Der Gerätesatz Lehrgerät Akustik ermöglicht die
Vermittlung eines weitgehend geschlossenen Überblicks über das Themengebiet Akustik. Mit dem
Lehrgerät können zahlreiche Versuche durchgeführt
werden.
Versuchsbeispiele:
1. Saitentöne
2. Der reine akustische Ton
3. Schwingende Luftsäulen
4. Die offene Luftsäule
5. Die Lippenpfeife
6. Schwingende Stäbe
7. Infraschall
8. Ultraschall
9. Die Schreibstimmgabel
10. Fortschreitende Wellen
11. Dopplereffekt
12. Chladni’sche Klangfiguren
13. Glockenschwingungen
14. Stehende Wellen
15. Obertöne
16. Messung der Wellenlänge
17. Der Resonanzboden
18. Der Resonanzkasten
19. Der Kugelresonator
20. Die Saiteninstrumente und ihre Gesetze
21. Die Tonleiter auf den Saiteninstrumenten
22. Messung der Saitenspannung
23. Abhängigkeit der Tonhöhe von der Saitenspannung
24. Blasinstrumente und ihre Gesetze
25. Die C-Dur-Tonleiter und ihre Intervalle
26. Wohlklang und Missklang
27. Der G-Dur-Dreiklang
28. Der vierstimmige G-Dur-Dreiklang
29. Die Dur-Tonleiter mit beliebigem Grundton
30. Einschaltung der halben Töne
Lieferung erfolgt im Kunststofftablett mit Schaumstoffeinsatz zur schonenden Aufbewahrung der Einzelteile.
1
2. Lieferumfang
1 Tablett mit Schaumstoffeinsatz für
Lehrgerät "Akustik"
2 Monochord
3 Steg zum Monochord
4 Metallophon
5 Chladni-Platte
6 Stimmgabel, 1700 Hz
7 Stimmgabel, 440 Hz
8 Schreibstimmgabel, 21 Hz
9 Federwaage
10 Halteklammer
11 Tischklemme
12 Helmholtz-Resonator
Ø 70 mm Ø 52 mm Ø 40 mm Ø 34 mm
13 Glasrohr für offene Luftsäule
14 Kundt’sche Röhre
15 Glasrohr für geschlossene Luftsäule
16 Stiel zu Chladni-Platte/ Glockenschale
17 Galtonpfeife
18 Schreibstift mit Halter
19 Lykopodiumpulver
20 Kunststoffklotz zu Tischklemme
21 Gummikappe
22 Glockenschale
23 Zungenpfeife
24 Lippenpfeife
25 Stahlsaite
26 Perlonsaite
27 Wellenseil
28 Abstimmschieber
2
3. Technische Daten
Abmessungen: ca. 530 x 375 x 155 mm3
Masse: ca. 4,5 kg
4. Versuchsbeispiele
1. Saitentöne
• Die mäßig gespannte Saite des Monochords mit
dem Finger kräftig anzupfen.
• Dann durch Rechtsdrehen des Wirbels die
Saitenspannung erhöhen und abermals anzupfen.
Man vernimmt zuerst einen tiefen, anschließend
einen höheren Ton.
Erklärung: Schwingende Saiten erzeugen durch
abwechselnde Verdichtung und Verdünnung der
umgebenden Luft akustische Töne. Je höher die
Saitenspannung, desto schneller die Schwingung
und desto höher der Ton.
2. Der reine akustische Ton
• Die Stimmgabel (440 Hz) kräftig mit dem An-
schlaghammer des Metallophons anschlagen.
Man vernimmt einen reinen akustischen Ton ganz
bestimmter, unveränderlicher Tonhöhe, der langsam ausklingt.
Erklärung: Die Stimmgabel besteht aus einem
U-förmig gebogenen Stahlstück, das im Scheitelpunkt (Bogen) in einen Stiel übergeht. Da die
Stimmgabel nur in einer Schwingungsform zu
schwingen vermag (gegenläufige Bewegung der
Zinken von innen nach außen und umgekehrt)
erzeugt sie einen reinen Ton unveränderlicher
Höhe. Wegen der unveränderlichen Tonhöhe verwendet man die Stimmgabel zum Stimmen der
Musikinstrumente.
3. Schwingende Luftsäulen
• Das Glasrohr für geschlossene Luftsäule mittels
Tischklemme, Kunststoffklotz und Halteklammer am Arbeitstisch befestigen.
• Den Abstimmschieber in das Glasrohr einfüh-
ren.
• Die Stimmgabel (440 Hz) kräftig mit dem An-
schlaghammer des Metallophons anschlagen.
Durch mehr oder weniger starkes Ausziehen
des Abstimmschiebers die Länge der "geschlossenen Luftsäule" verändern.
Nur in einer Stellung des Abstimmschiebers kommt
die Luftsäule in starke Mitschwingung (Resonanz),
in allen anderen Stellungen bleibt sie stumm. Die
Resonanz ist durch eine Überhöhung der Lautstärke wahrnehmbar.
Erklärung: Geschlossene Luftsäulen kommen in
Mitschwingung, wenn ihre Länge einem Viertel der
erregenden. Wellenlänge entspricht. Die Stimmgabel schwingt mit 440 Schwingungen in der Sekunde. Nach der Beziehung
ndigkeitngsgeschwiFortplanzu
34000
440
eWellenläng =
s/cm
⋅
⋅
s/Schwing
cm,
⋅=
277
Frequenz
beträgt die Wellenlänge des erzeugten Tons 77,2
cm. Eine Viertelwellenlänge ist also 19,3 cm.
Der Abstand des Kolbens von der Rohröffnung
beträgt im Resonanzfall 19,3 cm.
4. Die offene Luftsäule
• Den Versuch mit dem Glasrohr für offene Luft-
säule durchführen.
Die offene Luftsäule von genau der doppelten Länge der geschlossenen kommt bei Vorhalten der
Stimmgabel in Mitschwingung, was durch eine
Überhöhung der Lautstärke wahrnehmbar ist.
Erklärung: Offene Luftsäulen kommen in Mitschwingung, wenn ihre Länge einer halben Wellenlänge oder einem Vielfachen einer halben Wellenlänge entspricht. An den Enden der offenen Luftsäule bilden sich Schwingungsbäuche, in der Mitte
ein Schwingungsknoten.
5. Die Lippenpfeife
• Die Lippenpfeife anblasen und durch Auszie-
hen des Stempels die Pfeifenlänge verändern.
Man vernimmt je nach Pfeifenlänge einen mehr
oder weniger tiefen Ton charakteristischer Klangfarbe.
Erklärung: Beim Einblasen eines gleichmäßigen
Luftstromes in die Mündung der Pfeife kommt die
in der Pfeifenröhre eingeschlossene Luft dadurch in
Schwingung, dass sich an der Lippe (Schneide) in
regelmäßiger Folge Luftwirbel ablösen. Der sich
ergebende Ton hängt von der Länge der Luftsäule
ab. Bei der geschlossenen Pfeife entspricht die
Pfeifenlänge (gemessen von der Schneidenkante bis
zum Boden) im Grundton einer Viertelwellenlänge.
An der Schneide bildet ich ein Bauch und am Boden ein Knoten.
6. Schwingende Stäbe
• Einige Stäbe des Metallophons mit dem beige-
gebenen Anschlaghammer anschlagen.
Beim Anschlagen der Metallstäbe entstehen wohlklingende Töne ganz charakteristischer Klangfarbe.
Je kürzer der Stab, desto höher der Ton.
Erklärung: Elastische Stäbe werden zu schwingungsfähigen Systemen, wenn sie an den Punkten
ihrer Schwingungsknoten aufliegen (etwa 22% der
Gesamtlänge von den Enden entfernt).
3
7. Infraschall
• Die Schreibstimmgabel durch gleichzeitiges
Zusammendrücken beider Zinken und plötzliches Loslassen in Schwingung versetzen.
Die Stimmgabel führt langsame, mit dem Auge
noch gut wahrnehmbare Schwingungen aus. Wird
sie dicht ans Ohr gehalten, so vernimmt man einen
sehr tiefen (gerade noch hörbaren) Ton.
Erklärung: Die Zinken der Stimmgabel schwingen
gegenläufig hin und her und erzeugen in dar umgebenden Luft Verdichtungen und Verdünnungen.
Treffen diese auf das Ohr, so wird das Trommelfell
in Mitschwingung versetzt. Man hört einen Ton.
Die Stimmgabel schwingt mit etwa 20 Schwingungen in der Sekunde hin und her. Der tiefste, gerade
noch hörbare Ton hat etwa 16 Schwingungen in
der Sekunde. Schwingungen unter 16 Hertz sind
nicht mehr hörbar. Man bezeichnet sie als Infraschall (lat. infra = unterhalb).
8. Ultraschall
• Die Galtonpfeife anblasen.
Man vernimmt keinen Ton mehr sondern nur ein
zischendes Geräusch.
Ergebnis: Wegen ihrer geringen Länge erzeugt die
Galtonpfeife sehr hohe Töne, die für den Menschen
nicht mehr hörbar sind. Man bezeichnet sie als
Ultraschall (lat. ultra = über).
9. Die Schreibstimmgabel
• An den Zinken der Schreibstimmgabel den
Schreibstift befestigen.
• Die Stimmgabel durch Zusammendrücken der
Zinken in Schwingung versetzen und mit dem
Schreibstift gleichmäßig über ein Blatt Papier
auf einer nicht zu weichen Unterlage fahren.
Der Schreibstift zeichnet auf dem Papier eine wellenförmige Linie gleichbleibender Wellenlänge,
aber abnehmender Amplitude auf.
Erklärung: Schall entsteht durch periodische
Schwingung fester, flüssiger oder luftförmiger Körper. Der geometrische Ort der schwingenden Teilchen des Körpers in Abhängigkeit von der Zeit liegt
auf einer Wellenlinie (Sinuslinie). Bei einmaligem
Anstoß führen schwingende Körper eine "gedämpfte" Schwingung aus (stetige Abnahme der Amplitude). Erfolgt die Energiezufuhr dauernd (Dauerton
einer Autohupe, dauernd angeblasene Orgelpfeife),
so erhalten wir eine ungedämpfte Schwingung
gleichbleibender Amplitude (= Lautstärke).
10. Fortschreitende Wellen
• Die Schlaufe des Wellenseils durch einfaches
Verknoten an einer Türklinge befestigen.
• Das Seil mäßig straff spannen und mit der
Hand eine ruckartige, seitliche Bewegung ausführen.
Vom Bewegungszentrum (Hand) ausgehend, löst
sich eine Welle ab, die mit bestimmter Fortschreitungsgeschwindigkeit am Seil entlang läuft, am
festen Ende reflektiert wird und wieder zum Ausgangspunkt zurückkehrt.
Erklärung: Jeder feste, flüssige und luftförmige
Körper führt bei plötzlicher Erschütterung Schwingungen aus, die sich mit einer bestimmten Fortpflanzungsgeschwindigkeit im schwingenden Medium ausbreiten.
11. Dopplereffekt
• Die Leichtmetall-Stimmgabel (1700 Hz) kräftig
mit dem Anschlaghammer des Metallophons
anschlagen, sie kurze Zeit still halten und sie
dann in der Luft rasch hin und her schwenken.
In ruhendem Zustand erzeugt die Stimmgabel
einen kräftigen Ton gleichbleibender Höhe. In
bewegtem Zustand ändert sich die Tonhöhe dauernd. Erfolgt die Bewegung auf das Ohr zu, so erhöht sich der Ton, erfolgt sie vom Ohr weg, so erniedrigt er sich.
Erklärung: Durch den sich verringernden Abstand
der Schallquelle vom Ohr verkürzt sich der zeitliche
Abstand zweier Verdichtungen, da die 2. Verdichtung einen kürzeren Weg zum Ohr hat als die erste.
Das Ohr nimmt eine höhere Frequenz wahr. Der
Ton wird höher. Bei der Entfernung der Schallquelle vom Ohr werden die zeitlichen Abstände zwischen den Verdichtungen und Verdünnungen verlängert. Der Ton wird tiefer.
12. Chladni’sche Klangfiguren
• Die Chladni-Platte mittels Tischklemme und
Kunststoffklotz am Arbeitstisch befestigen. Die
Platte mit Vogelsand oder ähnlichem bestreuen, so dass dieser in dünner Schicht ein Drittel
der Platte bedeckt.
• Die Platte nun mit einem gut kollophonierten
Geigenbogen genau in der Mitte zwischen zwei
Ecken anstreichen unter gleichzeitiger, leichter
Berührung einer Ecke mit dem Finger der anderen Hand.
• Platte mehrmals kräftig anstreichen, so dass sie
in lebhafte, gut hörbare Schwingung gerät.
Beim Anstreichen der Platte vernimmt man einen
ganz bestimmten akustischen Ton. Die Sandkörner
geraten an manchen Stellen in lebhafte Mitschwingung, tanzen auf der Plattenoberfläche auf und
nieder und lagern sich in eigenartigen Klangfiguren
auf der Oberfläche ab.
Erklärung: Auf der Platte bilden sich "stehende
Wellen" aus. Die Platte schwingt beim Anstreichen
nicht einfach als Ganzes auf und nieder sondern
4
⋅
gerät an bestimmten Stellen (den Bäuchen) in
Schwingung, während sie an anderen Stellen (den
Knoten) völlig ruht. Durch Berührung der Platte an
einer Ecke wurde an dieser Stelle ein Knoten erzwungen.
13. Glockenschwingungen
• Die Glockenschale mit der Öffnung nach oben
mittels Tischklemme und Kunststoffklotz am
Arbeitstisch befestigen.
• Den Rand der Glocke an verschiedenen Stellen
mit dem Anschlaghammer anschlagen (alternativ mit dem Geigenbogen anstreichen).
Die Tonhöhe hängt von der Anschlagstelle ab. Es ist
ohne weiteres möglich Unterschiede von einem
ganzen Ton zu erhalten. Wird die Glocke an bestimmten Stellen angeschlagen, so werden beide
Töne angeregt und man erhält die bekannten
„Schwebungen“ (periodisches An- und Abschwellen
der Lautstärke in mehr oder weniger rascher Folge).
Erklärung: Glocken sind verformte schwingende
Platten. Die Obertöne sind meist nicht harmonisch
zum Grundton. Auch Glocken teilen sich durch
Knotenlinien in einzelne schwingende Abteilungen.
14. Stehende Wellen
• Die Schlaufe des Wellenseils durch einfaches
Verknoten an einer Türklinge befestigen.
• Das Seil mäßig straff spannen und mit der
Hand langsame, kreisförmige Bewegungen
durchführen.
• Dann das Seil straffer spannen und die Kreis-
bewegungen schneller werden lassen.
Bei langsamer Bewegung entstehen an den Enden
des Seils jeweils Knoten und in der Mitte ein
Bauch. Bei schnellerer Bewegung entstehen 3 Knoten und 2 Bäuche und bei noch schnellerer Bewegung 4 Knoten und 3 Bäuche.
Erklärung: Durch die Reflexion an der Tür bilden
sich stehende Wellen aus. Wegen der Trägheit des
Auges sieht. man die ursprüngliche und die reflektierte Welle scheinbar gleichzeitig.
In der Grundschwingung schwingt das Seil in seiner
ganzen Länge in Form einer Halbwelle auf und
nieder. In der Mitte ist ein Bauch, an beiden Enden
sind Knoten. In der 1. Oberschwingung (Oktave)
schwingt das Seil in Form einer ganzen Welle (2
Bäuche und 3 Knoten). In der 2. Oberschwingung
haben wir 3 Bäuche und 4 Knoten usw.
15. Obertöne
• Die Lippenpfeife mit dem Mund zuerst
schwach und dann sehr stark anblasen.
Man vernimmt zuerst den Grundton und bei stärkerem Anblasen einen wesentlich höheren Ton.
Erklärung: Bei der gedackten Pfeife müssen sich
stehende Wellen stets in der Weise ausbilden, dass
sich am Boden ein Knoten und an der Schneide ein
Bauch befindet. Dies ist der Fall, wenn die Länge
der Pfeife genau 1/4 Wellenlänge entspricht. Es ist
aber auch der Fall, wenn die Entfernung der Öffnung vom Boden 3/4, 5/4, 7/4 usw. der Wellenlängen beträgt.
Neben dem Grundton entstehen also auch sämtliche ungeradzahligen Obertöne der harmonischen
Tonreihe in mehr oder weniger starkem Maße.
Nur dem mehr oder weniger starken Auftreten von
Obertönen ist es zuzuschreiben (und zu verdanken), dass jedes Musikinstrument eine ganz charakteristische Klangfarbe hat.
16. Messung der Wellenlänge
• Das Ende der genau 45 cm langen Kundt’schen
Röhre mit der Gummikappe verschließen und
mit einem Teelöffel eine kleine Menge Lykopodiumpulver in die schräg gehaltene Röhre
füllen, so dass sich eine nicht zu große Menge,
gleichmäßig verteilt, als feines gelbes Band in
der Röhre befindet.
• Glasrohr mittels Halteklammer, Tischklemme
und Plastikklotz am Arbeitstisch befestigen.
• Die Stimmgabel (1700 Hz) an einem Hammer-
stiel sehr kräftig anschlagen und einen Zinken
breitseits dicht vor die Rohröffnung halten.
Diese Schallanregung eventuell mehrmals wiederholen!
Das Lykopodiumpulver kommt an den Schwingungsbäuchen in lebhafte Mitschwingung, während
es an den Knoten völlig in Ruhe bleibt. Die Pulverteilchen fallen auf den Grund des Rohres und bilden dort periodische Anhäufungen, die sich längs
der Rohrachse 4 1/2 Mal wiederholen.
Erklärung: Die Leichtmetall-Stimmgabel hat eine
Frequenz von 1700 Schwingungen in der Sekunde.
Nach der einfachen Beziehung
keiteschwindiglgSchal
340
1700
eWellenläng =
s/m
⋅
Hz
20
⋅=
m,
Frequenz
beträgt die zugehörige Wellenlänge 20 cm. In eine:
Röhre von 45 cm Länge "passen" also 4½ Halbwellen oder 2 volle und eine Viertelwellenlänge, wie
der Versuch es zeigte. An der Öffnung der Röhre ist
immer ein Bauch, am Boden immer ein Knoten.
5
17. Der Resonanzboden
• Die Stimmgabel a’ = 440 Hertz kräftig mit dem
Anschlaghammer des Metallophons anschlagen
und mit ihrem Stiel auf die Tischplatte stellen.
Der in freier Luft kaum hörbare Ton der Stimmgabel wird durch das Aufstellen auf die Tischplatte so
sehr verstärkt, dass er nunmehr im ganzen Raum
deutlich vernehmbar ist.
Erklärung: Durch den auf- und abschwingenden
Stiel der Stimmgabel wird die Tischplatte in Mitschwingung versetzt. Da die wirksame Tischfläche
wesentlich größer ist als die der Stimmgabel, wird
die Lautstärke des Tons erheblich verstärkt.
18. Der Resonanzkasten
• Die Stimmgabel a' = 440 Hertz kräftig anschla-
gen und mit ihrem Stiel auf den Resonanzkas-
ten des Monochords stellen.
Es tritt eine bedeutende Verstärkung des Tons ein.
Erklärung: Wie bei Versuch 17.
19. Der Kugelresonator
• Die Helmholtz-Resonatoren der Reihe nach mit
der kleinen Spitze ans Ohr halten.
Man vernimmt einen Ton, der umso tiefer ist je
größer der Durchmesser des Resonators ist.
Erklärung: Jeder gleichwie gestaltete Hohlraum
(Röhre, Hohlkugel) hat eine ganz bestimmte, nahezu obertonfreie Grundschwingung Diese Grundschwingung kann man erregen, wenn der Hohlraum an seiner Öffnung angeblasen oder auch nur
mit dem Fingerknöchel gegen den Hohlraum geklopft wird. Die Eigenschwingung wird aber auch in
erster Linie dann erregt, wenn im umgebenden
Lärm Töne enthalten sind, die mit der Grundschwingung des Resonators übereinstimmen. So
kann man mit dem Kugelresonator ein Klanggemisch auf seinen Gehalt an Teiltönen prüfen.
Herrscht in einem Raum absolute Stille, so bleibt
der Resonator stumm.
20. Die Saiteninstrumente und ihre Gesetze
• Den Quersteg hochkant unter die Saite des
Monochords schieben so dass die rechte Kante
genau mit der Zahl 20 der Maßskala zusam-
menfällt und die 40 cm lange Saite in zwei
gleich lange Abschnitte von je 20 cm Länge un-
terteilt wird.
• Die halbe Saitenlänge durch Anziehen des
Wirbels auf die Stimmgabel (440 Hz) a’ (Kam-
merton) abstimmen.
• Durch Anzupfen oder besser Anstreichen der
Saite die Tonhöhen bei 40 cm, 20 cm, 10 cm
und 5 cm Saitenlänge vergleichen.
Bei 20 cm Saitenlänge erhält man den Kammerton
a’ = 440 Hertz, bei 40 cm Saitenlänge den um eine
Oktave tieferen Ton a = 220 Hertz, bei 10 cm Saitenlänge den um eine Oktave höheren Ton a’’ = 880
Hertz und bei 5 cm Saitenlänge den um 2 Oktaven
höheren Ton a’’’ = 1760 Hertz.
Erklärung: Bei der doppelten Saitenlänge erhält
man einen um eine Oktave tieferen Ton, bei der
halben Saitenlänger die 1. und bei 1/4 Saitenlänge
die 2. Oktave. Die Frequenzen von Saiten verhalten
sich umgekehrt wie ihre Längen.
21. Die Tonleiter auf den Saiteninstrumenten
• Auf dem Monochord durch Verschieben des
Quersteges die dem menschlichen Ohr einge-
-
prägte
Tonleiter spielen und jeweils die Längen
des schwingenden Saitenstückes und das Verhältnis des schwingenden Saitenstückes zur Gesamtlänge der Saite (40 cm) ermitteln.
Ton Saitenlänge Längenverhältnis
c 40 cm 1
d 35,55 cm 8/9
e 32 cm 4/5
f 30 cm 3/4
g 26,66 cm 2/3
a 24 cm 3/5
h 21,33 cm 8/15
c’ 20 cm 1/2
Erklärung: Die Saite muss halb so lang sein, wenn,
unter sonst gleichen Bedingungen wie Saitenspannung, Saitendicke usw., die Oktave erreicht werden
soll. Bei den übrigen Tönen der Tonleiter ergeben
sich für das Verhältnis der schwingenden Saitenlängen zur ganzen Saitenlänge einfachste Verhältniszahlen. Je kleiner diese Zahlen sind, desto besser ist der Wohlklang. (Oktave 1:2, Quinte c/g 2:3
usw.)
22. Messung der Saitenspannung
• Die Federwaage auf das Monochord aufstecken
und das Ende der Perlonsaite in den Schlitz der
Federwaage einhängen.
• Durch Anziehen des Wirbels die Saite
unter Verwendung der Stimmgabel a’ =
440 Hertz auf den Kammerto n absti mmen.
• Mit der Federwaage die Saitenspannung
bestimmen.
Die Saitenspannung beträgt bei der Perlonsaite 5,5
kg.
6
23. Abhängigkeit der Tonhöhe von der Saitenspannung
Ein Ergebnis von Versuch 22 war, dass, um den
Kammerton zu erhalten, die Perlensaite mit 5,5 kg
gespannt werden muss. Wie hoch ist die Saitenspannung bei dem um eine Oktave tiefer liegenden
Ton a (220 Hertz)?
• Den Wirbel lockern, bis der Ton a ertönt.
• Zur Kontrolle den Quersteg unter die Maßzahl
20 (halbe Saitenlänge) setzen und die halb e
Saitenlänge wieder auf den Kammerton abstimmen. Die ganze Saite schwingt dann mit
der halben Frequenz.
Die Saitenspannung geht auf 1,4 kg zurück.
Erklärung: Die Frequenz einer Saite ist proportional
zur Quadratwurzel aus dem spannenden Gewicht.
Wenn die Kraft, welche die Saite spannt, 4x, 9x, 16x
so groß ist, erhöht sich die Frequenz um das 2-, 3und 4-fache. 1/4 von 5,5 ist (rund) 1,4, wie gemessen wurde.
24. Blasinstrumente und ihre Gesetze
• Die Lippenpfeife mit dem Mund anblasen und
durch mehr oder weniger starkes Ausziehen
des Bodens die wirksame Länge der Pfeife ver-
ändern.
Bei kleiner Pfeifenlänge erhält man hohe, bei gro-
ßer tiefere Töne.
Erklärung: Beim Einblasen eines schwachen Luft-
stromes bilden sich stehende Wellen aus, wobei die
Pfeifenlänge einer Viertelwellenlänge entspricht.
Beim Einblasen eines stärkeren Luftstromes entstehen Obertöne, deren Frequenz ein ungeradzahliges
Vielfaches des Grundtones ist.
Bei der offenen Pfeife ist die Grundschwingung
doppelt so groß wie bei der geschlossenen.
25. Die C-Dur-Tonleiter und ihre Intervalle
• Zur Bestimmung der Intervalle wird jeweils die
höhere Frequenz durch die nächst niedrigere
geteilt.
Für das Intervall d/c =1188/1056 ist der gemeinsa-
me Teiler 132 man erhält also 9/8, 10/9, 16/15, 9/8,
10/9, 9/8 und 16/15.
Erklärung: Die Intervalle (Zwischenräume) der
einzelnen Töne der Tonleiter sind nicht gleich groß.
Man unterscheidet große ganze (9/8), kleine ganze
(10/9) und halbe Tonschritte (16/15).
Man vernimmt einen besonders wohlklingenden
Zusammenklang, den man als den G-Dur-Dreiklang
bezeichnet.
Erklärung: Sollen mehrere Töne einen wohlklingenden Zusammenklang, eine Konsonanz, bilden,
so müssen sie es paarweise tun. Der G-DurDreiklang setzt sich aus der großen Terz und der
kleinen Terz zusammen. Die Frequenzen der Töne
g h d stehen untereinander in einem besonders
einfachen Verhältnis und zwar 4:5:6.
Um dieses Zahlenverhältnis zu erhalten, müssen
die auf der Zungenpfeife angegebenen Grundfrequenzen jeweils durch 6 geteilt werden. (Um die
physikalisch korrekten Frequenzen zu erhalten,
müssen die aufgedruckten Grundfrequenzen mit 33
multipliziert werden).
Zwischen Zungenpfeife und Metallophon kann
zudem fertigungsbedingt eine Abweichung der
Stimmung hörbar sein.
28. Der vierstimmige G-Dur-Dreiklang
• Den G-Dur-Dreiklang durch die Oktave g' er-
gänzen. Also gleichzeitig g h d’ g’ spielen.
Man erhält den besonders vollen und wohlklingenden "vierstimmigen G-Dur-Dreiklang".
Erklärung: Im vierstimmigen Dreiklang sind folgende Konsonanzen enthalten:
Die Oktave 1:2
Die Quinte 2:3
Die große Terz 4:5
Die kleine Terz 5:6
29. Die Dur-Tonleiter mit beliebigem Grundton
• Auf dem Metallophon zuerst die C-Dur-
Tonleiter, beginnend mit c, anschließend die
G-Dur-Tonleiter, beginnend mit g, spielen.
Die C-Dur-Tonleiter von c' bis c" erklingt klangrein.
Bei der mit g' beginnenden G-Dur-Tonleiter tritt bei
f" ein schwerer Fehler auf. Der Ton ist um einen
halben Tonschritt zu tief.
Erklärung: Nach Versuch 25 müssen bei jeder Tonleiter folgende Intervalle auftreten:
9/8, 10/9 16/15, 9/8, 10/9, 9/8, 16/15.
Bei der Tonfolge g'...g" stehen auf der Grundplatte
des Metallophons aber folgende Intervalle:
10/9, 9/8, 16/15
, 9/8, 10/9, 16/15, 9/8
Die unterstrichenen Intervalle sind richtig, die
übrigen mehr oder weniger falsch.
7
Die Intervalle 9/8 und 10/9 liegen einander aber so
nahe, dass sie nur schwer voneinander zu unterscheiden sind, daher ist der Fehler von g' bis h'
belanglos. Schwerwiegend dagegen ist der Fehler
zwischen e" und f". Hier beträgt das Intervall
16/15, während es in Wirklichkeit 9/8 betragen
sollte. Man hört daher f" um einen halben Ton zu
tief.
30. Einschaltung der Halbtonschritte
• Auf der Zungenpfeife die Tonleiter von g' bis g"
spielen, nachdem vorher sicher gestellt wurde,
dass der Ton a' der Zungenpfeife tatsächlich
auf den Kammerton abgestimmt ist. Dazu
Stimmgabel anschlagen und vergleichen.
Auf der Zungenpfeife ertönt die G-Dur-Tonleiter
völlig klangrein.
Erklärung: Anstelle des Tones f' ist ein neuer Ton,
das fis' eingeschaltet, der so berechnet ist,
dass das Intervall zwischen e’ und fis’ 9/8 und
das zwischen fis’’ und g’’ 16/15 beträgt. Dies geschieht dadurch, dass man die Frequenz des f
durch Multiplikation mit 25/24 erhöht.
Die durch Erhöhung der Töne hervorgerufenen
neuen Töne heißen: cis, dis, eis, fis, gis, ais, his.
Die Erhöhung wird in der Notenschrift durch ein
vorgesetztes Kreuz bezeichnet.
Die um einen halben Ton niedrigeren Töne erhält
man durch Multiplikation des höheren Tones
mit 24/25. Diese Töne werden in der Notenschrift
durch ein vorgesetztes b gekennzeichnet. Sie heißen: ces, des, es, fes, ges, as, b.
Mit nur geringen Fehlern werden auf dem Klavier
die Töne cis und des usw. einander gleichgesetzt.
This set of apparatus makes it possible to impart an
extensive and well-rounded overview on the topic
of acoustics. The set can be used for conducting
numerous experiments.
Sample experiments:
1. String tones
2. Pure acoustic tones
3. Vibrating air columns
4. Open air column
5. Whistle
6. Vibrating rods
7. Infrasound
8. Ultrasound
9. Tuning fork with plotter pen
10. Progressive waves
11. Doppler effect
12. Chladni figures
13. Chimes
14. Standing waves
15. Overtones
16. Measurement of wavelength
17. Soundboard
18. Resonator box
19. Spherical cavity resonator
20. Stringed instruments and the laws they obey
21. Scales on stringed instruments
22. Measurement of string tension
23. Relation between pitch and string tension
24. Wind instruments and the laws they obey
25. C major scale and its intervals
26. Harmony and dissonance
27. G major triad
28. Four-part G major chord
29. Major scales in an arbitrary key
30. Introduction of semitones
The set is supplied in a plastic tray with a foam
insert that facilitates safe storage of the individual
components.
1
2. Contents
1 Trays with foam inserts for acoustics kit
2 Monochord
3 Bridge for monochord
4 Metallophone
5 Chladni plate
6 Tuning fork, 1700 Hz
7 Tuning fork, 440 Hz
8 Tuning fork with plotter pen, 21 Hz
9 Spring balance
10 Retaining clip
11 Table clamp
12 Helmholtz resonators70 mm dia.
52 mm dia.v
40 mm dia.
34 mm dia.
13 Glass tube for open air column
14 Kundt’s tube
15 Glass tube for closed air column
16 Rod for Chladni plate/bell dome
17 Galton whistle
18 Plotter pen with holder
19 Lycopodium powder
20 Plastic block for clamp
21 Rubber top
22 Bell dome
23 Reed pipe
24 Whistle
25 Steel string
26 Nylon string
27 Resonance rope
28 Plunger
2
3. Technical data
Dimensions: 530 x 375 x 155 mm3 approx.
Weight: 4.5 kg approx.
4. Sample experiments
1. String tones
• Pluck the monochord string hard when it is
moderately taut.
• Subsequently increase the tension on the string
by turning the peg to the right. Pluck the string
again.
At first, a low tone is heard. As the string is tight-
ened the tone gets higher.
Reasons: vibrating strings generate acoustic tones
by inducing alternating compression and rarefaction of the surrounding air. The greater the tension
in the string, the faster the vibrations are and the
higher the tone.
2. Pure acoustic tones
• Hit the 440 Hz tuning fork hard with the metal-
lophone beater.
A pure acoustic tone of a very specific, unchanging
pitch can be heard. This tone dies away very slowly.
Reasons: a tuning fork consists of a U-shaped steel
piece which merges into the stem at its vertex. As
the tuning fork only vibrates in one oscillation
mode (with both prongs either both moving apart
or both moving towards one another), it produces a
pure tone of an unchanging pitch. Owing to its
property of producing a constant pitch, tuning
forks are used for tuning musical instruments.
3. Vibrating air columns
• Attach the glass tube for demonstrating a
closed air column by means of the table clamp,
plastic block and retaining clip.
• Insert the tuning plunger into the glass tube.
• Hit the 440 Hz tuning fork hard with the metal-
lophone beater. By pulling out the plunger to a
greater or lesser degree it is possible to alter
the length of the closed air column.
There is only one plunger position at which the air
column resonates strongly. At any other position
there is no sound. Resonance can be detected by
the increase in sound volume.
Reasons: a closed air column starts resonating
when its length corresponds to one quarter of the
excitation wavelength. The tuning fork vibrates
with a frequency of 440 vibrations per second.
Applying the following equation:
Wavekength =
⋅
⋅
scm
/34000
pagationSpeedofpro
Frequency
sfreqExciting
/440
cm
⋅=
2.77
the wavelength of the tone produced is 77.2 cm.
One quarter of this wavelength is therefore
19.3 cm.
The distance between the plunger and the opening
at the end of the tube is 19.3 cm when resonance
occurs.
4. Open air column
• Conduct the same experiment with an open air
column (14).
The open air column, which is exactly double the
length of the closed air column, starts resonating
when the tuning fork is brought into its vicinity, as
can be heard by means of the increased volume.
Reasons: an open air column starts resonating
when its length is half that of the wavelength or
multiples of that length. Antinodes are formed at
the ends of the open air column and a node at the
middle.
5. Whistle
• Blow the whistle and change its length by
gradually drawing out the plunger.
Depending on the length of the whistle, its note
gets higher or lower but the character or timbre of
the note remains the same.
Reasons: blowing a uniform air stream into the
opening of a whistle causes the air trapped in the
pipe to vibrate and eddies then occur at regular
intervals air the air passes over the blade. The
resulting tone depends on the length of the air
column. In the case of a closed air column, the
length of the whistle (measured from the edge of
the blade to the base of the whistle) corresponds to
a quarter wavelength of the base tone. A node is
formed at the blade of the whistle and an antinode
is formed at the end of the pipe
6. Vibrating bars
• Use the striking hammer supplied to strike
several bars of the metallophone. When the
metal bars are struck, they produce a distinct,
melodious note, each of which has a similar
timbre. The shorter the length of the bar, the
higher the tone.
Reasons: elastic rods form systems capable of oscillating if they are resting upon a point where a node
is formed (about 22% of the total length between
the two ends).
3
7. Infrasound
• Without the plotter pen attached, make the
tuning fork (21 Hz) vibrate by pressing its
prongs together and suddenly releasing them.
The tuning fork produces slow vibrations that can
be perceived by the naked eye. When held close to
the ear, a very deep (barely audible) tone can be
heard.
Reasons: the prongs of the tuning fork vibrate in
opposite directions and give rise to compressions
and rarefactions in the surrounding air. When this
reaches the ear, it makes the eardrum vibrate. A
tone is thus perceived.
The tuning fork vibrates at approximately 20 vibrations per second. The lowest note that can be perceived by human hearing has a frequency of approximately 16 vibrations per second. Vibrations
below 16 Hz are not audible to the human ear. The
sound produced by these vibrations is called infrasound. (Latin: infra = below).
8. Ultrasound
• Blow the Galton whistle.
No sound can be heard, simply a hiss.
Reasons: owing to its short length, the Galton whis-
tle produces very high tones which are not audible
to the human ear. This phenomenon is called ultrasound. (Latin: ultra = above).
9. Tuning fork with plotter pen
• Attach the pen (8) to the prongs of the tuning
fork (21 Hz).
• Make the tuning fork vibrate by pressing the
prongs together and move a sheet of paper as
uniformly as possible under the pen so that the
motion is plotted onto it. Make sure that the
surface on which the paper rests is not too soft.
The pen traces a wavy line of a constant wave-
length but decreasing amplitude on the paper.
Reasons: sound is produced by harmonic oscilla-
tions of solids, liquids or gases. The locus of the
oscillating particles of the body in relation to the
time traces a sine curve. When struck once, vibrating bodies exhibit a “damped” oscillation (continuous decrease in amplitude). If the supply of energy
is uninterrupted (constant sound of a car horn,
constant blowing of an organ pipe), the result is an
undamped oscillation of constant amplitude (loudness or volume).
10. Progressive waves
• Make a simple knot in the resonance rope and
attach it by the loop to the handle of a door.
• Make the wire moderately taut and jerk it
suddenly to the side.
From the centre of motion (the hand), a wave is
produced which runs along the wire with an increasing velocity, gets reflected at the fixed end
and returns to the point of origin.
Reasons: every solid, liquid and gas produces vibrations when disturbed suddenly. These vibrations
spread through a medium with a definite propagation velocity.
11. Doppler effect
• Strike the light-metal tuning fork (1700 Hz)
hard with the metallophone beater. Hold it
still for a short while and then rapidly move it
to and fro through the air.
In a state of rest, the tuning fork produces a clear
tone of uniform pitch. In a state of motion, the
pitch constantly changes. If the tuning fork is
moved towards the ear, the pitch rises, and if it is
moved away from the ear, the pitch decreases.
Reasons: when the distance between the source of
sound and the ear is decreasing, the time interval
between two compressions also decreases as a
second compression has to travel a shorter distance
to reach the ear compared to the first. The ear
registers a higher frequency. The tone thus gets
higher. When the source of sound is moved away
from the ear, the intervals between compressions
and rarefactions get longer. The tone thus becomes
deeper.
12. Chladni figures
• Use the table clamp and plastic block to attach
the Chladni plate to the workbench. Scatter
some bird sand or a similar material onto the
plate. Allow it to spread in a thin layer so as to
cover a third of the plate.
• With one hand, bow the plate exactly half way
between two corners with a good violin bow,
simultaneously touching one other corner
lightly with the finger of your other hand.
• Bow several strokes across the plate, preferably
quite forcefully so that the vibrations of the
plate are vigorous and well audible.
When the plate is being bowed, a very distinct
acoustic tone can be heard. At certain points, the
grains of sand experience lively resonance and
begin to bounce up and down on the surface of the
plate, accumulating in unusual figures on the surface.
Reasons: “standing waves” are formed on the plate.
When bowed, the plate does not vibrate uniformly
across its surface. At certain points (antinodes), the
plate begins to vibrate, whereas it is in a state of
complete rest at other points (nodes). By touching
the plate at one corner, the point is forced into
being a node.
4
13. Chimes
Hz
⋅
• Secure the bell dome to the bench with its
open end facing upwards using the table
clamp and plastic block.
• Strike the edge of the bell at different points
with a hammer. (Alternatively, the edges can
also be bowed with a violin bow.)
The pitch depends on the point at which the bell
has been struck. It is easily possible to obtain differences of a whole tone. If the bell is struck at
definite points, both tones are excited and the
result is a familiar “beating” (periodic increase and
decrease in volume at varying speeds).
Reasons: bells are curved vibrating plates. The
overtones are mostly not in harmony with the
fundamental tone. Bells too exhibit specific vibrating regions while they are chiming
14. Standing waves
• Make a simple knot in the resonance wire and
attach it by the loop to the handle of a door.
• Make the wire moderately taut and gently
move it round in circles.
• Now make the wire tighter and spin it faster.
When moved gently, nodes arise at both ends of
the wire and an antinode is created in the middle
of the wire. When moved faster, three nodes and
two antinodes are formed, and when moved even
faster, four nodes and three antinodes are formed.
Reasons: owing to the reflection at the door handle, standing waves are formed. Due to persistence
of vision, the original and reflected waves appear
to be simultaneous. In its fundamental mode, the
whole of the wire vibrates in one length, thus describing one half-wave. One antinode is observed in
the middle of the wire with nodes at both ends. In
the case of a first harmonic (octave), the wire vibrates describes the form of a complete wave (two
antinodes and three nodes); for the second harmonic, there are three antinodes and 4 nodes; and
so on.
15. Overtones
• First blow the whistle gently, then blow it very
hard.
Initially, a fundamental tone is heard. When the
whistle is blown hard, a much higher tone can be
heard.
Reasons: since the whistle is closed at one end
standing waves are always formed with a node at
the base and an antinode at the blade opening.
This is the case when the length of the whistle is
exactly 1/4 of the wavelength. It is also the case if
the distance of the opening from the base is 3/4,
5/4, 7/4, etc. of the wavelength.
Apart from the fundamental tone, all the possible
odd overtones or harmonics from the harmonic
series are produced at varying degrees of intensity.
The fact that every musical instrument has a very
characteristic timbre can be attributed solely to the
presence of individual harmonics of this kind appearing to a greater or lesser degree.
16. Measurement of wavelength
• Seal off the end of the 45-cm glass tube (21)
with the rubber cap and, holding the tube at
an angle, put a small quantity of lycopodium
powder into the tube using a teaspoon. Carefully spread a moderate quantity of the powder
uniformly to form a fine yellow strip in the
tube.
• Attach the glass tube by means of the retaining
clip, table clamp and plastic block.
• Strike the tuning fork (1700 Hz) hard on the
handle of the hammer and hold one prong directly alongside the opening of the tube. If
necessary, repeat this acoustic excitation several times.
At the antinodes, the lycopodium powder begins to
resonate strongly, whereas it is absolutely static at
the nodes. The powder particles fall to the base of
the tube and form periodic clusters that repeat 4½
times along the axis of the tube.
Reasons: the light-metal tuning fork has a frequency of 1700 vibrations per second. According to
the following equation:
Wavelength =
sm
⋅
/340
1700
Speed
Frequenncy
m
⋅=
2.0
The corresponding wavelength is 20 cm. Thus, 4½
half-waves or 2 full waves and one quarter wave can
“fit” in a 45-cm-long tube, as demonstrated in the
experiment. At the opening of the tube, there is
always an antinode and there is always a node at
the base of the tube.
17. Soundboard
• Hit the tuning fork that produces the note
a’ = 440 Hertz hard using the metallophone
beater and push the stem down onto the table
top.
Simply by holding it on the table, the barely audible tone produced by the tuning fork is amplified
to such an extent that it is now clearly heard
throughout the room.
Reasons: owing to the rising and falling vibrations
in the shaft of the tuning fork, the surface of the
table begins to resonate. Since the effective table
surface is much larger than the tuning fork, the
loudness of the tone is considerably intensified.
5
18. Resonator box
• Strike the A tuning fork (440 Hz) nice and hard
and place its stem on the resonator box of the
monochord.
There is a significant amplification of the tone.
Reasons: as explained in experiment 17.
19. Spherical cavity resonator
• One by one, bring the narrow tip of each of the
Helmholtz resonators close to your ear.
You hear a tone which gets deeper as the diameter
of the resonator becomes greater.
Reasons: every hollow space, regardless of its
shape, e.g. pipes, hollow spheres, has a very specific resonant frequency which is almost lacking
overtones. This harmonic can be produced by
blowing air across the opening of the hollow space
or simply by tapping the hollow space with your
knuckles. However, natural resonance is also created if the surrounding noise possesses tones which
match the harmonic of the resonator. In this way,
the spherical cavity resonator can be used to identify individual components of a mixed sound. If the
room is absolutely quiet, the resonator remains
silent.
20. String instruments and the laws they obey
• Insert the bridge vertically below the string of
the monochord so that its right edge exactly
coincides with the number 20 on the scale and
the 40-cm string is divided into two equal sec-
tions of 20 cm each.
• By tightening the peg, tune half the length of
the string to match the A tuning fork (440 Hz)
(standard pitch).
• By plucking, or preferably by bowing the
string, compare the pitch for string lengths of
40 cm, 20 cm, 10 cm and 5 cm.
For a string length of 20 cm, the note matches the
standard concert pitch A' = 440 Hz. For a string
length of 40 cm, the pitch is one octave lower at
A = 220 Hz. For length 10 cm, the pitch is one
octave higher A’’ = 880 Hz. Finally, when the length
of the string is 5 cm, the pitch is two octaves higher
A’’’ = 1760 Hz.
Reasons: when the string is twice as long, the pitch
is lowered by one octave. When string length is half
the length it is one octave higher and when the
length of the string is reduced to a quarter, the
note rises to the second octave. The frequency of a
string vibration is inversely proportional to the
string's length.
21. Scales on stringed instruments
• By moving the bridge, play the musical scale
that is tuneful to the human ear. In each case,
calculate the ratio of the vibrating section of
the string to the total length of the string
(40 cm).
Tone String length Ratio of the string
length to the total
length of the string
C 40 cm 1
D 35.55 cm 8/9
E 32 cm 4/5
F 30 cm 3/4
G 26.66 cm 2/3
A 24 cm 3/5
B 21.33 cm 8/15
C’ 20 cm 1/2
Reasons: under consistent conditions (e.g. string
length, string thickness, etc.), the sound is an octave higher when the string length is halved. In the
case of the other tones on the musical scale, the
relation between the vibrating section of the
string’s length and its total length also forms simple ratios. The smaller the ratio, the more pleasing
the harmony (octave 1:2, fifth C/G 2:3, etc.).
22. Measurement of string tension
• Attach the spring balance onto the monochord
and insert the end of the nylon string into the
eye of the spring balance.
• Pull the peg and, using the A' tuning
fork (440 Hz), tune the string to standard pitch.
• Use the spring balance to determine the ten-
sion of the string.
The string tension in the case of a nylon string is
5.5 kg.
23. Relation between pitch and string tension
One of the results of experiment 22 was that in order
to obtain a standard pitch, the tension on the nylon
string needs to be 5.5 kg. How much tension should
be applied in order to obtain a pitch that is one
octave lower (A = 200 Hz)?
• Loosen the peg till you hear the pitch of A.
• To make sure this is right, place the bridge
under the string at 20 cm on the scale (i.e. half
the total length of the string) and tune this
half-of the string to standard pitch. Removing
the bridge, the whole string will vibrate at half
the frequency.
The string tension has been reduced to 1.4 kg.
Reasons: the frequency of the string is proportional
to the square root of the tension. If the tensile
force on the string is higher by a multiple of 4, 9,
16, etc., the frequency is increased two-fold, three-
6
fold, four-fold, etc. As measured earlier, 1/4 of 5.5
is 1.4 (rounded up).
24. Wind instruments and the laws they obey
• Blow the whistle. You can change the effective
length of the whistle by moving the plunger.
When the length is short, the whistle produces a
high tone and when it is longer, it produces a lower
tone.
Reasons: when a weak air current passes through
the whistle, standing waves are produced. In this
case, the length of the whistle corresponds to a
quarter wave length. When a strong air current
passes through the whistle, overtones are produced
whose frequency is an odd multiple of the fundamental tone.
In the case of an open whistle, the first harmonic is
twice the frequency of that for a closed whistle.
25. C major scale and its intervals
• To determine the intervals, the higher fre-
quency is divided by the lower frequency.
For the interval D/C = 1188/1056, the common
divisor is 132. We thus get ratios of 9/8, 10/9,
16/15, 9/8, 10/9, 9/8 and 16/15.
Reasons: the intervals between the individual tones
of a musical scale are not equal. Intervals can be
distinguished into the major tone (9/8), minor tone
(10/9) and half-tone (16/15).
26. Harmony and dissonance
• Play all possible combinations on the reed
pipe.
Pleasing harmonies (consonances) are produced at
the octave, the fifth note, the fourth, the major
third and minor third. Discordant notes (dissonances) emerge between the second and seventh
notes. The combination of tones produced by two
neighbouring tones is also called dissonance.
27. G major triad
• Simultaneously blow notes G, B and D on the
reed pipe.
A highly melodious combination is heard. This
combination of notes is termed the G major triad.
Reasons: consonance is produced if several notes
produce a melodious combination of pairs. The G
major triad is formed as a combination of the major third and the minor third. The frequencies of
the notes G, Band D have a very simple ratio to one
another, viz. 4:5:6.
In order to derive this ratio, the fundamental frequencies specified on the reed pipe should each be
divided by 6.
(To obtain a physically correct frequency, the fundamental frequencies printed on the pipe need to
be multiplied by 33).
It is also possible for the tuning of the reed pipe
and metallophone to differ audibly due to manufacturing processes.
28. Four-part G major chord
• Add to the G major triad the G’ octave as well.
To achieve this, simultaneously play G, B, D
and G’.
The result is a full and melodious “four-part G
major chord”.
Reasons: a four-part major chord features the fol-
lowing consonances:
Octave 1:2
Fifth 2:3
Major third 4:5
Minor third 5:6
29. Major scales in an arbitrary key
• First play the C major scale on the metallo-
phone. Begin with C. Subsequently play a simi-
lar scale starting from G.
A C major scale from C’ to C’’ sounds pleasantly
consonant. If you try to play a similar scale starting
at G’, though, there is a definite dissonance at F’’.
The note is a semitone too low.
Reasons: according to experiment 25, the following
intervals must be exhibited in every scale:
9/8, 10/9 16/15, 9/8, 10/9, 9/8, 16/15
For the sequence of notes G’…G’’, however, the
following intervals are specified on the base plate
of the metallophone:
10/9, 9/8, 16/15
, 9/8, 10/9, 16/15, 9/8
The underlined intervals are correct, the others are
incorrect in this sense.
The intervals 9/8 and 10/9 are so close to one another that it is extremely difficult to distinguish
between them. Hence, the divergence from the
ideal between G’ and B’ is irrelevant. However, the
“imperfection’ between E’’ and F’’ is easily noticeable. In this case, an interval of 16/15 occurs instead of 9/8. The F’ note is therefore a semitone too
deep.
30. Producing half-tones
• On the reed pipe, play the scale from G’ to G’’
making sure that the A’ note of the reed pipe is
genuinely tuned to standard pitch. Use the
tuning fork to compare the pitch.
A G major scale on the reed pipe is pleasantly con-
sonant.
Reasons: instead of the F’ note, a completely new
note, F#, is introduced. The interval between F’
7
Loading...
+ 33 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.