YASKAWA YASNAC J50 Connecting Manual

Page 1
YASNAC J50
CONNECTING MANUAL
CNC SYSTEM FOR MACHINE TOOLS
BEFORE INITIAL OPERATION, READ THESE INSTRUCTIONS THOROUGHLY, AND RETAIN FOR FUTURE REFERENCE.
Y
YASUWJA
TOE-C843-12.2B
Page 2
This manual describes the specifications for connecting YASNAC J50 Series with machines, machine interfaces and external equipment.
Necessary connections to be provided by the machine builder differ depending on the type of the CNC unit supplied by Yaskawa. Make additions or deletions of connections in accordance with the combination for standard cabinets and integrated units.
The programmable controller system (hereafter called PC) is installed in the YASNAC J50 CNC unit. For details of the PC, rafer to instruction Manual for YASNAC J50 PC System (SIE-C843-I 2.1).
94C84123
YASNAC J50 Operator’s Panel
Page 3
CONTENTS
Page
l. CONFIGURATION. O. . . ..O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...1
1.1 SYSTEM CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.2STANDARD CABINETS AND INTEGRATED UNITS .. O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. ENVIRONMENTAL CONDITIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...1
3.cABlNET construction DEslGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..l
4. CABINET DESIGN FORHEAT FACTORS . . . . . . . . . . .. O.O..O... . . . . . . . . . . . .. - . . . . . . . . . ...3
4.1 SELECTION OF HEAT EXCHANGER . . . . . . . . . .. s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.2 HEAT VALUES OF UNITS.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3
4.3 DUST-PROOF CONSTRUCTION . . . . . . . . . . . . . . . .. $. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...4
4.4 PROTECTION FROM MAGNETIC INFLUENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5. PRECAUTIONS FOR INSTALLING SERVO UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...6
6. CABLE ENTRANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...7
6.1 LAYOUT OF CABLE CONNECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Clamping CABLES AND SHIELDING CABLES• O.OO.O.O... O.. O....• .. O.. O.O.. O.. O.O. O..8
6.3 CONNECTING DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...9
7. POWER SUPPLY CONNECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...12
7.1 POWER SUPPLY CONNECTIONTO EACH UNITO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.2 DETAILS OF CONNECTION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8. CONNECTIONTOOPERATOR’S PANEL .o . . . . . . . .. o.c. ..o. .o..o. . . . . . . . . . . . . . . . . . . ...13
8.1 CONNECTION TO EACH UNIT.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.2 DETAILS OF CONNECTION. O.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...14
9.coNNEcTloN oFMANuAL PuLsEGENERAToR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..l5
9.1 CONNECTION TO EACH UNIT.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.2 DETAILS OF CONNECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10. CONNECTION OF INPUT SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...16
10.1 CONNECTION TO EACH UNIT.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.2DETAILS OF CONNECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.3 DETAILS OF SIGNALS..”.. .. ”. .o. .o . . . . . . . . . ..o. o-. o..o..o . . . . . . . . . . . . . . . . . . . . . ...19
ll. CONNECTION TO FEED SERVO UNITS . . . . . . . . .. O. . . . . . . . ..O . . . . . . . . . . . . . . . . . . . . . ...20
ll.ICONNECTION TO EACH UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...20
11.2 DETAILS OFCONNECTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
12. CONNECTION TO SPINDLE DRIVE UNiT . . . . .. O..O. C..O. . . .. O..... . . . . . . . . . . . . . . . . ..”29
12.1 CONNECTION TO EACH UNIT... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...29
12.2 DETAILS OF CONNECTION. ‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ’ . . . . . . . . . . . . . . ...34
12.3 CABLE SPECIFICATIONS. O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...40
13. CONNECTION TO TAPE READER . . .. O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...41
13.1 CONNECTION TO EACH UNIT ““. .. ”. .o. .OOOo. . . .. OOO..o. o.oo. . . . . . . . . . . . . . . . . . . . ...41
13.2 DETAILS OFCONNECTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
14. CONNECTION TO RS-232C INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..”- ..42
14.1 CONNECTION TO EACH UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
14.2
DETAILS OFCONNECTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...42
14.3 RS-232C INTERFACE .O..O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...43
ii
Page 4
Page
15. DIRECT-IN SIGNAL CONNECTION
"""" """"""""""""""""'""""""""""""""""""".".""""""" 45
15.1 CONNECTION TO EACH UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - . . . . . . . . . . . . . ...45
15.2 DETAILS OFCONNECTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
15.3 DETAILS OF SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...46
16. CONNECTION TOGENERAL-PURPOSE l/OSIGNALS
.. ””””.”.....”””””””.....””””””” 47
16.1 CONNECTION TO EACH UNIT .O. . . . . . . . . . . .. OF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...47
16.2 DETAILS OF CONNECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...47
16.3 CONNECTIONTOADDITIONALGENERAL-PURPOSE l/OSIGNALS..O . . . . . . . . . . . . . . . . . 48
16.4 DETAILS OFCONNECTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
17. CONNECTION TO GENERAL-PURPOSE 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .“” . . ..”” ”””””50
17.1 CONNECTION TO EACH UNIT... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...50
17.2 DETAILS OF CONNECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...51
17.3 EXPLANATION OF GENERAL-PURPOSE l/OSIGNALSO . . . . . . . . . . . . . . . . . . . .“”””. .”””. ”85
18. CABLES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
89
18.1 LIST OF CABLES . . . . .. O.. O..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...89
18.2 SPECIFICATIONS OFCABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...91
18.3 LIST OF CONNECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...93
18.4 SHORTING PIN SETUPS.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...98
19. J50LSTANDARD VOSIGNALS ‘“ ”” .” .o. .o. ” . . .. o. .o . . . ..o . . ..o . . . . . . . . . . . . . ..”” ”....99
19.1 LISTOFNCSTANDARDl/OSIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...99
19.2 DETAILS OF SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...”.”.........””””.” 105
20. J50MSTANDARD VOSIGNALS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
130
20.1 LISTOFNCSTANDARDl/OSIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . ...”<. . . . . . ...””””.” 130
20.2 DETAILS OF SIGNALS ”OO””” . .. ”” oo”o”. .. ”” ”O””” . . . ..””. ”o””. ...”.”””””.””.”.””””” 138
APPENDIX ADIMENSIONSinmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...””..........””””.. 163
APPENDIX Bl/OPORT ADDRESS SETTING "O. "" O""""""• "".. O""""."".""..• ""O."""""."""" 171 APPENDIX CSTANDARD WIRINGCOLORS OF YASNAC" "O. ".. O"O.O"O"CO.O.".""• "" O.O"O. 174
...
Ill
Page 5
1. CONFIGURATION
1.1 SYSTEM CONFIGURATION
The system configuration of YASNAC J50 is shown below.
ASNAC J50
CNC UNIT
CNC $IjIP~fTOR S
FEED Wi:p
~ .-. —._
—.— .— ;WJ;LE UNIT
I I ~
L_._..Jlll!!E!&-
1
1/0
L---u w;%’.
)
—.— .
i
L._. —._
MACHINE
➤✎✿✎✎✍
+=
FEED MOTOR
+-El
MACHINE EQUIPMENT
i-.-.-.–
Fig. 1.1 System Configuration of
YASNAC J50
2. ENVIRONMENTAL CONDITIONS
The following conditions are for locations where the control panel is installed by the machine builder. Therefore, follow Par. 4
“CABINET CONSTRUCTION DESIGN” in the design process so that these conditions will be satisfied. (1) Ambient Temperature
During operation: Oto 45 During storage or transport: -20 to +60 Even if ambient temperature is less than 45, do not install the control panel under direct sunlight, near a heating element or outdoor.
(2) Relative Humidity: 10 to 90 % (Non-condensing)
(3) Vibration: 4.9m/s2 or less during operation
(4) Atmosphere: Do not use the control panel under environment
with a lot of dust and dirt or with high density of coolant or organic solvent.
3. CABINET CONSTRUCTION DESIGN
Take the following into consideration when cabinets to contain the CNC unit and other units are designed.
(1) Make sure that the cabinets are of a totally-enclosed type. The
feed servo unit and spindle drive unit can be open type cabinets
provided the following considerations are made: (a) An air filter is provided at the external air inlet. (b) Forced air used in the inside is not blown directly on the units.
Direct blowing of air may cause oil mist or dust to settle on the
units and might cause failures. (c) The air discharge outlet should be positioned where dust and oil
mist do not enter. The heat sink of the feed servo and spindle
drive units can be installed outside for higher thermal
efficiency. The cabinets should be of a totally-enclosed type to
improve reliability.
(2) Design the cabinet so that the difference between the inner-air
temperature and ambient temperature is less than 10°C. Read
Par. 4 for cabinet design to accommodateheat.
(3) Install a fan inside totally-enclosed cabinets to improve the
internal cooling efficiency and to prevent localized temperature
increases by circulating air inside the cabinets.
The velocity of the circulating air should be greater than 2 m/s
on the surfaces of the printed circuit boards. Forced air should not blow directly on the printed circuit boards.
(4) Provide spacing of more than 100 mm between components and
cabinet walls for smooth flow of air.
(5) Seal the cable openings, doors, etc. completely. The CNC
operator’s panel operates at a particular y high voltage and collects dust in the air. Special caution is needed. The cabinet for mounting the CNC opemtor’s panel requires the following precautions:
(a) Use packing material on the mounting surface to eliminate gaps.
(b) Use packing material in the cable openings and doors. (6) Magnetic Deflection of CRT Display
CRT displays are sometimes deflected due to external magnetic influences. Sources that generate magnetic fields, such as transformers, reactors, fans, solenoid switches and relays, and AC power cables should be positioned more than 300 mm from the CNC operator’s panel. This distance is optimum and may vary for each circumstance. Determine the component layout beforehand.
1
Page 6
3.
(7)
(a)
(b)
(8)
(9)
CABINET CONSTRUCTION DESIGN
(Cent’d)
To prevent malfunction due to noise, mount the units more than 100 mm from cables feeding 90 VDC or greater, AC power lines, and other components. The following precautions should be complied with during wiring:
Separate AC and DC cables. Separate the primary and secondary sides of transformers, line
filters, etc. The front panels of the units that are exposed to the cabinet
surfaces, such as the CNC operator’s panel, tape reader, and PO unit should be of a dustproof type. However, do not install them in locations where cutting fluid may directly splash on them. Be sure to seal completely around the mounting sections.
Mount the units so as to allow easy checking, removal and reinstalling during maintenance work.
(10) Read the instruction manuals of the feed servo and spindle drive
units when mounting them. Heat sink should be installed outside the cabinet to reduce internal thermal losses. This increases the possibilities for a change from an open type to a totally-enclosed type and reduces the capacity of the heat exchanger.
Example
4
RADIATOR FIN
3-
* \
J-
AIR
FEED SERVO AND
-+ PINDLE DRIVE UNITS
(11) Precautions for Mounting CNC Unit
Observe the following points particularly during mounting of the CNC Unit:
(a) Mount the unit in the direction shown in Fig. 3.1.
n
n
(DOWN)
(b) Provide spacing of more than 50 mm in the upper section and
100 mm in the lower section of the unit for better ventilation
and easier maintenance.
(c) For ventilation or maintenance, provide spacing more than 50
mm from the upper side and more than 100 mm from the lower side of the CNC unit.
(UP)
Fig. 3.1 Mounting of CNC Units
2
Page 7
4.
4.1
The
CABINET DESIGN FOR HEAT FACTORS
SELECTION OF HEAT EXCHANGER
cabinets to contain the CNC unit and other units should beef a totally -enclosed type. The inner-air temperature differential inside the cabinets should be less than 10”C. Heat exchangers may be needed inside the cabinets depending on the heat generated by the
installed electric equipment. Determine the heat exchanger
capacity as follows :
AT: Air temperature rise inside cabinet (“C)
Pv : Total heat generated by electric equipment (W)
k : Cabinet heat transmission [W/(m2 . ‘C)]
Calculate based on 6W/(m’ ‘C) if a circulating fan is installed.
A : Effective radiation area of cabinet (m’)
qh : Heat exchange ratio of necessary heat exchanger.
1. Calculate the total heat value Pv of the electric equipment. Pv=Z (Heat value of each unit)
2. Calculate the effective heat radiation area A. A=2
x {W (width) x H (height) } + 2 {W (width)
x D (depth)] + 2 {D (depth) x H (height))
The surfaces that are not exposed to external air are ineffective areas.
L
A
A
~ : INEFFECTIVE AREAS
Note : If 50 mm or less from the floor,
bottom areas are ineffective.
3. Calculate the allowable heat value Pv’ that ensures the
temperature increase within cabinet (AT) to be less than 10°C.
Pv’=k. A. AT (W)
Llo”c
L-
6W (mz. “C)
4. A heat exchanger is not needed if total heat value Pv S allowable
heat value Pv’.
5. A heat exchanger has to be installed with the following heat exchange ratio (heat exchanger capacity) qh if total heat value
Pv > allowable heat value Pv’.
qh=
(pv-pv’)/ AT (W/”C)
Llo”c
4.2 HEAT VALUES OF UNITS
4.2.1
4.2.2
NC UNIT
Table 4.1 Heat Values of NC Unit
Unit I Heat Value (W)
CNC Unit*
I
103
CNC Operator’s Panel
I
17
Tape Reader
25
1/0 Module
I
5
*
Heat value of CNC unit changesby addingthe option.
SERVO UNIT
Table 4.2 Heat Value of Servo Unit
Unit
Type
Total Heat
Internal Heat
Regenerative
SGDB-
Value (W)
Value (W)
Resistance (W)
05AD
50
25
28
lOAD
I
70
I
35
I
28
15AD
I
90 45
28
20AD
130
65
28
30AD
I
180
I
90
I
28
44AD
I
210 105
28
60AD
370 135
75AD
480 240
1AAD
600 300
Notes :
1.The servo unit uses two shafts, and its load factor should be 70 to 80%.
2. The internal heat value is the heat value remaining inside if the heat fin is installed outside.
3. Heat value created by regenerative resistance will differ depending on the frequency of rapid feed starts and stops.
4. Regenerative circuits are incorporated in the unit types SGDB-05 to
1A and are mounted externally for the types SGDB-60 to 1A as
options.
5. Capacity of regenerative circuit is calculated by 200% of allowable dissipation.
3
Page 8
4.3 DUST-PROOF CONSTRUCTION
Particles floating in the air (dust, cuttings, oil mist, etc.) may cause malfunction of the CNC unit and the inner parts of theotherboads (particularly CRT) to be mounted inside the cabinets the machine manufacturers design and build. The construction of the cabinets, therefore, should be such that it does not allow dust, etc. to enter inside.
(1) The cabinets should be of totally-enclosed construction. (2) Sealthe cable openings withpacking. (See Fig.4.1.) (3) The door and the back cover should be securely sealed with
packing. (See Fig.4. 2.)
(4) Special caution is required for the CNC operator’s panel as it
operates at high voltage and collects dust in the air. The following points should be observed with regard to the pendant box used to install the CNC unit.
(a) Seal the cable openings,
dooi.” back cover, etc. with packing to
eliminate gap.
(b) Packing is attached on the surface where the CNC operator’s
panel istobe mounted. Usethependant boxas it is.
(5) Seal all gaps. (6) Oil mist easily settles on the ceiling and enters the cabinets
through screw holes. Special precaution, therefore, should be made using oil-proof packing, etc.
Page 9
(Reference) Neoprene sponge rubber (belongs tochloromene rubber) isrecommended for the
PENDANT BOX
ial.
METAL FITTINGS
f
PACKINGS
Fig.4.l Cable Entrance
Fig. 4.2 Door Packing
PLATE
~NC OPERATOR’S PANE1
Fig. 4.3 CNC Operation’s Panel
4.4 PROTECTION FROM MAGNETIC INFLUENCES
The CRT display may be deflected due to external magnetic
This distance of 300 mm is a rule of thumb and the optimal
influences. Sources that generate magnetic fields (such as
distance may differ for each setting. Therefore, full precaution
transformers, reactors, fans, electromagnetic switches, solenoid
should be given to location of the above components that generate
relays, AC power cables) should be kept about 300 mm away
magnetic fields and determine the final layout after checking the
from the CRT display.
condition of the CRT display.
5
Page 10
5. PRECAUTIONS FOR INSTALLING SERVO UNIT
(1) The servo unit is a wall-mounted type and should be secured
with screws or bolts vertcally (so that the printed circuit boards can be seen from the front). (See Fig. 5.1.)
(2) Mount the servo unit so as to allow easy checking, removal and
reinstalling during maintenance work.
(3) The servo unit generates some amount of heat. A11owfor some
space in the upper and lower sides when mounting other units and components so that heat will not saturate the inside the unit. (See Fig. 5.2.)
(4) Expose the radiator fin outside the cabinet and allow the outside
air to blow on it to reduce internal thermal loss. (See Fig. 5.1.) This will help reduce the capacity of the heat exchanger even
when it is required.
(5) When circulating air inside the cabinet, do not allow forced air
to blow directly on the servo unit (to prevent dust from collecting on the unit ).
(6) The regenerative resistor generates heat. Full precautions
should be given to location of the regenerative resistor and do not place it near components easily affected by heat because a high temperature develops with extremely high frequency in use such as rapid traverse, start and stop.
(7) Clamp the detector (P.G) cable that enters the servo unit to the
ground plate inside the cabinet with the cable clamping fixtures. (See Clamping Cables and Grounding Cable Shield described in Par. 6.2.) Make sure to clamp the cable because it is necessary to operate the system properly and to protect it from malfunctioning due to noise.
s
ING
Fig. 5.1 Mounting of Servo Unit (Side View)
From .
R
Fig. 5.2 Mounting of Servo Unit (Front View)
Page 11
6. CABLE ENTRANCE
6.1 LAYOUT OF CABLE CONNECTORS
CNC UNIT TYPE JZNC-JRKOO
4
n
BA
P%l CP50
# m
=3==
TTERY
SR50
‘R50
YASNAC
1
D
o
Lc
m z v
!
e m z o
D
o
m m z o
]
&
N m z v
1
u
D
z z o
r
m z v
J
CN03
N
01
SUORCE ~
POWER ON O
F
+5V0
+24V O
OHT O
AiM
CN02
M
01
CNO1
M
01
Fig.6.l Layout of CNC Unit Connectors
7
Page 12
6.2 CLAMPING CABLES AND SHIELDING CABLES
Of the cables connected to the YASNAC, clamp those that need
(a) Strip part of the cable shield as shown in the figure below to
shielding to the ground plate securely with the cable clamping
expose the shield enclosure.
fixtures as shown in the figure below. This clamping serves not
Press the exposed part onto the ground plate using the cable
only as cable support but also as cable shielding. In ensuring safe
clamp.
operation of the system, it is extremely important that you clamp
(b) Mount the ground plate near the cable opening.
the necessary cables without fail.
(c) Stripping cable enclosure is not required for non-shielded cables
for clamping.
CABLE
SHIELD ENCLOSURE
ABLE CLAMP
TYPE 1
TYPE 2
DF8401485
DF8404817
19.5
-=3252s2--
‘CABLE
Fig. 6.2 Shielding Cables
Page 13
6.3 CONNECTING DIAGRAMS
(1) YASNAC J50L (For Lathe)
~NAc-J50L
-— -—
ACK B —
CNE
c
JANC
BE
cl
CNAI
CNF
ZNA2
:ND1
;ND2
J
JANCD BB51
IE1----i
BATTERY
IC---i
FAN
1
POWER SUPPLY MOOULE
a
CPS.18FB
CNO1 ~
CN02 D
CN03 r+
PC BOARD
D
JANCD PC50
CN12 ~
CNA
CN13 ~
n
~Aif$D 10~lON)
CN1l }
D
CNM
CN1O ~
CNF
CPU BOARD
r
JANCD CP50
CN2(
CNA
o
CNO
[
cl-
,Xls 80AR0
7
ANCD.SR50. 1
CN30 ~
CN31
I
E
ND
OPERATORS PANEL
OPERATION PANEL
200VAC
FOR MACHINES
.—
I
pp & -~ ~-
-a--l-J
[/0 MODULE
CONTROL CABINET
J p~=’mr-
CN 1
OUT40 PUNTS
,N2 ‘iii
IN 8 FOINTS,OUT8 FONTS
CN3 @‘
+&f
IN24 POINTS,OUT 16 POINTS
ENET @
CN4 ‘m ,N40M,NT,
@
u @l,owER,NpuT,EouENcE,
@, q CN’3 :;; ,@
IN 40 POINTS
CN14
OUT32 FONTS
@
—.—.
DIRECT
IN
S 232C
@ p~R TYPE ,APE
READER
= (OPTION)
II
L. —-—
Kfl
1/0 MODULE
CONTROL CAB! NET
a
JANCD. EC860
C61
CN1l
CN12
::; ‘@‘ ;:I;::UT8WINTS
U
CN3 @
IN 24 FtlNTS, OUT 16 POINTS
,N4 ‘e ,NWPO,NTS
CN13
Zt
CN5 B
?
CN14
CN6 ‘*‘ :;:::Ts
d-t
L.—
.—. J L.
1/0 MODULE
CONTROL CABINET
+
JANCD ?C861
F
.— .—
CN1 a
[- ]h
CN1l
IN 24 POINTS,OUT16 POINTS
r
CN12
,N2 @~
IN 24 POINTS,OUT 16 POINTS
/+
CN13
ill
:.:.*:Y:Y
Fig. 6.3
9
Page 14
(2) YASNAC J50L (For Multi-axis Lathe)
200VAC
YASNAC-J50L
--— ___
I
OPERATOR’S PANEL
OPERATION PANEL FOR MACHINES
~.p.—.
7
~.—.—
I e- I
CN
AN(
B
(
ZNA
CN
:NA
:ND
:ND
I
\CKBOARD
JANCD !3B51
ICt---l
BATTERY
IH
FAN
I
Imd=+#
1
I
I II
~j
CNA
CN13
JANCD­MM51 (OWION)
CN1l
!
CNM
CN1O
CNF
2 --.H
CN1l
PC BOARD
,mQ lop’ @
CN12
::: W::I:::UT8POINT$
ti
CN3 @
IN 24 POINTS,OUT16 POINTS
c)
& YENET c“
CN4 ‘@’ ,N40POINT,
@
n
@
~ ‘T. @ ,POwERINPuTs,OUEN~ ‘+ CN’3 :; ~% ‘N40m’NTs
CN14
n
-w
OUT 32 POINTS
@
DIRECT1“
?20-$:~~
F
JANCD-SR51
(OPTION)
OCNE c“” P=
1/0 MOOULE
4-
CONTROL CABINET
~-7d_
@’ ; l----v
If~
1/0 MOOULE
CONTROL CABINET
r
“c~*:4=--
CN1l
ti
C62
CN12
N 8 POINTS,OUT8 POINTS
CN3 @
IN 24 POINTS,OUT 16POINTS
CN4 ‘@‘ ,N40,01NTS
CN13
a
CN5 @ ,N40POINT,
-% CN14 ‘B’
CN6 n~ow 32 POINTS
1/0 MODULE
CONTROL CABINET
4-
JANCD-~C8~:1 ‘lo r-—-–
CN1l
IN 24 POINTS,OUT 16 POINTS
~~–-~
CN12
,N, @
IN 24 PilNTS, OUT 16 POINTS
1P
1ST AXIS ORIVE @ /jlX~NOLE
CN33
‘: n~ +jcN’ ,N3~Dl@~
CN32
SPINDLEPG
P
CN14
IN 16 POINTS,OUT24 POINTS
pG (OPTION)
4$=--RPINDLEP:(:---”” ‘----
‘No‘x’s‘“v’ @
2NDSPINDLEMOTOR
L--
Fig. 6.4
Page 15
(3) YASNAC J50M (For Machining Centers)
ASNAC-J50M
—-
—. —-—
V-K E
Ctil
c
ANC
BE
c
CNA
CNI
CNA
CND
CND
LT–
JANCD BB51
BATTERY \
FAN
J
200VAC
OPERATOR’S PANEL
—- —-— -=
OPERATION PANEL FOR MACHINES
.- —-—
.—
I
CNB
CNC
l_._~.J
L--------
1/0 MOOULE
CONTROL CABINET
,r -
JANC6.FC81O
v-
.— .—
CN1l
CN1 @ ;“,40,0,,,,
xs
$~~fi
@l CN’2 ::: @ :::’’,0:::’,,
,N4 ‘@ ,N40POINT;
@
,ml,u- 0 .. .. . . .. . ... .. CN’3 :: ,:’’”40’0’”’s
OUT 32 FYIINTS
~l~~fl~cNIOp”~ @$ f-w”
i b“
...
MM51 IOPTIONI
CN1l
..””,” ,.!’., >,..,,,.,
I
n ,-.,, ”
i —’ II
CPU BOARD
n
JANCDCP50
CN20
CNA
L
JAN CD-3R51
(OPTION)
o
CN36
CNE
CND
L-.—
._.>
OIRECTIN
X15 BOARD ~
CN33b~nm
II
z-AXIS DRIVE REGlsToRz-4xls MoTol
f~~
1“0 MOOULE _
CONTROL CABINET
“Fc8::-dfy=:”-
CN1l
C62 ‘
CN12
E
1“8 POINTS,OUT8 POINTS
CN3 a
IN 24 POINTS,OUT16 POINTS
~N4 ‘e ,N40POINTS
am
CN5 e
CN13
IN40P!INTS
?
CN14
CN’ *0uT32p0’NTs
L.—- —.2 L. —. —.—..—
100 MOOULE
CONTROL CABINET
-h=bla==is
.E PG (OPTION)
Fig. 6.5
11
Page 16
7. POWER SUPPLY CONNECTION
7.1 POWER SUPPLY CONNECTION TO EACH UNIT
CNC UNIT
—-~
—.
CPS-18FB
172039-1
CN 03
m
w
3
G
4
7
ld-----
C03
POWER
172025-1
I
Fig. 7.1
7.2 DETAILS OF CONNECTION
:Ps
1
T
CN3-3-T-G
T
SUPPLY
SINGLE-PHASE 200/220/230VAC f 15°A
!i13/IW)H7 +2Hz
580VAC
NOTE: The power supply is designed to function normally even in the event of l/2-cycle
or shorter momentary power loss or 1-cycle or shorter 50% voltage drop.
Fig. 7.2 Power Supply Connection
12
Page 17
8. CONNECTION TO OPERATOR’S PANEL
8.1 CONNECTION TO EACH UNIT
10220
JANCD-PC50
CNIZ
CPS.18FB
172040-1
CNO1
Ka%zl
1
C12 1012O-3OOOVE
Col 172026-1
CNC OPERATOR’S PANEL
1
I
JAN CD-SP50
+
CN2
10220-6202J L
01’D3000VE
+
IEB
CN3 1-178315-2
-1782W5
1 +5V 2 05V 3 4 +24V 5 O,,v
CN3 PIN POSITION
Fig. 8.1
Page 18
8.2 DETAILS OF CONNECTION
CNC UNIT CNC OPERATOR’S PANEL (CRT/P)
‘1
~.
-—
TYPE JANCD-PC50
I
! ,
TYPE JANCD-SP 50
-_—-
i
I
I
3
CN 12-4
11
SIG II
P
CN2-4
CN 12-5
* SIG
/ P,
CN2-5
4’-t--=h+
2!E
CN 12-13
POFF
II
CN 2-13
CN 12-12
II
PCOM
CN 2-12
CN 12-1 VIDEO
II
CN 2-I
CN 12-2
I ~1
* vIDEO
CN 2-2
CN 12-8
HLGT
II
CN2-8
CN 12-9
I pl
* HLGT
CN2-9
CN 12-18
HSYNC
II
CN2 -18
CN 12-19
I pl
: HSYNC CN 2-19
CN 12-16
VSYNC
II
CN Z-16
CN 12-17
; VSYNC
I pl
CN 2-17
CN 12-20
FG
(1
CN 2-20
I I *1 1
~___J
TYPE CPS-18F8
!/
r
-—-
+
5V
3 ‘~
CNOI - 1
CN3-1
CNO1- 4
.
CN 3-2
+24V
CNO1-3
CN3-4
CNO1-5
CN 3-5
,.
-—-
~: ; ~ 1;
POWER ON
PON
CNB -18
POWER OFF
POFF
CNB-19
*
Vertical type CNC contains a power ON/OFF switch.
PCOM CNB -20
A special external circuit does not have to be provided.
Notes:
I
L
.—
1. The shield enclosure does not have to be grounded outside.
.
2. Power ON/OFF can be selected by the panel power ON/OFF (POF) SW2, SW3 Setting
and/or remote power ON/OFF (EOF) by a shorting plug.
Sw 2
Panel/Power RemotePower Paneland Remote
Setting in Main board
ONIOFF(POF)ONIOFF(EOF) PowerONIOFF
model JANCD-PC50
1
~o
3 + EoF
OFFION
(INEFFECTIVEIEFFECTIVE
OFF/ON
OFFION
‘w’ ‘m’
‘m’ ‘ma
NV3
Sw3 1m]3 lm13 1m3
1 o~ 3 + ~g:FEcTlvE,EFFEcTlvE)
Settings prior to factory shipment
Fig. 8.2 Connecting Power Unit (Type CPS-18FB) and PC Board (Type JANCD-PC50)
to CNC Operator’s Panel (CRT/P)
14
Page 19
9. CONNECTION OF MANUAL PULSE GENERATOR
9.1 CONNECTION TO EACH UNIT
CNC OPERATOR’S PANEL
-~
JANCD-SP50
CN 1
10220-6202JL
El
1 OVH 11 2 OVH 12 3 OVH 13 4 +5VH 14 5 +5VH 15 6 +5VH 16 PAH 7 17 *PAH 8 18 PBH 9 19 *PBH
10
20 FG
ID
Clol
10120-3000
V E
I
I
Fig. 9.1
15
Page 20
9.2 DETAILS OF CONNECTION (1)
1st Manual Pulse Generator
L.-1,
I + L-.—
(OPENCOLLECTORfi
_.—
CNC OPERATOR’S PANEL
No 1 MANUAL PUI GENERATOR (1 HP
“pE ‘:fpj ~pfm
r
%
,..
CN 1-6 +Wi
PI
CN 1-4 +5VH I
CN 1-1 OVH : p: 2
CN 1-16 PBH : : s p~ CN 1-2 OVH 1P,
[
CN 1-18 PBH : : 4 CN 1-3 OVH
p,’
‘7
----
L._._
—.
(OPENCOLLECTOROUTP
;&:E~PERATOR’S
No. 1 MANUAL PULSE
TYPE JANCD-SP50
GENERATOR II HPG)
r-”
.“7 r-—”—”—
UT]
;E
1)
ITI
I I
I
CN 1-16 PAH :-,, CN 1-17 * PAH CN 1-18
. PBH
CN 1-19.*PBH CNI-4,i6 CN1-),2,3
OVH
1
CN 1-20 FG !!
—.—
ii
(OIFFERENTIAL”OUTPUT”fi1
—.—-----
Notes:
PE)
10. CONNECTION OF INPUTSEQUENCE
10.1 CONNECTION TO EACH UNIT
CNC UNIT
JANCD-PC59
1OZO-52A2JL
s
1 11 +24VT 2 12 TCOM 3
13 ‘OFF 4 14 5 15 6
16 *TOLO 7 TON 17 SVMX 8 18 NCMX 9
19 *TESP
10 20 FG
CN1”
D
1. The HPG power supply is a constant +5V.
2. An open collector (cable length 5 m or less) or differential output (cable length 5 m or more) can be used for HPG output.
Qwl
POWER ON
1012O-3W3VE
INTERFACE
MAIN CIRCUIT
s.ivm (~BRAKE UNIT
%,,,5,23=-
FEED SERVO UNIT (MAIN CIRCUIT)
50/60Hz
=TAPEREADER
FEED SERVO UNIT (CONTROL CIRCUIT)
Fig.
10.1
3. Shielded cables are not needed if the cable lengths are less than 1 m. Twisted-pair cables can be used. Use twisted-pair shielded cables if the cable lengths are more than 1 m and ground the cable shield enclosure using a ground plate inside the panel or CN 1-20 pins (FG).
Page 21
10.2 DETAILS OF CONNECTION
CNC UNIT
—.
-~
rYPE
,IANCD-PC50
CN II-I
CN 11-1[
r
0“ CN1l -1’
Ov
CN1l-1
CN 11- 1[
CN1l-7
CN 11-1:
CNII -1:
CN1l-2
.-—_—
=ka
,+24V
.NCMX
NCMX
NC POWER ON
Ft!?!!
SVMX
SVMX
SERVO POWER ON
EMERGENCY STOP INPUT
*
TESP
MACHINE END RELEASE OVERLOAD INPUT
,*
TOI.D
(NORMALLY NOT USED)
TON
TCOM
TOFF
FG
J-
“7
EXTERNAL POWER ON
Fig. 10.2 Connecting Input Sequence to PC Board
(Type JANCD-PC50)
Page 22
The connection example of the PC board is shown below.
1- ‘“”v’c~
K
NCMX
n NCM
NC POWER ON
)
(LJSe Contactor equivalent to Hi. )
SVMX
m SVM
SERVO POWER ON (Use contactor eqwalent to H1. Determine contact
capawy according to the servo unit, etc. )
200/220/230VAC, 50/60Hz
RSTE
II
\
-u----s
Rs
TO FEED SERVO UNIT
IL
I
‘L
Ts
1! ———— ——— ——— .—
k=+
svnJlx
I
EMERGENCY STOP PB
T
I
MOTOR BRAKE 1
.—.
1:5
‘ :=:] ~NOte’
I i–-—_—
-i
,
I BRAKE POWER SUPPLY
OPR1O9ATYPE FOR 200/220VAC INPUT
/ [OPR1O9F TYPE FOR IOOVAC INPUT
NCMX
1
I
I
I
—u----> :––– ——=—––”-”
Rts:FEEDsERvO”N’T
TAPE READER
Required only for using holding brake. The brake is built m the
motor.
Fig. 10.3
Page 23
10.3 DETAILS OF SIGNALS
10.3.1 NC POWER ON (NCMX) AND SERVO POWER
ON
(SVMX)
(1) NCMX: This output is turned ON when the logic circuit of the
control is energized.
(2) SVMX: This output is turned ON when the servo unit is
energized. With an external servo unit, turn ON the power
supply when this signal is outputted. (3) The power supply turning ON sequence is as follows: (a) Close the power supply main switch for the control. (b) Either push the POWER ON button on the CNC operator’s
panel, or close the circuit between EON and ECM. Then, the
logic circuit and the servo control circuit are both energized,
and the circuit between NCMX (NC power input and output) is
closed.
:
With an external servo unit, design the servo control circuit power input sequence so that the circuit is energized at the output of NCMX signals.
:
(c) Again make the same power switching (pushing the POWER
ON button or closing the circuit between EON and ECM).
Now, the servo power supply is turned ON, and the circuit between SVMX (servo power input and output) is closed.
:
With an external servo unit, design the servo power circuit power input sequence so that the circuit is energized at the output of SVMX signals.
:
(d) When the external circuit is ready after the circuit between
SVMX is closed, and the control becomes ready, close the
MRD (machine ready) input of the 1/0 module. Then, RDY is
displayed on the CRT, and operation becomes possible.
POW;: ON
n
n
NCMX
(OUTPUT)
SVMX
(OUTPUT)
MRD
(INPUT)
\
I
10.3.2 EMERGENCY STOP (TESP) INPUT
When the circuit between emergency stop input terminals (TESP) is open, the control stops totally the servo power supply is turned off, and the emergency stop output (*ESPS) of general purpose 1/0 module is opened.
10.3.3
EXTERNAL POWER ON-OFF (EON, EOF,
ECM) INPUT
The control can be switched on and off by external input signals, in the same way as the depressing of the POWER ON/OFF buttons on the CNC operator’s panel. When the circuit between EON and
ECM is closed, the logic circuit or servo power of the control is energized. When the circuit between EOF and ECM is opened, the logic circuit or servo power of the control is deenergized.
=L:-
CONTROL SERVO
POWER SUPPLY
Fig. 10.5 External Power ON-OFF
10.3.4 OVERLOAD (*TOLD) INPUT
Short-circuit T24(CN11- 16) if this input is not used. (Normally this input is not used.)
+
, i_
:~p~:tEEN
:;;FW:;EEN ;YSCCYREEN
ALARM CODE
ALARM CODE
‘“ROY” DISPtAY
“31 o“
“280
Fig. 10.4 Time Chart of Power Supply
Turning on Sequence
Page 24
11. CONNECTION TO FEED SERVO UNIT
11.1 CONNECTION TO EACH UNIT (1)
For Lathe
CNC UNIT
FEED SERVO UNIT
JANCDSR51 1
JAN CD SR502
10226 -52A2JL
10226 -52A2JL
CN33
CN31
CN30
SGDB TYPE
(3RD AXIS)
CN1
CN2
1025O-52A2JL 1022O.52A2JL
1 PGOV 11 BAT I
2 PGOV 12 BAT+ 3 PGOV 13 BAT– 4 PG5v 14 PC5 5 PG5V
15 *PC5 6 PG5V 16 PA5 7 DIR
17 *PA5 8 Ps 18 PB5
9 *PS 19 *pB5
10 20 FG
CN2 PIN LAYOUT
In
1
L
C31
FEED SERVO UNIT
SGDB TYPE
)126-30d0 E
(2ND AXIS)
II
1
II
SGDB TYPE
(1ST AXIS
J
b
‘1
iO150-3000VE
CN
1 CN2
1025O-52A2JL 10220-52A2J L
1 PGOV
ll]BATI 2 PGOV 121BAT+ 3 PGOV
13 BAT– 4 PG5V 14 Pcl 5 PG5V
15 * pcl
,6 PG5V 16 PAI
7 DIR 17 *PA1 8 Ps
18 PB1
9 * Ps
19 * PB1
10
20 FG
CN2 PIN LAYOUT
1
Fig. 11.l Cable Connection between lst Axis and3rd Axis
FEED MOTOR
1
~
C360
1o120-
3000VE
a
PG
FEED MOTOR
1
n
C31o
1o120­3000VE
d
PG
FEED MOTOR
1
n
C300
1o120­3000VE
G
PG
20
Page 25
(2) For Machining Centers
CNC UNIT
7
I
FEED SERVO UNIT
I I
SGDB TYPE
(4TH AXIS)]
I ( II
JAN CD-SR50-2
10226-52A2J L
10226
CN3:
CN31
CN3C
CN 1
CN2
1025O-52A2JL
1022O-52A2JL
s
1 PGOV 11 BAT I 2 PGOV 12 BAT+ 3 PGOV 13 BAT– 4 PG5V 14Pc5 5 PG5V 15 *PC5 6 PG5V 16PA5 7 DIR 17 *PA5 8 PS 16 PB5 9 *PS 19*PB5
10 20 FG
CN2 PIN LAYOUT
la
h
C360
1o120-
3000VE
PG
I
FEED SERVO UNIT
+
!:
SGDE TYPE
(3RD AXIS)
1
C33-1
CNI
CN2
1025O-52A2JL 1022O-52A2JL
1 PGOV 11 BAT I
10126-30 OVE 2 PGOV 12 BAT+
1015O-3OOOVE 3 PGOV 13 BAT–
4 PG5V 14 PC3 5 PG5V 15 * PC3 6 PG5V 16 PA3 7 DIR 17 * PA3 8 Ps
18 PB3
9 *
Ps 19 * pB3
10 20 FG
CN2 PIN LAYOUT
FEED MOTOR
I
I
C31
1~
SGDE TYPE
10126-30d0 E
(2ND AXIS)
I I -d
CN1
CN2
L
w
1=[
1025O.52A2JL 1022O-52A2JL
1 PGOV 11 BAT I
1015O-3OOOVE
2 PGOV 12 BAT+ 3 PGOV 13 BAT– 4 PG5V 14PC2 5 PG5V 15 *PC2 6 PG5V 16PA2
1
C30
9
7 DIR 17 *PA2 8 PS 18 PB2 9
*PS 19*PB2
10126-300 E
10 20 FG
CN2 PIN LAYOUT
II
I
I
FEED MOTOR
IF%
1o120­3000VE
A
-—
n
PG
L
I
1015O-3OOOVE
SGDB TYPE
(1ST AXIS)
CNI
CN2
10250-52A2J L
1022O-52A
s
1 PGOV 11 BAT I 2 PGOV 12 BAT+ 3 PGOV 13 BAT– 4 PG5V 14PC1 5 PG5V 15 *PC1 6 PG5V 16PA1 7 DIR 17 *PA1 6 PS 16 PB1 9 *PS 19*PB1
:N2 PIN2:Y:UT
,2JL
r
FEED MOTOR
b
C31O
1o120-
3000VE
4
d
PG
u
FEED MOTOR
b
C300
1o120­3000VE
L
d
PG
u
Fig. 11.2 Cable Connection between lst Axis and4th Axis
21
Page 26
11.2 DETAILS OF CONNECTION
(1) For Lathe
3-PHASE 200 TO 230VAC : ~
:y,
RI S1 T1
R3 S3 T3
)2 J2 I
CNC UNIT
JANCD-SR51)-1, .3
‘-~
1ST
(Xls :ONTROL
(
L
DA1
:::::;; GND(DA) CN30-2
+24 VEX
CN30-14 ~G~
CN30 -4 CN30 -5
{
GND(/TGOh
CN30-6
SRDY1
CN30-7
GND6RDY
3
cN30-1 < cN30-1 < cN30-1
*OL1
cN30-1
/
GND(*OL;
CN30-8
*ALM1
CN30-9
GNDMALM
4
CN30 -16
PA 1
CN30-1
*PA1
CN30-1
PB 1
CN30-17
*PB1
CN30-2
F
Pc 1
CN30. I
*PC1
CN30. 1
GND
CN30- 2
GND
CN30-
FG ~
I
CN30-25 ‘ND2
J
~ R REGENERATIVE
R
1ST AXIS
FEED MOTOR
B
~-
SGDB TYPE
I
d
,-1
11P
CNI CN 1
5
CN2-16
6 CN2-17
m
,.
CN1-47
CN2-18
IF’
CN1-40
CN2-19
~++~:::::
CN2-14
M
CN2-15
1P
CN1-29 CNI-30
+q
CN2- 7 CN2 -20
L ::::
4
b
P
CN1-19 CN1-20
1P
CN1- 1 CN1- 2
u
EP
u
v
v
W 1
w
‘w
E.
E
i------ _.
Ii 11+5
s
>
P 0s
P
II
P
I
I
I I
J
M N P R H
G
>J
Fig. 11.3 Connection to Feed Servo Unit (lst Axis)
22
Page 27
2R REGENERATIVE CIRCUIT
3-PHASE 200 TO 230VAC : ~$%
JANCD-SR50-L,
r-
CN 31-22 CN 31-21
cN 31-26,
I
CN 31-14
2ND AXIS FEED MOTOR
r’—
CNC UNIT
-—
CN 31-4
CN31-5
ND
,Xls
CN31-6
“ONTROLCN31-7
CN 31-12 CN 31-13 CN 31 -IO CN 31-11 cN31.8 CN31-9
CN 31-16 CN 31-15 CN 31-18 CN 31.17
CN 31-20 CN 31-19 CN31. I CN31- 2 CN31- 3
FG
CN 31-23.24
CN 31-25
DA2 GND (DA) +24VE> /SVON /TGoN
GNDflGOl SRDY2 GND6RD)
*OL2
GND(*OL
*ALM2
GND(*ALJ
PA 2
*PA2
PB z
*PB2
Pc 2
*PC2
GND GIVD
+5V EX
GND2
-—
I
d
,-,
11P
CN1-5
CN2-16
CN1-6
CN2-17
7
,.
CN1-47
CN2-18
IF’
CN1-40
CN2-19
l--j---+ CN1-27
CN2 -14
CN1-28
CN2-15
%=
CN1-29
1P
CN1-30 ~~ II
II II
b+
1P
CN1-33
CN2- 7
CN1-34
CN2-20.
*
CN1-35
P
,/
CN1-36
*
CN1-19 CN1-20
&
CN1- 1 CN1- 2
i---- __
p-
I
Fig. 11.4 Connection to Feed Servo Unit (2nd Axis)
Page 28
3R REGENERATIVE CIRCUIT
3-PHASE 200 TO 23OVAC : ~ :% ‘3
la
s v
T3
T
w
SGDB TYPE
I
E
R22
+
{:
s 22
CNC UNIT
I
-1
i
JANCD-SR51
—. II
%
DA5
,-,
CN 36-22
CN1-5
GND(DA) I I p
CN2-16
CN
36-21
CN1-6
CN2-17
CN 36-26
+24 VEX
CN1-47
~N 3614 /SVON5 I p
CN2- 18
CN1-40 CN2-1’3
CN 36-4
/TGON5
CN1-27 CN2-14.
CN36-5
{
GND~GON) i
CN1-28
SRDY5
CN2- 15
%
CN36-6
CN1-29
GND($RDY)I P
:oNTRoLCN 36-7
CN1-30
CN 36-12<<
I,fl
cN36-13~*oL5 ; \
1+1
:;:;::=I \ [
cN36-8
* ALM5 I I
cN1-31
CN36-9
GND(*ALM)
P
CN1-32
II
II II II II
(+5)
CN2- 4
(0s)
E
CN2- 1
CN2-! CN2-:
N2-I N2-:
CN 36-16
~~j
PA5 I
11P
CN1-33
CN2- 7
CN36-15
*PA5
cN1-34
CN2-20
CN36-18
PB 5
CN1-35
CN
36-17
*PBS I P
cN1-36
!/
CN 36-20 ‘ *PPCC55 1 1 p
CN1-19
CN 36-19
:::::-::::
+--l-
CN36- 3 < { j
I
FG
I
~
1
CN 36-23,2A*EX
CN
36-25 ‘ND’
‘L--- .–
3RD AXIS FEED MOTOR
~-—
—.
Fig. 11.5 Connection to Feed Servo Unit (3rd Axis)
Page 29
(2) For Machining Centers
3-PHASE 200 TO 230VAC : ;$Y,
RI S1 T1
R3 S3 T3
war
NCM
I
II
I
r
=-’
.—
JANCD -SR 50.z
—-—
1ST dxls :ONTROL
(
i!i-
CN30 -22
DA1
CN30-21 < ~,~~;; CN30-2 CN30-14 /’voN CN30-4
/TGON
CN30 -5
$
GND(tTGO!
CN30-6
SRDY1
CN30 -7
GNDtSRDY
CN30-1 < cN30-1 < cN30-1
*OL1
cN30-1
/
GND(*OL
CN30-8
*ALIMI
CN30-9
GND[*AIA
,
4
CN30 -16
PA I
CN30-1
*PA I
CN30-1 +~B~ CN30-17
*PB1
CN30 2d
Pc 1
CN30. I
}
*PC1
CN30. 1
GND
CN30- 2
GND
CN30. <
FC +——————
1
-/
:N33.2i24&Ex
I
r
CN30-2 ‘ND2
I
I
1 R REGENERATIVE CIRCUIT
%
1ST AXIS FEED MOTOR
~-
UA
AU
v<)
.V
W(1
.J w
SGDB TYPE
E<
. .E
]1 ,[
II
II II
1
k
P
CN1-31 (+5)c~&
CN1-32
(0,)
II
E
CN2-:
CN2-2
!/ II
CN2-(
II
CN2-:
=!
11P
CN1-33
CN2- 7.
cN1-34
CN2-20<
k::::
4
-
P
cN1-19 CN1-20
1P
CN1- 1 CN1- 2
~J
FG
L- .–
Fig. 11.6 Connection to Feed Servo Unit (1st Axis)
25
Page 30
2P REGENERATIVE CIRCUIT
Sv 2
R3
I :=1
R
3-PHASE 200 T0230VAC:\g% S3
s
T3
T
_CNC UNIT
-—
R22
+
{:
s 22
LNCD - SR 50-2 —“~
1
CN31-12 <
CN31-13 <
i
CN31-10 &= CN31.11 #llQl
cN31.8 & CN31-9 _
\
CN 31-23,24=
t-
CN31-25 ‘N’
—--J
-n
P B-
SGDB TYPE
,
4P }
7
CN1-5 CN2­CN1-6 CN2­cNI-47 CN2-
P
CN1 -40
CN2-
~ CN1-27 CN2-
CN1-28
CN2-
i=z
CN1-29
P
CN1-30
+=/
cN2­cN2-
iI& iii
/
*
CN1-19 CN1-20
+
CN1- 1 CN1- 2
L---
2ND AXIS FEED MOTOR
I
——
—km
Fig. 11.7 Connection to Feed Servo Unit (2nd Axis)
Page 31
E
R3 R
;O~H%E230VAC~; @0 S3 s
T3
T
I
R22
s
r
s 22
t
3R REGENERATIVE CIRCUIT
SV3
n
3RD AXIS
I------P !3-1
FEED MOTOR
r-—
CNC UNIT
—.
-.
ANCD - SR 50-2 “-~
CN 33-$2
k
DA3
CN33-21 ~~;j CN 33.26 CN33-14 ~G~ CN33-4 CN33-5
f
GNDtTGOh
CN33-6
SRDY3
% GND(SRDY :ONTROLCN 33-7 +——————
CN33-12~
CN 33-13<:*OL3 CN 33-10
CN33-11
f
GND(*OL;
cN33.8
*ALM3
CN33-9
GND($ALM
I
CN 33-16
I
PA 3
CN 33-15
*PA3
CN 33-18
PB 3
CN 33-17
*PB3
\
CN33-20 i *:C33 CN 33-19 CN33. 1
GND
CN33- 2
GND
CN33- 3 <
FG G——————
1
CN 32-23,24=Ex
r
CN32-25 ‘ND2
_.J
-—
SGDB TYPE
~
(-!
[1P
CN1-5 CNI-!5 CN1-47
IF’
CN1-40
l-- CN1-27
CN1-28
%
CN1-29
1P
CNI-30
[!
il
II
II
I
[1
II
E/
CN1-31 (
P
CN1-32
II
II
II
II
II
3+
11P
CN1-33 CN1-34
E %::
1
k
CN1-19
CN1-20
g
CN1- 1 CN1- 2
u
1=1%
u
v
v
SM -I
w
w E
I
E
1~~
I
l-, pA
=:-ii ~
CN2- 18 CN2-1
P
*PB D
CN2-14
IIPCE
I“”b’
CN2-15
P
I *pc>F
II
PG
~
1/ f!
II 1/ II
““’Ow-llJ
I
—–
I
L- _
-1
Fig. 11.8 Connection to Feed Servo Unit (3rd Axis)
Page 32
4R REGENERATIVE CIRCUIT
3-PHASE 200 TO 230VAC : ~:%
I
R22
{+
r
s 22
t
_CNC UNIT
-—
JANCD -SR 51
~-~
4TH AXIS CONTROL
1
CN CN CN CN CN CN CN
CN
36-22
L
DA5
36-21
GND(DA)
36-26
+24VEI
36.14 /SVON! 36-4
/TGON
36-5
i
GNDVTGO}
36-6
SRDY5 GNDkWDY
36-7
$
CN 36-12 < cN36-13 f*oL5
CN 36.10 CN36-11
1
GND(*OL
cN36.8
*ALM5
CN36-9
GND($ALh!
CN 36-16
PA 5
CN 36-15
*PA5
CN 36-18
PB 5
CN 36-17
*PB5
CN 36-20
I
Pc 5
Cii36-19
*PC5
CN36- 1
GND
CN36- 2
GND
CN36- 3 <
FG ~
{
CN 36-23,24=Ex
I
k
CN36-25 ‘ND’
..J
I
I
%
,-,
11P
CN1-5 cN1-’f’ CN1-47
1P
CN1-40
t--+---+ CN1-27
CN1-28
T=
I
CN1-29
1P
CN1-30 ,1 ,1 II
1
k%:; ‘::;c:~::c
II [1
E
N2-’i II II
N2-6 II
N2-3
p
[[p
CN1-33 CN2- 7, CN1-34
CN2-20~
I ‘
p ? ::; ”J;
:’ ~
k
CN1-19 CN1-20
&&
CN1- 1 CN1 - 2
[/
I
[
I
I
CN2-18 CN2-19
I
L--- ._
I
Fig. 11.9 Connection to Feed Servo Unit (4 th Axis)
Page 33
(1) Connection and Motor Rotating Direction
Direction of Motor Rotation if “+” moving command is given.
Forward Connection
E21
o
FLANGE SURFACE
_ OF MOTOR
Ccw
Reverse Connection
g
o
Cw
The connection diagram shows forward connection. Connect wires as shown below for reverse connection.
(2) Combination of Drive Unit and Regenerative Resistor
Servo Drive Type
Regenerative Resistor installed
CACR-
SeDaratelvTvi3eMO-
SR03SB
70W-50k (or 30SH, 300W 100Q)
SR05SB
70W-50k (or 30SH, 300W 100Q)
SRI OSB 70W–5flk SRI 5SB
70W-50k
SR20SB
140W-25k
SR30SB
140W–25k*
SR44SB
140W-25k*
*Two registers connected in parallel,
(3) Line Filter Installation (a) A line filter is installed to prevent radio interference by high
frequency generated by the servo drive unit.
Line Filter Type
Current per Phase of Input Power Supply
LF31O
10A max
LF320
20A max
LF330
I
30A max
LF340
40A max
(4) Connection to Motor with Brake
SINGLE PHASE 100/200 VAC
EMERGENcY
SVMX
STOP
1=-- pUSHBUTTON
. Do not short-circuit output terminals 3 and 4. . Tightly fasten terminal board screws. .Protective devices are built-in. External protectors arenot needed. . The contact making and breaking current for terminals 5 and 6
shallbe5 to 10times therated current of the brake to be used.
Use DC make-break contacts.
(b) Select the appropriate filter as follows depending on the current
per phase of the drive unit input power supply.
Page 34
12. CONNECTION TO SPINDLE DRIVE UNIT
12.1 CONNECTION TO EACH UNIT
(1) For Motor with Built-in PC (a) For lathe
CNC UNIT
JANCD-SR50-1
10226-52A2JL CN33
10220
-52A2JL CN32 1 GND 11
2 GND 12 3 GND 13 4 +5 VEX 14 PC3 5 +5 VEX 15 * PC3 6 +5 VEX 16 PA3 7 17 $ PA3 8 18 PB3 9 19 * PB3
10 20 FG
17
C33
1OI26-3OOOV
Ih”’’o”’ooov’
(b) For multi-axis lathe
CNC UNIT
——
JAN CD-SR50-3
1022652A2J L
CN33
10220
10226
10220
52A2JL
CN32
H
1 GND 11 2 GND 12 3 GND 13 4 +5 VEX 14 PC3 5 +5 VEX 15 *PC3 : +5 VEX 16 PA3
17 *PA3
8
18 PB3
9 19 *PB3
10 20 FG
-52A2JL CN%
52A2JL CN34
1
GND 11 2 GND 12 3
GND 13 4 +5 VEX 14 PC4 5 +5 VEX 15 * PC4 6 +5 VEX 16 PA4
17 * PA4 .: 18 PB4 ,9 19 * PB4
10
20 FG
0126”3000vP
0120 -3000vE
0126 -3000V
[
1P
0120 -3000VE
uR -
%FO1(G)
CIMR-VM3
+~—
CN1 (1ST SPINDLE’
4
LIR-
!
~OM!Y(G)
CN2
CN3
1 Ov 11 ccl 2 Ov 12 CA1l 3 Ov
13 CA21
4 +5V
14 Pcs 1 5 + 5V 15 * Pcsl 6 + 5V 16
PAS1 7 SG 17 * PAS1 8 THSAI 18 P8S1 9 THSE1 19 * PBS1
10 24V 20 FG
Fig. 12.1
OR-
IFO1(G
U[
U[ 4R-
>MOl(G
CIMR-VM3
CN1
(1ST SPINDLE
CN2
CN3
m
1 Ov 11 ccl 2 Ov 12 CA1l 3 Ov 13 CA21
4 +5V
14 PCS1 5 +5V 15 * PCS1 6 +5v 16 PAS1 7 SG
17 * PAS1 8 THSA1 18 PBS1 9 THSB1 19 * PBS1
10 24v
20 FG
1
!R -
I
IFO1(G)
u
u 4R­)MOl(G)
CIMR-VM3
CN 1
(2ND SPINDLE
CN2 CN3
m
1 Ov
11CC2 2 Ov
12CA12 3 Ov 13CA22 4 +5V 14PCS2 5
+5V
15 * PCS2 6 +5v 16 PAS2 7 SG
17 * P4S2
8 THSA2 18 PBS2
9 TI+SB2 19 * PBS2
10 24V
20 FG
ID
C320
MR-
1
2’JFO1(G)
a
PG
SPINDLE MOTOR
IAR­iOFOl(G)
L
a
PG
SPINDLE MOTOR
10
C340
!,lR
1
i3FOl(G)
KI
PG
Fig. 12.2
Page 35
(c) For machining centers
CNC
UNIT
JAN CD-SR50-2
10226-52A2JL
10220
-52A2JL
m
1 GND 11 2 GND 12 3 GND 13 4 +5VEX 14 PC4 5 +5 VEX 15 *PC4 ; +5 VEX 16 PA4
17 *PA4
8
18 PB4
9
19 *PB4
10
20 FG
CN35
CN34
lD-
C35
31263000L
I
b
MR -
EOFO1(G)
[
‘%
C34
)120.3000VE
[
MR -
.—
CIMR-VM3
CN1
(SPINDLE)
CN2
CN3
H
1 Ov
11 ccl
2 Ov
12 CA1l
3 Ov
13 CA21
4 +5V
14 Pcsl
5 +5V
15 * Pcsl
6 +5v
16 PAS1
7 SG
17 *PAS I B THSA1 18 PBS1 9 THSB1 19 $ PBS1
10 24V 20 FG
Fig. 12.3
(2) For Mortor with Separately Installed PC (a) For lathe
CNC UNIT
-~
JAN CD-SR50-1
CN33
10220-52A2J L
1 GND 11
2 GND 12
,3 GND 13
4 +5 VEX 14 PC3
,5 +5 VEX 15 * PC3
6 +5 VEX 16 PA3
17 * PA3
,; 18 PB3
19 * PB3
:0 20 FG
CN32
IF
0126 -3000VE
lb
C32-1
0120-3000V
r
L
L.
)FO1(G)
fl[
[
CIMR-VM3
CN1
(1ST SPINDLE)
CN2
CN3
MR-
20F01(G)
L
c
PG
SPINDLE MOTOR
C320
‘n
tiR­?QFO1(G)
E
PG
u
SPINDLE PULSE
MS310BB-29S n ‘ENERATOR
G
!-J
Fig. 12.4
Page 36
(b) For multi-axis lathe
CNC
UNIT
JAN CD-SR50-3
10226-52A2J L
CN33
I
10126-3OOOVE
n
C32-1
10120-3000V
10220-52A2JL
CN32
EEl
1 GND 11 2 GND 12 3 GND 13
L
4 +5 VEX 14 PC3 5 +5 VEX 15 *PC3 6 +5 VEX 16 PA3 7
17 *PA3 8 18 PB3 9 19 *PB3 10
20 FG
10226-52A2JL
CN35
IF-
101263OOOVE
~ ‘n
C34-1
10220-52A2J L
CN34
1 GND 11 2 GND 12 3 GND
10120-3000V
4 +5 VEX :: PC4 5 +5 VEX 15 * PC4 6 + 5VEX 16 PA4
17 * PA4 : 16 PB4 9
19 * PB4 10
20 FG
(c) For machining centers
CNC
UNIT
.
JAN CD-SR50-2
I
1022O-52A2JL CN34
EEl
1 GND 11
2 GND ?, 3 GND 13 4 +5vEx 14 PC4 5 +5 VEX 15 *PC4 6 +5 VEX 16 PA4 7
17 *PA4 8 18 PB4 9
19 *p134 10 20 FG
10126-3OOOVE
I
I
10120-3000V
CIMR-VM3
CN1
(1ST SPINDLE
CN2
CN3
1 Ov Ill Ccl 2 Ov 121CA11 3 Ov 131CA21 4 +5V 14 Pcsl 5 +5V
15 * F’csl 6 + 5V 16 PAS1 7 SG
17 * PAS1 6 THSA1 18 PBS1 9 THSB1
19 * PBS1
10 24V 20 FG
dR. i3FOl(G)
a[
[
b
B-
C34-1 ,
SPINDLE PULSE
Ms310t3= GENERATOR
r~
CIMR-VM3
CN1
(2ND SPINDLE
CN2
CN3
1 Ov
11 CC2 2 Ov 12 CA12 3 Ov 13 CA22 4 +5V 14 PCS2 5 +5V
15 * PCS2 6 +5V 16 PAS2 7 SG 17 * PAS2 8 THSA2 16 PBS2 9 THSB2 19 * PBS2
10 24V 20 FG
ix
[
II
C320
MR-
3
2UF01(G)
d
PG
SPISPl:~E
D
C340
MR­‘1
20F01(G)
E
PG
SPINDLE MOTOR
1
SPINDLE PULSE
~s3108B~ GENERATOR
I
n
n
CIMR-VM3
CNI
(SPINDLE)
CN2
CN3
1 Ov
11 ccl
.2 Ov 12 CA1l
3 Ov 13 CA21 4 +5V
14
Pcsl
5 +5V
15 * Pcsl 6 +5V
16 PAS1 7 SG 17 * PAS1 s THSA1 1s PBS1 9 THSB1 19 * PBS1
10 24v 20 FG
IL
I 1P
I
u
101
C340
SPINDLE PULSE
Ms3108= GENERATOR
G
Fig. 12.6
32
Page 37
(3) Main Cercuit
200/220VAC, 50/60Hz
k
cl MR-vM3-i:; :;K
COOLING FAN
(1ST SPINDLE)
( )
,
( )
Y
MOTOR
Fig. 12.7 Connection to Main Circuit
33
Page 38
12.2 DETAILS OF CONNECTION
(1) For Motor with Built-in PG
(a) For lathe
CNC
UNIT
—.
-—
J==l
I
SPINDLE DRIVE UNIT
L
CIMR-VM3-HLI
3T
CN33-22
C)A3 .-..,
(1STSPINDLE)
CNI-3
CN3321
GND(DA) ~ ~
CN1-4
CN3?L8
*ALM3
‘Y
c“” E@
CN32-16
%%
PA3 C-.., CN2-16
CN32-17
*PA3 \ \ P
CN2-17
CN32-18
i!
PB3 ,
CN2-18
CN 32-19
* PB3 \
j P CN2-19
CN 32-14
PC3 I I
CN2-14
CN32-15
*PC3 I i !
P CN2.15
CN3220
FG3
:. /’
I
Fig. 12.8 Connection to Motor
with Built-in PG (1st Spindle)
34
Page 39
(b) For multi-axis lathe
CNC UNIT
—-
‘1
JANCD - SR50 -3
I
=11
CN33-27
DA3~ ,-..>
CN33-21
GND(DA) ~
] P:
Ct433-8
*ALM3
CN33-9
B&
I
I
CN32-16 JPA3
-+
CN32-17 ~
kPA3
CN32-18
PB3
==+-
CN32-19 ~
iP03
CN32-14
Pc 3
CN32-15 *PC3
-–––t–
CN32-20 FG
JANCD-SR50
I
=+:
CN35-22
~
CN35-21
GND(DA)
CN35-8
*ALM3
CN35-9
6ND($A11
I
I
CN34-16 I PA4
-–––+
CN34-17
* PA4
CN34-18
PB4
=/=
CN32-19
*
CN34-14
PC4
CN34-15
*PC4
CN 34-20
FG
Fig. 12.9 Connection to Motor with Built-in
PG (1st Spindle, 2nd Spindle)
-J
INDLE DRIVE UNIT
7
CIMR-VM3-i’Xj
CN1-3
(1STSPINDLE)
CN1-4
:N2-16 :N2-17 :N2-18 :N2-I 9 :N2-14 :N2-I 5
i
CN3-16
CN3-17 =Ed=
CN3-18
PB Ii {
z
CN3-19 *PB1,
PI
CN3-14
Pcl~ :
CN3-”5 ZsIH!i= CN3-4
+5V ; ]
CN3-1
3
w ! P:
CN3-5
+5V I ~
CN3-2
Ov ; P!
CN3-6
+5V f ;
CN3-3
Ov : P!
cN3-8 l“ThtsAIl i
H
CN3-’ Ezlt=
CN3-7 SS “~’
SPINDLE DRIVE UNIT
\ clMR-vrd3-nil
(2NDSPINDLE)
,-.,
F
=
CN1-3
::
!,
CN1-4
‘k’
H//H
I
I
I
I
3
.
4
5
i--
[
~- PG i-­i---
2
9
&El
.10
r
CN3-16
PA 2 :“”-’\
1“1
3
CN3-17 *PA 2[ Pi
CN3-18 PB 2: ~
CN3-” zEzIEjn~
CN3-14
Pc 2: ,
=;
CN3-15 *PC 2: P’ CN3-4
+5V : ;
1
CN3-1
=
Ov ~ P!
2
CN3-5 +5V : ;
9
CN3-2
Ov ; P\
.
P(3
I
35
Page 40
(c) For machining centers
CNC
UNIT
.— -—
JANCD-SR50-2
SPINDLE DRIVE UNIT
CIMR-VM 3-Cii.i.
=/$=1
CN34-16
PA4 :“-’.,
CN2-16
CN34-17
*PA4 ; ! P
CN2-17
CN34-lS
PB4 [ ~
CN2-16
CN32-19
*PB4 ; ~ P CN2-19
CN34-14
PC4 { ;
CN2-14
CN34-15
*PC4 , ;
1P
CN2-15
CN34-20 FG “- ;
I
Fig. 12.10 Connection to Motor with Built-in
PG (Spindle)
I
(SPINDLEI
I
AC SPINDL MOTOR
U/%SKA-[
r
=&&k
43L
+--L--=’
CN3-19 *PB 1: Pi CN3-14 Pcl{ :
xi
CN3-15 *PCl~ P’
CN3-4
+5V : ;
1
CN3-1 Ov \ P!
2
CN3-5
+5V : ;
9
CN3-2
Ov \ P!
CN3-6
+5V : ;
CN3-3
Ov : P!
CN3-8
TMSAIi :
,m,
11 TS 12
.
Pr3
I
I
Page 41
(2) For Motor with Separately Installed PG
(a) For lathe
CNC UNIT
—-_ _
I
I I
JANCD SR50- 1
SPINDLEPULSEGENERATOR (1STSPINDLE)
I
I
I
I
CN32-16
)<
,.-
PA3
, ‘,
\
CNS-A
PA 1
CN32-17
/
* PA3
: P;
>>
\
CNS-N
*PA1
CN32-18
I
PB3
:;
/ \
CNS-C
PB 1
CN32-19
/
* PB3
: P:
\
CNS-R
*PB1
CN32-14
>>
PC3
\
CNS-B Pc 1
CN32-15
/
*PC3
; P!
\\
\
CNS-P
*pcl
,
//
,, II !$ ,; 1, 1,
;,
,4 1! ,!
1;
3 ‘;
,1
CN32-4
+5vEX
!j
CN32-1
GND
~ ?;
CN32-5
+5VEX ;;
CN32-2
GND
c P;
E
CN32-6
+5V EX /;
CN32-3
GND
; PI
CN32-20
<
FG
‘. ,
—-
J
Fig. 12.11 Connection to Motor with
Separately Installed PG (1st Spindle)
37
Page 42
(b) For multi-axis lathe
CNC UNIT
-— -
-’
SPINDLE PULSE GENERATOR
(1ST SPINDLE)
CN32-16 CN32-17 CN32-18 CN32-19 CN32-14
j~~ = :;
CNS-B
CN32-15
*PC3
1, ,,
CNS-P
*PC1
t, ,,
:: 1,
l,,
,, ,, (, !,
r, 1, II t,
l;:
II
CN 32-4
//
+5VEX ~1
\\
CNS-H +5
7
CN 32-1
I
/
Gt4D
I P!
\
CNS-K OV
CN 32-5
>:
+5VEX ~~
T
~
CN 2-2
GND ‘!. !
/
CN32-6
>>
4)
+5VEX 1:
A
CN32-3
/
GND
; P:
CN32-20
,
IT;
I
SPINDLE PULSE GENERATOR (2ND SPINDLE)
I 1
/’
t’A 4
,,
=/: ,:
+
CNS-A
*PA4
: P;
\.
CNS-N
PB4 ~i
/­\
CNS-C
* PB4
: P:
\
CNS-R
“,. J-?-,7
PC4 ;!
,­\
CNS-B
PC 2
I
CN34-15
*PC4
; P!
\
CNS-P
*pc2
I
//
\
I 1
,.-
CN34-16
-.. I PA 2
CN34-17
7
*PA2 CN%18 CN34-19
Phl,A-l A =Eh
CN%4
CN34-1 CN34-5 CN34-2 CN%6
CN 14.2
=/!D ‘;
+5VEX 1;
GND
/ P;
+5VEX ::
Gt4D
‘ P;
E
+5VEX ;;
GND
~ Pt
-. .-! “ CN34-20
FG
‘. /
—- _ _
J
Fig. 12.12 Connection to Motor with Separately
Installed PG (1st Spindle, 2nd Spindle)
38
Page 43
(c) For machining centers
CNC UNIT
—._ _
I
JANCD-SRW-2
CN34-16
CN34-17 CN34-18 CN34-19 CN34-14 CN34-15
CN34-4
<
CN34-1
<
CN34-5 _ CN34-2
CN34-6
<
CN34-3 CN34-20
—-
SPINDLE PULSE GENERATOR (1ST SPINDLE)
I
: *PC4 .
. +5vEX
.
PA4 /--’!
\
CNS-A
PA
1
:
*PA4
: P!
\
CNS-N
*PA1 \ /
PB4 f;
/ \
CNS-C PB 1
; *PB4
: P:
\
CNS-R
*PB1 \ ,
PC4 ;!
\
CNS-B
Pc 1
:$P;
/ \
CNS-P
*pcl
,
/
,,
1
,
!1
,;
1, I
!1 1,
;1
II
); ,,
.
FG
;I
.
./
.
I
._____l
I
(PG)
1’
Fig. 12.13 Connection to Motor with Separately
Installed PG (Spindle)
Page 44
12.3 CABLE SPECIFICATIONS
Table 12.1 Main Circuit Cable
Size (mm2 ) ‘“te
Terminal Name and Screw Size
Inverter Mod
Rated
600V Class
CIMR-VM::
c& y;:?
Fke-registant
600V Class
Inverter Terminal
Motor
Crosslinked
Rubbet’-insulated
Terminal
Polyethylene Cable
Cabtyre 400V Cable
Input output
,
200V
23P7
22
3.5 2.0
3.5
M5 M5 M4
25P5
33
5.5 3.5
5.5
MS M5 M5
27P5
45
8.0 5.5
8.0
M5 M5 M5
2011
66
14.0 14.0
14.0
M8
M8 M8
2015
90
30.0 22.0 22.0 M8 M8 M8
2018 111
38.0
.22.0
28.0
M8 M8 M8
2022
132
50.0 30.0
50.0
M8 M8 M8
2030
180
50.0 M8 M8 M8
400V
43P7
11
2.0 2.0 2.0 M5 M5 M4
45P5
16
2.0 2.0 2.0 M5 M5 M5
47P5
22
3.5 2.0
3.5
M5 M5 M5
4011
33
5.5
3.5
5.5
M8 M8
M8
4015
45
8.0 5.5
8.0
M8 M8 M8
4018
55
14.0 8.0
14.0
M8 M8 M8
4022
66
14.0 14.0
22.0 M8 M8 M8
4030
90
30.0 22.0
30.0
M8 M8 M8
Terminal Name
R, s, u, v, u, v, T, E
W, E W, E
Note: Cable size isselected atambient temperature30~ when built with 3-core l-thread in the air.
The maxium allowable temperature of the conductor is 60~ for IV, VV and CT cables, and 110”C
for 600V fire-resistant crosslinked polyethylene cables.
Precautions on Cable Selection at High Ambient Temperature —>
When ambient temperature exceeds 30C, thecable allowable cument is reduced. Select thecable size in accordance with the technical materials of the cable manufacturer based on rated current.
Table 12.2 Cooling Fan Motor Cable
Terminal Name and Screw Size
Inverter Cable
Inverter Terminal
Control Power
Cooling Fan
Motor Terminal
Input
output
200V
600V Class polyvinyl insulated wire,
400V
Size 2mmZ
M4
M4 M4
Page 45
13.
13.1
CONNECTION TO TAPE
CONNECTION TO EACH UNIT
CNC UNIT
1
JAN CD-CP50
10220.52A2J L
CN20
1 SG1 11 2 DR1 12 3 ER1 13 4 Csl 14
II
5 RS1 15 6 RD1 16
7 SD1 17 8 18
9 19
10 FG
20 FG
TAPE READER UNI1
C20
1012O-3OOOVE
T
PTR
DB-25P
200/220VAC, 50/60Hz
Fig. 13.l Connection to Each Unit
13.2
DETAILS OF CONNECTION
JANCD- cPW
CN20-7 ,
CN20-6 x m
CN20- 3 CN20- 2 CN20- 1 *
......
SD
,,
RD
POWER SUPPLY 200/220VAC, 50/60Hz
Note : Wire length between tape reader and main board should be 3 m max.
For using the cable exceeding 3 m, contact your YASKAWA representative.
J-
---------- ,,.,,-
IAYt HtAUtK UNI I
TAPE READER
MODEL 2801 E
m
34128
4
TRANSFORMER ;::~:ov
TAPE HANDLER
1
MODEL 1402 MODEL 1500
2
E
Fig. 13.2 Connection to Tape Reader
Page 46
14. CONNECTION TO RS-232C INTERFACE
14.1 CONNECTION TO EACH UNIT
CNC UNIT
JAN CD-CP50
10220-52A2J L
CN20
w
1 SG1 11 2 DR1 12 3 ER1 13 4 Csl 14 5 RS1
15 6 RD1 16 7 SD1
17 6 DINO 18 9 024DI
10 FG ;; FG
C20
RS-232C
1012O-3OOOVE
INTERFACE
DB25S
Fig. 14.1 Connection to Each Unit
14.2 DETAILS OF CONNECTION
CNC UNIT
INTERFACE CONNECTOR
—._____.-.—.-.—.—., I TO12f-3W0VE DB-25s
,
I
-. ——. —.—. -.— .-. —.
JANCD-CP59
DE-25P
.
(;
>,
CN-2
>,
,, CN-3
>
CN-4
>j :
CN-5
>’
CN-20
:;
CN-6
\
!:
CN-7
>,’
+“;
TO OUTSIDE OF NC
Fig. 14.2 Connection to RS-232C
42
Page 47
14.3 RS-232C INTERFACE
(1) Transmission Mode
Start-stop synchronization: Each data bit is preceded by a start signal, and followed by a stop signal.
A SINGLE START-STOP CHARACTER
r
DO
DI D2 D3 D4 D5 D6 D7
OFF
+
START
DATA BIT
STOP BIT
BIT
(1 OR 2 BITS)
Table 14.1
Vo< -3V
00> +3V
Function OFF
ON
Signal Condition
Mark
Space
Logic
1 0
(2) Codes Used
The following two types of codes areused, and are selectively used by parameters (#6026D5, #6028D5).
. EIA codes or ISO codes . EIA codes or 1S0 codes + control codes (DC 1- DC4)
To use control codes, the machine to be controlled must be able to discriminate codes DC1 through DC4. Codes DC1 ­DC4 are as follows.
(5) Interconnection
Table 14.3 RS-232C interface Connecting Cable(A)
NC (DB-25P)
External
Equipment
Connections
Symbol
Signal Name
Pin No.
Symbol
FG / Frame grounding
/ 1 10—o I FG
SD
Sending data
2
SD
RD Receiving data
3 RD
RS Sending data
4 0 RS
Cs Capable of sending
5 G
Cs
DR Data set ready 6
\-o
DR
SG Signal grounding 7
0
\
SG
ER Data terminal ready
20 IO BUSY
I
Ii
NC outputs control codes DC 1- DC4 to start and stop the machine, but the machine can not output control codes to control the NC. However, when the machine under control is unable to process data
in time, it can control the CS signals of the NC to halt the data outputting of the NC.
When CS signals of the NC are not used, short CS and RS as
shown Table 14.4.
Table 14.4 RS-232C Interface Connecting Cable (B)
External
NC (DB-25P)
Equipment
Connections
Symbol
Pin
Signal Name
~n
Symbol
FG I Frame grounding
111
0—------ j FG
Table 14.2
SD I Sending data
/21~/+SD
Character
8 7 6 5 4 :;; 3 2 1
Dc ~ Tape reader
start
o
0
Tape reader
‘C2 punching
o
0
Tape reader o
DC3
stop
o
0 0
DC4
Tape punch
o
0
release
(3) Transmission Baud Rate
Transmission baud rates can be selected at any rate between 50 and 9600 bauds with parameters. Refer to (7) in Par. 14.2.
(4) Cable Length
The permissible maximum cable length varies with the machine to be controlled. Refer to the machine builder’s manual. (Standard maximum cable length is 15 m.)
RD Receiving data
3 (3’”W RD
RS
Sending data
4 RS
Cs Capable of sending
5 Cs
DR Data set ready 6
A-) DR
SG Signal grounding
7
0
0
SG
ER
Data terminal ready
20
0
bl
ER (OR
IO ARARM)
~Description of signals
FG: Safety grounding
SD : Transmission data (output)
RD : Received data (input)
‘1!’
I
I
I 1,,
START
~STOP
Page 48
RS: Request for sending (output) – When sending data, NC is
turned ON when starting transmission, and turned OFF when transmission ends.
CS: For sending (input) –When this input signal is ON, NC can
send data. If the machine under control is unable to process data in time, it can turn OFF this signal to interrupt the transmission of data from NC within2 characters. When this
signal isnotused, connect lines asshown in Table 14.4. SG: Signal grounding. ER: Data terminal ready – Use this signal as a tape rewinding signal
if a tape reader is connected to an RS-232C interface. The tape
reader can be rewound if this signal is ON.
NOTE
Among the RS-232C interface signals, the following are normally not used by the NC.
DR: Data set ready ER: Data terminal ready CD: Data receiving carrier detection However, when “ 1” is set for parameter CHKDR (#6021 D4), a
DR (data set ready) interlock is added.
(6) Signal Exchange Timing
. When NC receives data.
Data can be received in the following sequence and timing. (a) NC sends code DC1. (b) At code DC1, the machine under control starts to send data to
NC. (c) If the NC can not process data in time, it sends out code DC3. (d) At code DC3, the machine stops sending data within 10
characters. (e) NC again sends code DC1 after processing data. (f) At code DC1, the machine sends out the data that succeeds the
previously sent one. (g) Upon reading in the data, NC sends out code DC3. (h) The machine stops sending data.
~RTPUT
DC1
DC3 DC1 7
DC3
~uTpuT~
SD
,
., ,.
RD
J
INPUT
1=”
~
10 CHARACTERS MAX
Cs INPUT
Fig. 14.3
* @ represents “rewide stop code”, which is the same as “%” of ISO.
(a) NC sends out code DC2, and subsequently sends out data. (b) If the machine under control can not process the data in time,
NC stops CS at no IO BUSY signal.
(c) Upon completion of the data processing by the machine, NC
turns on CS. NC sends out data that succeeds the previous one.
(d) Upon completion of data sending, NC sends out code DC4.
;?tTPUT
DC2
~–
DC4
SD
OUTPUT ~ Cs
L
INPUT
Fig. 14.4
NOTE
D.C1 and DC3 code from RD is not available when NC sends out data.
(7) Parameter Setting
When using RS-232C, set data transmission baud rates, stop bit lengths, and control code sending specifications with the parameters shown in Table 14.6.
(a) RS-232C interface port selection
Select the RS-232C interface port by setting #6003.
Table 14.5 RS-232C Interface Port Selection
Interface
Input output
RS-232C port 1 #6003Do
#6003D4
Note: The above bit is selected at parameter setting” 1”
(b) RS-232C interface port 1
Baud rate setting of RS-232C interface port 1 is shown in Table
14.6.
Table 14.6 Baud Rate Setting
~
110
0 0 1
0
~
150
0 0
1
1
z >
200
0
1
0
0
2
300
0
1
0
1
2 m
600
0 1 1
~
o
m
1200
0
1 1
1
2400
1 0 0
0
4800
1 0 0
1
9600
1 0 1
0
When NC sends out data
NC sends out data in the following sequence and timing.
44
Page 49
14.3 RS-232C INTERFACE (Cent’d) “
Stop bit length setting # 6026 D4 for input 1: Sets stop bit at two bits. # 6028 D4 for output O: Sets stop bit at one bit.
. Setting of control code sending
# 6026 D5 for input 1: Does not send control code. # 6028 D5 for output O: Sends control code.
SKIP
m
15. DIRECT-IN SIGNAL CONNECTION
A—?—6
15.1 CONNECTION TO EACH UNIT
CNC UNIT
‘1
JAN CD-CP50
1
!
1022O-52A2JL
CN1O
lb
Clo
DIRECT
1012O.3OOOVE
IN
Ii
.~
Fig. 15.2 Direct-in Signal
Fig. 15.1
Connection Using
OV Common
15.2 DETAILS OF CONNECTION
The following input signals require high-speed processing and are connected to the PC board (type JANCD-PC50), instead of general­purpose 1/0 boards.
These signals are processed directly by the NC main processing
unit without coursing through the PC.
DINO: Skip input
Direct-in signal connection is shown in Fig, 15.1 and 15.2,
SKIP
4
-—&—
Fig. 15.3 Direct-in Signal
Connection Using
24V Common
CNC UNIT
—-
TYPE JANCD-PC50
k
-—- _
=
CNIO-11, 12.13
Oz. DI
CN1O-1.2,3,9
DINo
F
~ cN10-18
/DINo
CN1O-8
FG
L
CN1O-2O
I
I--- __
—-
CNC UNIT
—.
TYPE JANCD-PC50
—_ —__
+24 VDI
DIN O
/DIN O
-%
CN1O-I1, 12,13
CN1O-I,2,3,9
CN1O-I8
CN1O-8
:N1o-2o
—-
45
Page 50
15.3 DETAILS OF SIGNALS
‘NPUT‘AvE’ORM~
SIGNAL RECEIVED BY NC
JANCD-PC50
~
_ TIME
40@
40#s
Fig. 15.4 Time Chart
J<
JANCD-PC50
APPROX
8mA
CNIO-ll -13
+ 24V
/-)
CN1O-1-3,9 I
I
(a) OV Common
(b) 24V Common
Fig. 15.5 110 Circuit
Page 51
16.
16.1
CONNECTiON TO GENERAL-PURPOSE 1/0 SIGNALS
CONNECTION TO EACH UNIT
DETAILS OF
CNC UNIT
CNC UNIT
CPS (POWER SUPPLY)
172040.1
m
CN02
P
D
I
I
——
MRP-8F0’
-[
172060-1
%izm+l[
1/0 MODULE
JAN CD- FC81O
FC880
CNII FC861
MR-8RMD2
CN7
CN13
172037-1
Fig. 16.1
CONNECTION
1/0 MOD~ll F
I
CN13-3
~- I SH I
.. B“ i
CN13-4
)1
JAN CD-PC50
1
I
I
CN1l-1
CN1l-2
CN1l-3
CN13-1 CN13-4 CN13-3 CN13-5
JANc D- Fc810/Fc860/Fc881
CN7
CN7
Fig. 16.2 GonneGticm tvGeneral-purpoae l(O~ignal
Page 52
16.3 CONNECTION
CNC UNIT
TO ADDITIONAL GENERAL-PURPOSE
1/0 MODULE NO 1
1/0 SIGNALS
1/0
MODULE NO.2
1/0 MODULE NO.3
JANCD-PC50
CN13
MR-8RMA4
P
CN13
[
MRP-8FOI
JANCD-FC81O
/FC860/FC861
;Nll CN12
MR-8RMD2
C130
HI
C200
JANCD-FC81O
/FC860/F:8&12
;Nll
MR-8RMD2
BE @2040.;N”
CN7&o---
C130
H[
C200
H[
JANCD. FC81O
/Fc860/Fc861
;Nll
MR-8RMD2
;N13
-O-*
CN7
16.4 DETAILS OF
CONNECTION
1/0 MODULE NO. I
1/0 MODULE NO.2
JAN CD- F~81 O/FC860/FC861
JANcD-Fc810/Fc860/Fc861
,.-----
-1
CN7 +24V
CN7 0,4V
l------
CN7 +24V
CN7 OXV
I
Fig. 16.4 Connection to Additional General-purpose 1/0 Signal
Page 53
Notes:
1. Up to 3 general-purpose 1/0 modules can be connected (when FC8 10 or F860 is used.)
2. It is necessary to terminate the final module since another general-pm-pose I/O module can be added.
<Example>
CNC UNIT
‘7
I
1/0 MODULE
1/0 MODULE
“W”r
+13 +q.
NO. I SETTING TERMINATION (sw3) ON/OFF
lo~J3
NO.2 SETTING ~EM::ATION (SW 3)
(ForConnectingtoanothermodule)
(Forterminal1/0module)
3. Logic can be set to “ 1”by short-pin SW2 setting of an 1/0 module (FC8 10, FC860, FC861) when the input contact is “closed” disregarding whether common OV or 24V is used.
INVERS (SW 2)
ON/OFF
ON/OFF
-10
0 ~]
(ON)
(OFF)
4. 1/0 port 1/0 addresses of an 1/0 module can be set by rotary switch (SW1 ).
.
Positions of TERMINATION, INVERS, and ADDRESS switches
1/0 MODULE (JANCD-FC810, FC860)
1
1
1/0 MODULE (JANCD-FC861 )
•“~
ml F@
‘w’ Q,cn
f %SRDDRESS -
D
s
TERMINATION
u
mm
kLJ2__dcN7
mm EillzElg
1/0 MOOULE (JANCD-SP50)
r
wl
o
.
z
;
o
0
;
o
Swl
~ADDRESS
‘EBB
1
1
I
I
49
Page 54
17.
17.1
CONNECTION TO GENERAL-PURPOSE 1/0
CONNECTION TO EACH UNIT
1/0 MODULE
‘~
CN2
P’
C52
MR-20RMD2
MRP-20F01
0
CN3
~n
i
C53
MR-50RMD2 MRP-50F01
c!
CN4
lo!
C54
MR-50RMD2 MRP-50F01
D
1/0 MOOULE
‘~
‘z:ik
:$:i=
CN5 C65
FRC2-C50S12-OL
FRC2-AA50-20S
CN6
D
C66
FRC2-C50S12-OL FRC2-AA50-20S
n
1/0 MODULE
-~
--
(Use thscablewhenexternalpowerIS supplled1
CN2
Pn !
C72
FRC2-C50S12-OL FRC2-AA50-20S
-ux!E!Ji ~
FRC2-AA50-20S
I
UOMOOULE
FOR UNIT SIGNALS
FOR UNIT SIGNALS
FOR UNIT SIGNALS
FOR OPERATOR’S PANEL SIGNAL
Page 55
17.2 DETAILS OF CONNECTION
17.2.1 FC81O/FC860 MODULE
TYPES JANCD-FC81 O, FC860
r===l r
CONNECTOR iN4
L-
Ov
--l
+24V
,
I
PIN NO
ADDRESS BIT NO.
NO
‘~ ’33)
#looo. o
>>
(19)
1
#looo. 1
1
J
#looo. 2
t
?$1000. 3
(35)
1
#looo. 4
(5)
#looo. 5
I
> >
(21)
#1000. 6
>>
(36)
1
#looo. 7
> >
(6)
J
#lool. o
>)
(22)
#lool. 1
#lool. 2
>>
(7)
#lool. 3
(23)
~
1
#lool. 4
(38)
1
#lool. 5
#1001. 6
#lool. 7
‘h
,
I
o
.4
Notes :
1. This connection example shows +24 V common. OV common is also available. Refer to Par. 18.3.2.1 1/0 Module Types JANCD-FC8 10/FC860 for connection details.
2. The addresses are those for module No. 1. The address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.2 Connection to Address and Bit Nos.
#1000.0 to#1001.7 on FC81 O/FC860 Modules
Page 56
TYPES JANCD-FC81 O, FC860
r
.—
I_===l
COtiNECTOR CN4 -
1-
+2
(
d
--l
v
1
I
PIN NO,
ADDRESS BIT
NO. NO
/
(39)
I 1
#loo2 o
I
J
(9)
> >
*1 OO2. 1
> ‘ (25)
I
#loo2. 2
(40)
> >
it
#loo2 3
(lo)
I
#loo2 4
(26)
> >
t
#loo2. 5
‘ (41)
2 >
1
#1002 6
(11)
2>
+
1
#loo2. 7
> (27)
#loo3. o
(42)
>
1
#loo3 1
‘ (12)
> >
1
#loo3 2
(43)
> >
1
#loo3 3
(13)
>>
4 \
#loo3. 4
r
L I
(44)
> >
I
#loo3 5
#1003 6
/------+
#loo3, 7
J :::.)
Coh’131
o
2.
~.
Notes :
1. This connection example shows +24 V common. OV common is also available. Refer to Par. 18.3.2.1, 1/0 Module Types JANCD-FC810/FC860 for connection details.
2. The addresses are those for module No. 1. (#1002.O to #1003.7). The address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses.
Refer to Appendix B (3), Address
Classification for details.
Fig. 17.3 Connection to Address and Bit Nos.
#1002.0 to #1003.7 on FC81 O/FC860 Modules
52
Page 57
F__l
POWER SUPPLY
Ov
+24V
_.--/,
_.--.J’.
.
r-----
TYPES JANCD-FC81 O, FC860
—.
CONNECTORCN4
PIN NO
ADORESS81T
NO. NO
(15)
#loo4. o
(46)
#loo4.1
I
I
(16)
4
#1004.2
(48)
#loo45
(1 To 3)
‘+
02.
COM 32
Notes :
1.This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.1, 1/0 Module Types JANCD-FC810/FC860 for connection details.
2. The addresses are those for module No. 1. (#1004.O to #1004.7). The address
layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.4 Connection to Address and Bit Nos. #1 004.0 to
#1004.7 on FC81 O/FC860 Modules
53
Page 58
L
Ov
J
+24V
-_----/,
TYPES JANCD-FC81 O, FC860 ——-
CONNECTORCN5
PIN NO
.44DRESS BIT
NO.
(23)
#loo5 o
(22)
1
#loo5. 1
(21)
1
#loo5 2
(20)
jl
#loo5 3
(39)
1
#loo5 4
,
(38)
1
#loo5. 5
(7)
#1005 6
(6)
t
#loo5 7
(12)
#1006. O
(11)
I
#1006. 1
(25)
+1
#1006, 2
(24)
I
#1006 3
(lo)
1
#1006. 4
(40)
I
#1006. 5
(9)
+]
#1006, 6
(8)
t
#1006. 7
(4)
cord40
(1TO 3)
4?
o
..
Notes :
1. This connection example shows +24 V common. OV common is also available. Refer to Par. 18.3.2.1, I/O Module Types JANCD-FC810/FC860 for connection details.
2. The addresses are those for module No. 1. (#1005.O to #1006.7). The address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.5 Connection to Address and Bit Nos. #1005.0 to
#1006.7 on FC81 O/FC860 Modules
Page 59
_--_.-/,
.
. \
. .
. .
. .
, .
TYPES JANCD-FC81 O, FC860 CONNECTOR ?N5
PIN NO.
ADDRESS BIT
NO. NO
(18)
#loo7. o
(17)
#loo7. 1
1
J
(14)
1 1
#loo7. 4
, ,
(13)
I 1
#loo7. 7
LJ——Ll —————
(36)
J 1
#1008. O
L I
(35)
1
#1008. 1
(34)
I
#1008. 2
Iv +
(33)
I [
#1008. 3
(26)
~
1
#1003 6
——————+>( 41)
1
#1008 7
~ ?:~o
COM41
o
2.
Notes :
1.This connection example shows +24 V common. OVcommon is also available. Refer to Par. 18.3.2.1, I/O Module Types JANCD-FC810/FC860 for connection details.
2. Theaddresses arethose formodule No.l. (#1007 .Oto #1008.7). The address layouts formodules Nos. 2and3 arethesame asshown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.6 Connection to Address and Bit Nos. #1007.Oto
#1008.7 on FC81 O/FC860 Modules
Page 60
TVPF< lAN~n.FrFtlf? FCRW
r-
POWER SUPPLY
+-
-J
v
.
/ .
/ .
/ .
/ .
/ .
/ .
/
.
r
/
!,, L., . .. UWUW . --, -,,---”
—-
CONNECTOR CN5
PIN NO.
ADDRESS RI;
NO
(49)
#loo9. o
(48)
}
#loo9. 1
,
[47)
#loo9. 2
,
(46)
#loo9 3
,
(45)
#loo9. 4
I
(44)
#loo9. 5
)
(43)
#1009 6
(42)
#loo9. 7
,
[29)
COM 42
(1 ‘rO 3)
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.1, 1/0 Module Types JANCD-FC810/FC860 for connection details.
2. The addresses are those for module No. 1. (#1009.O to #1009.7). The address layouts for modules Nos. 2 and 4 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.7 Connection to Address and Bit Nos.
#1009.0 to #1009.7 on FC81 O/FC860 Modules
56
Page 61
TYPES JANCD-FC81 O, FC860
F
I Ov +
L
v
.
/
. .
/
.
.
/
. .
CONNECTOR CN3
PIN NO
/44DRESS BIT
NO.
(39)
#lolo o
(9)
4]
#lolo. 1
(25)
#lolo 2
(40)
#lolo. 3
(lo)
#lolo. 4
1
I
(26)
I
#lolo. 5
I
I
(41)
#1010. 6
T r
I
1
(11)
#lolo. 7
1 1
(12)
1~ +
#loll 2
>>
(43)
#loll. 3
(13)
>>
#loll 4
(44)
> >
#loll. 5
>>
(14)
#1011 6
L-> >
(45)
#loll, 7
J :~,
COM20
0
.,
Notes :
1. This connection example shows +24 V common. OV common is also available. Refer to Par. 18.3.2 .1,1/O Module Types JANCD-FC8 10/FC860 for connection details.
2. Theaddresses wethose formodule No.l. (#lOIO.O to#lOll.7). The address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig, 17.8 Connection to Address and Bit Nos.
#1010.O to #101 1.7 on FC810/FC860 Modules
Page 62
L_’_l
POWER SUPPLY
v
TYPES JANCD-FC81O, FC860
r--
coNNEcioRcN3
>5
(46) - ~
#lo12. 1
#lo12 2
#lo12. 3
#lo12 4
#lo12 5
#1012 6
#lo12. 7
r--- ‘(29)
I
.l(l T04)
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.1, 1/0 Module Types JANCD-FC8 10/FC860 for connection details.
2. Theaddresses arethose formodule No.l. (#1012.0 to#lOl2.7). The address layouts formodules Nos. 2and3are thesame asshown above starting with
newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.9 Connection to Address and Bit Nos.
#1012,0 to #1012.7 on FC810/FC860 Modules
Page 63
TYPES JANCD-FC81 O. FC860
m
L
+24V I
-J
/
.
/
; .
/
,
/ .
,
,
.
r
.
L
CONNECTOR CN2
PIN NO.
fi:DRESS BIT
NO.
(1)
}
#lo13. o
(14)
1
#lo13. 1
(2)
1
#lo13. 2
(8)
I
$$1013. 3
,
(15)
t
#lo13. 4
,
(3)
}
#lo13. 5
)
(9)
-II
#1013 6
(16)
r 1
#lo13 7
T I
COM10
(18)
02.
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.1, 1/0 Module Types JANCD-FC8 10/FC860 for connection details.
2. The addresses are those for module No. 1. (#1013.O to #1013.7). The address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.10 Connection to Address and Bit Nos.
#1013.O to #1013.7 on FC810/FC860 Modules
Page 64
-.,,--- ,..,-- ----- . ... .
I Y Yt> J,41NLU-FL!3 IU, KXbU
—-
.—— -
-—
CONNECTOR CN1
PIN NO
(28)
=
+
#l loo. 1
t
(26)
#l loo. 2
I
(27)
#l loo. 3
-i r“
(41)
#l loo- 4
(8)
#lloo.5
I
(7)
#1100. 6
(6)
ttl loo. 7
(5)
(29)
,—_--+
-1 T
#llol. o
(2.4)
\
#llol.1
*I
I
(23)
#llol.2
(22)
#no l-3
(21)
#llol.4
(20)
,
#1101.5 (19)
#1101.6
(lo)
#llol.7
1
(9)
(1 TO 4)
+
0,4
—-
+24V Ov
a
Note :
The addresses are those for module No. 1. (#1 100.0 to #1 101.7).
address layouts formodules Nos. 2and3 are the same as shown above starting with newer addresses.
Refer to Appendix B (3), Address
Classification for details.
Fig. 17.11 Connection to Address and Bit Nos.
#1 100.0 to#1101.7 on FC810/FC860 Modules
Page 65
TYPES JANCD-FC81 O, FC860
I
inn,?. rcm c1 ,m”l “ I
I
PIN NO, i
u
ADDRESS BIT
‘30)< K------
NO, NO.
#llo2. o
‘40)< ~
1
#llo2. 1
‘39)< ~
#llo2.2
‘38)< ~
#llo2.3
I
‘37)< ~
#1102.4
I
1
1
’36) ~
I
A
#llo2.5
I
I
‘35)<~
#1102.6
‘34)<~
#1102.7
::;< ~
~_
-1 T
I
t
#llo3. o
“8)< ~
#llo3. 1
‘17)< ~
#llo3.2
I
r
1
‘16)4——+=—%
#llo3.3
I
1
1
“’);~
#llo3.4
r
t
(14)
/
)’
+
#llo3.5
I
(13)
/
1’
#1103.6
‘12’<‘~
#llo3.7
I
‘1’)<~
4
I
0.4
—-
.---J
The
Note : The addresses are those for module No. 1. (#1 102.0 to #1 103.7). address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
-1
v
Fig. 17.12 Connection to Address and Bit Nos.
#1 102.0 to#1103.7 on FC81 O/FC860 Modules
Page 66
TYPES JANCD-FC81 O. FC860 I nnl. ,rm 1. lmnl ,, I
—,
—. -—
I
r“vv. r! a“... ,
I
CONNECTORCN1
PIN NO.
L
(32)1< ]
I T
ADDRESS BIT
NO.
#llo4. o
~ ~
#llo4. 1
1
‘48)< ‘~
<
#1104.2
r
‘47)< ~
#llo4.3
‘4’)< ‘=——=—0—
#1104.4
I
,P
(45)
#llo4.5
I
#1104.6
[
I
1
(43)
I
I
81104.7
I
t “’){~
O
(1 TO 4)
0,4
I
Note : The addresses are those for module No. 1. (#1 104.0 to #1 104.7). The address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses.
Refer to Appendix B (3), Address
Classification for details.
Fig. 17.13 Connection to Address and Bit Nos.
#1 104.0 to #1 104.7 on FC81 O/FC860 Modules
Page 67
C“NNECT:5$-=il
+<
(20)
-1
fi~DRESS BIT
NO.
~_—
#llo5. o
I
“)~ ~
#llo5. 1
“0)< ~
#loo 5- 2
,
{
I
‘17)< ~
,
#no 5.3
r
(5)
4
#no 5.1
t
I
4t
#no 5.5
r
‘6’< ~
#no 5-6
“2< ~
#no 5.7
(7)
rl
“8)~
Ov
J
Note : Theaddresses arethose formodule No.l. (#l105.0 to#llO5.7). The address layouts formodules Nos. 2 and3 are the same as shown above
starting with newer addresses.
Refer to Appendix B (3), Address
Classification for details.
Fig. 17.14 Connection to Address and Bit Nos.
#1 105.0 to#1105.7 on FC81 O/FC860 Modules
Page 68
TYPES JANCD-FC810, FC860
r
CON NECT6=]
~
I ,
I +24V
Ov
I
‘1‘04) ~
I
Note : The addresses are those for module No. 1. (#1 106.0 to #1 107.7). address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.15 Connection to Address and Bit Nos.
#1 106.0 to#1107.7 on FC81 O/FC860 Modules
Page 69
TYPES JANCD-FC8T0, FC860
—.
CONNECTO;~
T
I
PIN NO. i
~
“DRESS”-m----d-t
#llo9. o
‘“)< ~
,
#llo9. 1
*
,
‘48){~
#llo9. z
1
““(~
#l Io9. 4
I
1
‘4’)&——=—&
I
#llo9.7
{
r
Note :
The addresses are those for module No. 1. (#1 108.0 to #1 109.7).
The address layouts for modules Nos. 2 and 3 are the same as shown above starting with newer addresses.
Refer to Appendix B (3), Address
Classification for details.
Fig. 17.16
Connection to Address and Bit Nos.
#1 108.0 to#1109.7 on FC81 O/FC860 Modules
Page 70
“YPES JANCD-FC81O, FC860 —.
1
CONNECiOR CN6
PIN NO.
~:DRESS BIT
NO
(31)
1
#lllo. o
I
(26)
#lllo.1
(25)
#lllo.2
{
(24)
#lllo.3
!
r
t
(23)
#lllo.4
(22)
#lllo.5
I
(21)
#lllo.6
(20)
#lllo.7
I 1
(19)
(32)
----- I
#lllo. o
(40)
#1111.1
I
+,
(39)
#1111.2
(38)
#1111.3 (37)
#1111.4
r
t
(36)
J
<
#1111.5
(35)
#1111.6
(34)
#1111.7
(33)
Note : The addresses are those for module No.1. (#11
---@--l
-1
0.Oto#llll.7). The address layouts formodules Nos. 2and3 arethe same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.17 Connection to Address and Bit Nos.
#111 0.0 to#111 1.7 on FC81 O/FC860 Modules
Page 71
17.2,2 FC 861 MODULE
TYPE JANCD-861
—- .—
F==l !C”NNECT”RCN1
L-
+
L.-
1
PIN NO
MIDRESS BIT
NO
‘~ ‘1)
#looo. o
1~=
>
(2) #looo. I
2 ‘>
(3)
1
#looo. 2
> >
(4)
tilooo. 3
> >
(5)
I
#looo. 4
> >
(6)
#looo. 5
I
}
(7)
1
#looo. 6
> >
(8)
#looo. 7
> >
(9)
#lool. o
>
(10)
}
#lool. 1
I
>5
(11)
1
#lool.
2
> >
(12)
1
#lool. 3
> >
(13)
#loo]. 4
> >
(14)
1
#lool. 5
(15)
#1001. 6
-—-/_: >(16)
#lool. 7
J ::4’::046
COM 00
I
o
2.
—-
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.2, 1/0 Module Types JANCD-FC861 for connection details.
2. The addresses are those for module No. 1. (#1000.O to #1001.7). The address layouts for modules Nos. 2 to 7 are the same as shown above starting with
newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.18 Connection to Address and Bit Nos.
#1000.0 to #1 001.7 on FC861 Module
Page 72
TYPE JANCD-861
F
T“-
CONNECTOR 6NI
POWER SUPPLY
(
7
+24V
I
PIN NO
ADDRESS 81T
NO.
NO.
------+ >(’9)
}
#lo Oz. o
> >
(20)
#loo2. 1
> >
(21)
I
#loo2. 2
}
#lo Oz. 3
2 >
(23)
+1
#loo2. 4
>
(24)
t
#lo Oz. 5
>
(25)
1
#1002. 6
~ —, ;(26)
L
#loo2. 7
Y ’18)
~ ‘43’0 46)
p
0,.
I
1
COM01
L. _
_—
Notes :
1. This connection example shows +24 V common. OV common is also available. Refer to par. 18.3.2.2 I/O Module Types JANCD-FC861 for connection details.
2. Theaddresses arethose formodule No.l. (#1002 .0to#1002.7). The address layouts formodules Nos. 2t07 arethe same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.19 Connection to Address and Bit Nos.
#1002.0 to #1002.7 on FC861 Module
Page 73
TYPE JANCD-861
F==l
10”,
L
J
v
/
~
C0NNEc;ORCN2
PIN NO.
ADDRESS BIT NO
NO.
,(1)
/<
t 1-
#loo3. o
1
I
J
> >
(2)
}
#loo3. 1
~
>
(3)
#loo3. 2
,
>>
(4)
#loo3. 3
>5
(5)
#loo3. 4
>
#loo3. 5
>?
(7)
1~ +
#1003. 6
t u u
14——l.—l ————
> (9)
/ [
#loo4. o
r ,
I l— I
4
1
>
(10)
1 I
#loo4. 1
1 1
1
1
>
(11)
r
#loo4. 2
>>
(12)
~
T
#loo4. 3
(---Y c0M02
———J——+ >(43T04’)
,
I
o
.4
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.2, 1/0 Module Types JANCD-FC861 for connection details.
I
2. The addresses are those for module No. 1. (#1003.O to #1 104.7). The address layouts for modules Nos. 2 to 7 are
tbe same as shown above starting with
newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.20 Connection to Address and Bit NOS.
#1003.0 to #1 104.7 on FC861 Module
Page 74
r-
POWER SUPPLY
+24V
I
.
,
.
.
.
. .
---/:
r
L
.
Notes :
TYPE JANCO-861
rl-)NNFcToFicN2
7
PIN NO
(19)
[ I
#loo5. o
1
I
(20)
I
#loo5. 1
1
1
(24)
}
#1005. 5
(25)
1
#1005. 6
(26)
1
#loo5. 7
(18)
I
COM 03
(43 TO 46)
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.2, 1/0 Module Types JANCD-FC861 for connection details.
2. The addresses are those for module No. 1. (#1005.O to #1 105.7). The address layouts for modules Nos. 2 to 7 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.21 Connection to Address and Bit Nos.
#1005.0 to #1 005.7 on FC861 Module
Page 75
TYPE JANCD-861
H
r
-.
CONN;CTORCN3 -
L-
1
I
PIN NO.
ADDRESS NO.
~ 7(’)
#loo6.
> (2)
#1006.
,
> (3)
}
#1006.
> (4)
#1006.
> ‘ (5)
#1006.
(6)
> >
I
#1006.
> (7)
#1006.
> s
(8)
I
#1006.
(9)
2 >
#loo?.
(lo)
> >
J
#loo7.
>‘ (11)
+1
#loo7.
>
(12)
#loo7.
>
(13)
I
#loo7.
(14)
2 >
#loo7.
1 (15)
L--J
><
+
#loo7
I ,,.1
r~ Co”o’
----L-+
>(43T04’)
I
o
2.
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.2, 1/0 Module Types JANCD-FC861 for connection details.
2. The addresses are those for module No. 1. (#1006.O to #1007.7). The address layouts for modules Nos. 2 to 7 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.22 Connection to Address and Bit Nos,
#1006.0 to #1 007.7 on FC861 Module
Page 76
-.,-- ,. .,,.- ,.,..
I YYt JAIINLIJ-BO I —.
1
CONNECiOR CN1
POWER SUPPLY
+7.4V
Ov
PIN NO. !
I
-.
.
4
#llol.3
I
1
“x){~
#llol.4
~’
4t
#llol.5
I
‘40)<~
b
#llol.6
‘4’)< ~
#llol.7
“’){~
rJ=+———
Note : The addresses are those formodule No.l-l. (#llOO.Oto #l101.7). The address layouts for modules Nos. 2 to 7 are the same as shown above starting with newer addresses. Refer to Appendix B(3), Address Classification for details.
Fig. 17.23 Connection to Address and Bit Nos.
#1 100.0 to#1101.7 on FC861 Module
Page 77
TYPE JANCD-861
CONNEC:O=
T
I
+24V (
PIN NO.;
v
.AADRESS 81T
(47 ‘< ~
NO.
#llo2. o
(27 ‘< ~
#llo2. 1
~<~
A
#no 2.2
‘29)< ~
#1102.3
4
r
‘30)<~
#1102.4
‘3’) ~
#1102.5
t
’32) ~
#11 OZ.6
I
’33) ~
I
-1
#l Io3. o
‘35)1~
#llo3.3
r
1
t
‘38)1~
#no?, .4
1
-t ‘3’){~
tillo3. 5
I ‘40){~
‘43 T046) ~
I
4
0.4
J
Note : Theaddresses arethose formodule No.l-l. (#1102 .Oto#l 103.7). The address layouts formodules Nos. 2t07are thesame asshown above starting with newer addresses. Refer to Appendix B(3), Ad&ess Classification for details.
Fig. 17.24 Connection to Address and Bit Nos.
#1 102.0 to#1103.7 on FC861 Module
73
Page 78
TYPE JANCD-861
POWER SUPPLY
r
CONNECT~R~
+24V Ov
PIN NO.
Y Y
0,4
I
Note : The addresses arethose formodule No.l-l. (#1104.O to#l105.7). The address layouts for modules Nos. 2 to 7 are the same as shown above starting with newer addresses. Refer to Appendix B(3), Address Classification for details.
Fig. 17.25 Connection to Address and Bit Nos
#1104.0to #1105.70n FC861 Module
Page 79
TYPE JANCD-861
r
1
POWER SUPPLY
CONNECTOR CN3
+24V
Ov
.
(49), ,
fi:DRESS BIT
NO.
~-
#1106. O
#1106. 1
#llo6. 2
#1106. 3
[
#1106.4
I
(39),/
#1106.5
(40),,
#no 6.6
I
(41)
,
I
#1106.7
{
I
}
Note :
The addresses are those for module No.1-l. (#1106.O to#l106.7). The address
layouts for modules Nos. 2 to 7 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.26 Connection to Address and Bit Nos.
#1 106.0 to#1106.7 on FC861 Module
75
Page 80
17.2.3 SP 50 BOARD
~$$’
TYPES JANCD-SP50-1 , SP50-2
CONNECTION
I CONNECTOR CN4
EXAMPLE
I PIN NO.
+24V
+24V
#looo. o
#looo.
1
> >
(3)
#looo. 2
> >
(4)
#looo. 3
,
>>
(5)
#looo. 4
> >
(6)
+1
#looo. 5
1
,
> >
(7)
t
#1000. 6
> >
(8)
}
#looo. 7
> >
(9)
#lool. o
> >
(lo)
1
#lool. 1
1
(11)
#lool. 2
(12)
#lool. 3
> >
(13)
#loo I. 4
> >
(14)
#lool. 5
>>
(15)
1
#1001. 6
—————’~ >(16)
1
#lool. 7
I— +
7 COM30
,
L
-.
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.3, SP50 Board for connection details.
2. The addresses are those for module No. 1-1. (#1000.O to #1001 .7). The address layouts for modules Nos. 2 to 8 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.27 Connection to Address and Bit Nos.
#1000.0 to #1 001.7 on SP50 Board
76
Page 81
TYPES JANCD-SP50-I , SP50-2
I CONNECTORC~4
-~ CONNECTION EXAMPLE
I
I
I
+24V
Y I
PIN NO.
COM 30
AOORESS BIT NO.
NO
4)
t
#lo Oz. o
> >
(20)
1
#lo Oz. 1
>
#loo2. 2
>
}
#lo Oz. 3
> >
(23)
1
#loo2. 4
,
> >
(24)
1
#loo2. 5
> L
(25)
1
#1002. 6
i~ ’26)
t
#loo2. 7
, >}(17.18) ]COM30
L
+-----l
(43 TO 46)
~
L
02,
J
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.3, SP50 Board for connection details.
2. Theaddresses aethose formodule No.l-l. (#1002.0 to#lOO2.7). The address layouts formodules Nos. 2to 8 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.28 Connection to Address and Bit Nos.
#1002.0 to #1 002.7 on SP50 Board
77
Page 82
TYPES JANCD-SP50-1 , SP50-2
r ,24, -
CONNECTGRCN5
~&l;;K~lON
! PIN NO.
~] (47 TO 50) I
+24V
-../_
.—
fDRESS BIT
NO.
~ “)
1
#loo3. o
> >
(2)
[
#loo3. 1
> >
(3)
t
#loo3. 2
1
>>
(4)
#loo3. 3
> >
(5)
#loo3. 4
> >
(6)
#loo3. 5
>)
(7)
#1003. 6
,
> >
(8)
}
#loo 3.7
>>
(9)
I
#loo4. o
> >
(lo)
I
#loo4. 1
> >
(11)
}
#loo4. 2
1
,
>>
(12)
#loo4. 3
> >
(13)
#loo4. 4
#loo4. 5
#1004. 6
-~
#loo4. 7
1 cord 30
Notes :
1.
This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.3, SP50 Board for connection details.
2. The addresses are those for module No. 1-1. (#1003.O to #1004.7). The address layouts for modules Nos. 2 to 8 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.29 Connection to Address and Bit Nos.
#1003.0 to #1004.7 on SP50 Board
Page 83
TYPES JANCD-SP50-1 , SP50-2
$)W;MZ;ION
FIORCN5 - .
I
v
PIN NO.
COM 30
AODRESS BIT
NO.
NO
—————’
#loo5. o
>
(20) ~
#loo5. 1
;!
(21)
#loo5. 2
2 >
(22)
{
1
#loo5. 3
>>
(23)
1
#loo5. 4
> >
(24)
}
#loo5. 5
I
>>
(25)
1
#1005. 6
/~ >(26)
1
#loo5. 7
F ‘(’’’18)
COM 30
I
024
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.3, SP50 Board for connection details.
2. The addresses are those for module No. 1-1. (#1005.O to #1005.7). The address layouts for modules Nos. 2 to 8 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.30 Connection to Address and Bit Nos.
#1005.O to #1005.7 on SP50 Board
79
Page 84
TYPES JANCD-SP50-1 , SP50-2
mNtiEcT0RcN6 - - -
&I&J~Fd/10N
PIN NO.
+24V
ii
(47 TO 50)
AODRESS
BIT
NO
NO.
—-----~ >(1)
1
#1006. O
> (2)
I
#1006. 1
,
> >
(3)
1
#1006. 2
>‘ (4)
1
#1006. 3
,
> (5)
I
#1006. 4
> (6)
I
#1006. 5
> (7)
1
#1006. 6
> L
(8)
t
#1006. 7
> (9)
}
#loo7. o
2 >
(10)
#loo7. I
> >
(11)
I
#1007.2
I
2 >
(12)
1
#loo 7.3
>>
(13)
it
#loo7. 4
> >
(14)
1
#loo7. 5
>?
(15)
I
#1007.6
,
—----’~ >(’6)
1
#loo 7.7
F ‘( ’7”8)
COM 30
Notes :
1. This connection example shows +24 V common. OV common is also available. Refer to Par. 18.3.2.3, SP50 Board for connection details.
2. Theaddresses arethose formodule No.l-l. (#1006.0 to#lOO7.7). The address layouts for modules Nos. 2to 8 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.31 Connection to Address and Bit Nos.
#1006.0 to #1007.7 on SP50 Board
Page 85
Page 86
TYPES JANCD-SP50-I , SP50-2
:;:; NN::ION
r
1
cONNEcyORCN5~
Ov
,
#llo2. 1
I
#llo2.2
I
‘2”{~
I
#1102.3
(30)
I
#1102.4
I
I
#llo2. 5
I
‘32){~
#1102.6
[
“’){~
I
#llo3.1
I
‘36){~
#1103.2
#llo3. 3
#llo3.4
(39)
,
#1103.6
t
#llo3.7
(42)
d
‘43’0”)——————J
024
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.3, SP50 Board for connection details.
2. The addresses are those for module No. 1-1. (#l 102.0 to #l 103.7). The address layouts for modules Nos. 2 to 8 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig.
17.33 Connection to Address and Bit Nos
#1 102.0 to#1103.7 on
SP50 Board
Page 87
TYPES JANCD-SP50-2
&NW:~lON
—-
1
cONNEcT”R_c”’ ~
o
tillot.1
(20)
#1104.2
(21)
#llo4.3
#llo4.4
(23)
#llo4. 5
(24)
#1104.6
{
1
(25)
#llo4.7
(26)
#llo5. o
1
(27)
#llo5. I
(28)
#llo5.2
(29)
#no 5.3
1
(30)
$1105.4
}
(31)
#no 5.5
J
(32)
#1105-6
[
1
(33)
#llo5.7
I
I
(34)
(43
TO 46)
<
<
<
<
<
<
<
(
/
/ \
Notes :
1. This connection example shows +24 V common. O V common is also available. Refer to Par. 18.3.2.3, SP50 Board for connection details.
2. The addresses are those for module No. 1-1. (#1 104.0to#1105.7). The address layouts for modules Nos. 2 to 8 are the same as shown above starting with
J
newer addresses. Refer to Appendix B (3), Address Classification for details,
Fig. 17.34
Connection to Address and Bit Nos.
#1 104.0 to#1105.7 on SP50 Board
Page 88
TYPES .IANCWIO-7
-—
fO/RESS ~1:
#1106. O
CONNECTO; CN6
+24V
T
#1106. 1
v
(36)
#1106. 2
(37)
#1106. 3
I
I
(38)
#1106. 4
{
I
(39)
#1106.5
(40)
#l Io6.6
1 I
(41)
#1106. 7
(42)
(43 TO 46)
—-
-----@J
<
==a
<
Notes :
1. This connection example shows +24 V common.
O V common is also available. Refer to Par. 18.3.2.3, SP50 Board for connection details.
2. The addresses are those for module No. 1-1. (#1 106.0to#1106.7). The address layouts for modules Nos. 2 to 8 are the same as shown above starting with newer addresses. Refer to Appendix B (3), Address Classification for details.
Fig. 17.35 Connection to Address and Bit Nos.
#1 106.0 to#1106.7 on SP50 Board
84
Page 89
17.3 EXPLANATION OF GENERAL-PURPOSE 1/0 SIGNALS
17.3.1 l/O PORTS
(1) The YASNAC J50 contains the programmable controller system
(PC). External signals can deallocated toits I/O ports freely when the machine manufacturer designs a built-in PC. For details, refer to Instruction Manual for YASNAC J50 PC System (SIE-C843-12.1).
CNC UNIT
17.3.2 1/0 CIRCUITS OF 1/0 PORTS
17.3.2.1
1/0 MODULE TYPE JANCD-FC810/FC860
(1) Input Circuits
OV common and 24 V common can be set by an external device for the input circuit. Internal power supply and external power supply can be used for 24 V power supply.
(a) When the internal power
supply is used.
T-T
PANEL
NC
I/o
)
MACHINE
MAIN
*lloo -
SEOUENCER
PROCESSING
#1200 -
#looo-
<
#1300 -
GNERAL­PURPOSE
l,:HNE &“)+E
1/0
#1116 -
I
I
y
lW-J
PORTSET AOORESSSET
Fig. 17,36 System Configuration
(2)
The general-purpose 1/0 ports are mounted on the 1/0 module types JANCD-FC8 10, FC860, FC861 and on the SP50 board of the CNC operator’s panel. The numbers of 1/0 points of these modules are shown in Table
17.1.
Table 17.1 Numbers of 1/0 Points of Modules
Module Type Input
output
JANCD-
Points
Remarks
Points
Fc810/Fc860 112
96
4
FCS61
64
56
I
For machine panels
SP50-1 64 32
I 1
SP50-2 64
56
Notes :
1. YASNAC J50 needs one 1/0 board incorporated in a CNC operator’s panel (SP50-1 or SP50-2). Therefore, up to 3 board (max. inputs: 512 points, max. outputs: 344 points) can be connected when only FC 810/FC860 is added. Up to 7 boards (max. inputs: 512 points, max. outputs: 448 points) can be connected,
2. Each module can be used together with the other, However, an 1/0 mea number must not be overlapped. (Refer to Appendix 2.) If any 1/0 area number is overlapped, alarm No. 374 occurs m status chunges to the input disabled status.
3. In order to muke it possible to add more modules, it is necessary for each 1/0 module to terminate the fhal board,
(3) Address Setting
The relationship between the address and connectors is indicated in Table 18.1. (This table applies to port 1. If a different port is used, address changes are required.
Table 17.2 Address and Connector
#I 002 #loo3 #loo4
I CN5 #1 005 #1006
v
lrIput Output (JANCD- ,:;::::, ) (JANCD- ::8M )
#I 007
CN6 1
#l 008
:~ ~ COM41
.
#1 009
CN5
COM42
#lolo
#lo] 1
:: I COM20
#1012 CN3
COM2 1
#1013
CN2
COM 10
#l loo CN4
CN1
#llol CN4
CN 1
#llo2 CN5
CN 1
#1103 CN5
CN 1
#1 104 ICN6]
CN1
#1 105 ICN61
CN2
#1 I 06 icN6j
i
CN3
#1107
CN3
#1108
CN6
;.neral. purpose I/o
:JANCD-FC861)
::; ~ COMOO CN 1
COMOI :~ ~ COM02 CN2
COM03 :~ 3 COM04
CN
1
CNI
CN2 CN2 CN3 CN3 CN3
1N64JOUT56
OV Common
I
t----l
ox
L-J
+24 V Common
Fig. 17,37 Internal Input Circuits
(b) When the external power supply is used.
I
024
OV Common
l-.----+--
I
1+
I
0,,
,
L.d
+24 V Common
Fig. 17.38 External Input Circuits
Note : “Common” in the input circuit (for example, COM1O, COM20, COM21...total
9) cuu be either “+24
V common”’or “O V common” for every 8 or 16 input
points as mentioned in Par. 17.3 1/0 signal interface and can be selected freely. Set by wiring on the cable side.
85
Page 90
17.3.2.1 1/0 MODULE TYPE JANCD-FC81 O/FC860 (Cent’d)
(2) Output
Circuits An noncontact wity polarity is used for outputs. Current under operation must be 60 mA max (per circuit). Internal power supply and external power supply can be used for 24 V power supply.
(a) When the internal power supply is used.
r
1
CN7-1
+ 24V ~
CN7-2
O.rl
$==
24EX
LOAD
+
I
+70v ;
I
I
L-–O:~~
Fig. 17.39 Internal Output Circuit
(b) When the external power supply is used.
~OWER sup;LU
r-”t!~-?
r
I
0,+
024
—-—-d
Fig. 17.40 External Output Circuit
Notes :
1. All 96 output points are transistor source driver outputs, The current when ON
should be maximum 60 mA per circuit.
2. Every 8 points out of 96 outputs can be connected to some external power supplies.
3.When tilving to LEDs with internal power supply, the current of all the 1/0 circuits should be 3.5 A max.
17.3.2.2
1/0 MODULE TYPE JANCD-FC861
(1) Input Circuits
O V common and +24 V common can be set by an external device for the input circuit. Internal power supply and external power supply can be used
for 24 V power supply. When internal power supply is used. mount power supply selection connector on CNINT. When external power supply is used, mount power supply selection
connector on CNINT.
(a) When the Internal power supply is used.
CNINT _
~—1 +24V -
24V
I
CPS
F
E
e
RV
~ 10.2mA
o,,
7
–18 FB
O,<v
I
I
O V Common
“t-
1
‘b-–-l
+24 V Common
Fig. 17.41 Internal Input Circuits
(b) When the external power supply is used.
FER;Um cNExT ~ov
+ 24V
~y~l-+24V -
I
L
‘1
w
COM
RV
%.2mA
I
COM
L
— -1
+24 V Common
Fig. 17.42 External Input Circuits
Note : “Common” in the input circuit (for example, COM 10, COM20, COM2 1...total
9) can be either “+24 V common” or “O V common” for every 8 or 16 input points as mentioned in Par, 17.3 1/0 signal interface and can be selected freely. Set by wiring on the cable side.
Page 91
(2) Output Circuits
A nonncontact with polarity is used for outputs. Current under operation must be at most 60 mA (per circuit). Internal power supply and external power supply can be used for 24 V power supply.
(a) When the internal power supply is used,
~.—–
+ 24V
CNINT
I
Jp
17.3.2.3 SP50 BOARD (TYPE JANCD-SP50)
(1) Input Circuits
r
F
C
+ 24V
COM
L
(+ ‘v
5.lmA
0%
~-
0 V Common
+ ox
I
I
L-–-J
Fig. 17.43 Internal Output Circuit
(b) When the external power supply is used.
7
POtiER suEP~
CNEXT I
+24V OV
I
I
CN 15-3
__-..-!
Fig, 17.44 External Output Circuit
Notes :
1.
All 56 output points are polarized contactless (transistorized source
driver) outputs. The current whenON should bemaximum 60 mAper circuit.
2. When driving the LEDs with internalpower supply, thecurrent of all the 1/0 circuits shouldbe max. 3.5A.
r–-
~ 1+
g
+ 24”
RV
5.lmA
k
h
0.
I
L–_–––––
+24
V Common
Fig. 17.45 Input Circuits
(2) Output Circuits (with Internal Power Supply)
SP50 BOARD
‘-=1
TI
I
L-—z-JJ’
1
t
2+
Ov
+’
0,4
Fig. 17.46 Output Circuit
Note : A noncontact with polarity is used for 56 outputs, Current under operation must beat most 60 mA (per circuit).
Page 92
17.3.3 POWER SUPPLY FOR 1/0 SIGNALS
(1) Internal power Sunpply
Internal power supply +24 V for 1/0 signals should be provided by the machine tool builder. If internal power supply is used, calculate the load current according to 1/0 points and confirm that the current is within the allowable current value since there
is a current capacity limit according to 1/0 ON points.
The allowable current capacity of the internal power supply is 1.5A.
Unit consumed current (When internal power supply is used) :0.1
A
Panel 1/0 JANCD-SP50- 1, SP50-2 consumed current (When
internal power is used)
Input current (l-point) :5.1 mA (at ON) Output current (1-point)
:60 mA max
(differs from load.)
General-purpose 1/0 signal 1/0 module JANCD-FC8 10, FC860,
FC861 consumed current
Input current (l-point)
:10.2 mA (at ON)
Output current (l-point)
:60 mA max
(differs from load.)
(Example of Calculation)
When JANCD-SP50-1 All 1/0 output are ON with LED load (2.7kQ):
5.1 mAx64=326.4 mA (JANCD-SP50- 1 imput comsumed current) 24 V/2.7 kx32=28.4 mA (JANCD-SP50- 1 output comsumed current)
1500 mA-326 mA-284 mA-100 mA=790 mA (possible supply
current)
If the internal power supply is connectedtoJANCD-FC810 under these conditions, overcurrent alarm of the internal power supply
(CPS18F) occurs to the input ON of 77 points or above.
790 mA/10.2 mA=77 points
(2) Specifications of External Power Supply
Voltage
:24 VDC t5%
Ripple
:1070 (P-P)
Provide external supply with the above.
Page 93
18. CABLES
18.1 LIST OF CABLES
.
Connector Cable Type
The interface cable are furnished with or without connectors.
CABLE-CL: ““~~
Those cables shown in Table 18.1 are available.
L
L
Cable Length
If the machine builder is supplying the cables, prepare
0.5. ~. L=5m
equivalent cables based on the cable specifications.
Cable Type
Table 18.1 List of Cables
Cable N CableTy
Configuration
(
Type 1012O-3OOOVE
)(
Type 1OI2O-3OOOVE
Type 1032O-52AO-OO8 Type 1032O-52AO-OO8
)
UL 20276 AWG 28 x 10pairs
(Characteristic impedance: 120!2)
(
Type 1012O-3OOOVE
)(
Type MRE-20M01(G)
Type 10320-52A0-008 Type MR-20L
)
UL 20276 AWG 28 x 10pairs
(
Type 10126-3OOOVE
)(
Type 10156-3OOOVE
Type 10326-52AO-OO8 Type 1035O-52AO-OO8
)
UL 20276 AWG 28 x 13pairs
(
Type 10126-3OOOVE
)(
Type MRF-50F01
Type 1032O-52AO-OO8Type MR-50L
)
UL 20276 AWG 28 x 13pairs
(
Type 10126-3OOOVE
)(
)
Type MS3108B2O-29S
Type 10326-52AO-OO8 Type MS3057-12A
(
Type 10120-3000VE
)(
)
Type MS3108B2O-29S
Type 1032O-52AO-OO8Type MS3057-12A
UL 20276 AWG 28 x 10pairs
(
Type 1012O-3OOOVE
)
Type 1032O-52AO-OO8
, Mamplifier
UL 20276 AWG 28 x 10 pairs
Remarks
1/0 CRT panel signal
Spindle drive unit feedback
Servo driveunit
Spindle driveunit
Servomotor Optical encoder
Spindle optical encoder
Manual pulsegenerator CABLE-JK.’”: LGF-011-100
89
Page 94
Table 18.1 List of Cables (Cent’d)
2able Type
Remarks
Configuration
Type 1-178288-5
Type 172026-1
Cable No.
1/0 Power supply
Type 172026-1
Type 172026-1
1/0 Power supply
Type VCT DE 8402398
2mm2x5 cores
Direct-IN Closing sequence RS-232C interface (Tape readerunit)
Connector: 10120-3000VE
1032O-52AO-OO8
*
Cable
:UL 20276 AWG 28x1Ocores
Connector :MRP-50F01
MR-50L
1/0 (FC81O,FC861)
*
Cable
:KQVV-SB DE 8400095
0.2 mm’x 50 cores
Connector: MRP-20F01
MR-20L
Cable
: KQVV DE 6428673
0.2 mm’X20 cores
Connector: 172025-1
1/0 (FC810)
AC power supply
*
*
Cable
: VCT D: 8402398
0.2 mm x 5 cores
(
Type MRP-8F01
)(
Type MRP-8F01
Type MR-8L
Type MR-8L
)
KEV SB 0.2x 1core
(Characteristic impedance: 120C2)
(
)(
Type MRP-20F01(G) TypeMS3108B2O-29S Type MR-20L
Type MR3057-12A
)
KQVV-SB DE 8400093
0.2 m: X 10 pairs
1/0
Spindle opticalencoder connection
Connector :FRC2-AA50-20S Cable
: B-50S61.OM
1/0 (FC860, FC861, SP50)
1/0 (FC860)
Connector :FRC2-AA20-20S Cable
:B-20S 60.OM
*
*Conector and cableare separately provided
Page 95
18.2 SPECIFICATIONS OF CABLE
(1) Cable Dwg. No. DE8400093 (Type KQVV-SB, 0.2 mm’ x 10
pairs)
(2) Cable Dwg. No. DE8400095 (Type KQVV-SB, 0.2 mm’x 50
cores)
Table 18,4 Construction
Table 18.2
Construction
No. of Cable Cores
50
Material
Tinned annealed- copper stranded wire
No. of Pairs
Material
10
Tinned annealed copper stranded wire
Nominal Sectional Area
0.2
Conductor
mmz
No. of Conductors
16/0.12
uer mm
Conductor
P
0.2
16/0.12
Dimensions
mm
0.55
Material Cross-linked vinyl
Insulation
Thickness
mm
0.3
0.55 Cross-linked vinyl
0.3 Winding
Paper tape lap winding
Material and Color
Soft Vinyl, black
Sheath
Thickness
mm
1.2
Winding
Paper tape lap winding Pitch: 18,22,25, 32
T]rrnedannealed copper stranded wire
Vinyl, black
1.2
10.0 130
Shield
Finished Cable Diameter
mm I Approx. 13
Material and Color
Sheath
Thickness
mm
Finished CableDiameter
mm
Armrox.Mass
k~ikm
Approx. Mass
kg/cm 230
Table 18,5 Characteristics
Max. ConductionResistance (20C)
Wkrnl 113
Table 18,3 Characteristics
Min. Insulation Resistance (20C)
Mfl.kml 50
Withstand Voltage
VAC/min 1000
Continuous Operation Temperature Range
c -30 to +60
Max. ConductionResistance (20V)
fVkml 113
Min. Insulation Resistance (20V) Mfl.km 50
. Details of Cable DWG.
No. DE8400095
Withstand Voltage VAC/min I 1000 Continuous Operation TemperatureRange
~ -30 to +60
. Layout of 10 Pairs
Pair No. I
Colors
(3) Cable Dwg. No. DE6428673 (Type KQVV, 0.2 mm’ x 20 cores)
6 I Blue/Brown ‘1
I
Yellow/Brown
Table 18.6 Construction
Note :
,
Drain wires of 0.2mm’are
8 Green/Brown
No. of Cable Cores I 20
provided insidetinned annealed­copper strandedwire.
*
Material
Tinned annealed copper stranded wire
Nominal Sectional
Area
0.2
Conductor
mmz
No. of Conductors uer mm
mm
16/0.12
I Dimensions mm I 0.55
Material
Cross-linkedvinyl
Insulation
Thickness mm I 0.3
Winding Paper tape lap winding
Material and Color
Soft Vinyl, black
Sheath
Thickness mm
I 1.2
Finished Cable Diameter mm
8.0
Approx. Mass kg/cm ] 90
91
Page 96
Table 18.7 Characteristics
Max. ConductionResistance (20K2
.Q/kml
113
Min. Insulation Resistance (20C)
Mf2.km 50
Withstand Voltage
VAC/min
1000
Continuous Operation Temperature Range
r -30 to+60
Details of Cable
No. DE6428673
White
(4) Cable Dwg. No. DE8402398 (Type VCT, 2 mm’ x
Table 18.8 Construction
5 cores)
No. of Pairs
Material
Nominal Sectional
Conductor
~
Insulation
I Thickness mm
Diameter
mm
Sheath
-
Finished Cable Diameter mm
5 Tinned annealedcopper
stranded wire
2.0
37/0.26
1.8 Insulation vinyl
0.8
3.4
Right twisted
(outerdiameterappmx.9.2mm) Vinyl, block
Approx. 1.9 Armrox. 13.t)
Table 18.9 Characteristics
Max. Conduction
Resistance (20’C)
Q/kml 10.2
Min. Insulation Resistance (20C)
Mi2.km 500rmore
Withstand Voltage
VAC/min 3000
ContinuousOperation TemperatureRange
C Oto+60
. Details of Cable Dwg. No. DE8402398
5X
VINYL SHEATH
Black
/ INCLUSION
7
Q!!z’
E
Brown :~- white
.......0
.: ~:o.
... .
t
Yellow
Red
92
Page 97
18.3 LIST OF CONNECTORS
(1) CNC UNIT
Table 18.10 Connectors for CNC Unit
CNC Unit Type
CPS-18FB
JANCD-SR 50-1
JANCD-SR 50-2
JANCD-SR 50-3
JANCD-SR 51 JANCD-CP 50 JANCD-PC 50
JANCD-MM51
:onnecl
No.
CNI CN2 CN3
CN30 CN31 CN32 CN33
CN30 CN31 CN33 CN34 CN35
CN30 CN31 CN32 CN33 CN34 CN35
CN36 CN20 CN1O
CN1l CN12 CN13
Connector Type
for Board Side
172040-1 (5 pins) 172040-1 (5 pins) 172039-1 (7 pins)
10226-52A 2 JL (26piIIS) 10226-52A 2 JL (26piIIS) 10220-52A 2 JL (20piIIS) 10226-52A2 JL (26pins)
10226-52A 2JL (26pins) 10226-52A 2JL (26pills) 10226-52A2JL (26pklS) 10226-52A 2 JL (26piIIS) 10226-52A 2 JL (26pinS)
10226-52A 2 JL (26pfi) 10226-52A 2 JL (26pkls) 10220-52A 2 JL (20piIIS) 10226-52A 2 JL (26pti)
10220-52A 2 JL (20pinS)
10226-52A 2 JL (26pfi) 10226-52A 2 JL (26piIIS) 10220-52A2JL (20pti) 10220-52A 2 JL (20pinS)
1022@52A2JL(20piIIS) 1022052A2JL (20pti)
M&8RMA4(8pills)
Cable Side
ConnectorType
CaseType
ContactorTW
172026-1
170289-1
172026-1
170289-1or
172025-1
170289-1
10126-31XOVE(10126-&XDEL) 10326-52AO-(IX(10326-A2CM3)
10126XKXIVE(lo126-@XlEL) IO326-52AWMJ(1O32,WZXW3)
1012O3CCOVE(1012W5OX)EL)1032@52A04113(1032DA2OMD)
10126-3W13VE(10126-60XIEL) 10326-52AO4II3(1032bAXXM13)
lo126-mvE(lo12&aClm) 1037652 AWI38(10326-A2CQO3)
1012&3W13VJ3(10126-6tXKIlZL)
10?2652AO4II3 (1032&%M!-@
I01K3WK3VE( 10126-KKK3EQ 1032652 AOC@3(1032&.A2fIN3)
1012O-W33VE(1012CMXMIEL) 10320.52AWXkS(103XM2W.CO)
101263OXIVE(10126-6OXIEL) KLW52AWXB(1032&AXDCQ
101263(XY3VE(10126-61XQEL)
1032&52AC-W3(103%A2OXQ —
101263CQ3VE(1OI2MXI3EL)103M52AWXR(103%MO3.CO)
lo120-m VE(1012WXUIEL) 1032D52AWD3(1032&42#03)
lo12&3J3WlvE(lo126-f KiX)EL) 10326-52AC-(DS(10326-A2IXW3)
1012G3(HIVE(IO1XMWOEL)1032O-52AOJXB(1032M2CC-Q
10126-3UDVE(lo12&lX13EL)10326-52AC-W3(103Z%42XW3)
10126-30X)VE(10126-61XIJEL)
10326-52AWX13(KE2&AXDCO)—
10120-3(INVE(I012WKXK)EL) 103X3-52A(MMI(103XM2OXI3)
1012034XOVE(lo120-6fXOEL)1032O-52AO.(IX(1032W2IXMQ)
1012C-3C03VE(1O12Q6XX3EL)1032O-52ACKM(103XMXXKX3)
10120.3(KOVE(1012.W XD3EL)
1032(L52AC-WB(1O32C-A2CCW3)
W-8F01
MR43L
MRP-F112
No
connector is provided
Manufacturer
AMP
3M
3M
3M
3M
3M
3M 3M 3M
HONDA
Note : Connectors for the cable sideare not attachedto the cables. The machhe builder must suppiyequivalent connectors.
Page 98
Connector Position JZNC-JRK 00
JR 50
u
CPS-18FB
I YASNAC I
o 0
F
o 0
0
Fig. 18.1
ConnectorLayout(JZNC-JRKOO)
(2) CNC Operator’s Panel
Table 18.11 Connectors for CNC Operator’s Panel
Connector
Connector Type
Cable
Side
CNC Panel Type
No.
forBoardSide
Connector Type
CaseType
ContactorType
Manufacturer
JANCD-SP 50-1
CN1
1022O-62O2JL(20 pins)
lo120-3030vE(lol~ f3L)
1032O-52AOOT3(10326-AXKKJ3)
3M
JANCD-SP 50-2
CN2
1022O-62O2JL(20 pins)
1012O-3W3VE(101XMCOOEL)
1032O-52AC4XB(103%-~)
3M
CN3
1-178315-2 (5 pins)
1-178288-5
175218-2
AMP
CN4
FRc2-c50s12m (50pii)
FRC2-AA 50-20
DDK
CN5
FRC2<50S12-OS(50Pii)
FRC2-AA 50-20
DDK
CN6
FRC2.C50S124S(50pirrs)FRC2-AA 50-20
DDK
Note: Connectorsfor the cable sideare not attachedto the cables. The machinebuilder must supplyequivalent connectors.
Fig. 18.2
Connector Layout of CNC Operator’s Panel (Type JANCD-SP50-I, -2)
Page 99
(3) 1/0 Module Connector
Table 18.12 Connectors for 1/0 Module
1/0 Modeule Type
JANCD-FC81o
JANCD-FC860
JANCD-FC86I
Ionnect(
No.
CN1 CN2 CN3 CN4 CN5
CN6 CN1l CN12 CN13 CN14
CN1
CN2
CN3
CN4
CN5
CN6 CN1l CN12 CN13 CN14
CN1
CN2
CN3 CN1l CN12 CN13 CN14 CN15
Connector Type foR Board
Side
MR-50RMD2 (50pins) MR-20RMD2 (20pins) MR50 RMD 2(50pins) MR-50RMD2 (50pins) MR-50RMD2 (50pins) m-50 RMD 2(50pins) MR-8 RMA 4 (8 pins) MR-8 RMA 4 (8 pins) 172040-1 (5 pins) 172040-1 (5 pins)
FRC2-C5QS12-OL(50pins FRC2- 12-OL(~pitl$ ERC24XlS124)L(Wpti FRC2JCXlS1243L(Xlpim FRC2J-25CB124)L(50pti FRC2-C50S12-OL(50pti MR-8RMD 2 (8 pins) MR-8RMD 2 (8 pins)
172037-1(5 pins) 172037-1(5 pins)
FRC2-C.X)S12-OL(5Q@
FRC24XlS12-OL(20pim MR-50RMD 2 (50pins) MR-8 RMA 2 (8pins) MR-8 RMA 2 (8pins)
172037-1(5 pins) 172037-1(5 pins) 1-178313-2(3 pins)
Cable Side
Connector Type
MRP-50F 01
MRP-20F 01 MRP-50F 01 MRP-50F 01 MRP-50F 01 MRP-50F 01 MRF-qF 01 MRP-qF 01
172026-1 172026-1
FRC2-AA 50-20S FRC2-AA 20-20s FRC2-AA 50-20S FRC2-AA 50-20S FRC2-AA 50-20S FRC2-AA 50-20S MRP-8F01 MRP-8F01
172026-1 172026-1
FRC2-AA 50-20S FRC2-AA 20-20s
MRP-50F01 MRP-8F01 MRP-8F01 172060-1 172060-1
1-178288-3
Note : Connectors for the cable sideare not attached to the cables.
CaseT~
MR-50L MR-20L MR-50L MR-50L MR-50L MR-50L MR-8L MR-8L
MR-8L MR-8L
MR-50L MR-8L MR-8L
~ontactorTypt
MRP-F112 MRP-F112 MRf-Fl 12 MRP-F112 MRF-F112 MRF-F112 MRP-F112 MRP-F112
170289-1 170289-1
MRP-F112 MRE-FI 12
170289-1 170289-1
MRP-F112 MRP-F112 MRP-F112
170289-1 170289-1 175217-2
tianufacturer
HONDA HONDA HONDA HONDA HONDA HONDA HONDA HONDA
AMP AMP
DDK DDK DDK DDK DDK
DDK HONDA HONDA
AMP
AMP
DDK
DDK HONDA HONDA HONDA
AMP
AMP AMP
The machinebuilder must supplyequivalent connectors.
Page 100
Fig. 18.3 Connector Layout of 1/0 Module (JANCD-FC81 O)
+
-+
TYPE JANCD-FC860
~~ +’-
<:
A.? ,
Fig. 16.4 Connector Layout of 1/0 Module (JANCD-FC860)
+
%?!%! “ma~
CN13 CN14
1
CN15
n
TYPE JANCD-FC861
u
FG
Fig. 18.5 Connector Layout ofl/OModule (JANCD-FC861)
Loading...