All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording,
or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed
with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this
manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information contained in this
publication.
Page 3
About this Manual
This manual describes information required for designing, testing, adjusting, and maintaining Σ-V Series
SERVOPACKs.
Keep this manual in a location where it can be accessed for reference whenever required. Manuals outlined on
the following page must also be used as required by the application.
Description of Technical Terms
The following table shows the meanings of terms used in this manual.
Te rmMeaning
CursorInput position indicated by Digital Operator
Servomotor
SERVOPACKΣ-V Series SGDV servo amplifier
Servo Drive
Servo System
M-II Model
Servo ONPower to motor ON
Servo OFFPower to motor OFF
Base Block (BB)
Servo Lock
Main Circuit Cable
Zero-speed StoppingStopping the servomotor by setting the speed reference to 0
Σ-V Series SGMJV, SGMAV, SGMPS, SGMGV, SGMSV, or SGMCS
(Direct Drive) servomotor
A set including a servomotor and SERVOPACK (i.e., a servo amplifier)
A servo control system that includes the combination of a servo drive
with a host controller and peripheral devices
MECHATROLINK-II communications reference used for SERVOPACK interface
Power supply to motor is turned OFF by shutting off the base current
to the power transistor in the current SERVOPACK.
A state in which the motor is stopped and is in position loop with a
position reference of 0.
Cables which connect to the main circuit terminals, including main
circuit power supply cables, control power supply cables, servomotor
main circuit cables, and others.
IMPORTANT Explanations
The following icon is displayed for explanations requiring special attention.
• Indicates important information that should be memorized, as well as precautions, such as
alarm displays, that do not involve potential damage to equipment.
iii
Page 4
Pn406
Emergency Stop Torque
Setting Range
0 to 8001% 800After change
Setting Unit Factory Setting When Enabled
Classification
Setup
ParameterMeaningWhen EnabledClassification
Pn002
After restart
n.0
[Factory setting]
n.1
Uses the absolute encoder as an
incremental encoder.
Uses the absolute encoder as an
absolute encoder.
Setup
Parameter
number
Parameter
number
Position
Torque
Control methods for which the parameter applies.
Speed
: Speed control
: Position control
: Torque control
Indicates the
parameter setting
before shipment.
Indicates when a
change to the
parameter will be
effective.
Indicates the
parameter
classification.
Indicates the
minimum setting unit
for the parameter.
Torque
Position Speed
Indicates the setting
range for the parameter.
The notation “n.” indicates a parameter
for selecting functions. Each corresponds to
the setting value of that digit. The notation shown
here means that the third digit is 1.
This section explains the
selections for the function.
• Parameters for Selecting Functions
1st digit
2nd digit
3rd digit
4th digit
Digital Operator Display
(Display Example for Pn002)
Digit NotationSetting Notation
Meaning NotationMeaning
Pn002.0
Pn002.1
Pn002.2
Pn002.3
Indicates the value for the
1st digit of parameter Pn002.
Indicates the value for the
2nd digit of parameter Pn002.
Indicates the value for the
3rd digit of parameter Pn002.
Indicates the value for the
4th digit of parameter Pn002.
Pn002.0 = x
or n.x
Pn002.1 = x
or n.x
Indicates that the value for the
1st digit of parameter Pn002 is x.
Indicates that the value for the
2nd digit of parameter Pn002 is x.
Pn002.2 = x
or n.x
Pn002.3 = x
or n.x
Indicates that the value for the
3rd digit of parameter Pn002 is x.
Indicates that the value for the
4th digit of parameter Pn002 is x.
Notation
Notation Used in this Manual
• Notation for Reverse Signals
The names of reverse signals (i.e., ones that are valid when low) are written with a forward slash (/) before the
signal name.
Notation Example
BK
= /BK
• Notation for Parameters
The notation depends on whether the parameter requires a value setting (parameter for numeric settings) or
requires the selection of a function (parameter for selecting functions).
• Parameters for Numeric Settings
iv
Notation Example
Page 5
Manuals Related to the Σ-V Series
WARNING
Refer to the following manuals as required.
Name
Σ-V Series
User’s Manual
Setup
Rotational Motor
(No.: SIEP S800000 43)
Σ-V Series
Product Catalog
(No.: KAEP S800000 42)
Σ-V Series
User's Manual
Design and Maintenance
Rotational Motor/
Σ-V Series/
DC Power Input Σ-V Series/Σ-V Series for
Large-Capacity Models
User’s Manual
MECHATROLINK-II
Commands
(No.: SIEP S800000 54)
Σ-V Series
User’s Manual
Operation of Digital Operator
(No.: SIEP S800000 55)
Σ-V Series
AC SERVOPACK SGDV
Safety Precautions
(No.: TOBP C710800 10)
Σ Series
Digital Operator
Safety Precautions
(No.: TOBP C730800 00)
AC SERVOMOTOR
Safety Precautions
(No.: TOBP C230200 00)
Selecting
Models and
Peripheral
Devices
−−− −−
−−−−
−−−
−−− −
−−−−
−−−−
−−−−−−
−−−−−
Ratings and
Specifications
System
Design
Panels and
Wiring
Trial
Operation
Trial
Operation
and Servo
Adjustment
Maintenance
and
Inspection
Trademarks
Safety Information
MECHATROLINK is a trademark of the MECHATROLINK Members Association.
The following conventions are used to indicate precautions in this manual. Failure to heed precautions provided in this manual can result in serious or possibly even fatal injury or damage to the products or to related
equipment and systems.
Indicates precautions that, if not heeded, could possibly result in loss of
life or serious injury.
v
Page 6
CAUTION
PROHIBITED
MANDATORY
Indicates precautions that, if not heeded, could result in relatively serious
or minor injury, damage to the product, or faulty operation.
In some situations, the precautions indicated could have serious
consequences if not heeded.
Indicates prohibited actions that must not be performed. For example,
this symbol would be used to indicate that fire is prohibited as follows:
Indicates compulsory actions that must be performed. For example, this
symbol would be used to indicate that grounding is compulsory as
follows:
vi
Page 7
Safety Precautions
This section describes important precautions that must be followed during storage, transportation, installation,
wiring, operation, maintenance, inspection, and disposal. Be sure to always observe these precautions thoroughly.
• Never touch any rotating servomotor parts during operation.
Failure to observe this warning may result in injury.
• Before starting operation with a machine connected, make sure that an emergency stop can be
applied at any time.
Failure to observe this warning may result in injury or damage to the equipment.
• Never touch the inside of the SERVOPACKs.
Failure to observe this warning may result in electric shock.
• Do not remove the cover of the power supply terminal block while the power is ON.
Failure to observe this warning may result in electric shock.
• Do not touch the power supply terminals while the CHARGE lamp is ON after turning power OFF
because high voltage may still remain in the SERVOPACK. Make sure the CHARGE lamp is OFF
first before starting to do wiring or inspections.
Residual voltage may cause electric shock.
• Follow the procedures and instructions provided in the manuals for the products being used in the
trial operation.
Failure to do so may result not only in faulty operation and damage to equipment, but also in personal injury.
• The output range of the rotational serial data for the Σ-V absolute position detecting system is different from that of earlier systems for 12-bit and 15-bit encoders. As a result, the infinite-length positioning system of the Σ Series must be changed for use with products in the Σ-V Series.
• The multiturn limit value need not be changed except for special applications.
Changing it inappropriately or unintentionally can be dangerous.
• If the Multiturn Limit Disagreement alarm occurs, check the setting of parameter Pn205 in the SERVOPACK to be sure that it is correct.
If Fn013 is executed when an incorrect value is set in Pn205, an incorrect value will be set in the encoder. The
alarm will disappear even if an incorrect value is set, but incorrect positions will be detected, resulting in a
dangerous situation where the machine will move to unexpected positions.
• Do not remove the top front cover, cables, connectors, or optional items from the SERVOPACK
while the power is ON.
Failure to observe this warning may result in electric shock or equipment damage.
• Do not damage, pull, exert excessive force on, or place heavy objects on the cables.
Failure to observe this warning may result in electric shock, stopping operation of the product, or fire.
• Do not modify the product.
Failure to observe this warning may result in injury, damage to the equipment, or fire.
• Provide appropriate braking devices on the machine side to ensure safety. The holding brake on a
servomotor with a brake is not a braking device for ensuring safety.
Failure to observe this warning may result in injury.
• Do not come close to the machine immediately after resetting an instantaneous power interruption
to avoid an unexpected restart. Take appropriate measures to ensure safety against an unexpected
restart.
Failure to observe this warning may result in injury.
• Connect the ground terminal according to local electrical codes (100 Ω or less for a SERVOPACK
with a 100 V, 200 V power supply, 10 Ω or less for a SERVOPACK with a 400 V power supply).
Improper grounding may result in electric shock or fire.
WARNING
• Installation, disassembly, or repair must be performed only by authorized personnel.
Failure to observe this warning may result in electric shock or injury.
• The person who designs a system using the safety function (Hard Wire Baseblock function) must
have full knowledge of the related safety standards and full understanding of the instructions in this
manual.
Failure to observe this warning may result in injury or damage to the equipment.
vii
Page 8
Storage and Transportation
CAUTION
• Do not store or install the product in the following locations.
Failure to observe this caution may result in fire, electric shock, or damage to the equipment.
• Locations subject to direct sunlight
• Locations subject to temperatures outside the range specified in the storage/installation temperature conditions
• Locations subject to humidity outside the range specified in the storage/installation humidity conditions
• Locations subject to condensation as the result of extreme changes in temperature
• Locations subject to corrosive or flammable gases
• Locations subject to dust, salts, or iron dust
• Locations subject to exposure to water, oil, or chemicals
• Locations subject to shock or vibration
• Do not hold the product by the cables, motor shaft, or encoder while transporting it.
Failure to observe this caution may result in injury or malfunction.
• Do not place any load exceeding the limit specified on the packing box.
Failure to observe this caution may result in injury or malfunction.
• If disinfectants or insecticides must be used to treat packing materials such as wooden frames, pallets, or plywood, the packing materials must be treated before the product is packaged, and methods other than fumigation must be used.
Example: Heat treatment, where materials are kiln-dried to a core temperature of 56
minutes or more.
If the electronic products, which include stand-alone products and products installed in machines, are packed
with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes
resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.
°
C for 30
Installation
• Never use the product in an environment subject to water, corrosive gases, flammable gases, or
combustibles.
Failure to observe this caution may result in electric shock or fire.
• Do not step on or place a heavy object on the product.
Failure to observe this caution may result in injury or malfunction.
• Do not cover the inlet or outlet ports and prevent any foreign objects from entering the product.
Failure to observe this caution may cause internal elements to deteriorate resulting in malfunction or fire.
• Be sure to install the product in the correct direction.
Failure to observe this caution may result in malfunction.
• Provide the specified clearances between the SERVOPACK and the control panel or with other
devices.
Failure to observe this caution may result in fire or malfunction.
• Do not apply any strong impact.
Failure to observe this caution may result in malfunction.
CAUTION
viii
Page 9
Wiring
CAUTION
• Be sure to wire correctly and securely.
Failure to observe this caution may result in motor overrun, injury, or malfunction.
• Do not connect a commercial power supply to the U, V, or W terminals for the servomotor connection.
Failure to observe this caution may result in injury or fire.
• Securely connect the main circuit terminals.
Failure to observe this caution may result in fire.
• Do not bundle or run the main circuit cables together with the I/O signal cables or the encoder
cables in the same duct. Keep the main circuit cables separated from the I/O signal cables and the
encoder cables with a gap of at least 30 cm.
Placing these cables too close to each other may result in malfunction.
• Use shielded twisted-pair cables or screened unshielded twisted-pair cables for I/O signal cables
and the encoder cables.
• The maximum wiring length is 3 m for I/O signal cables, 50 m for encoder cables or servomotor
main circuit cables, and 10 m for control power supply cables for the SERVOPACK with a 400-V
power supply (+24 V, 0 V).
• Be sure to observe the following precautions when wiring the SERVOPACK main circuit terminal
blocks.
• Do not turn the SERVOPACK power ON until all wiring, including the main circuit terminal blocks, has
been completed.
• If a connector is used for the main circuit terminals, remove the connector from the SERVOPACK before
you wire it.
• Insert only one wire into one opening in the main circuit connector.
• Make sure that no part of the core wire comes into contact with (i.e., short-circuits) adjacent wires.
• Install a battery at either the host controller or the SERVOPACK, but not both.
It is dangerous to install batteries at both ends simultaneously, because that sets up a loop circuit between the
batteries.
• Always use the specified power supply voltage.
An incorrect voltage may result in fire or malfunction.
• Make sure that the polarity is correct.
Incorrect polarity may cause ruptures or damage.
• Take appropriate measures to ensure that the input power supply is supplied within the specified
voltage fluctuation range. Be particularly careful in places where the power supply is unstable.
An incorrect power supply may result in damage to the equipment.
• Install external breakers or other safety devices against short-circuiting in external wiring.
Failure to observe this caution may result in fire.
• Take appropriate and sufficient countermeasures for each form of potential interference when
installing systems in the following locations.
• Locations subject to static electricity or other forms of noise
• Locations subject to strong electromagnetic fields and magnetic fields
• Locations subject to possible exposure to radioactivity
• Locations close to power supplies
Failure to observe this caution may result in damage to the equipment.
• Do not reverse the polarity of the battery when connecting it.
Failure to observe this caution may damage the battery, the SERVOPACK or servomotor, or cause an explosion.
• Wiring or inspection must be performed by a technical expert.
• Use a 24-VDC power supply with double insulation or reinforced insulation.
ix
Page 10
Operation
CAUTION
• Always use the servomotor and SERVOPACK in one of the specified combinations.
Failure to observe this caution may result in fire or malfunction.
• Conduct trial operation on the servomotor alone with the motor shaft disconnected from the
machine to avoid accidents.
Failure to observe this caution may result in injury.
• During trial operation, confirm that the holding brake works correctly. Furthermore, secure system
safety against problems such as signal line disconnection.
Failure to observe this caution may result in injury or equipment damage.
• Before starting operation with a machine connected, change the parameter settings to match the
parameters of the machine.
Starting operation without matching the proper settings may cause the machine to run out of control or malfunction.
• Do not turn the power ON and OFF more than necessary.
Do not use the SERVOPACK for applications that require the power to turn ON and OFF frequently. Such
applications will cause elements in the SERVOPACK to deteriorate.
As a guideline, at least one hour should be allowed between the power being turned ON and OFF once actual
operation has been started.
• When carrying out JOG operation (Fn002), origin search (Fn003), or EasyFFT (Fn206), forcing
movable machine parts to stop does not work for forward overtravel or reverse overtravel. Take
necessary precautions.
Failure to observe this caution may result in damage to the equipment.
• When using the servomotor for a vertical axis, install safety devices to prevent workpieces from falling due to alarms or overtravels. Set the servomotor so that it will stop in the zero clamp state when
overtravel occurs.
Failure to observe this caution may cause workpieces to fall due to overtravel.
• When not using the turning-less function, set the correct moment of inertia ratio (Pn103).
Setting an incorrect moment of inertia ratio may cause machine vibration.
• Do not touch the SERVOPACK heat sinks, regenerative resistor, or servomotor while power is ON
or soon after the power is turned OFF.
Failure to observe this caution may result in burns due to high temperatures.
• Do not make any extreme adjustments or setting changes of parameters.
Failure to observe this caution may result in injury or damage to the equipment due to unstable operation.
• When an alarm occurs, remove the cause, reset the alarm after confirming safety, and then resume
operation.
Failure to observe this caution may result in damage to the equipment, fire, or injury.
• Do not use the holding brake of the servomotor for braking.
Failure to observe this caution may result in malfunction.
• An alarm or warning may occur if communications are performed with the host controller while the
SigmaWin+ or Digital Operator is operating.
If an alarm or warning occurs, it may stop the current process and stop the system.
Maintenance and Inspection
CAUTION
• Do not disassemble the SERVOPACK and the servomotor.
Failure to observe this caution may result in electric shock or injury.
• Do not attempt to change wiring while the power is ON.
Failure to observe this caution may result in electric shock or injury.
• When replacing the SERVOPACK, resume operation only after copying the previous SERVOPACK
parameters to the new SERVOPACK.
Failure to observe this caution may result in damage to the equipment.
x
Page 11
Disposal
• When disposing of the products, treat them as ordinary industrial waste.
General Precautions
Observe the following general precautions
• The products shown in illustrations in this manual are sometimes shown without covers or protective guards.
Always replace the cover or protective guard as specified first, and then operate the products in accordance with
the manual.
• The drawings presented in this manual are typical examples and may not match the product you received.
• If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the
offices listed on the back of this manual.
CAUTION
to ensure safe application.
xi
Page 12
Warranty
(1)Details of Warranty
Warranty Period
Warranty Scope
(2)Limitations of Liability
The warranty period for a product that was purchased (hereinafter called “delivered product”) is one year from
the time of delivery to the location specified by the customer or 18 months from the time of shipment from the
Yaskawa factory, whichever is sooner.
Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs
during the warranty period above. This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service
life.
This warranty does not cover failures that result from any of the following causes.
1. Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
2. Causes not attributable to the delivered product itself
3. Modifications or repairs not performed by Yaskawa
4. Abuse of the delivered product in a manner in which it was not originally intended
5. Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
6. Events for which Yaskawa is not responsible, such as natural or human-made disasters
1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises
due to failure of the delivered product.
2. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program
execution of the programs provided by the user or by a third party for use with programmable Yaskawa
products.
3. The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there
are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties,
nor does it construe a license.
4. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights
or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.
xii
Page 13
(3)Suitability for Use
1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that
apply if the Yaskawa product is used in combination with any other products.
2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment
used by the customer.
3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the
application is acceptable, use the product with extra allowance in ratings and specifications, and provide
safety measures to minimize hazards in the event of failure.
• Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
• Systems, machines, and equipment that may present a risk to life or property
• Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or
systems that operate continuously 24 hours a day
• Other systems that require a similar high degree of safety
4. Never use the product for an application involving serious risk to life or property without first ensuring that
the system is designed to secure the required level of safety with risk warnings and redundancy, and that the
Yaskawa product is properly rated and installed.
5. The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the
product.
6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to
prevent accidental harm to third parties.
(4)Specifications Change
The names, specifications, appearance, and accessories of products in product catalogs and manuals may be
changed at any time based on improvements and other reasons. The next editions of the revised catalogs or
manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm
the actual specifications before purchasing a product.
xiii
Page 14
Harmonized Standards
North American Safety Standards (UL)
Model
SERVOPACKSGDVUL508C (E147823)
•SGMJV
•SGMAV
Servomotor
•SGMPS
• SGMGV
•SGMSV
UL Standards
(UL File No.)
UL1004 (E165827)
European Directives
ModelEuropean DirectivesHarmonized Standards
Machinery Directive
2006/42/EC
SERVOPACKSGDV
•SGMJV
•SGMAV
Servomotor
•SGMPS
• SGMGV
•SGMSV
EMC Directive
2004/108/EC
Low Voltage Directive
2006/95/EC
EMC Directive
2004/108/EC
Low Voltage Directive
2006/95/EC
EN ISO13849-1: 2008
EN 954-1
EN 55011 group1, classA
EN 61000-6-2
EN 61800-3
EN 50178
EN 61800-5-1
EN 55011 group1, classA
EN 61000-6-2
EN 61800-3
EN 60034-1
EN 60034-5
xiv
Page 15
Safety Standards
ModelSafety StandardsStandards
EN ISO13849-1: 2008
Safety of Machinery
SERVOPACKSGDV
Functional Safety
EMCIEC 61326-3-1
EN 954-1
IEC 60204-1
IEC 61508 series
IEC 62061
IEC 61800-5-2
Safe Performance
ItemsStandardsPerformance Level
Safety Integrity Level
Probability of Dangerous Failure per Hour
CategoryEN 954-1 Category 3
Performance LevelEN ISO 13849-1 PL d (Category 3)
Mean Time to Dangerous Failure of Each
Channel
Average Diagnostic CoverageEN ISO 13849-1DCavg: Low
Connects a safety function device.
Note: When not using a safety function device, use the
SERVOPACK with the safety function’s jumper connector inserted (the factory default state).
For the connecting method, refer to
3.2.2 Safety
Function Signal (CN8) Names and Functions
.
For details on how to use the safety function, refer to
4.9 Safety Function
.
Refer to 3.1 Main Circuit Wiring.
Refer to 4.1.1 Setting the Communications Spec-
Refer to 5.1.3 Monitoring Operation during Adjustment.
Refer to 4.1.1 Setting the Communications Spec-
Refer to 3.1 Main Circuit Wiring.
Refer to 3.7 Connecting Regenerative Resistors.
Refer to 3.8.3 Connecting a Reactor for Harmonic Suppression.
Refer to 3.1 Main Circuit Wiring.
Refer to 3.1 Main Circuit Wiring.
Refer to 3.6 Encoder Connection.
Refer to 3.2 I/O Signal Connections.
Refer to 3.5 Wiring MECHATROLINK-II Communi-cations.
Refer to 1.6 SERVOPACK Model Designation.
Refer to 2.1.1 Status Display.
Connects a digital operator (option, model: JUSP-OP05A-1-E)
or a personal computer (RS422).
Refer to Σ-V Series Product Catalog
(No.: KAEP S800000 42) and
Σ
-V Series User’s Manual,
Operation of Digital Operator
(No.: SIEP S800000 55).
1.1Σ-V Series SERVOPACKs
The Σ-V Series SERVOPACKs are designed for applications that require frequent high-speed, high-precision positioning. The SERVOPACK makes the most of machine performance in the shortest time possible, thus contributing to improving productivity.
1.2Part Names
This section describes the part names of SGDV SERVOPACK for MECHATROLINK-II communications reference.
CN5 Analog monitor connector
Used to monitor motor speed, torque
reference, and other values through
a special cable (option).
With front cover open
Power LED indicator (POWER)
Indicates that the control power is being supplied.
Serial number
Rotary switch (SW 1)
Used to set the MECHATROLINK-II
station address.
DIP switch (SW 2)
Used to set MECHATROLINK-II communications.
Nameplate (Found on side of SERVOPACK.)
Indicates the SERVOPACK model and ratings.
Charge indicator
Lights when the main circuit power supply is ON
and stays lit as long as the internal capacitor
remains charged. Therefore, do not touch the
SERVOPACK even after the power supply is
turned OFF if the indicator is lit.
It may result in electric shock.
Main circuit power supply terminals
Used for main circuit power supply input.
Control power supply terminals
Used for control power supply input.
Regenerative resistor connecting terminals
Connects external regenerative resistors.
DC reactor terminals for harmonic suppression
Connects DC reactor for harmonic suppression.
Communications LED indicator (COM)
Indicates that data is being transmitted between
the SERVOPACK and the MECHATROLINK-II
system.
Panel display
Indicates the servo status with a seven-segment
LED display.
Input voltage
Front cover
SERVOPACK model
MECHATROLINK-II communications connectors
Connects MECHATROLINK-II -supported devices.
CN3 Connector for digital operator
CN7 Connector for personal computer
(USB Connector)
Communicates with a personal computer.
Use the connection cable (model: JZSP-CVS06-02-E).
CN1 I/O signal connector
Used to connect sequence I/O signals.
CN8 Connector for safety function devices
Servomotor terminals
Connects the main circuit cable for servomotor.
Ground terminal
Be sure to connect to protect against electrical shock.
1-2
CN2 Encoder connector
Connects the encoder in the Servomotor.
Page 23
1.3 SERVOPACK Ratings and Specifications
1
Outline
1.3SERVOPACK Ratings and Specifications
This section describes the ratings and specifications of SERVOPACKs.
1.3.1Ratings
Ratings of SERVOPACKs are as shown below.
(1)SGDV with Single-phase, 100-V Rating
SGDV (Single Phase, 100 V)R70R902R12R8
Continuous Output Current [Arms]0.660.912.12.8
Instantaneous Max. Output Current [Arms]2.12.96.59.3
Regenerative Resistor *None or external
Main Circuit Power SupplySingle-phase, 100 to 115 VAC, +10% to -15%, 50/60 Hz
Control Power SupplySingle-phase, 100 to 115 VAC, +10% to -15%, 50/60 Hz
Overvoltage CategoryIII
∗ Refer to 3.7 Connecting Regenerative Resistors for details.
(2)SGDV with Single-phase, 200-V Rating
SGDV (Single Phase, 200 V)
Continuous Output Current [Arms]11.6
Instantaneous Max. Output Current [Arms]28
Regenerative Resistor
Main Circuit Power SupplySingle-phase, 220 to 230 VAC, +10% to -15%, 50/60 Hz
Control Power SupplySingle-phase, 220 to 230 VAC, +10% to -15%, 50/60 Hz
Overvoltage CategoryIII
∗1. The official model number is SGDV-120A11A008000.
∗2. Refer to 3.7 Connecting Regenerative Resistors for details.
*2
Built-in or external
120
*1
(3)SGDV with Three-phase, 200-V Rating
SGDV
(Three Phase, 200 V)
Continuous Output Current
[Arms]
Instantaneous Max. Output
Current [Arms]
Regenerative Resistor
Main Circuit Power Supply Three-phase, 200 to 230 VAC, +10% to -15%, 50/60 Hz
Control Power SupplySingle-phase, 200 to 230 VAC, +10% to -15%, 50/60 Hz
Overvoltage CategoryIII
∗ Refer to 3.7 Connecting Regenerative Resistors for details.
Signal allocations can be performed, and positive and
negative logic can be changed.
3 ch
• Positioning completion (/COIN)
• Speed coincidence detection (/V-CMP)
• Rotation detection (/TGON)
• Servo ready (/S-RDY)
• Torque limit detection (/CLT)
• Speed limit detection (/VLT)
• Brake (/BK)
• Warning (/WARN)
• Near (/NEAR)
Signal allocations can be performed, and positive and
negative logic can be changed.
Position: 16 positions (Refer to 4.1.2)
Number of pins: Four pins (Refer to 4.1.1)
±
10VDC (linearity effective range ± 8 V)
±
10 mA
±
1%): 1.2 ms (Typ)
*2
1-6
Page 27
1.3 SERVOPACK Ratings and Specifications
1
Outline
Speed regulation =
No-load motor speedTotal load motor speed
Rated motor
speed
×
100%
-
Input/HWBB1, /HWBB2: Baseblock signal for power module
Safety Function
OutputEDM1: Monitoring status of internal safety circuit (fixed output)
*3
Standards
EN954 Category 3, IEC61508 SIL2
Option ModuleFully-closed module, safety module
∗1. Speed regulation by load regulation is defined as follows:
∗2. Refer to 1.3.1 Ratings for details on regenerative resistors.
∗3. Perform risk assessment for the system and be sure that the safety requirements are fulfilled.
∗4. Refer to 4.2.10 Velocity Control (VELCTRL: 3CH) in the
Σ
-V Series/DC Power Input Σ-V Series/Σ-V Series for
Protects the power
line by shutting the
circuit OFF when
overcurrent is
detected.
Eliminates
external noise from
the power line.
Magnetic
contactor
Turns the servo
ON and OFF.
Install a surge
absorber.
Brake power supply
∗
2
Magnetic contactor
Regenerative
resistor
∗
1
Used for a servomotor
with a brake.
Turns the brake power supply
ON and OFF.
Install a surge absorber.
Servomotor main
circuit cable
Encoder cable
Battery case
(when an absolute
encoder is used.)
I/O signal cable
Connection cable
for digital operator
Connection cable
for personal computer
Digital
operator
Personal
computer
Connect to the
MECHATROLINK-II
Safety function
devices
Host controller
When not using the safety function,
use the SERVOPACK with the safety
function’s jumper connector inserted.
When using the safety function,
use the safety connection cable.
Safety
connection cable
1.5Examples of Servo System Configurations
This section describes examples of basic servo system configuration.
1.5.1Connecting to SGDV-
F11A SERVOPACK
∗1. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.7 Connecting Regenerative Resis-
tors.
∗2. Use a 24-VDC power supply. (Not included.)
1-17
Page 38
1 Outline
Brake power supply
∗2
Servomotor main
circuit cable
Encoder cable
Battery case
Magnetic contactor
Regenerative
resistor
∗1
Noise filter
Molded-case
circuit breaker
(MCCB)
Magnetic
contactor
I/O signal cable
SGDV-A11
SERVOPACK
SGMJV/SGMAV/SGMPS/
SGMGV/SGMSV/SGMCS
Servomotor
Power supply
Three-phase 200 VAC
R S T
Protects the power
line by shutting the
circuit OFF when
overcurrent is
detected.
Eliminates
external noise from
the power line.
Used for a servomotor
with a brake.
Turns the servo
ON and OFF.
Install a surge
absorber.
Turns the brake power supply
ON and OFF.
Install a surge absorber.
(when an absolute
encoder is used.)
Connection cable
for digital operator
Connection cable
for personal computer
Digital
operator
Personal
computer
200 VAC
Connect to the
MECHATROLINK-II
Safety function
devices
Host controller
When not using the safety function,
use the SERVOPACK with the safety
function’s jumper connector inserted.
When using the safety function,
use the safety connection cable.
Safety
connection cable
1.5.2 Connecting to SGDV-A11 SERVOPACK
1.5.2Connecting to SGDV-A11 SERVOPACK
(1)Using a Three-phase, 200-V Power Supply
∗1. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.7 Connecting Regenerative Resis-
tors.
∗2. Use a 24-VDC power supply. (Not included.)
If using a 90-VDC power supply for a brake, however, use one of the following power supplies.
• For 200-V input voltage: LPSE-2H01-E
• For 100-V input voltage: LPDE-1H01-E
For details, refer to
Σ
-V Series Product Catalog (No.: KAEP S800000 42).
1-18
Page 39
1
Outline
Brake power supply
∗2
Servomotor main
circuit cable
Encoder cable
Battery case
Magnetic contactor
Regenerative
resistor
∗1
Noise filter
Molded-case
circuit breaker
(MCCB)
Magnetic
contactor
I/O signal cable
SGDV-A11
SERVOPACK
SGMJV/SGMAV/SGMPS/SGMCS
Servomotor
Power supply
Single-phase 200 VAC
R T
Protects the power
line by shutting the
circuit OFF when
overcurrent is
detected.
Eliminates
external noise from
the power line.
Used for a servomotor
with a brake.
Turns the servo
ON and OFF.
Install a surge
absorber.
Turns the brake power supply
ON and OFF.
Install a surge absorber.
(when an absolute
encoder is used.)
Connection cable
for digital operator
Connection cable
for personal computer
Digital
operator
Personal
computer
200 VAC
Connect to the
MECHATROLINK-II
Safety function
devices
Host controller
When not using the safety function,
use the SERVOPACK with the safety
function’s jumper connector inserted.
When using the safety function,
use the safety connection cable.
Safety
connection cable
1.5 Examples of Servo System Configurations
(2)Using a Single-phase, 200-V Power Supply
The Σ-V Series 200 V SERVOPACK generally specifies a three-phase power input but some models can be
used with a single-phase 200 V power supply. Refer to 3.1.3 Using the SERVOPACK with Single-phase, 200 V Power Input for details.
∗1. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.7 Connecting Regenerative Resis-
tors.
∗2. Use a 24-VDC power supply. (Not included.)
1-19
Page 40
1 Outline
1.5.3 Connecting to SGDV-D11A SERVOPACK
1.5.3Connecting to SGDV-D11A SERVOPACK
Power supply
Three-phase 400 VAC
R S T
Molded-case
circuit breaker
(MCCB)
Protects the power
line by shutting
the circuit OFF when
overcurrent is
detected.
Noise filter
Eliminates
external noise from
the power line.
100/200 VAC
Brake power
supply*
Used for a servomotor
with a brake.
Magnetic contactor
Turns the brake power supply
ON and OFF.
Install a surge absorber.
DC power
supply (24 V)
Regenerative
resistor
2
∗
3
Magnetic
contactor
Turns the servo
ON and OFF.
Install a surge
absorber.
1
∗
SGDV-D11A
SERVOPACK
Battery case
(when an absolute
encoder is used.)
Connect to the
MECHATROLINK-II
Connection cable
for digital operator
Connection cable
for personal computer
I/O signal cable
Digital
operator
Personal
computer
Host controller
When not using the safety function,
use the SERVOPACK with the safety
function’s jumper connector inserted.
When using the safety function,
use the safety connection cable.
Safety
connection cable
Safety function
devices
1-20
Servomotor main
circuit cable
Encoder cable
SGMSV/SGMGV
Servomotor
∗1. Use a 24-VDC power supply with double insulation or reinforced insulation. (The 24-VDC power supply is not
included.) Do not use the same 24-VDC power supply for the brakes.
∗2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.7 Connecting Regenerative Resis-
tors.
∗3. Use a 24-VDC power supply for a brake. (Not included.)
If using a 90-VDC power supply for a brake, however, use one of the following power supplies.
• For 200-V input voltage: LPSE-2H01-E
• For 100-V input voltage: LPDE-1H01-E
For details, refer to Σ-V Series Product Catalog (No.: KAEP S800000 42).
Page 41
1
Outline
1.6SERVOPACK Model Designation
SGDV
Series
SGDVΣ-V Series
1st + 2nd + 3rd digits: Current
Vol tage Code
Max. Allowable
Motor Capacity
(kW)
100 V
R700.05
R900.1
2R10.2
2R80.4
200 V
R70
*1
0.05
R90
*1
0.1
1R6
*1
0.2
2R8
*1
0.4
3R80.5
5R5
*1
0.75
7R61
120
*2
1.5
1802
2003
3305
470
*3
6
550
*3
7.5
590
*3
11
780
*3
15
400 V
1R90.5
3R51
5R41.5
8R42
1203
1705
210
*3
6
260
*3
7.5
280
*3
11
370
*3
15
4th digit: Voltage
CodeVo ltag e
F100 V
A200 V
D400 V
5th + 6th digits: Interface Specifications
CodeInterface
01
Analog voltage and pulse train reference,
rotational servomotor
05
Analog voltage and pulse train reference,
linear servomotor
MECHATROLINK-III communications
reference, linear servomotor
11th + 12th digits: Software
Specification
CodeSpecification
00Standard
–
7th digit: Design
Revision Order
1st + 2nd +
3rd digits
4th
digit
5th + 6th
digits
7th
digit
2R8A
11
A
8th + 9th +
10th digits
000
8th + 9th + 10th digits: Hardware Specifications
CodeSpecifications
000 Base-mounted (standard)
001
Rack-mounted
*3
002 Va r n is h e d
003
Rack-mounted
*3
and Varnished
008
Single-phase, 200-V Power Supply (SGDV120A1A008000)
020
Dynamic brake (DB)
*4
11th + 12th
digits
00
13th
digit
0
13th digit: Parameter
Specification
CodeSpecification
0Standard
This section shows SERVOPACK model designation.
1.6 SERVOPACK Model Designation
∗1. These amplifiers can be powered with single or three-phase.
∗2. SGDV-120A1A008000, a special version of the 1.5 kW amplifier can be used for single-phase operation.
∗3. SGDV-470A, -550A, -590A, -780A, -210D, -260D, -280D, and -370D are duct-ventilated types.
∗4. A resistor for the dynamic brake is not included. An external resistor for the dynamic brake can only be used with
400-V SERVOPACKs.
Note: If the option codes digits 8 to 13 are all zeros, they are omitted.
1-21
Page 42
1 Outline
1.7.1 SERVOPACK Inspection
1.7Servo Drive Maintenance and Inspection
This section describes the inspection and maintenance of a servo drive.
1.7.1SERVOPACK Inspection
For inspection and maintenance of the SERVOPACK, follow the inspection procedures in the following table
at least once every year. Other routine inspections are not required.
ItemFrequencyProcedureComments
Exterior
At least once a year
Loose Screws
1.7.2SERVOPACK’s Parts Replacement Schedule
The following electric or electronic parts are subject to mechanical wear or deterioration over time. To avoid
failure, replace these parts at the frequency indicated.
Check for dust, dirt, and oil
on the surfaces.
Check for loose terminal
block and connector
screws.
Clean with a cloth or compressed air.
Tighten any loose screws.
Refer to the standard replacement period in the following table and contact your Yaskawa representative.
After an examination of the part in question, we will determine whether the parts should be replaced or not.
The parameters of any SERVOPACKs overhauled by Yaskawa are reset to the factory
settings before shipping. Be sure to confirm that the parameters are properly set before
starting operation.
PartStandard Replacement Period
Cooling Fan4 to 5 years
Smoothing Capacitor7 to 8 years
Other Aluminum Electrolytic Capacitor5 years
Relays–
Fuses10 years
Note: The standard replacement period is given for usage under the following operating conditions.
• Surrounding air temperature: Annual average of 30°C
• Load factor: 80% max.
• Operation rate: 20 hours/day max.
1-22
Page 43
1
Outline
1.7.3Servomotor Inspection
The AC servomotor is brushless and simple daily inspection is sufficient. Use the inspection frequencies given
in the following table as a guide. Determine the most appropriate inspection frequency from the actual usage
conditions and the environment.
1.7 Servo Drive Maintenance and Inspection
Inspected Item
Vibration and
Noise Check
Appearance
Inspection
Insulation
Resistance Measurement
Oil Seal
Replacement
Overhaul
∗ Measure the insulation resistance between the U, V, or W phase on the servomotor’s power line and the frame ground.
Inspection Frequency
or Interval
Daily
Depends on amount of
dirt.
At least once a year
At least once every 5,000
hours
At least once every 5
years or 20,000 hours
Inspection or Maintenance
Procedure
Inspect by touching and listening
to the servomotor.
Clean with a cloth or compressed
air.
Disconnect the servomotor from
the SERVOPACK and measure
the insulation resistance with a
500 V insulation resistance
meter.* The servomotor is normal
if the resistance is higher than 10
MΩ.
Contact your Yaskawa representative.
Contact your Yaskawa representative.
Remark
There should be no more vibration
or noise than normal.
−
• If the resistance is 10 MΩ or
lower, contact your Yaskawa representative.
• Do not measure the insulation
resistance of the encoder or perform a withstand test on it.
You can use the panel display on the SERVOPACK to check the status of the servo drive.
Also, if an alarm or warning occurs, its alarm or warning number is displayed.
2.1.1Status Display
The display shows the following status.
DisplayMeaning
Rotation Detection (/TGON)
Lights if motor speed exceeds the value set in Pn502. (Factory setting: 20 min
Baseblock
Lights for baseblock (Servomotor power OFF).
Reference Input
Lights when a reference is being input.
CONNECT
Lights during connection.
2.1.2Alarm and Warning Display
If an alarm or warning occurs, the display will change in the following order.
Example: Alarm A.E60
Status
Display
UnlitUnlitUnlitUnlitUnlit
-1
)
2-2
2.1.3Hard Wire Base Block Display
If a hard wire base block (HWBB) occurs, the display will change in the following order.
2.1.4Overtravel Display
If overtraveling occurs, the display will change in the following order.
1
Overtravel at forward rotation (P-OT)
Current
status
2
Overtravel at reverse rotation (N-OT)
Current
status
3
Overtravel at forward/reverse rotation
Current
status
Page 46
2
Panel Display and Operation of Digital Operator
2.2Operation of Digital Operator
BB − FUNCTION−
Fn002:JOG
Fn003:Z− Search
Fn004:Program JOG
Fn005:Prm Init
Operation examples of utility functions (Fn), parameters (Pn) and monitor displays (Un)
when using a digital operator are described in this chapter.
Operations can be also performed with SigmaWin+.
2.2 Operation of Digital Operator
For more information on the usage of the digital operator, refer to
Digital Operator (No.: SIEP S800000 55).
2.3Utility Functions (Fn)
The utility functions are related to the setup and adjustment of the SERVOPACK.
The digital operator shows numbers beginning with Fn.
The following table outlines the procedures necessary for an origin search (Fn003).
StepDisplay after OperationKeysOperation
1
2
RUN − Z − Search−
Un000=0 00000
3
Un002=0 00000
Un003=0 0000000774
Un00
D=0 0000000000
Σ
-V Series USER’S MANUAL Operation of
Press the Key to view the main menu for the utility function.
Use the or Key to move through the list and
select Fn003.
Press the Key. The display changes to the Fn003
execution display.
Press the Key.
The status display changes from "BB" to "RUN", and
the servomotor power turns ON.
Note: If the servomotor is already at the zero position,
"-Complete-" is displayed.
Pressing the Key will rotate the servomotor in the
forward direction. Pressing the Key will rotate the
servomotor in the reverse direction. The rotation direction of the servomotor changes according to the setting
of Pn000.0 as shown in the following table.
Note: Direction when viewed from the load of the ser-
vomotor.
Press the or Key until the servomotor stops.
If the origin search completed normally, "-Complete-"
is displayed on the right top on the screen.
When the origin search is completed, press the
Key.
5
The status display changes from "RUN" to "BB", and
the servomotor turns OFF. The display "-Complete-"
changes to "-Z-Search-."
BB − FUNCTION−
Fn002:JOG
6
Fn003:Z− Search
Fn004:Program JOG
Fn005:Prm Init
Press theKey.
The display returns to the main menu of the utility
function.
7To enable the change in the setting, turn the power OFF and ON again.
2-3
Page 47
2 Panel Display and Operation of Digital Operator
(2)Parameters for Selecting Functions
2.4.1 Parameter Classification
2.4Parameters (Pn)
This section describes the classifications, methods of notation, and settings for parameters given in this manual.
2.4.1Parameter Classification
Parameters of the Σ-V Series SERVOPACK are classified into two types of parameters. One type of parameters is required for setting up the basic conditions for operation and the other type is required for tuning parameters that are required to adjust servomotor characteristics.
ClassificationMeaningDisplay MethodSetting Method
Setup Parameters
Tuning Parameters
There are two types of notation used for parameters, one for parameter that requires a value setting (parameter
for numeric settings) and one for parameter that requires the selection of a function (parameter for selecting
functions).
Parameters required for
setup.
Parameters for tuning control gain and other parameters.
Always displayed (Factory
setting: Pn00B.0 = 0)
Set Pn00B.0 to 1.
Set each parameter individually.
There is no need to set each
parameter individually.
The notation and settings for both types of parameters are described next.
2.4.2Notation for Parameters
(1)Parameters for Numeric Settings
Emergency Stop Torque
Pn406
Parameter
number
Indicates the setting
range for the parameter.
Pn002
Setting Range
0 to 8001% 800After change
Setting Unit Factory Setting When Enabled
Indicates the
minimum setting unit
for the parameter.
ParameterMeaningWhen EnabledClassification
n.0
[Factory setting]
n.1
Uses the absolute encoder as an
absolute encoder.
Uses the absolute encoder as an
incremental encoder.
The control methods for which the parameters applies.
Speed
: Speed control
Indicates the
parameter setting
before shipment.
Position
: Position control
Position Speed
Indicates when a
change to the
parameter will be
effective.
Torque
Torque
After restart
: Torque control
Classification
Setup
Indicates the
parameter
classification.
Setup
Parameter
number
The notation “n.” indicates a parameter
for selecting functions. Each corresponds to
the setting value of that digit. The notation
shown here means that the third digit is 1.
2-4
This section explains the
selections for the function.
Page 48
2
Panel Display and Operation of Digital Operator
• Notation Example
1st digit
2nd digit
3rd digit
4th digit
Digital Operator Display
(Display Example for Pn002)
Digit NotationSetting Notation
Meaning NotationMeaning
Pn002.0
Pn002.1
Pn002.2
Pn002.3
Indicates the value for the
1st digit of parameter Pn002.
Indicates the value for the
2nd digit of parameter Pn002.
Indicates the value for the
3rd digit of parameter Pn002.
Indicates the value for the
4th digit of parameter Pn002.
Pn002.0 = x
or n.x
Pn002.1 = x
or n.x
Indicates that the value for the
1st digit of parameter Pn002 is x.
Indicates that the value for the
2nd digit of parameter Pn002 is x.
Pn002.2 = x
or n.x
Pn002.3 = x
or n.x
Indicates that the value for the
3rd digit of parameter Pn002 is x.
Indicates that the value for the
4th digit of parameter Pn002 is x.
The names and specifications of the main circuit terminals are given below.
Also this section describes the general precautions for wiring and precautions under special environments.
3.1.1Main Circuit Terminals
Terminal
Symbols
L1, L2
L1, L2, L3
L1C, L2C
24V, 0VD
B1/ , B2
1, 2
Main circuit power input terminals
Control power input
terminals
External regenera-
*1
tive resistor connection terminals
DC reactor connection terminal for pow-
*2
er supply harmonic
suppression
NameModel SGDV-
: Main circuit terminals
FSingle-phase 100 to 115 V, +10 to -15%, 50/60 Hz
AThree-phase 200 to 230 V, +10 to -15%, 50/60 Hz
DThree-phase 380 to 480 V, +10 to -15%, 50/60 Hz
FSingle-phase 100 to 115 V, +10 to -15%, 50/60 Hz
ASingle-phase 200 to 230 V, +10 to -15%, 50/60 Hz
If the regenerative capacity is insufficient, connect
an external regenerative resistor between B1/ and
B2.
Note: The external regenerative resistor is not
If the internal regenerative resistor is insufficient,
remove the lead or shorting bar between B2 and B3
and connect an external regenerative resistor
between B1/ and B2.
Note: The external regenerative resistor is not
Connect a regenerative resistor unit between B1/
and B2.
Note: The regenerative resistor unit is not included.
If a countermeasure against power supply harmonic
waves is needed, connect a DC reactor between 1
and 2.
15%
included.
included.
3-2
Page 53
3
Wiring and Connection
Te rm i na l
Symbols
B1/
2 or
U, V, W
∗1. Do not short-circuit between B1/ and B2. It may damage the SERVOPACK.
∗2. The DC reactor connection terminals are short-circuited when the SERVOPACK is shipped from the factory: 1 and
2.
Main circuit positive
terminal
Main circuit negative
terminal
Servomotor connection terminals
Ground terminals
(× 2)
NameModel SGDV-
A
D
A
D
Use for connecting to the servomotor.
Use for connecting the power supply ground terminal and servomotor ground
terminal.
3.1.2Using a Standard Power Supply
(Single-phase 100 V, Three-phase 200 V, or Three-phase 400 V)
(1)Wire Types
3.1 Main Circuit Wiring
(cont’d)
Specification
Use when DC power supply input is used.
Use the following type of wire for main circuit.
Cable Type
SymbolName
IV600 V grade polyvinyl chloride insulated wire60
HIV600 V grade heat-resistant polyvinyl chloride insulated wire75
Allowable Conductor Temperature °C
The following table shows the wire sizes and allowable currents for three wires. Use wires with specifications
equal to or less than those shown in the table.
Nominal
AWG Size
200.519/0.1839.56.65.64.5
190.7530/0.1826.08.87.05.5
180.937/0.1824.49.07.76.0
161.2550/0.1815.612.011.08.5
142.07/0.69.53232016
123.57/0.85.41332924
105.57/1.03.47433831
88.07/1.22.41554940
614.07/1.61.35797057
422.07/2.00.85918166
Cross
Section Area
(mm
2
)
Configuration
(Number of
Wires/mm)
Conductive
Resistance
(Ω/km)
Allowable Current at Surrounding Air
Temperature (A)
30°C40°C50°C
Note: The values in the table are for reference only.
3-3
Page 54
3 Wiring and Connection
3.1.2 Using a Standard Power Supply (Single-phase 100 V, Three-phase 200 V, or Three-phase 400 V)
(2)Main Circuit Wires
This section describes the main circuit wires for SERVOPACKs.
• The specified wire sizes are for use when the three lead cables are bundled and when
the rated electric current is applied with a surrounding air temperature of 40°C.
• Use a wire with a minimum withstand voltage of 600 V for the main circuit.
• If cables are bundled in PVC or metal ducts, take into account the reduction of the
allowable current.
• Use a heat-resistant wire under high surrounding air or panel temperatures, where
polyvinyl chloride insulated wires will rapidly deteriorate.
1QF: Molded-case circuit breaker
1FLT: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main circuit power supply)
1Ry: Relay
SERVOPACK
SGDV-F
(For servo
alarm display)
supply ON
Servo power
supply OFF
Servo power
Note the following points when designing the power ON sequence.
• Design the power ON sequence so that main power is turned OFF when a servo alarm signal (ALM) is output.
• The ALM signal is output for a maximum of five seconds when the control power is turned ON. Take this into consideration when designing the power ON sequence. Design the sequence so the ALM signal is activated and the alarm
detection relay (1Ry) is turned OFF to stop the main circuit’s power supply to the SERVOPACK.
3.1 Main Circuit Wiring
Control power supply
ALM signal
5.0 s max.
• Select the power supply specifications for the parts in accordance with the input power supply.
• When turning ON the control power supply and the main circuit power supply, turn
them ON at the same time or turn the main circuit power supply after the control
power supply. When turning OFF the power supplies, first turn the power for the main
circuit OFF and then turn OFF the control power supply.
The typical main circuit wiring examples are shown below.
WARNING
• Do not touch the power supply terminals after turning OFF the power. High voltage may still remain in the
SERVOPACK, resulting in electric shock. When the voltage is discharged, the charge indicator will turn
OFF. Make sure the charge indicator is OFF before starting wiring or inspections.
1QF: Molded-case circuit breaker
1FLT: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main circuit power supply)
1Ry: Relay
SERVOPACK
SGDV-A
(For servo
alarm display)
supply ON
Servo power
supply OFF
Servo power
2KM
L1
ENC
U
V
W
M
0 V
1Ry
1D
B2
L2
1KM
L1C
L3
L2C
1QF
R
S T
1FLT
+24 V
3SA
B1/
1PL
1KM
2KM
1SA
2SA
+
−
3
4
CN1
1KM
1Ry
1KM
ALM
ALM
1Ry
SGDV-A
Regenerative
resistor unit
(For servo
alarm display)
supply ON
Servo power
supply OFF
Servo power
SERVOPACK
1QF: Molded-case circuit breaker
1FLT: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main circuit power supply)
1Ry: Relay
∗ For the SGDV-R70A, -R90A, -1R6A, -2R8A, terminals B2 and B3 are not short-circuited. Do not short-circuit these
terminals.
• SGDV-470A, -550A, -590A, -780A
3-6
Page 57
3.1 Main Circuit Wiring
3
Wiring and Connection
ENC
U
V
W
M
0 V
1Ry
1D
1QF
R
S T
1FLT
+24 V
3SA
B2
B3
1
2
B1/
1PL
1KM
2KM
1SA
2SA
L1
2KM
L2
L3
24 V
+
−
1KM
0 V
+
−
3
4
CN1
1KM
1Ry
1KM
ALM
ALM
1Ry
1QF: Molded-case circuit breaker
1FLT: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main circuit power supply)
1Ry: Relay
1QF: Molded-case circuit breaker
1FLT: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main circuit power supply)
1Ry: Relay
3.1.2 Using a Standard Power Supply (Single-phase 100 V, Three-phase 200 V, or Three-phase 400 V)
(4)Power Supply Capacities and Power Losses
The following table shows the SERVOPACK’s power supply capacities and power losses.
Main
Circuit
Power
Supply
Singlephase,
100 V
Threephase,
200 V
Threephase,
400 V
Maximum
Applicable
Servomotor
Capacity
[kW]
SERVOPACK
Model
SGDV-
Power Supply
Capacity per
SERVOPACK
[kVA]
Output
Current
[Arms]
Main
Circuit
Power
Loss
[W]
Regenerative
Resistor
Power Loss
[W]
Control
Circuit
Power
Loss [W]
0.05 R70F0.2 0.665.4
0.1 R90F0.30.917.824.8
0.2 2R1F0.7 2.114.431.4
–17
0.4 2R8F1.4 2.825.642.6
0.05R70A0.20.665.1
0.1R90A0.30.917.324.3
0.21R6A0.61.613.530.5
0.42R8A12.824.041.0
–
17
0.53R8A1.43.820.1
0.755R5A1.65.543.868.8
8
1.07R6A2.37.653.678.6
1.5120A3.211.665.810
2.0180A418.5111.9
3.0200A5.919.6113.8161.4
16
22
5.0330A7.532.9263.73627326.7
6.0470A10.746.9279.4
(180)
*1
33
7.5550A14.654.7357.8
11590A21.758.6431.7
15780A29.678599.0647.0
(350)
*2
48
0.51R9D1.11.924.6
1.03R5D2.33.546.181.1
1421
1.55R4D3.55.471.3106.3
2.08R4D4.58.477.9
3.0120D7.111.9108.7161.7
2825
5.0170D11.716.5161.13624221.1
6.0210D12.420.8172.7
7.5260D14.425.7218.6245.6
11280D21.928.1294.6
15370D30.637.2403.8433.8
(180)
(350)
*3
*4
27
30
To ta l
Power
Loss [W]
22.4
22.1
45.1
97.8
149.9
312.4
390.8
479.7
59.6
130.9
199.7
324.6
3-8
∗1. The value in parentheses is for the JUSP-RA04-E regenerative resistor unit.
∗2. The value in parentheses is for the JUSP-RA05-E regenerative resistor unit.
∗3. The value in parentheses is for the JUSP-RA18-E regenerative resistor unit.
∗4. The value in parentheses is for the JUSP-RA19-E regenerative resistor unit.
Note 1. SGDV-R70F, -R90F, -2R1F, -2R8F, -R70A, -R90A, -1R6A, and -2R8A SERVOPACKs do not have built-in
regenerative resistors. Connect an external regenerative resistor if the regenerative energy exceeds the specified
value.
2. SGDV-470A, -550A, -590A, -780A, -210D, -260D, -280D, and -370D SERVOPACKs do not have built-in
regenerative resistors. Make sure that a regenerative resistor unit or an external regenerative resistor is connected.
Refer to 3.7 Connecting Regenerative Resistors for details.
3. Regenerative resistor power losses are the allowable losses. Take the following actions if this value is exceeded.
• Remove the lead or shorting bar between terminals B2 and B3 on the SERVOPACK main circuit for SGDV3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A, and 400-V SERVOPACKs.
• Install an external regenerative resistor. Refer to 3.7 Connecting Regenerative Resistors for details.
Page 59
3
Wiring and Connection
(5)How to Select Molded-case Circuit Breaker and Fuse Capacities
The following table shows the SERVOPACK’s current capacities and inrush current.
Use these values as a basis for selecting the molded-case circuit breaker and fuse.
3.1 Main Circuit Wiring
Main
Circuit
Power
Supply
Singlephase,
100 V
Threephase,
200 V
Threephase,
400 V
Maximum
Applicable
Servomotor
Capacity
[kW]
0.05 R70F0.21.5
0.1 R90F0.32.5
0.2 2R1F0.75
0.4 2R8F1.410
0.05 R70A0.21.0
0.1 R90A0.31.0
0.2 1R6A0.62.0
0.4 2R8A13.0
0.53R8A1.43.0
0.75 5R5A1.66.0
1.07R6A2.36.0
1.5120A3.27.3
3.0200A5.915
5.0330A7.525
7.5550A14.637
11590A21.754
15780A29.673
0.51R9D1.11.4
1.03R5D2.32.9
1.55R4D3.54.3
2.08R4D4.55.8
3.0120D7.18.6
5.0170D11.714.557
6.0210D12.417.4
7.5260D14.421.7
11280D21.931.8
15370D30.643.4
SERVOPACK
Model
SGDV-
Power Supply
Capacity per
SERVOPACK
[kVA]
Current CapacityInrush Current
Main Circuit
[Arms]
Control
Circuit
[Arms]
0.3816.535
0.2
0.252.0180A49.7
0.365.56.0470A10.729
0.4510948
1.217
1.4
1.534
1.768
Main Circuit
[A0-p]
33
34
Control
Circuit
[A0-p]
70
33
–
Note 1. To comply with the EU low voltage directive, connect a fuse to the input side as protection against accidents
caused by short-circuits.
Select fuses or molded-case circuit breakers that are compliant with UL standards.
The table above also provides the net values of current capacity and inrush current. Select a fuse and a moldedcase circuit breaker which meet the breaking characteristics shown below.
• Main circuit, control circuit: No breaking at three times the current values shown in the table for 5 s.
• Inrush current: No breaking at the current values shown in the table for 20 ms.
3-9
Page 60
3 Wiring and Connection
3.1.2 Using a Standard Power Supply (Single-phase 100 V, Three-phase 200 V, or Three-phase 400 V)
2. The following restrictions apply to UL standard compliance conditions.
SERVOPACK Model SGDV-Restrictions
180A, 200AAvailable rated current for modeled-case circuit breaker: 40 A or less
• Available rated current for non-time delay fuse: 70 A or less
330A
470A, 550A
590A, 780A
210D, 260D
280D, 370D
• Available rated current for time delay fuse: 40 A or less
• Do not use single wires.
• Available rated current for molded-case circuit breaker: 60 A or less
• Available rated current for non-time delay fuse or time delay fuse: 60 A or
less
• Available rated current for molded-case circuit breaker: 100 A or less.
• Available rated current for non-time delay fuse or time delay fuse: 100 A or
less
(Available rated current for a non-time delay, Class J fuse or a faster fuse: 125
A or less)
• Available rated current for molded-case circuit breaker: 60 A or less.
• Available rated current for non-time-delay fuse: 60 A or less.
• Available rated current for time delay fuse: 35 A or less
• Available rated current for molded-case circuit breaker: 80 A or less
• Available rated current for non-time delay fuse: 125 A or less
• Available rated current for time delay fuse: 75 A or less
3-10
Page 61
3
Wiring and Connection
3.1.3Using the SERVOPACK with Single-phase, 200 V Power Input
Some models of Σ-V series three-phase 200 V power input SERVOPACK can be used also with a single-phase
200 V power supply.
The following models support a single-phase 200-V power input.
SGDV-R70A, -R90A, -1R6A, -2R8A, -5R5A
When using the SERVOPACK with single-phase, 200 V power input, set parameter Pn00B.2 to 1.
There is no need to change the parameter for a SGDV-120A11A008000 SERVOPACK because it uses a single-phase 200 V power supply.
(1)Parameter Setting
Single-phase Power Input Selection
3.1 Main Circuit Wiring
When
Enabled
After restartSetup
Pn00B
ParameterMeaning
n.0
[Factory setting]
n.1
Enables use of three-phase power supply for three-phase
SERVOPACK.
Enables use of single-phase power supply for three-phase
SERVOPACK.
WARNING
• If single-phase 200 V is input to a SERVOPACK with a single-phase power input without changing the setting of Pn00B.2 to 1 (single-phase power input), a main circuit cable open phase alarm (A.F10) will be
detected.
• SERVOPACK models other than those for single-phase 200-V power input do not support single-phase
power input. If a single-phase 200 V is input to the SERVOPACK that do not support single-phase power
input, the main circuit cable open phase alarm (A.F10) will be detected.
• When using a single-phase 200 V power supply, the SGDV-R70A, -R90A, -1R6A, -2R8A, or -5R5A SERVOPACK may not be able to produce the same servomotor torque-speed characteristics as using a threephase 200 V power input. Refer to the diagram of each servomotor torque-speed characteristics in
Series Product Catalog (No.: KAEP S800000 42).
(2)Main Circuit Power Input Terminals
Connect a single-phase 200 V power supply of the following specifications to L1 and L2 terminals.
The specifications of the power supplies other than the main circuit power supply are the same as for threephase power supply input.
Classification
Σ
-V
Terminal
Symbols
L1, L2
*1
L3
∗1. Do not use L3 terminal.
∗2. The official model number is SGDV-120A11A008000.
1QF: Molded-case circuit breaker
1FLT: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main circuit power supply)
1Ry: Relay
SERVOPACK
SGDV-A
(For servo
alarm display)
supply ON
Servo power
supply OFF
Servo power
3.1.3 Using the SERVOPACK with Single-phase, 200 V Power Input
∗ The official model number is SGDV-120A11A008000.
(4)Wiring Example with Single-phase 200-V Power Supply Input
SERVOPACK with Single-phase, 200-V Power Supply
Applicable SERVOPACK Model: SGDV-R70A, -R90A, -1R6A, -2R8A, -5R5A, and -120A11A008000.
3-12
Page 63
3.1 Main Circuit Wiring
3
Wiring and Connection
(5)Power Supply Capacities and Power Losses
The following table shows SERVOPACK’s power supply capacities and power losses when using single-
phase 200 V power supply.
Maximum
Main Circuit
Power
Supply
Single-phase,
200 V
∗ The official model number is SGDV-120A11A008000.
Note 1. SGDV-R70A, -R90A, -1R6A, and -2R8A SERVOPACKs do not have built-in regenerative resistors. If the regen-
erative energy exceeds the specified value, connect an external regenerative resistor between B1/ and B2.
2. Regenerative resistor power losses are allowable losses. Take the following action if this value is exceeded.
3. External regenerative resistors are not included.
Applicable
Servomotor
Capacity
[kW]
0.05R70A 0.20.665.2
0.1R90A 0.30.917.424.4
0.21R6A 0.71.613.730.7
0.42R8A1.22.824.941.9
0.755R5A1.95.552.7877.7
1.5
• Remove the lead or shorting bar between terminals B2 and B3 on the SERVOPACK main circuit of SGDV5R5A, -120A SERVOPACKs.
• Install an external regenerative resistor between external regenerative resistor connection terminals B1/ and
B2.
SERVOPACK
Model SGDV-
120A
Power Supply
SERVOPACK
*
Capacity per
[kVA]
411.668.21022100.2
Output
Current
[Arms]
Main
Circuit
Power
Loss
[W]
Regenerative
Resistor
Power Loss
[W]
–
Control
Circuit
Power
Loss
(6)How to Select Molded-case Circuit Breaker and Fuse Capacities
The following table shows the SERVOPACK’s current capacities and inrush current when using single-phase
Use these values as a basis for selecting the molded-case circuit breaker and fuse.
[W]
17
To ta l
Power
Loss
[W]
22.2
Main Circuit
Power
Supply
Singlephase,
200 V
∗ The official model number is SGDV-120A11A008000.
Note 1. To comply with the EU low voltage directive, connect a fuse to the input side as protection against accidents
caused by short-circuits. Select the fuse for the input side that are compliant with UL standards.
The table above also provides the net values of current capacity and inrush current. Select a fuse and a moldedcase circuit breaker which meet the breaking characteristics shown below.
• Main circuit, control circuit: No breaking at three times the current values shown in the table for 5 s.
• Inrush current: No breaking at the current values shown in the table for 20 ms.
2. The following restrictions apply to UL standard compliance conditions for SGDV-120A11A008000 SERVOPACKs.
• Current rating when using molded-case circuit breaker: 40 A max.
Maximum
Applicable
Servomotor
Capacity
[kW]
0.05R70A 0.22
0.1R90A 0.32
0.21R6A 0.73
0.42R8A1.25
0.755R5A1.99
1.5
SERVOPACK
Model
SGDV-
120A
*
Power Supply
Capacity per
SERVOPACK
[kVA]
4160.25
Current CapacityInrush Current
Main
Circuit
[Arms]
Control
Circuit
[Arms]
0.2
Main
Circuit
[A0-p]
33
Control
Circuit
[A0-p]
70
33
3-13
Page 64
3 Wiring and Connection
3.1.4 Using the SERVOPACK with a DC Power Input
3.1.4Using the SERVOPACK with a DC Power Input
(1)Parameter Setting
When using a DC power supply, make sure to set the parameter Pn001.2 to 1 (DC power input supported)
before inputting DC power.
ParameterMeaningWhen Enabled Classification
Pn001
Observe the following precautions.
n.0Enables use of AC power input.
n.1Enables use of DC power input.
WARNING
• Either AC or DC power can be input to the 200-V, 400-V SERVOPACKs. Always set Pn001.2 to 1 to specify a DC power input before inputting DC power. Only AC power can be input to the 100-V SERVOPACKs.
If DC power is input without changing the parameter setting, the SERVOPACK’s internal elements will burn and
may cause fire or damage to the equipment.
• With a DC power input, time is required to discharge electricity after the main power supply is turned OFF.
A high residual voltage may remain in the SERVOPACK after the power supply is turned OFF. Be careful
not to get an electric shock.
• Install fuses on the wires if DC power is used.
• Servomotor returns a regenerated energy to the power supply. The SERVOPACK that can use a DC
power supply is not capable of processing the regenerated energy. Provide measures to process the
regenerated energy on the power supply.
• With a DC power input, connect an external inrush current limit circuit.
Failure to observe this caution may result in damage to the equipment.
After restartSetup
(2)DC Power Supply Input Terminals for the Main and Control Circuits
1QF: Molded-case circuit breaker
1FLT: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main circuit power supply)
1Ry: Relay
∗ Terminal names differ depending on model of SERVOPACK. Refer to (2) DC Power Supply Input Terminals for the
Main and Control Circuits.
400-V SERVOPACK SGDV-D
R S T
1QF
1FU
1KM
400-V SERVOPACK
SGDV-D
U
V
*
W
B1
2
24 V
0 V
CN1
ALM
3
ALM
4
M
ENC
+24 V
1Ry
+
−
1D
0 V
3SA
1FLT
2KM
1Ry
AC/DC
AC/DC
(For servo
alarm display)
Servo power
supply ON
1KM
1KM
Servo power
supply OFF
1Ry
1KM
1SA
2KM
2SA
1PL
1QF: Molded-case circuit breaker
1FLT: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main circuit power supply)
1Ry: Relay
∗ Terminal names differ depending on model of SERVOPACK. Refer to (2) DC Power Supply Input Terminals for the
Main and Control Circuits.
3-15
Page 66
3 Wiring and Connection
3.1.5 Using More Than One SERVOPACK
3.1.5Using More Than One SERVOPACK
This section shows an example of the wiring and the precautions when more than one SERVOPACK is used.
(1)Wiring Example
Connect the alarm output (ALM) terminals for three SERVOPACKs in series to enable alarm detection relay
1RY to operate. When the alarm occurs, the ALM output signal transistor is turned OFF.
Power supply
RS T
1QF
3SA
1FLT
2KM
Relay
terminal
(For servo alarm
1Ry
Servo power
supply ON
1KM
1KM
1QF:
1FLT:
Servo power
supply OFF
1Ry
Molded-case circuit breaker
Noise filter
display)
1PL
1KM
1SA
2KM
2SA
1KM: Magnetic contactor
(for control power supply)
Magnetic contactor
2KM:
(for main circuit power supply)
Relay
1Ry:
Indicator lamp
1PL:
Surge absorber
1SA:
2SA:
Surge absorber
3SA:
Surge absorber
1D:
Flywheel diode
1KM
Relay
terminal
Relay
terminal
Relay
terminal
L1
SERVOPACK
L2
L3
L1C
L2C
L1
SERVOPACK
L2
L3
L1C
L2C
L1
SERVOPACK
L2
L3
L1C
L2C
CN1
3
4
CN1
3
4
CN1
3
4
ALM+
ALM−
ALM+
ALM−
ALM+
ALM−
1Ry
Servomotor
M
+24 V
1D
Servomotor
M
Servomotor
M
0 V
3-16
(2)Precautions
Multiple SERVOPACKs can share a single molded-case circuit breaker (1QF) or noise filter. Always select a
molded-case circuit breaker or noise filter that has enough capacity for the total power supply capacity (load
conditions) of the SERVOPACKs.
Page 67
3
Wiring and Connection
3.1.6General Precautions for Wiring
• Use shielded twisted-pair cables or screened unshielded twisted-pair cables for I/O signal cables and
encoder cables.
• The maximum wiring length is 3 m for I/O signal cables, 50 m for encoder cables or servomotor main circuit cables, and 10 m for control power supply cables for the SERVOPACK with a 400-V power supply
(+24 V, 0 V).
•
• Use a molded-case circuit breaker (1QF) or fuse to protect the main circuit.
The SERVOPACK connects directly to a commercial power supply; it is not isolated
through a transformer or other device.
Always use a molded-case circuit breaker (1QF) or fuse to protect the servo system
from accidents involving different power system voltages or other accidents.
• Install a ground fault detector.
The SERVOPACK does not have a built-in protective circuit for grounding. To configure a safer system, install a ground fault detector against overloads and short-circuiting, or install a ground fault detector combined with a molded-case circuit breaker.
• Do not turn the power ON and OFF more than necessary.
• Do not use the SERVOPACK for applications that require the power to turn ON and
OFF frequently. Such applications will cause elements in the SERVOPACK to deteriorate.
• As a guideline, at least one hour should be allowed between the power being
turned ON and OFF once actual operation has been started.
3.1 Main Circuit Wiring
CAUTION
To ensure safe, stable application of the servo system, observe the following precautions when wiring.
• Use the connection cables specified in the
Σ
-V Series Product Catalog (No.: KAEP S800000 42). Design
and arrange the system so that each cable will be as short as possible.
• Observe the following precautions when wiring the ground.
• Use a cable as thick as possible (at least 2.0 mm
2
).
• Grounding to a resistance of 100 Ω or less for 100-V, 200-V SERVOPACKs, 10 Ω or less for 400-V
SERVOPACKs is recommended.
• Be sure to ground at only one point.
• Ground the servomotor directly if the servomotor is insulated from the machine.
• Do not apply bending stress or tension to the signal cables when you handle them. The core wires are very
thin (0.2 mm
2
or 0.3 mm2).
3-17
Page 68
3 Wiring and Connection
3.2.1 I/O Signal (CN1) Names and Functions
3.2I/O Signal Connections
This section describes the names and functions of I/O signals (CN1). Also connection examples by control
method are shown.
3.2.1I/O Signal (CN1) Names and Functions
The following table shows the names and functions of I/O signals (CN1).
(1)Input Signals
Signal Pin No.NameFunction
P-OT
(/SI1)
N-OT
(/SI2)
/DEC
(/SI3)
/EXT 1
(/SI4)
/EXT 2
(/SI5)
/EXT 3
(/SI6)
/SI013
+24VIN 6
BAT (+)
BAT (-)1415
/P-CL
/N-CL
Note 1. You can change the allocations of the input signals (/SI0 to /SI6). For details, refer to 3.3.1 Input Signal Alloca-
7
8
9
10
11
12
Can be
allocated
tions.
2. If the Forward run prohibited/ Reverse run prohibited function is used, the SERVOPACK is stopped by software
controls, not by electrical or mechanical means. If the application does not satisfy the safety requirements, add an
external circuit for safety reasons as required.
Forward run
prohibited,
Reverse run
prohibited
Homing deceleration
switch signal
External latch signal 1
External latch signal 2
External latch signal 3
Controls the brake. The brake is released when the signal
turns ON (closed).
Allocation can be changed to general-purpose output signals
(/SO1+, /SO1-).
Used for general-purpose output.
Note: Set the parameter to allocate a function.
The allocation of an output signal to a pin can be changed in
accordance with the function required.
Encoder output pulse signals with 90° phase differential
Connects to the 0 V pin on the control circuit of the host controller.
Connected to frame ground if the shielded wire of the I/O signal cable is connected to the connector shell.
3.2 I/O Signal Connections
Refer-
ence
Section
4.3.2
−
−
4.4.4
4.7.5
−
−
Note: You can change the allocations of the output signals (/SO1 to /SO3). For details, refer to 3.3.2 Output Signal Alloca-
tions.
3.2.2Safety Function Signal (CN8) Names and Functions
The following table shows the terminal layout of safety function signals (CN8).
Signal NamePin No.Function
/HWBB1+4
/HWBB1-3
/HWBB2+6
/HWBB2-5
EDM1+8
EDM1-7
–
–
∗ Do not use pins 1 and 2 because they are connected to the internal circuits.
1
2
Hard wire baseblock input 1
Hard wire baseblock input 2
Monitored circuit status output 1
*
–
*
–
For hard wire baseblock input.
Baseblock (motor current off) when
OFF.
ON when the /HWBB1 and the
/HWBB2 signals are input and the
SERVOPACK enters a baseblock state.
3-19
Page 70
3 Wiring and Connection
SO1+ / BK+
SO1- / BK-
/SO2+
/SO2-
/SO3+
ALM+
ALM-
1
2
23
24
3
4
+24VIN
+24 V
3.3 kΩ
6
8
10
9
11
12
/SI0
P-OT
N-OT
/DEC
/EXT1
/EXT2
/EXT3
13
7
/SO3-
SERVOPACK
25
26
16
SG
*
1
*
2
*
3
PBO
PCO
/PBO
PAO
/PAO
/PCO
21
17
18
19
20
22
EDM1+
EDM1-
FG
/HWBB1+
/HWBB1-
/HWBB2+
/HWBB2-
24 V
0 V
Safety function device
*
4
CN8
6
3
4
5
8
7
Encoder output
pulse phase A
Encoder output
pulse phase B
Encoder output
pulse phase C
Applicable line receiver:
SN75ALS175 or
MC3486 manufactured
by Texas Instruments or
the equivalent
Photocoupler output
Max. allowable voltage: 30 VDC
Max. allowable current: 50 mA DC
Connect shield to
connector shell.
Connector
shell
SERVOPACK
Switch
Fuse
Generalpurpose
Servo alarm output
(OFF for an alarm)
Brake
(Brake released when ON)
Reverse run prohibited
(Prohibited when OFF)
Forward run prohibited
(Prohibited when OFF)
External latch signal 1
(Latched when ON)
External latch signal 2
(Latched when ON)
External latch signal 3
(Latched when ON)
Homing deceleration
switch
(Decelerated when ON)
Control power supply
for sequence signal
Backup
battery
(2.8 to 4.5 V)
*
5
*
5
*
5
14
15
BAT (+)
BAT (-)
+
-
3.2.3 Example of I/O Signal Connections
3.2.3Example of I/O Signal Connections
The following diagram shows a typical connection example.
3-20
∗1. represents twisted-pair wires.
∗2. Connect when using an absolute encoder. When the encoder cable with the battery case is connected, do not connect
a backup battery.
∗3. The 24-VDC power supply is not included. Use a 24-VDC power supply with double insulation or reinforced insula-
tion.
∗4. When using a safety function device, refer to 4.9 Safety Function. When not using a safety function device, leave the
safety function’s jumper connector that is included with the SERVOPACK inserted in CN8.
∗5. Always use line receivers to receive the output signals.
Note: The functions allocated to the input signals /DEC, P-OT, N-OT, /EXT1, /EXT2, and /EXT3 and the output signals
/SO1, /SO2, and /SO3 can be changed by using the parameters. For details, refer to 3.3.1 Input Signal Allocations
and 3.3.2 Output Signal Allocations.
Page 71
3
Wiring and Connection
3.3I/O Signal Allocations
Input Signal Names
and Parameters
Validity
Level
Input
Signal
CN1 Pin Numbers
Connection Not
Required
(SERVOPACK
judges the connec-
tion)
13789101112
Always ONAlways
OFF
Forward Run Prohibited
Pn50A.3
H P-OT0123456
78
L/P-OT9ABCDEF
Level at which input signal
allocations are valid.
The parameter set values to be used are shown.
Signals are allocated to CN1 pins according to the
selected set values.
Values in cells in bold lines are the factory settings.
If always ON (7) or always OFF (8) is set, signals
will be processed in the SERVOPACK, which will
eliminate the need for wiring changes.
This section describes the I/O signal allocations.
3.3.1Input Signal Allocations
• Inverting the polarity of the forward run prohibited and reverse run prohibited signals
from the factory setting will prevent the overtravel function from working in case of signal line disconnections or other failures.
If this setting is absolutely necessary, check the operation and confirm that there are
no safety problems.
• When two or more signals are allocated to the same input circuit, input signal level is
valid for all allocated signals, resulting in an unexpected machine operation.
Input signals are allocated as shown in the following table.
Refer to the Interpreting the Input Signal Allocation Tables and change the allocations accordingly.
<Interpreting the Input Signal Allocation Tables>
3.3 I/O Signal Allocations
3-21
Page 72
3 Wiring and Connection
3.3.1 Input Signal Allocations
Input Signal Names
and Parameters
Forward Run Prohibited
Pn50A.3
Reverse Run Prohibited
Pn50B.0
Forward External
Torque Limit
Pn50B.2
Reserve External
Torque Limit
Pn50B.3
Homing Deceleration
LS
Pn511.0
External Latch Signal 1
Pn511.1
External Latch Signal 2
Pn511.2
External Latch Signal 3
Pn511.3
Validity
Level
H P-OT0123456
L/P-OT9ABCDEF
H N-OT0123456
L/N-OT0ABCDEF
L /P-CL0123456
HP-CL9ABCDEF
L /N-CL0123456
HN-CL9ABCDEF
L /DEC0123456
HDEC9ABCDEF
L EXT1****456
H/EXT1****DEF
L EXT2****456
H/EXT2****DEF
L EXT3****456
H/EXT3****DEF
Input
Signal
13789101112
CN1 Pin Numbers
Connection Not
Required
(SERVOPACK
judges the connec-
tion)
Always ONAlways
OFF
78
78
78
78
78
78
78
78
∗ These pins cannot be allocated. The setting is not valid.
3-22
Page 73
3
Wiring and Connection
3.3.2Output Signal Allocations
Output Signal
CN1 Pin Numbers
Invalid
㸦not use㸧
1 (2)23 (24)25 (26)
Brake
Pn50F.2
/BK1230
The parameter set values to be used are shown.
Signals are allocated to CN1 pins according to the
selected set values.
Values in cells in bold lines are the factory settings.
Output Signal Names
and Parameters
• The signals not detected are considered as "Invalid." For example, Positioning Completion (/COIN) signal in speed control is "Invalid."
• Inverting the polarity of the brake signal (/BK), i.e. positive logic, will prevent the holding brake from working in case of its signal line disconnection.
If this setting is absolutely necessary, check the operation and confirm that there are
no safety problems.
• When two or more signals are allocated to the same output circuit, a signal is output
with OR logic circuit.
Output signals are allocated as shown in the following table.
Refer to the Interpreting the Output Signal Allocation Tables and change the allocations accordingly.
<Interpreting the Output Signal Allocation Tables>
3.3 I/O Signal Allocations
Output Signal Names
and Parameters
Positioning Completion
Pn50E.0
Speed Coincidence
Detection
Pn50E.1
Rotation Detection
Pn50E.2
Servo Ready
Pn50E.3
Torque Limit Detection
Pn50F.0
Speed Limit Detection
Pn50F.1
Brake
Pn50F.2
Warning
Pn50F.3
Near
Pn510.0
Pn512.0=1Polarity inversion of CN1-1(2)
Pn512.1=1Polarity inversion of CN1-23(24)
Pn512.2=1Polarity inversion of CN1-25(26)
Output Signal
/COIN1230
/V-CMP1230
/TGON1230
/S-RDY1230
/CLT1230
/VLT1230
/BK1230
/WARN1230
/NEAR1230
1 (2)23 (24)25 (26)
CN1 Pin Numbers
Invalid
(not use)
0
(Not invert at
factory setting)
3-23
Page 74
3 Wiring and Connection
3.3 kΩ
/DEC, etc.
SERVOPACK
24 VDC
+24VIN
24 VDC
3.3 kΩ
/DEC, etc.
SERVOPACK
+24VIN
24 V
+
−
SERVOPACK input
3.4.1 Sequence Input Circuit
3.4Examples of Connection to Host Controller
This section shows examples of SERVOPACK I/O signal connection to the host controller.
3.4.1Sequence Input Circuit
(1)Photocoupler Input Circuit
CN1 connector terminals 6 to 13 are explained below.
The sequence input circuit interface is connected through a relay or open-collector transistor circuit. When
connecting through a relay, use a low-current relay. If a low-current relay is not used, a faulty contact may
result.
Relay Circuit ExampleOpen-collector Circuit Example
Note: The 24 VDC external power supply capacity must be 50 mA minimum.
The SERVOPACK’s input circuit uses bidirectional photocoupler. Select either the sink circuit or the source
circuit according to the specifications required for each machine.
Note 1. The connection examples in 3.2.3 Example of I/O Signal Connections are sink circuit connections.
2. The ON/OFF polarity differs between when a sink circuit is connected and when a source circuit is connected.
Sink CircuitSource Circuit
24 V
−
+
Input Signal PolaritiesInput Signal Polarities
SignalLevel
ON
OFF
Low (L)
level
High (H)
level
SERVOPACK input
Voltage
Level
0 VCloseON
24 VOpenOFF
ContactSignalLevel
High (H)
level
Low (L)
level
Voltage
Level
24 VClose
0 VOpen
Contact
3-24
Page 75
3
Wiring and Connection
(2)Safety Input Circuit
SERVOPACK
5 to 12 VDC
As for wiring input signals for safety function, input signals make common 0 V. It is necessary to make an
input signal redundant.
Input Signal Connection Example
24-V power supply
Switch
Fuse
/HWBB1+
/HWBB2+
3.4.2Sequence Output Circuit
/HWBB1-
/HWBB2-
SERVOPACK
CN8
3.3 kΩ
4
3.3 kΩ
3
3.3 kΩ
6
3.3 kΩ
5
3.4 Examples of Connection to Host Controller
Three types of SERVOPACK output circuit are available.
Incorrect wiring or incorrect voltage application to the output circuit may cause short-circuit.
If a short-circuit occurs as a result of any of these causes, the holding brake will not
work. This could damage the machine or cause an accident resulting in death or injury.
(1)Photocoupler Output Circuit
Photocoupler output circuits are used for servo alarm (ALM), servo ready (/S-RDY), and other sequence output signal circuits. Connect a photocoupler output circuit through a relay or line receiver circuit.
Relay Circuit ExampleLine Receiver Circuit Example
SERVOPACK
Note: The maximum allowable voltage and current range of the photocoupler output circuit are as follows:
• Maximum allowable voltage: 30 VDC
• Current range: 5 to 50 mA DC
5 to 24 VDC
0V
Relay
3-25
Page 76
3 Wiring and Connection
SERVOPACK Host Controller
Applicable line receiver:
SN75ALS175 or the
equivalent
220 to
470 Ω
EDM1+
EDM1-
0 V
8
7
CN8
24 V Power Supply
SERVOPACK
Host controller
3.4.2 Sequence Output Circuit
(2)Line Driver Output Circuit
CN1 connector terminals, 17-18 (phase-A signal), 19-20 (phase-B signal), and 21-22 (phase-C signal) are
explained below.
These terminals output the following signals via the line-driver output circuits.
• Output signals for which encoder serial data is converted as two phases pulses (PAO, /PAO, PBO, /PBO)
• Origin pulse signals (PCO, /PCO)
Connect the line-driver output circuit through a line receiver circuit at the host controller.
Line Receiver Circuit Example
(3)Safety Output Circuit
The external device monitor (EDM1) for safety output signals is explained below.
A configuration example for the EDM1 output signal is shown in the following diagram.
Specifications
ON
OFF
Output
Status
Both the /HWBB1 and /HWBB2 signals are working normally.
The /HWBB1 signal, the /HWBB2 signal, or both are not
working normally.
TypeSignal NamePin No.
OutputEDM1
CN8-8
CN8-7
Meaning
Electrical characteristics of EDM1 signal are as follows.
ItemsCharacteristicRemarks
Maximum Allowable Voltage30 VDC−
Maximum Allowable Current50 mADC−
Maximum Voltage Drop at ON1.0 VVoltage between EDM1+ to EDM1- at current is 50 mA.
Maximum Delay Time20 ms
3-26
Time from the change in /HWBB1 or /HWBB2 until the
change in EDM1.
Page 77
3.5 Wiring MECHATROLINK-II Communications
3
Wiring and Connection
Ln
L1
L2
Terminator
DC24V
DC 0V
MP2300
YASKAWA
TEST
ޓ
ޓ
ޓ
Option
Option
RDY
ALM
TX
RUN
ERR
BAT
MON
CNFG
INT
SUP
STOP
SW1
OFF ON
BATTERY
CPU I/O
M-I/II
218IF-01
ERR
COL
RX
RUN
STRX
TX
INIT
TEST
ONOFF
PORT
10Base-T
3.5Wiring MECHATROLINK-II Communications
The following diagram shows an example of connections between a host controller and a SERVOPACK using
MECHATROLINK-II communications cables (CN6A, CN6B).
Note 1. The length of the cable between stations (L1, L2 ... Ln) must be 0.5 m or more.
2. The total cable length must be L1 + L2 ... + Ln ≤ 50.
3. When multiple SERVOPACKs are connected by MECHATROLINK-II communications cable, a terminator must
be installed at the final SERVOPACK.
3-27
Page 78
3 Wiring and Connection
3.6.1 Encoder Signal (CN2) Names and Functions
3.6Encoder Connection
This section describes the encoder signal (CN2) names, functions, and connection examples.
3.6.1Encoder Signal (CN2) Names and Functions
The following table shows the names and functions of encoder signals (CN2).
Signal NamePin No.Function
PG5V1Encoder power supply +5 V
PG0V2Encoder power supply 0 V
BAT (+)*3Battery (+)
BAT (-)*4Battery (-)
PS5Serial data (+)
/PS6Serial data (-)
ShieldShell–
∗ These do not need to be connected for an incremental encoder.
3.6.2Encoder Connection Examples
The following diagrams show connection examples of the encoder, the SERVOPACK, and the host controller.
(1)Incremental Encoder
Incremental encoder
∗1
ENC
(Shell)
∗1. The pin arrangement for wiring connectors varies in accordance with the servomotor that is used.
∗2
PS
/PS
PG5 V
PG0 V
Shielded wire
CN2
5
6
Output line-driver SN75ALS174
manufactured by Texas
Instruments or the equivalent
1
2
Connector shell
SERVOPACK
Phase A
Phase B
Phase C
0 V
Connector
shell
Host controller
R
R
R
CN1
17
18
19
20
21
22
O
PA
/P AO
PBO
/PBO
PCO
/PCO
∗2
CN1
SG
16
Applicable line receiver:
R (terminating resistance): 220 to 470 Ω
SN75ALS175 or MC3486
manufactured by Texas
Instruments,
0 V
Phase A
Phase B
Phase C
or the equivalent
3-28
∗2. : represents shielded twisted-pair wires.
Page 79
3
Wiring and Connection
(2)Absolute Encoder
/PCO
ENC
3
4
14
15
BAT
BAT
(+)
(-)
CN2
17
18
19
20
21
22
CN1
PA
O
/P
AO
PBO
/PBO
PCO
CN1
5
6
1
2
PG5V
PG0V
PS
/PS
BAT(+)
BAT(-)
R
R
R
0 V
SG
16
0 V
+
-
Absolute encoder
(Shell)
SERVOPACK
Phase A
Phase B
Phase C
Connector
shell
Connector
shell
∗2
∗3
∗2
∗1
Phase
A
Phase
B
Phase
C
Host controller
Battery
Output line-driver SN75ALS174
manufactured by Texas
Instruments or the equivalent
R (terminating resistance): 220 to 470 Ω
Applicable line receiver:
SN75ALS175 or MC3486
manufactured by Texas
Instruments,
or the equivalent
Circuit Example
3.6 Encoder Connection
∗1. The pin arrangement for wiring connectors varies in accordance with the servomotor that is used.
∗2. : represents shielded twisted-pair wires.
∗3. When using an absolute encoder, provide power by installing an encoder cable with a JUSP-BA01-E Battery Case or
install a battery on the host controller.
• When Installing a Battery on the Encoder Cable
Use the encoder cable with a battery case that is specified by Yaskawa.
For details, refer to the
Σ
-V Series Product Catalog (Catalog No.: KAEP S800000 42).
• When Installing a Battery on the Host Controller
Insert a diode near the battery to prevent reverse current flow.
+
Battery
-
3-29
Page 80
3 Wiring and Connection
Enlarged View
Enlarged View
3.7.1 Connecting Regenerative Resistors
3.7Connecting Regenerative Resistors
If the built-in regenerative resistor is insufficient, connect an external regenerative resistor by one of the following methods and set the regenerative resistor capacity (Pn600). As for precautions on selecting a regenera-
tive resistor and its specifications, refer to Σ-V Series Product Catalog (No.: KAEP S800000 42).
WARNING
• Be sure to connect the regenerative resistor correctly. Do not short-circuit between B1/ and B2.
Doing so may result in fire or damage to the regenerative resistor or SERVOPACK.
3.7.1Connecting Regenerative Resistors
The following instructions show how to connect the regenerative resistors and SERVOPACKs.
(1)SERVOPACKs: Model SGDV-R70F, -R90F, -2R1F, -2R8F, -R70A, -R90A, -1R6A,
-2R8A
Connect an external regenerative resistor between the B1/ and B2 terminals on the SERVOPACK. After
connecting a resistor, select the capacity. For more information on how to set the capacity of regenerative
resistors, refer to 3.7.2 Setting Regenerative Resistor Capacity.
(2)SERVOPACKs: Model SGDV-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A,
-1R9D, -3R5D, -5R4D, -8R4D, -120D, -170D
Disconnect the wiring between the SERVOPACK’s B2 and B3 terminals and connect an external regenerative
resistor between the B1/ and B2 terminals. After connecting the resistor, select the capacity. For more information on how to set the capacity of regenerative resistors, refer to 3.7.2 Setting Regenerative Resistor Capac-ity.
Note: Be sure to take out the lead wire between the B2 and B3 terminals.
3-30
Page 81
3.7 Connecting Regenerative Resistors
3
Wiring and Connection
Regenerative Resistor Unit
JUSP-RA-E
SERVOPACK
(3)SERVOPACKs: Model SGDV-470A, -550A, -590A, -780A, -210D, -260D, -280D, -
370D
No built-in regenerative resistor is provided, so the external regenerative resistor is required. The regenerative
resistor units are as follows:
Note: The regenerative resistor unit is constructed from a number of resistors.
Main Circuit
Power Supply
Three-phase
200 V
Three-phase
400 V
Applicable
SERVOPACK Model
SGDV-
470AJUSP-RA04-E
550A, 590A, 780AJUSP-RA05-E
210D, 260DJUSP-RA18-E
280D, 370DJUSP-RA19-E
Applicable
Regenerative
Resistor Unit
Resis-
tance (Ω)
6.25
3.13
18
14.25
Specifications
Four 25 Ω (220 W) resistors are connected
in parallel.
Eight 25 Ω (220 W) resistors are connected
in parallel.
Two series of two 18 Ω (220 W) resistors
each are connected in parallel.
Four series of two 28.5 Ω (220 W) resistors
each are connected in parallel.
Connect the B1/ and B2 terminals of the SERVOPACK to the R1 and R2 terminals of the regenerative resistor unit.
Use Pn600 at the factory setting when you use a Yaskawa regenerative resistor unit. Set Pn600 when using a
non-YASKAWA external regenerative resistor.
3-31
Page 82
3 Wiring and Connection
Torque
3.7.2 Setting Regenerative Resistor Capacity
3.7.2Setting Regenerative Resistor Capacity
When a non-Yaskawa external regenerative resistor is connected, always set Pn600 (Regenerative Resistor
Capacity) to the resistor capacity.
WARNING
• If Pn600 is set to 0 when a non-Yaskawa external regenerative resistor is connected, regenerative overload alarms (A.320) may not be detected. If the regenerative overload alarm (A.320) is not detected correctly, the external regenerative resistor may be damaged and an injury or fire may result.
Classification
Pn600
Regenerative Resistor Capacity
Setting RangeUnitFactory SettingWhen Enabled
0 to SERVOPACK
capacity
10 W0ImmediatelySetup
Speed
Position
Be sure to set the regenerative resistor capacity (Pn600) to a value that is in accordance with the allowable
capacity of the actual external regenerative resistor being used.
The setting will vary with the cooling method of external regenerative resistor:
• For natural convection cooling: Set the value to a maximum 20% of the actually installed regenerative
resistor capacity (W).
• For forced convection cooling: Set the value to a maximum 50% of the actually installed regenerative
resistor capacity (W).
Example: Set 20 W (100 W × 20%) for the 100-W external regenerative resistor with natural convection
cooling method:
Pn600 = 2 (unit: 10 W)
Note 1. If Pn600 is not set to the optimum value, alarm A.320 will occur.
2. When set to the factory setting (Pn600 = 0), the SERVOPACK’s built-in resistor or Yaskawa’s regenerative resistor unit has been used.
• When the external regenerative resistors for power are used at the rated load ratio,
the resistor temperature increases to between 200 and 300°C. The resistors must be
used at or below the rated values. Check with the manufacturer for the resistor’s load
characteristics.
• For safety, use the external regenerative resistors with thermoswitches.
3-32
Page 83
3.8 Noise Control and Measures for Harmonic Suppression
3
Wiring and Connection
3.8Noise Control and Measures for Harmonic Suppression
This section describes the wiring for noise control and the DC reactor for harmonic suppression.
3.8.1Wiring for Noise Control
• Because the SERVOPACK is designed as an industrial device, it provides no mechanism to prevent noise interference.
• The SERVOPACK uses high-speed switching elements in the main circuit. Therefore
peripheral devices may receive switching noise. If the equipment is to be used near
private houses or if radio interference is a problem, take countermeasures against
noise.
• If installation conditions by the EMC directive must be met, refer to 2.4 EMC Installa-
tion Conditions in
S800000 43).
The SERVOPACK uses microprocessors. Therefore it may receive switching noise from peripheral devices.
To prevent the noise from the SERVOPACK or the peripheral devices from causing a malfunction of any one
of these devices, take the following precautions against noise as required.
Σ
-V Series User's Manual Setup Rotational Motor (No.: SIEP
• Position the input reference device and noise filter as close to the SERVOPACK as possible.
• Always install a surge absorber in the relay, solenoid and electromagnetic contactor coils.
• Do not bundle or run the main circuit cables together with the I/O signal cables or the encoder cables in the
same duct. Keep the main circuit cables separated from the I/O signal cables and the encoder cables with a
gap of at least 30 cm.
• Do not use the same power supply as electric welders, electrical discharge machines, and similar devices. If
the SERVOPACK is placed near equipment that generates high-frequency noise, install a noise filter on the
input side of the main circuit power supply cable and control power supply cable, even if the same power
supply is not used. Refer to (1) Noise Filter for the noise filter connection method.
• Take the grounding measures correctly. As for the grounding, refer to (2) Correct Grounding.
3-33
Page 84
3 Wiring and Connection
U
W
V
L2
L1
L3
L2C
L1C
CN2
CN1
ENC
(FG)
M
SERVOPACK
Servomotor
Operation relay
sequence
Signal generation
circuit (not included)
DC
power
(Ground plate)
2.0 mm
min.
2
200 VAC
Noise filter
∗3
∗3
∗2
2.0 mm
2
min .
Ground: Ground to an independent ground
Noise
filter
2.0 mm
2
min .
∗1
3.8.1 Wiring for Noise Control
(1)Noise Filter
The SERVOPACK has a built-in microprocessor (CPU), so protect it from external noise as much as possible
by installing a noise filter in the appropriate place.
The following is an example of wiring for noise control.
∗1. For ground wires connected to the ground plate, use a thick wire with a thickness of at least 2.0 mm2 (preferably,
plain stitch cooper wire).
∗2.should be twisted-pair wires.
∗3. When using a noise filter, follow the precautions in 3.8.2 Precautions on Connecting Noise Filter.
(2)Correct Grounding
Take the following grounding measures to prevent the malfunction due to noise.
Grounding the Motor Frame
Always connect servomotor frame terminal FG to the SERVOPACK ground terminal . Also be sure to
ground the ground terminal .
If the servomotor is grounded via the machine, a switching noise current will flow from the SERVOPACK
main circuit through servomotor stray capacitance. The above grounding is required to prevent the adverse
effects of switching noise.
Noise on the I/O Signal Cable
If the I/O signal cable receives noise, ground the 0 V line (SG) of the I/O signal cable. If the servomotor main
circuit cable is accommodated in a metal conduit, ground the conduit and its junction box. For all grounding,
ground at one point only.
3-34
Page 85
3
Wiring and Connection
3.8.2Precautions on Connecting Noise Filter
Noise
Filter
Noise
Filter
The ground wire
can be close to
input lines.
Ground plate
Ground plate
Incorrect
Correct
This section describes the precautions on installing a noise filter.
(1)Noise Filter Brake Power Supply
Use the following noise filter at the brake power input for 400-W or less servomotors with holding brakes.
MODEL: FN2070-6/07 (Manufactured by SCHAFFNER Electronic.)
(2)Precautions on Using Noise Filters
Always observe the following installation and wiring instructions.
Some noise filters have large leakage currents. The grounding measures taken also
affects the extent of the leakage current. If necessary, select an appropriate leakage current detector or leakage current breaker taking into account the grounding measures that
are used and leakage current from the noise filter. Contact the manufacturer of the noise
filter for details.
Do not put the input and output lines in the same duct or bundle them together.
3.8 Noise Control and Measures for Harmonic Suppression
Incorrect
Ground plate
Ground plate
Noise
Filter
Ground plate
Noise
Filter
Ground plate
Correct
Noise
Filter
Noise
Filter
Separate these circuits
Separate the noise filter ground wire from the output lines.
Do not accommodate the noise filter ground wire, output lines and other signal lines in the same
duct or bundle them together.
3-35
Page 86
3 Wiring and Connection
Shielded
ground wire
Noise
Filter
Noise
Filter
SERVOPACK SERVOPACK SERVOPACK SERVOPACK
Ground plate
Ground plate
Incorrect
Correct
Noise
Filter
Control Panel
Ground
SERVOPACK
SERVOPACK
Ground plate
L1
L2
SERVOPACK
AC reactor
Power
supply
3.8.3 Connecting a Reactor for Harmonic Suppression
Connect the noise filter ground wire directly to the ground plate.
Do not connect the noise filter ground wire to other ground wires.
If a noise filter is located inside a control panel, first connect the noise filter ground wire and the
ground wires from other devices inside the control panel to the ground plate for the control panel,
then ground the plates.
3-36
3.8.3Connecting a Reactor for Harmonic Suppression
The SERVOPACK has reactor connection terminals for power supply harmonic suppression that can be used
as required. The reactor is an optional part. You must acquire it separately. For reactor selection and specifications, refer to the
Connect a reactor as shown in the following diagram.
SERVOPACK with 100-VAC Power Input SERVOPACK with 200/400-VAC Power Input
Note 1. Connection terminals for DC reactor 1 and 2 are short-circuited at shipment. Remove the lead wire for
short-circuit, and connect a DC reactor.
2. DC reactors cannot be connected to SERVOPACKs with a single-phase 100-V power input.
Σ
-V Series Product Catalog (Catalog No.: KAEP S800000 42).
The DIP switch (SW2) is used to make the settings for MECHATROLINK-II communications.
The station address is set using the rotary switch (SW1) and the DIP switch (SW2).
4.1.1Setting the Communications Specifications
Set the communications specifications on the DIP switch (SW2).
SW2FunctionSettingDescriptionFactory setting
Pin 1 Sets the baud rate.
Sets the number of trans-
Pin 2
mission bytes.
Pin 3 Sets the station address.
Pin 4 Reserved. (Do not change.)OFF−OFF
• When connecting to a MECHATROLINK-I network, turn OFF pins 1 and 2.
• When using a MECHATROLINK-I network (Baud rate: 4 Mbps), the settings for the number of transmission bytes is disabled and the number of transmission bytes is always 17.
OFF4 Mbps (MECHATROLINK-I)
ON10 Mbps (MECHATROLINK-II)
OFF17 bytes
ON32 bytes
OFFStation address = 40H + SW1
ONStation address = 50H + SW1
ON
ON
OFF
4-3
Page 90
4 Operation
4.1.2 Setting the Station Address
4.1.2Setting the Station Address
The following table lists the possible settings of the rotary switch (SW1) and the DIP switch (SW2) that can be
combined to form a station address.
The factory setting for the station address is 41H (SW2 = OFF, SW1 = 1).
Bit 3 of SW2SW1Station AddressBit 3 of SW2SW1Station Address
OFF
0DisabledON050H
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
141HON151H
242HON252H
343HON353H
444HON454H
545HON555H
646HON656H
747HON757H
848HON858H
949HON959H
A4AHONA5AH
B4BHON B5BH
C4CHON C5CH
D4DHOND5DH
E4EHON E5EH
F4FHON F5FH
• After changing the setting, turn the power supply to the SERVOPACK OFF and ON again
to enable the new setting.
4.2MECHATROLINK-II Commands
For details on MECHATROLINK-II commands, refer to the Σ-V Series/DC Power Input Σ-V Series/Σ-V
Series for Large-Capacity Models User’s Manual MECHATROLINK-II Commands (Manual No.: SIEP
S800000 54).
4-4
Page 91
4
Operation
4.3Basic Functions Settings
CCW
Phase B
advanced
Time
Encoder output pulse
PAO
PBO
Motor speed
Torque reference
Motor speed
+
PAO
PBO
CW
Phase B
advanced
Encoder output pulse
Motor speed
Torque reference
Motor speed
+
Time
CCW
Phase A
advanced
Encoder output pulse
PAO
PBO
+
Time
Motor speed
Torque reference
Motor speed
4.3.1Servomotor Rotation Direction
The servomotor rotation direction can be reversed with parameter Pn000.0 without changing the polarity of
the speed/position reference. This causes the rotation direction of the servomotor to change, but the polarity of
the signal, such as encoder output pulses, output from the SERVOPACK does not change. (refer to 4.4.4 Encoder Output Pulses)
The standard setting for forward rotation is counterclockwise (CCW) as viewed from the load end of the servomotor.
4.3 Basic Functions Settings
Pn000
Parameter
n.
0
Sets CCW as forward direction.
[Factory setting]
n.
1
Sets CW as forward direction.
(Reverse Rotation Mode)
Forward/
Reverse
Reference
Forward
Reference
Reverse
Reference
Forward
Reference
Reverse
Reference
Direction of Motor Rotation and Encoder Output Pulse
Motor speed
CW
+
Torque reference
Encoder output pulse
PAO
Time
PBO
Motor speed
Phase A
advanced
Applicable
Overtravel
(OT)
P-OT
N-OT
P-OT
N-OT
Note: SigmaWin+ trace waveforms are shown in the above table.
4-5
Page 92
4 Operation
4.3.2 Overtravel
4.3.2Overtravel
The overtravel limit function forces movable machine parts to stop if they exceed the allowable range of
motion and turn ON a limit switch.
For rotating application such as disc table and conveyor, overtravel function is not necessary. In such a case,
no wiring for overtravel input signals is required.
• Installing limit switches
For machines that move using linear motion, connect limit switches to P-OT and N-OT of CN1 as shown below to
prevent machine damage. To prevent a contact fault or disconnection from causing accidents, make sure that the limit
switches are normally closed.
Servomotor
CAUTION
Forward direction
Limit
switch
Limit
switch
N-OT
P-OT
SERVOPACK
CN1
8
7
• Axes to which external force is applied in overtravel
Vertical axes:
There is a risk of the workpiece falling during the overtravel status because the /BK signal will remain ON (brake
release). Set the zero clamp status after the servomotor stops (Pn001 = n.
1
) to prevent the workpiece from falling.
Other axes to which external force is applied:
Overtravel will bring about a baseblock state after the servomotor stops, which may cause the servomotor to be
pushed back by the load’s external force. To prevent this, set the parameter (Pn001 = n.1) to bring the servo-
motor to zero clamp state after stopping.
For details on how to set the parameter, refer to (3) Servomotor Stopping Method When Overtravel is Used.
(1)Signal Setting
Typ eName
P-OTCN1-7
Input
N-OTCN1-8
Rotation in the opposite direction is possible during overtravel by inputting the reference.
Connector
Pin Number
SettingMeaning
ON
Forward run allowed.
Normal operation status.
OFFForward run prohibited. Forward overtravel.
ONReverse run allowed. Normal operation status.
OFFReverse run prohibited. Reverse overtravel.
(2)Overtravel Function Setting
Parameters Pn50A and Pn50B can be set to enable or disable the overtravel function.
4-6
If the overtravel function is not used, no wiring for overtravel input signals will be required.
When
Enabled
Classification
After restartSetup
Pn50A
Pn50B
ParameterMeaning
n.1
[Factory setting]
n.8
n.
2 [Fac-
tory setting]
n.
8
Inputs the Forward Run Prohibited (P-OT) signal from
CN1-7.
Disables the Forward Run Prohibited (P-OT) signal.
Allows constant forward rotation.
Inputs the Reverse Run Prohibited (N-OT) signal from
CN1-8.
Disables the Reverse Run Prohibited (N-OT) signal.
Allows constant reverse rotation.
A parameter can be used to re-allocate input connector number for the P-OT and N-OT signals. Refer to 3.3.1 Input Signal Allocations for details.
Page 93
4.3 Basic Functions Settings
4
Operation
Position
Torque
(3)Servomotor Stopping Method When Overtravel is Used
There are three servomotor stopping methods when an overtravel is used.
• Dynamic brake
By short-circuiting the electric circuits, the servomotor comes to a quick stop.
• Decelerate to a stop
Stops by using emergency stop torque.
• Coast to a stop
Stops naturally, with no control, by using the friction resistance of the servomotor in operation.
After servomotor stopping, there are two modes.
• Coast mode
Stopped naturally, with no control, by using the friction resistance of the servomotor in operation.
• Zero clamp mode
A mode forms a position loop by using the position reference zero.
The servomotor stopping method when an overtravel (P-OT, N-OT) signal is input while the servomotor is
operating can be set with parameter Pn001.
Mode After
Stopping
Coast
Zero clamp
When Enabled Classification
After restartSetup
Pn001
ParameterStop Method
n.00
[Factory setting]
n.01
n.02Coast
n.1
n.2Coast
DB
Deceleration to a stop
• A servomotor under torque control cannot be decelerated to a stop. The servomotor is stopped with the
dynamic braking (DB) or coasts to a stop according to the setting of Pn001.0. After the servomotor stops,
the servomotor will enter a coast state.
• For details on servomotor stopping methods after the SV_OFF command is received or an alarm occurs,
refer to 4.3.5 Stopping Servomotors after SV_OFF Command or Alarm Occurrence.
When Servomotor Stopping Method is Set to Decelerate to Stop
∗ Percentage (%) of rated motor torque.
Note: The factory setting is 800% so that the setting is large enough a value to operate the servomotor at maximum torque.
The maximum value of emergency stop torque that is actually available, however, is limited to the maximum torque
of the servomotor.
4-7
Page 94
4 Operation
Overtravel input signal
㧔P-OT, N-OT signals㧕
Overtravel warning
㧔A.9A0㧕
Servomotor power
Warning not detected.
OFFON
Enabled
Disabled
Enabled
Disabled
Disabled
Warning status
Normal operation
Normal operation
Motion command
ALM_CLR command
Command
4.3.2 Overtravel
(4)Overtravel Warning Function
Warning Output Timing
This function detects an overtravel warning (A.9A0) if overtravel occurs while the servomotor power is ON.
Using this function enables notifying the host controller when the SERVOPACK detects overtravel even if the
overtravel signal is ON only momentarily.
To use this function, set Pn00D to n.1 (Detects overtravel warning).
Note: The overtravel warning function is supported by software version 001A or later. The software version can be
checked with Fn012. For details, refer to 6.14 Software Version Display (Fn012).
<Notes>
• Warnings are detected for overtravel in the same direction as the reference.
• Warnings are not detected for overtravel in the reverse direction from the reference.
Example:A warning will not be output for a forward reference even if the N-OT signal (reverse run prohibited)
turns ON.
• A warning can be detected in either the forward or reverse direction, when there is no reference.
• A warning will not be detected when the servomotor power is OFF even if overtravel occurs.
• A warning will not be detected when the servomotor power changes from OFF to ON even if overtravel status
exists.
• To clear the overtravel warning, send a Clear Warning or Alarm command (ALM_CLR) regardless of the status of
the servomotor power and the overtravel signal. If the warning is cleared by this method during an overtravel
state, the occurrence of the warning will not be indicated until the overtraveling is corrected and reset.
• The overtravel warning will be detected when the software limit is in effect.
CAUTION
• The overtravel warning function only detects warnings. It does not affect on stopping for overtravel or
motion operations at the host controller. The next step (e.g., the next motion or other command) can be
executed even if an overtravel warning exists. However, depending on the processing specifications and
programming for warnings in the host controller, operation may be affected when an overtravel warning
occurs (e.g., motion may stop or not stop). Confirm the specifications and programming in the host controller.
• When an overtravel occurs, the SERVOPACK will perform stop processing for overtravel. Therefore, when
an overtravel warning occurs, the servomotor may not reach the target position specified by the host controller. Check the feedback position to make sure that the axis is stopped at a safe position.
Related Parameter
4-8
Pn00D
ParameterMeaningWhen Enabled Classification
n.0
[Factory setting]
n.1Detects overtravel warning.
Does not detect overtravel warning.
ImmediatelySetup
Page 95
4
Operation
4.3.3Software Limit Settings
The software limits set limits in software for machine movement that do not use the overtravel signals (P-OT
and N-OT). If a software limit is exceeded, an emergency stop will be executed in the same way as it is for
overtravel.
(1)Software Limit Function
The software limit function can be enabled or disabled.
Use the parameter Pn801.0 to enable the software limit function.
The software limit function can be enabled under the following conditions. Under all other circumstances, the
software limits will not be enabled even if a software limit is exceeded.
• The ZRET command has been executed.
• REFE = 1 using the POS_SET command.
Enable or disable the software limits using one of the following settings.
ParameterDescriptionWhen Enabled Classification
n.0Software limits enabled in both direction.
n.1Forward software limit enabled.
Pn801
n.2Reverse software limit enabled.
n.3
[Factory setting]
Both software limits disabled.
4.3 Basic Functions Settings
ImmediatelySetup
(2)Software Limit Check using References
Enable or disable software limit checks when target position references such as POSING or INTERPOLATE
are input. When the input target position exceeds the software limit, a deceleration stop will be performed
from the software limit set position.
ParameterDescriptionWhen Enabled Classification
Pn801
n.0
[Factory setting]
n.1Software limit check using references.
No software limit check using references.
ImmediatelySetup
(3)Software Limit Setting
Set the forward and reverse software limit values.
The area will be set in both directions. Always set the software limits so that the reverse limit value is less than
the forward limit value.
A holding brake is a brake used to hold the position of the movable part of the machine when the SERVOPACK is turned OFF so that movable part does not move due to gravity or external forces. Holding brakes are
built into servomotors with brakes.
The holding brake is used in the following cases.
Vertical Shaft
Servomotor
Holding brake
Prevents the
movable part from
moving due to its
own weight when the
power is OFF.
Movable part of
machine
Shaft with External Force Applied
External
force
Prevents the movable part (table)
from moving due to external force.
Movable part of machine
Servomotor
Holding brake
The brake built into the servomotor with brakes is a de-energization brake, which is used
only to hold and cannot be used for braking. Use the holding brake only to hold a
stopped servomotor.
The brake has the following operation delay times:
• Brake release time: The time from when the brake (/BK) signal is turned ON to when the brake actually
releases.
• Brake operation time: The time from when the brake (/BK) signal is turned OFF to when the brake is actually applied.
Set the operation ON and OFF timing as shown below while taking into consideration the brake operation
delay times.
Servo ON command
(SV_ON)
Servomotor power
Brake signal (/BK)
Brake contact part
(lining)
Position reference/
Speed reference
Motor speed
Servo OFF
OFF
OFF
Brake applied
*1
0
Servo ON
ON
ON
Brake releaseBrake applied
*1
*2
Servo OFF
OFF
*3
OFF
∗1. The brake operation delay times for servomotors with holding brakes are given in the following table. The table gives
typical operation delay times for when the power supply is switched on the DC side. Always evaluate performance
on the actual equipment before actual operation.
4-10
Page 97
4.3 Basic Functions Settings
4
Operation
M
BK
ENC
U
V
W
CN2
AC DC
BK-RY
BK-RY
+24 V
L1
L2
L3
L1C
L2C
(/BK+)
(/BK-)
CN1
1D
0 V
BK-R Y
: Brake control relay
A 24 VDC power supply is not included.
Brake power supply for 90 V Input voltage 200-V models: LPSE-2H01-E
Input voltage 100-V models: LPDE-1H01-E
Servomotor
with holding
brake
SERVOPACK
Power supply
Red
Black
Blue or
yellow
White
Brake power
supply
DC side
AC side
ModelVol tag eBrake Release Time (ms)Brake Applied Time (ms)
SGMJV-A5 to 04
60100
SGMJV-0880100
SGMAV-A5 to 0460100
SGMAV-06 to 1080100
24 VDC
SGMPS-01, -0820100
SGMPS-02, -04, -1540100
SGMGV-03 to 20
10080
SGMGV-30, -44170100 (24 VDC), 80 (90 VDC)
SGMGV-55, -75, -1A17080
SGMGV-1E25080
24 VDC,
90 VDC
SGMSV-10 to 2517080
SGMSV-30 to 5010080
∗2. After the SV_ON command is sent, wait at least for the brake release time plus 50 ms, and then output the reference
from the host controller to the SERVOPACK.
∗3. Set the brake operation and servo OFF timing with Pn506, Pn507, and Pn508.
(1)Wiring Example
Use the brake signal (/BK) and the brake power supply to form a brake ON/OFF circuit. The following diagram shows a standard wiring example.
The timing can be easily set using the brake signal (/BK).
4-11
Page 98
4 Operation
Relay Circuit Example
0V
Emergency stop
5 to 24 VDC
SERVOPACK
Photocoupler
4.3.4 Holding Brakes
• Select the optimum surge absorber in accordance with the applied brake current and
brake power supply.
Using LPSE-2H01-E: Z10D471 (manufactured by SEMITEC Corporation)
Using LPDE-1H01-E: Z10D271 (manufactured by SEMITEC Corporation)
Using 24-V power supply: Z15D121 (manufactured by SEMITEC Corporation)
• After the surge absorber is connected, check the total time the brake is applied for the
system. Depending on the surge absorber, the total time the brake is applied can be
changed.
• Configure the relay circuit to apply the holding brake by the emergency stop.
• The allocation of the /BK signal can be changed. Refer to (3) Brake Signal (/BK) Allo-cation to set the parameter Pn50F.
• When using a 24-V brake, separate the 24-VDC power supply from other power supplies, such as the one used for the I/O signals of CN1 connectors. Always install the
24-VDC power supply separately. If the power supply is shared, the I/O signals might
malfunction.
(2)Brake Signal (/BK) Setting
This output signal controls the brake. The allocation of the /BK signal can be changed. For details, refer to (3)
Brake Signal (/BK) Allocation.
The /BK signal turns OFF (applies the brake) when an alarm is detected or the SV_OFF command is received.
The brake OFF timing can be adjusted with Pn506.
TypeName
Output/BKCN1-1, CN1-2
The /BK signal is still ON during overtravel and the brake is still released.
Connector
Pin Number
SettingMeaning
ON (closed)Releases the brake.
OFF (open)Applies the brake.
4-12
Page 99
4
Operation
(3)Brake Signal (/BK) Allocation
Speed
Position
Torque
SV_OFF
command
/BK
output
Power to motor
Brake released
(ON)
Servo ON
Power to motor
Brake applied
(OFF)
Servo OFF
No power to motor
Pn506
Use parameter Pn50F.2 to allocate the /BK signal.
4.3 Basic Functions Settings
Connector
Parameter
Pin Number
Meaning
When
Enabled
+ Terminal- Terminal
n.0––The /BK signal is not used.
Pn50F
n.1
[Factory
CN1-1CN1-2
setting]
n.2CN1-23CN1-24
n.3CN1-25CN1-26
The /BK signal is output from output
terminal CN1-1, 2.
The /BK signal is output from output
terminal CN1-23, 24.
The /BK signal is output from output
terminal CN1-25, 26.
After
restart
When multiple signals are allocated to the same output terminal, the signals are output
with OR logic. For the /BK signal, do not use the output terminal that is already being
used for another signal.
(4)Brake ON Timing after the Servomotor Stops
When the servomotor stops, the /BK signal turns OFF at the same time as the SV_OFF command is received.
Use parameter Pn506 to change the timing to turn OFF the servomotor power after the SV_OFF command has
been received.
• When using the servomotor to control a vertical
axis, the machine movable part may shift slightly
depending on the brake ON timing due to gravity or
an external force. To eliminate this slight shift, set
parameter so that the power to the servomotor turns
OFF after the brake is applied.
• This parameter changes the brake ON timing while
the servomotor is stopped.
The servomotor will turn OFF immediately when an alarm occurs, regardless of the setting of this parameter. The machine movable part may shift due to gravity or external
force before the brake operates.
Classification
4-13
Page 100
4 Operation
Speed
Torque
Speed
Position
Torque
SV_OFF
command
Motor speed
Pn-507
Servo ON
Servo OFF
Pn508
Power to motor
ON
OFF
/BK output
Brake
released
(ON)
Brake applied
(OFF)
or alarm or
power OFF
Motor stopped by applying
DB or by coastingPn001.0
4.3.4 Holding Brakes
(5)Brake Signal (/BK) Output Timing during Servomotor Rotation
If an alarm occurs while the servomotor is rotating, the servomotor will come to a stop and the brake signal
(/BK) will be turned OFF. The timing of brake signal (/BK) output can be adjusted by setting the brake reference output speed level (Pn507) and the waiting time for brake signal when motor running (Pn508).
Note: If the stopping method when an alarm occurs is set to a zero-speed stop, the operation described in (4) Brake ON
Timing after the Servomotor Stops is performed after the servomotor stops.
/BK Signal Output Conditions
When Servomotor Rotating
The /BK signal goes to high level
(brake ON) when either of the following conditions is satisfied:
• When the motor speed falls
below the level set in Pn507
after the power to the servomotor is turned OFF.
• When the time set in Pn508 is
exceeded after the power to the
servomotor is turned OFF.
1 min
Position
-1
100ImmediatelySetup
Classification
Classification
• The servomotor will be limited to its maximum speed even if the value set in Pn507 is
higher than the maximum speed.
• Do not allocate the rotation detection signal (/TGON) and the brake signal (/BK) to the
same terminal. The /TGON signal will otherwise be turned ON by the falling speed on
a vertical axis, and the brake may not operate.
For the /BK signal, do not use the terminal that is already being used for another
signal.
4-14
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.