Select Java
3.Click the General tab.
4.In the ‘Temporary Internet Files’, click Settings
5.Click on ‘Delete Files’ (‘Applications and Applets’ and ‘Trace and Log Files’ both ticked) and OK to confirm.
Aprisa XE User Manual
224 | Maintenance
To clear your web browser cache (Mozilla Firefox 1.x and above):
1.Select Tools > Options.
2.Select Privacy and then click Cache.
3. Click Clear to clear the cache, and then click OK to confirm.
Aprisa XE User Manual
Maintenance | 225
To clear your web browser cache (Internet Explorer 7.0 and above):
1.Select Tools > Internet Options.
2.On the General tab
3.In Browsing history, click Delete
4.In the ‘Temporary Internet Files’, click Delete Files and Yes to confirm.
Aprisa XE User Manual
226 | Maintenance
Uploading System Files
System files e.g. configuration files, kernel image files, software image files and firmware image files can be uploaded manually.
Note: You should only upgrade components that need changing. It is not always necessary, for instance, to replace kernel or software files when upgrading a single firmware file. If interdependency exists between file types, this will be made clear in the documentation that accompanied the update package.
Configuration Files
Configuration files (.cfg) are compressed archives containing a script to instruct the terminal on how to handle the other files in the archive.
Uploading of configuration files can only be performed to the Local Terminal (not via the link to the Remote Terminal).
RF synthesizer configuration files
The RF synthesizer configuration archive contains files that provide values for the transmitter and receiver synthesizers to operate across the supported frequency bands.
Synthesizer configuration filenames have the following format:
XE_(frequency bands)_synth.cfg e.g. XE_300_400_synth.cfg
Modem configuration files
The Modem configuration archive contains files that provide values for the Modem to operate at the various supported channel sizes and modulation types.
Modem configuration filenames have the following format:
modem_(version number).cfg e.g. modem_8_3_1.cfg (ETSI variants)
Cross-connect configuration files
The Cross-connect configuration archive contains the Cross Connections application program that can be launched from within SuperVisor.
Cross-connect configuration filenames have the following format:
C-crossconnect_(version number).cfg |
e.g. C-crossconnect_8_6_7.cfg |
Aprisa XE User Manual