Xantrex XDL 35-5TP, XDL 35-5T User Manual [En, de, fr, it, es]

XDL Series Digital Programmable Triple Output DC Power Supply
XDL 35-5T XDL 35-5TP
Operating Manual
www.programmablepower.com

About Xantrex

Xantrex Technology Inc. is a world-leading supplier of advanced power electronics and controls with products from 50 watt mobile units to one MW utility-scale systems for wind, solar, batteries, fuel cells, microturbines, and backup power applications in both grid-connected and stand-alone systems. Xantrex products include inverters, battery chargers, programmable power supplies, and variable speed drives that convert, supply, control, clean, and distribute electrical power.

Trademarks

XDL series is a trademark of Xantrex International. Xantrex is a registered trademark of Xantrex International.
Other trademarks, registered trademarks, and product names are the property of their respective owners and are used herein for identification purposes only.

Notice of Copyright

© Xantrex International. All rights reserved.

Disclaimer

UNLESS SPECIFICALLY AGREED TO IN WRITING, XANTREX TECHNOLOGY INC. (“XANTREX”)
(a) MAKES NO WARRANTY AS TO THE ACCURACY, SUFFICIENCY OR SUITABILITY OF
ANY TECHNICAL OR OTHER INFORMATION PROVIDED IN ITS MANUALS OR OTHER DOCUMENTATION.
(b) ASSUMES NO RESPONSIBILITY OR LIABILITY FOR LOSS OR DAMAGE, WHETHER
DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL, WHICH MIGHT ARISE OUT OF THE USE OF SUCH INFORMATION. THE USE OF ANY SUCH INFORMATION WILL BE ENTIRELY AT THE USER’S RISK.

Date and Revision

April 2008 - Revision 5

Part Number

975-0108-01-05

Contact Information

Telephone: 1-800-733-5427 (toll free in North America)
1-858-450-0085 (direct)
Fax: 1-858-678-4481
Email: service@programmablepower.com
sales@programmablepower.com
Web: www.programmablepower.com
1

Table of Contents

Introduction 3
Specification 5
EMC 8
Safety 9
Installation 10
Connections 11
Initial Operation 13
Manual Operation 16
Remote Operation (XDL 35-5TP only) 26
Remote Commands 35
Maintenance 39
Calibration 40
Instructions en Francais 41
Bedienungsanleitung auf Deutsch 59
Istruzioni in Italiano 77
Instrucciones en Español 96
Warranty Information 114
2

Unmatched Precision, Unrivalled Performance

The XDL series represents the ‘next generation’ of laboratory power supplies offering an unparalleled level of precision.
Voltage and current are controlled using 16 bit DACs enabling voltages to be set to 1mV resolution even at full output. Indeed, the accuracy is sufficient for the PSU to be used as a calibration source for some hand-held DMMs.
The XDL series uses pure linear technology and offers unrivalled performance in terms of regulation, output noise and dynamics. Line and load regulation are close to the limit of measurement. Output noise is less than 350µV rms in CV mode and down to 20µA rms in CI mode. Recovery time from transient current pulses is better than 50µs.
The XDL series provides full remote sense capability via dedicated sense terminals. Remote sense is essential to maintain precise regulation at the load (two 0·02 connection leads will drop 200mV at 5 Amps). When remote sense is not required, internal local sensing can be selected at the touch of a button.

Multiple Ranges for Greater Flexibility

The XDL series provides multiple ranges for increased current capability at lower voltages. The main range offers 0 to 35 volts at up to 3 Amps. The higher current range provides up to 5 Amps for voltages up to 15V. A further low current range provides enhanced current setting and measurement resolution of 0·1mA.

Introduction

The product of voltage and current can be displayed at any time by pressing the VxA button. The power is displayed to a resolution of 0·01 Watts.

Fast, Simple and Safe to use

The user interface of the XDL series has been carefully designed to provide rapid control whilst guarding against any possibility of error.
Voltage and current setting can be performed either by direct numeric entry or, for applications where the voltage or current must be gradually changed, by using the quasi-analogue Jog control.
To enable the current limit to be set before connecting the load, the limit setting is displayed when the output is off. Pressing the View Limits key at any time provides a temporary display of the limit values allowing precise adjustment to also be made with the output on.

Setting Memories for Added Convenience

The XDL series provides storage of up to 10 power supply sets-ups in non-volatile memory for each main output, plus a further 10 set-ups for linked mode operation. Upon mains switch-off, the set-up of the PSU is saved and is automatically restored at switch-on.

OVP and OCP Trips with 'Alarm' Output

The XDL series provides fully adjustable over-voltage and over-current trips which can be used both as a fail-safe against accidental mis-setting and as a protection against inappropriate load conditions. In addition to turning the output off, a trip condition switches the rear panel alarm signal enabling other equipment to be controlled.
For complete protection of the power supply, the trip will also be operated by over-temperature or excess voltage on the sense terminals.
3

Fully Programmable via GPIB, RS232 or USB

The XDL 35-5TP incorporates a full bus interface permitting remote control and readback via either GPIB (IEEE-488), RS232 or USB.
The GPIB interface conforms fully with IEEE-488.2 and IEEE-488.1. The serial interface can be used as a conventional RS232 interface or as part of a multi-
instrument addressable RS232 chain. USB represents the future for medium speed PC connectivity. By adding USB hubs, multiple
devices can be connected. A Windows device driver is supplied which creates a virtual COM port, enabling USB to be used with applications that do not directly support it.
XDL series supplies use simple and consistent command structures which make programming particularly easy regardless of which interface is used.
A National Instruments LabWindows* device driver is available. All power supply settings can be controlled via the bus. Voltage and current can be set to a
resolution of 1mV or 0·1mA. Actual voltage and current can be read back together with the power supply status.
* LabWindows is a trademark of National Instruments Corp.
4
General specifications apply for the temperature range 5°C to 40°C. Accuracy specifications apply for the temperature range 18°C to 28°C after 1 hour warm-up with no load and calibration at 23°C. Typical specifications are determined by design and are not guaranteed.

MAIN OUTPUTS

Specification

Voltage/Current Ranges:
Voltage Setting: Resolution 1mV
Current Setting: Resolution 1mA; 0·1mA on 500mA range
Output Mode: Constant voltage or constant current with automatic cross-over.
Output Switch: Electronic, non isolating. Switch illuminated when Output on.
Output Terminals: 4mm terminals on 19mm (0·75”) spacing for Output; screwless terminals
Transient Response:
Voltage Programming Speed:
The 3 operating ranges are: 0V to 35V/0·001A to 3A 0V to 35V/0·1mA to 500mA 0V to 15V/0·001A to 5A
Accuracy ± (0·03% + 5mV)
Accuracy ± (0·2% + 5mA); ± (0·2% + 0·5mA) on 500mA range.
CI indicator lit in constant current mode.
Preset voltage and current limit displayed when Output off.
for Sense. Duplicate rear panel Output and Sense screw terminals on remote control model (XDL 35-5TP).
<50µs to within 15mV of set level for a change in load current from full load to half load or vice versa.
Maximum time required for output to settle within 1% of its total excursion (for resistive load). Excludes command processing time.
No Load 6ms
7ms 40ms
250ms 600ms 600ms
Up 15V 5A Up 35V 3A Up 35V 500mA
Down 15V 5A Down 35V 3A Down 35V 500mA
Full Load 6ms
20ms 200ms
6ms 25ms 120ms
Ripple and Noise (20MHz bandwidth):
Load Regulation: For any load change, measured at the output terminals, using
Line Regulation: Voltage <0·01% + 2mV for 10% line change.
Temperature Coefficient:
Output Protection: Output will withstand forward voltages of up to 20V above rated output
Over-voltage Protection: (OVP)
5
Normal mode voltage: <0·35mVrms; <2mVp-p (typ). Normal mode current: <0·2mArms; <20µArms on 500mA range.
remote sense. Voltage <0·01% + 2mV.
Current <0·01% + 250µA; <0.01% +50µA on 500mA range. Add typically 2·5mV for a 0·5V drop in the positive output lead.
Specification applies for sense lead resistance <0·5Ω.
Current <0·01% + 250µA; <0.01%+ 50µA on 500mA range. Voltage: typically <(50ppm + 0·5mV)/°C
Current: typically <(100ppm + 1mA)/°C; (100ppm + 0·1mA)/°C on 500mA range.
voltage. Reverse protection by diode clamp for currents up to 3A. Range 1V to 40V
Resolution 0·1V; accuracy ± (2% + 0·5V) Response time typically 100µs
Over-current Protection: (OCP)
Range 0·01A to 5·5A Resolution 0·01A; accuracy ± (0·2% + 0·01A) Response time typically 35ms
Protection Functions: Output trips off for OVP, OCP, over-temperature and Sense miswiring.

METER SPECIFICATIONS (Main Outputs)

Display Type: 5-digit (Volts), 4-digit (Amps), 14mm (0·56") LED. Voltage (CI mode): Resolution 10mV
Accuracy ± (0·1% of reading + 10mV)
Current (CV mode): Resolution 0·001A; 0·1mA on 500mA range
Accuracy ± (0·2% + 0·005A); ± (0·2% + 0·5mA) on 500mA range
V x A: Resolution 0·01W; 0·001W on 500mA range
Accuracy ± (0·3% + 0·05W); ± (0·3% + 0·005W) on 500mA range

AUXILIARY OUTPUT

Voltage: 2·7V, 3·3V or 5V, selectable by front panel switch. Voltage Accuracy: ± 5% Current Limit: 1A minimum Output Protection: Output will withstand up to 16V forward voltage. Diode clamp reverse
protection for currents up to 3A.
Output Terminals: 4mm terminals on 19mm (0·75") spacing. Duplicate screwless
terminals on rear panel.
Ripple & Noise:
Typically <1mV rms
(20MHz bandwidth) Load & Line Regulation: <1·0% for a 90% load change; 0·1% for a 10% line change. Status Indication: Current limit lamp.

ALARM OUTPUT

Isolated rear-panel open-collector output signal. User can select output to be activated for either OVP, OCP, Overtemperature or Sense miswiring, or for any of those four faults.

KEYBOARD & ROTARY CONTROL

All functions, including the selection and set-up of the remote control interfaces, can be set from the keyboard. The rotary jog control can be used to adjust output voltage and current settings in a quasi-analogue mode.

INTERFACES (XDL 35-5TP only)

Full remote control facilities are available through the optional RS232, GPIB and USB interfaces. Setting and readback resolutions are the same as for the Output and Meter specifications respectively.
6
RS232: Variable Baud rate, 19200 Baud maximum. 9-pin D-connector.
Single instrument or addressable RS232 chain operation. IEEE-488: Conforming with IEEE488.1 and IEEE488.2 USB: Standard USB hardware connection. Remote Command
Processing Time:
Typically <80ms between receiving the command terminator for a step
voltage change at the instrument and the output voltage beginning to
change.

GENERAL

AC Input: 230V AC or 115V AC ± 10%, 50/60Hz
Power Consumption: 500VA max. Operating Range: +5ºC to +40ºC, 20% to 80% RH
Installation Category II
Storage Range: Environmental: Indoor use at altitudes up to 2000m, Pollution Degree 2. Cooling: Intelligent variable-speed fan.
Store/Recall: Up to 10 set-ups can be saved and recalled via the keyboard or
Safety: EMC: Complies with EN61326 Size: 280 x 160 x 290mm (WxHxD), excluding feet and terminals. Weight: 10·5kg
40ºC to + 70ºC
Over-temperature trip shuts down output if internal temperatures exceed predetermined thresholds.
remote interfaces. Complies with EN610101
7
This instrument has been designed to meet the requirements of the EMC Directive 89/336/EEC. Compliance was demonstrated by meeting the test limits of the following standards:

Emissions

EN61326 (1998) EMC product standard for Electrical Equipment for Measurement, Control and Laboratory Use. Test limits used were:
a) Radiated: Class B b) Conducted: Class B c) Harmonics: EN61000-3-2 (2000) Class A; the instrument is Class A by product category.

Immunity

EN61326 (1998) EMC product standard for Electrical Equipment for Measurement, Control and Laboratory Use.
Test methods, limits and performance achieved were: a) EN61000-4-2 (1995) Electrostatic Discharge : 4kV air, 4kV contact, Performance A. b) EN61000-4-3 (1997) Electromagnetic Field, 3V/m, 80% AM at 1kHz, Performance B.
EMC
c) EN61000-4-11 (1994) Voltage Interrupt, 1 cycle, 100%, Performance B. d) EN61000-4-4 (1995) Fast Transient, 1kV peak (AC line), 0·5kV peak (DC Outputs),
e) EN61000-4-5 (1995) Surge, 0·5kV (line to line), 1kV (line to ground), Performance B. f) EN61000-4-6 (1996) Conducted RF, 3V, 80% AM at 1kHz (AC line only; DC Output
According to EN61326 the definitions of performance criteria are:
Performance criterion A: ‘During test normal performance within the specification limits.’ Performance criterion B: ‘During test, temporary degradation, or loss of function or
performance which is self-recovering’. Performance criterion C: ‘During test, temporary degradation, or loss of function or
performance which requires operator intervention or system reset occurs.’ Where Performance B is stated it is because DC Output regulation may deviate beyond
Specification limits under the test conditions. However, the possible deviations are still small and unlikely to be a problem in practice.
Note that if operation in a high RF field is unavoidable it is good practice to connect the PSU to the target system using screened leads which have been passed (together) through an absorbing ferrite sleeve fitted close to the PSU terminals.

Cautions

Performance B.
connections <3m not tested), Performance B.
8
To ensure continued compliance with the EMC directive observe the following precautions: a) after opening the case for any reason ensure that all signal and ground connections are
remade correctly and that case screws are correctly refitted and tightened.
b) In the event of part replacement becoming necessary, only use components of an identical
type, see the Service Manual.

Safety

This power supply is a Safety Class I instrument according to IEC classification and has been designed to meet the requirements of EN61010-1 (Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use). It is an Installation Category II instrument intended for operation from a normal single phase supply.
This instrument has been tested in accordance with EN61010-1 and has been supplied in a safe condition. This instruction manual contains some information and warnings which have to be followed by the user to ensure safe operation and to retain the instrument in a safe condition.
This instrument has been designed for indoor use in a Pollution Degree 2 environment in the temperature range 5°C to 40°C, 20% - 80% RH (non-condensing). It may occasionally be subjected to temperatures between +5°C and –10°C without degradation of its safety. Do not operate while condensation is present.
Use of this instrument in a manner not specified by these instructions may impair the safety protection provided. Do not operate the instrument outside its rated supply voltages or environmental range.
WARNING! THIS INSTRUMENT MUST BE EARTHED
Any interruption of the mains earth conductor inside or outside the instrument will make the instrument dangerous. Intentional interruption is prohibited. The protective action must not be negated by the use of an extension cord without a protective conductor.
When the instrument is connected to its supply, terminals may be live and opening the covers or removal of parts (except those to which access can be gained by hand) is likely to expose live parts. The apparatus shall be disconnected from all voltage sources before it is opened for any adjustment, replacement, maintenance or repair.
Capacitors inside the power supply may still be charged even if the power supply has been disconnected from all voltage sources but will be safely discharged about 10 minutes after switching off power.
Any adjustment, maintenance and repair of the opened instrument under voltage shall be avoided as far as possible and, if inevitable, shall be carried out only by a skilled person who is aware of the hazard involved.
If the instrument is clearly defective, has been subject to mechanical damage, excessive moisture or chemical corrosion the safety protection may be impaired and the apparatus should be withdrawn from use and returned for checking and repair.
Make sure that only fuses with the required rated current and of the specified type are used for replacement. The use of makeshift fuses and the short-circuiting of fuse holders is prohibited.
Do not wet the instrument when cleaning it. The following symbols are used on the instrument and in this manual:-
Earth (ground) terminal.
mains supply OFF.
l
mains supply ON.
alternating current (ac)
direct current (dc)
9

Fuse

Installation

Check that the instrument operating voltage marked on the rear panel is suitable for the local supply. Should it be necessary to change the operating voltage, proceed as follows:
1) Disconnect the instrument from all voltage sources.
2) Remove the screws which retain the top cover and lift off the cover.
3) Change the connections on both transformers following the appropriate diagram below:
4) Refit the cover and the secure with the same screws.
5) To comply with safety standard requirements the operating voltage marked on the rear panel
must be changed to clearly show the new voltage setting.
6) Change the fuse to one of the correct rating, see below.
The AC fuse is located in the fuse drawer in the lower part of the IEC inlet connector. To change the fuse remove the line cord and open the fuse drawer with a suitable too. The correct mains fuse type is 20 x 5mm 250V HBC time-lag with the following rating:
In addition, the two transformers are individually fused inside the power supply. To access these fuses remove the cover as described above; both fuses are clipped to the small PCB which is fitted directly onto the pins of the IEC inlet connector itself.
The correct fuse type is 20 x 5mm 250V HBC time-lag with the following rating:
Make sure that only fuses with the required current rating and of the specified type are used for replacement. The use of makeshift fuses and the short-circuiting of fuseholders are prohibited.

Mains Lead

Connect the instrument to the AC line using the three-core mains lead provided.
Any interruption of the mains earth conductor inside or outside the instrument will make the instrument dangerous. Intentional interruption is prohibited. The protective action must not be negated by the use of an extension cord without a protective conductor.

Mounting

This instrument is suitable both for bench use and rack mounting. It is delivered with feet for bench mounting. The front feet include a tilt mechanism for optimal panel angle.
A rack kit for mounting XDL Series power supplies is available from the Manufacturers or their overseas agents. The rack will accommodate 1, 2 or 3 single units or a triple and single unit; a blanking piece is also available for unused positions in the rack.

Ventilation

The power supply is cooled by an intelligent multi-speed fan which vents at the rear. Take care not to restrict the air inlets at the side panels or the exit at the rear. In rack-mounted situations allow adequate space around the instrument and/or use a fan tray for forced cooling.
for 230V operation: 4A (T) 250V HBC for 115V operation: 8A (T) 250V HBC
for 230V operation: 1.6A (T) 250V HBC for 115V operation: 3.15A (T) 250V HBC
WARNING! THIS INSTRUMENT MUST BE EARTHED
10

Front Panel Connections

The loads should be connected to the positive (red) and negative (black) terminals marked OUTPUT 1, OUTPUT 2, or AUXILIARY.
Remote sense connections to the loads on Outputs 1 or 2, if required, are made from the corresponding positive (+) and negative () REMOTE SENSE terminals. Remote sense operation is selected from the keyboard or via a remote control interface (XDL 35-5TP only); the REMOTE SENSE lamp is lit when remote sense is selected. Switching off remote sense returns the instrument to local sensing at the output terminals.

Connections

The terminal marked
is connected to the chassis and safety earth ground.

Rear Panel Connections

Auxiliary Output Terminals

The front panel AUXILIARY OUTPUT terminals are duplicated on the rear panel with screwless terminals marked AUXILIARY OUTPUT.

Main Output Terminals (XDL 35-5TP only)

The output and sense terminals are duplicated on the rear panel screw-terminal block marked Output +, Output , Sense + and Sense ; these connections are paralleled with their front panel equivalents.
Remote sense operation is selected from the keyboard or via a remote control interface. When the rear panel terminals are used, remote sense should always be selected to ensure that output regulation is maintained within specification.

RS232 (XDL 35-5TP only)

9pin Dconnector compatible with addressable RS232 use. The pin connections are shown below:
Pin Name Description
1 2 TXD Transmitted data from instrument 3 RXD Received data to instrument 4 5 GND Signal ground 6 7 RXD2 Secondary received data 8 TXD2 Secondary transmitted data 9 GND Signal ground
No internal connection
No internal connection
No internal connection
Pin 2, 3 and 5 may be used as a conventional RS232 interface with XON/XOFF handshaking. Pins 7, 8 and 9 are additionally used when the instrument is used in addressable RS232 mode. Signal grounds are connected to instrument ground. The RS232 address is set from the keyboard.
11

GPIB (XDL 35-5TP only)

The GPIB interface is not isolated; the GPIB signal grounds are connected to the instrument ground.
The implemented subsets are:
The GPIB address is set from the keyboard.

USB (XDL 35-5TP only)

The USB port is connected to instrument ground. It accepts a standard USB cable. The Windows plug-and-play functions should automatically recognise that the instrument has been connected.

Alarm Outputs

Associated with each main output are recessed 2-pin connectors marked Alarm. These provide access to an opto-isolated NPN switching transistor, the function of which can be set from the keyboard, see the Alarms section of this manual.
The maximum operating voltage that can be applied across the terminals is 20VDC and the maximum sink current for the switch 'closure' is 1mA.
Do not apply external voltages between the terminals exceeding 30VDC.
SH1 AH1 T6 TE0 L4 LE0 SR1 RL1 PP1 DC1 DT1 C0 E2
12
This section of the manual is a general introduction to the controls and operation of the instrument and is intended to be read before using the power supply for the first time.
In this manual front panel keys, connections and display indicators are shown in capitals, e.g. STORE, ESCAPE, OUTPUT, JOG. Messages shown on the 7-segment display are printed in a different type-font, e.g.
characters as they are shown on the 7-segment display.
StorE, GPIb, triP in upper or lower case to represent the

Switching On, Output On/Off

The power switch is located at the bottom left of the front panel. At power-up the default behaviour is for the instrument's settings to be restored to those
automatically saved when it was switched off, but with all Outputs always off. However, the user can change the default setting such that selected Outputs are restored at power-up to their status at power-down, see the Extra Functions section.
The DC outputs are switched electronically with their respective ON/OFF keys; the key illuminates when the output is on. In addition, all outputs can be switched on and off together using the ALL ON and ALL OFF keys.

Synchronous Output On/Off Switching

Pressing ALL OFF at any time will synchronously turn off any outputs that are on; under the same load conditions outputs will typically turn off within 1ms of each other. With all outputs off the ALL OFF key is illuminated green. Pressing the ALL ON key when all the outputs are off will turn all the outputs on synchronously; outputs with identical settings and load conditions will typically turn on within 1ms of each other. However, if one output is already on, pressing ALL ON will turn the remaining outputs on but the turn-on delay between the outputs will be up to 80ms, even with the same output setting and load conditions.

Initial Operation

Keypad

Only the principles of operation are outlined here; the setting of individual parameters is given in detail in later sections.
The paramount consideration in designing the user interface has been to make changing settings as 'safe' as possible (i.e. with minimal risk of accidentally applying excessive voltages to a target system) whilst achieving ease of use. This has been achieved by requiring the user to confirm (OK) new numeric settings, with the option to ESCAPE at any point or even to simply pause until the operation times-out and the instrument returns to its orginal settings.
In addition a buzzer, illuminated keys, LED indicators and display messages prompt, guide or warn the user such that entry or control errors are minimised. Where some of these features (e.g. beeps or flashing indicators) are considered unnecessary by regular users, the option exists to disable them, see the Extra Functions section.
The ability to change settings from the keypad or by using the Jog controls is assigned to Output 1, Output 2 or both by using the 1, 2 or LINK CONTROL keys respectively. The key (1 or 2) associated with the selected output illuminates to show which output is under control. In LINK mode (both keys lit) both outputs are controlled at the same time, including some of the shifted operations (RANGE, STORE, RECALL and V x A). The further descriptions that follow apply to either or both main outputs as appropriate to the setting indicated by the illumination of the CONTROL keys.
Under normal conditions the numeric keypad is disabled; pressing any key will cause the buzzer to make a double beep, indicating an illegal operation. To set a voltage or current with the keypad press the V or I NUMERIC SET key; the appropriate display shows 0·000V or 0·000A with the digit to the left of the decimal point flashing. Digits are entered in response to the flashing prompt, together with the decimal point at the appropriate time, and the entry is confirmed with the OK key. If OK is not pressed within 10 seconds of the last numeric key the entry is cancelled and the display returns to its original setting. If ESCAPE is pressed anywhere in the entry procedure, entry is cancelled and the display returns to its original setting.
13
The OK key is used to confirm most keypad entries. At all other times it becomes the VIEW V/I LIMITS key and pressing it will cause the display to show preset output voltage and current limit for 3 seconds; during this period the LIM indicator in the display flashes.
Pressing SHIFT illuminates the key and gives the numeric keys the functions marked above them (e.g. STORE, RECALL, etc.). When a function is selected by pressing one of these keys SHIFT is cancelled (the SHIFT key is no longer lit). The further key presses required to complete the selected function are described in detail in the sections that follow; if no key is pressed within 10 seconds to complete the function, the function with terminate as if ESCAPE has been pressed. SHIFT is a toggle key; pressing SHIFT again when it has been selected will cancel SHIFT. SHIFT is also cancelled by ESCAPE, or by pressing SET V or SET I. Note that in LINK mode settings accessed by STORE and RECALL are specific to the LINK mode and are in addition to settings accessible when STORE and RECALL are used on individually selected outputs.

Jog Control

The rotary 'jog' control permits the output voltage or current limit to be incremented or decremented in steps with a resolution set by the JOG SET keys; the output immediately follows the setting, i.e. no OK is required.
At power-up jog is always off. To jog the voltage or current setting press the V or I JOG SET key; the key will illuminate and the JOG indicator under the digit that was last jogged will flash. Whilst the V or I JOG SET key is lit, each further press of the V or I key moves the JOG indicator one digit to the left; the selection 'wraps-round' such that when the largest value of jog increment has been reached the next press returns it to the lowest. The default position at power-up is under the LSD, i.e. the lowest jog increment is selected.
Turning the rotary jog control clockwise/anti-clockwise increments/decrements the selected digit; digits to the left of the one being jogged are automatically incremented/decremented when the decade overflow/underflow point is reached. Digits to the right of the one being jogged remain unchanged unless the jog step overflows/underflows the range maximum/minimum in which case they are set to zero. For example, 33·65V goes to 34·65V goes to 35·00V for the 35V range and a 1V jog increment; 0·160A goes to 0·060A goes to 0·001A for a 0·1A jog decrement.
The jog steps that can be selected are 1mV, 10mV, 100mV and 1mA, 10mA, 100mA; if the 35V/500mA range has been selected the current increment steps are 0·1mA, 1mA, 10mA.
To disable the jog rotary control press the JOG SET OFF key; reselecting JOG SET V or I will enable jog on the last used digit position. Jog is not cancelled by using numeric entry or any of the SHIFT functions but it is disabled whilst that function is enabled.
When in constant voltage mode with the output on the right-hand display will show actual current rather than current limit. If JOG SET I is selected the JOG indicator under the selected digit will flash at half-speed ('lazy' flash). To observe the effect of jogging the current limit it will be necessary to either turn the output off (so that the display permanently shows the current limit) or to press VIEW V/I LIMITS which causes the current limit to be displayed until 3 seconds after movement of the jog control ceases. The 'lazy' flash is also used when JOG SET V has been selected and actual voltage is being shown because the supply has gone into current limit.
The factory default is to flash the JOG indicator under the selected digit for the whole time that jog is selected so that the user is constantly reminded which parameter can be incremented/ decremented. Where this degree of reminding is considered inadequate the user can select, using the Extra Functions capability, to flash the digit itself; conversely, where the flashing is considered intrusive the user can select to not flash the JOG indicator (except when the 'lazy' flash is shown).
14

Display

The displays shows the voltage on the left (5 digits) and the current on the right (4 digits) for both the main outputs. These 7-segment displays are also used to show prompts during the some of the function settings (e.g. memory store/recall or remote control address setting) using the limited 'character set' that can be achieved with a 7-segment display; these are necessarily a mixture of upper and lower case letters.
Above and below the 7-segment display are several secret-until-lit annunciators. To the right, above the current display, are the indicators which show the selected operating range: 35V/3A, 15V/5A or 35V/500mA; the indicators light beneath the range printed immediately above them and, in the case of the 35V/500mA range, the indicator is marked mA to emphasise that the current display is now showing mA. The other annunciators above the displays are: CI, indicating that the instrument is in constant current mode; LIM, which flashes when the VIEW V/I LIMITS key is pressed to show the set voltage/set current limit in the display; REM, which lights when the instrument is under control from a remote interface (XDL 35-5TP only).
Below the three least significant digits of both the voltage and current displays are the JOG indicators; the appropriate indicator flashes when the jog function is being used, see the Jog Control section above.
15

Main Outputs

New users should first read the Initial Operation chapter which describes the operating principles of the keypad and rotary jog control. The following paragraphs describe the independent operation of either Main Output. To select which output is to be controlled by the keypad/Jog controls it is first necessary to select that output by pressing the appropriate CONTROL key (1 or 2); the key lights to show that it is the selected output.
The additional features available in LINK mode (both Main Outputs selected) are described in the Main Outputs – Link Mode section later in this manual.

Set Voltage

The left-hand display shows the set voltage to a resolution of 1mV, except when the instrument is in constant current (CI) mode. In CI mode the actual output voltage (which will be less than the set voltage) is shown and the display resolution is 10mV; the least significant digit (1mV resolution) is always displayed as a zero.
The voltage can be set directly from the numeric keypad: press the NUMERIC SET V key, enter the new value using the numeric keys and confirm by pressing OK. The broad principles of keypad entry are explained in the Initial Operation chapter, which should be read by new users.

Manual Operation

When SET V is pressed the display shows 0·000; a new voltage is then entered (e.g. 12·345V is entered as 1, 2, ·, 3, 4, 5) and confirmed by OK. The position of the decimal point in the display is fixed to reduce the risk of entering a wrong value. As a consequence, and to avoid the need to enter leading zeroes (e.g. 2·345V is entered as 2, ·, 3, 4, 5, OK), numbers to the left of the decimal point are shown slightly differently to the numbers to the right of the decimal point during number entry; this is self-evident during number entry.
The minimum voltage setting is 0·000V; the maximum setting is 35·000V (15·000V on the 15V/5A range).
Pressing OK at any point will set the voltage entered with any remaining digits set to zero, e.g. 1, 2, ·, 3, OK will set 12·300V; 1, OK will set 1·000V; pressing OK immediately after SET V (while the display shows 0·000V) will set 0·000V.
Pressing ESCAPE at any time during the sequence, or making no further key press within 10 seconds of the previous one will cause the display to return to its original reading before SET V was pressed.
Entering a voltage outside the range maximum (including trying to enter 3 digits before the decimal point) or trying to enter more than 5 digits will cause the buzzer to beep twice; the last key entry will be ignored.
The voltage can also be set using the Jog control. Pressing JOG SET V will illuminate the V key and the JOG indicator under the digit that was last jogged will flash. Whilst the V key is lit, each further press will move the JOG indicator one digit to the left; the selection 'wraps round' such that when the largest value of jog increment has been reached the next press returns it to the lowest. The default position at power-up is under the LSD, i.e. the lowest jog increment is selected. The jog steps that can be selected are 1mV, 10mV and 100mV.
16
With jog enabled the output voltage can be incremented or decremented with the rotary jog control with a step resolution indicated by the position of the flashing JOG indicator. The output immediately follows the setting, i.e. no OK is required. If the output goes into constant current mode (indicated by the CI indicator flashing) the left-hand display shows actual voltage not set voltage. If JOG SET V is selected the JOG indicator under the selected digit will flash at half speed ('lazy' flash). To observe the effect of jogging the set voltage it will be necessary to either turn the output off (so that the display permanently shows the set voltage) or to press VIEW V/I LIMITS which causes the set voltage to be displayed until 3 seconds after movement of the jog control ceases.
Note that in constant current mode the actual voltage is measured and displayed to only 10mV resolution; the 1mV digit permanently displays zero.
Further details on the jog control can be found in the Initial Operation chapter.

Set Current Limit

With the output off, the right-hand display shows the current limit to a resolution of 1mA (0·1mA on the 35V/500mA range).
The current limit can be set directly from the numeric keypad: press the NUMERIC SET I key, enter the new value using the numeric keys and confirm by pressing OK. The broad principles of keypad entry are explained in the Initial Operation chapter, which should be read by new users.
When SET I is pressed the display shows 0·000; a new current is then entered (e.g. 1·234A is entered as 1, · , 2, 3, 4,) and confirmed by OK. The position of the decimal point in the display is fixed to reduce the risk of entering a wrong value. As a consequence, and to avoid the need to enter or display leading zeroes (e.g. 0·234A is entered as ·, 2, 3, 4, OK), numbers to the left of the decimal point are shown slightly differently to the numbers to the right of the decimal point during number entry; this is self-evident during number entry.
The minimum current setting is 0·001A (0·1mA on the 500mA range); the maximum setting is 3·000A, 5·000A or 500·0mA, according to range, i.e. there is no over-range capability.
Pressing OK at any point will set the current entered with any remaining digits set to zero, e.g. 1, ·, 2, OK will set 1·200A; 1, OK will set 1·000A; pressing OK immediately after SET V (while the display shows 0·000A) will set 0·00IA.
Pressing ESCAPE at any time during the sequence, or making no key press within 10 seconds of the previous one will cause the display to return to its original reading before SET I was pressed.
Entering a value outside the range maximum (including trying to enter 2 digits before the decimal point) or trying to enter more than 4 digits will cause the buzzer to beep twice; the last key entry will be ignored.
The current limit can also be set using the rotary jog control. Pressing JOG SET I will illuminate the key and the JOG indicator under the digit that was last jogged will flash. Whilst the I key is lit, each further press will move the JOG indicator one digit to the left; the selection 'wraps round' such that when the largest value of jog increment has been reached the next press returns it to the lowest. The default position at power-up is under the LSD, i.e. the lowest jog increment is selected. The jog steps that can be selected are 1mA, 10mA and 100mA (0·1mA, 1mA and 10mA on the 35V/500mA range).
With jog enabled the current limit can be incremented or decremented with the rotary jog control with a step resolution indicated by the position of the flashing JOG indicator. The output immediately follows the setting, i.e. no OK is required. With the output on the right-hand display shows actual current, not current limit (except in constant current mode). If JOG SET I is selected the JOG indicator under the selected digit will flash at half speed ('lazy' flash). To observe the effect of jogging the current limit it will be necessary to either turn the output off (so that the display permanently shows the current limit) or to press VIEW V/I LIMITS which causes the current limit to be displayed until 3 seconds after movement of the jog control ceases.

Instantaneous Current Output

The current limit control can be set to limit the continuous output current to levels down to 1mA (0·1 mA on 500mA range). However, in common with all precision bench power supplies, a capacitor is connected across the output to maintain stability and good transient response. This capacitor charges to the output voltage and short-circuiting of the output will produce a current pulse as the capacitor discharges which is independent of the current limit setting.
17

Range Selection

The instrument has three ranges: 35V/3A, 15V/5A and 35V/500mA. The selected range is shown by an illuminated indicator below the appropriate legend at the top right-hand side of the instrument; when the 35V/500mA range is selected the indicator legend is mA to emphasise that the current meter now shows milliamps not amps.
To change range press SHIFT followed by RANGE or RANGE; each press of RANGE selects the next range to the left; each press of RANGE selects the next range to the right; there is no 'wrap-round'. When the range is changed the indicator that represents the new range and the OK key both flash; pressing OK sets the new range. To exit without changing range press ESCAPE. Pressing any other key whilst in range change mode causes the warning buzzer to beep twice; no other action is taken. If OK is not pressed within 10 seconds of the last range change key press the range selection remains unchanged.
The range can only be changed when the output is off. Pressing the RANGE or RANGE keys with the output on will cause the output ON/OFF key (as well as the OK key) to flash. The output may be turned off with the ON/OFF key and the range then changed by pressing OK, or OK may be pressed directly in which case the output is automatically turned off and the range then changed.
If a range change causes a voltage or current limit setting to exceed the corresponding maximum of the new range the range change is accepted but the setting is made equal to the maximum of the new range.
Note that the OVP setting is not changed when the range is changed (e.g. an OVP setting of 38V remains valid on the 15V range); it is left to the user to independently change the OVP setting if required.

Connection to the Load

The load should be connected to the positive (red) and negative(black) OUTPUT terminals. Both are fully floating and either can be connected to ground.

Remote Sensing

The instrument has a very low output impedance, but this is inevitably increased by the resistance of the connecting leads. At high currents this can result in significant differences between the indicated source voltage and the actual load voltage (two 20m connecting leads will drop 0·2V at 5 Amps, for instance). This problem can be minimised by using short, thick, connecting leads, but where necessary it can be completely overcome by using the remote sense capability.
This requires the sense terminals to be connected to the output at the load instead of at the source; insert wires into the spring-loaded REMOTE SENSE terminals and connect directly to the load.
Select remote sense by pressing SHIFT, SENSE; the OK key flashes and the lamp above the remote sense terminals lights to show that remote sense will be selected when OK is pressed. Press OK to confirm; press ESCAPE to exit without changing state. Remote sense is turned off by pressing SHIFT, SENSE again; the OK key flashes and the remote sense lamp goes off to indicate that local sense will be restored when OK is pressed. Press OK to confirm; press ESCAPE to exit without changing state.
18
To avoid instability and transient response problems, care must be taken to ensure good coupling between each output and sense lead. This can be done either by twisting the leads together or by using coaxially screened cable (sense through the inner). An electrolytic capacitor directly across the load connection point may also be beneficial.
The voltage drop in each output lead must not exceed 0·5 Volts. The XDL 35-5TP has rear panel output and sense terminals, appropriate for when the instrument
is used in a rack. The rear panel sense terminals should always be used with the rear panel output connections.

Sense Miswiring Trip

The output will be tripped off if the voltage between an output terminal and its corresponding sense terminal exceeds approximately 1V; this will happen if the sense wires are wired at the load to the wrong output or if an attempt is made to draw power from the sense wires.
If the sense terminals are miswired in this way the display shows the message and the output is turned off. Pressing ESCAPE at this point removes the message and the
display now shows the preset voltage and current limit. When the cause of the trip has been corrected the output can be turned on again.

Series or Parallel Connection with Other Outputs

The outputs of the power supply are fully floating and may be used in series with other power supply units to generate high DC voltages up to 300V DC.
The maximum permissible voltage between any terminal and earth ground ( WARNING! Such voltages are exceedingly hazardous and great care should be taken to shield
the output terminals for such use. On no account should the output terminals be touched when the unit is switched on under such use. All connections to the terminals must be made with the power switched off on all units.
It should be noted that the unit can only source current and cannot sink it, thus units cannot be series connected in anti-phase.
The unit can be connected in parallel with others to produce higher currents. Where several units are connected in parallel, the output voltage will be equal to that of the unit with the highest output voltage setting until the current drawn exceeds its current limit setting, upon which the output will fall to that of the next highest setting, and so on. In constant current mode, units can be connected in parallel to provide a current equal to the sum of the current limit settings.
Note that the output terminals are rated at 15A maximum; if several outputs are operated in parallel to source higher currents than this the junction should be made at a separate point, not one of the terminals.
SENSE triP
) is 300VDC.

Over-Voltage Protection

Over-Voltage Protection (OVP) can be set from 1·0V to 40V. If the output voltage exceeds the set OVP the output is immediately shut down (typically within 100µs), thus avoiding damage to the circuit under test. The OVP circuit will protect against accidental excessive voltage settings from the front panel or via the remote control interfaces, external voltages impressed across the output terminals, or a failure in the control circuitry of the instrument itself.
To set OVP press SHIFT, OVP; the 100mV step JOG indicator will start flashing and the jog rotary control can be used to increment/decrement the OVP setting in 100mV steps. Press OK to confirm the new setting; to exit without entering a new value press ESCAPE. The factory default setting is 40·0V.
If the OVP is tripped the display shows the message Pressing ESCAPE at this point removes the message and the display now shows the preset
voltage and current limit. When the cause of the OVP has been removed (or the OVP limit changed) the output can be turned on again.
Note that the OVP setting is not changed when the range is changed (e.g. an OVP setting of 38V remains valid on the 15V range); it is left to the user to independently change the OVP setting if required.
Note also that it is possible and valid to set OVP below the set voltage. If the supply is in constant current mode the output voltage will be below the set voltage; OVP could be set such that is was above the actual output voltage but below the set voltage. This could be used to trip the output under a fault condition which caused the load impedance to increase and the actual output voltage to therefore rise above the OVP point.
OUP triP and the output is turned off.
19

Over-Current Protection

Over-Current Protection (OCP) can be set from 0·01A to 5·5A. If the output current exceeds the set OCP the output is shut down (typically within 35ms).
To set OCP press SHIFT, OCP; the 10mA step JOG indicator will start flashing and the jog rotary control can be used to increment/decrement the OCP setting in 10mA steps. Press OK to confirm the new setting; to exit without entering a new value press ESCAPE. The factory default setting is 5·50A.
If the OCP is tripped the display shows the message Pressing ESCAPE at this point removes the message and the display now shows the preset
voltage and current limit. When the cause of the OCP has been removed (or the OCP limit changed) the output can be turned on again.
Note that as with OVP, the OCP setting is not changed when the range is changed. Note also that is possible and valid to set OCP below the set current limit. For example, the
power supply may be used to repetitively test a unit under test (UUT) which normally takes a peak current of, say, 2 Amps. However, a faulty UUT would take a current of more than 2 Amps and would be damaged by being left in a 2 Amp current-limited state. In this case the current limit could be set to 2·1A, say, and the OCP set to 2·0A to ensure that a faulty UUT will trip the supply off.

Output Protection

In addition to OVP and OCP for forward over-voltage and over-current protection, the output is protected from reverse voltages by a diode; the continuous reverse current must not exceed 3 Amps although transients can be much higher.

Output Power (V x A)

If SHIFT, V x A is pressed the voltage display shows the product of measured output voltage x measured current and the current display shows
an instantaneous, not a continuous, reading of the output power; the reading is held whilst the key is pressed. Pressing V x A cancels SHIFT. Jog is temporarily disabled (and the JOG indicators are turned off) during the V x A display.
OCP triP and the output is turned off.
UA. V x A is a momentary function, i.e. it gives

Temperature Trip

If the safe internal temperature limit is exceeded because, for example, the fan vents have been blocked, the output is turned off and the display will show
this point will do one of two things: i. If the over-temperature condition has already cleared the message will be removed and the
display will show preset voltage and current limit. Assuming the cause of the over-temperature has been rectified the output can be turned on again.
ii. If the instrument is still above the safe temperature limit the
slowly ('lazy' flash) until the instrument has cooled, at which point the display will show preset voltage and current limit again. Assuming the cause of the over-temperature has been rectified the output can be turned on again.

Alarm Output

The recessed 2-pin connector on the rear panel is directly connected to an opto-coupled NPN switching transistor (pin 1 emitter, pin 2 collector) which is turned on (i.e. switch 'closure') according to the conditions specified in the Extra Functions section, see later. The default condition is switch closure for any trip condition (OVP, OCP, SENSE or OTP). The maximum open-circuit voltage permitted across the switch is 30VDC and the nominal sink current for switch closure is 1mA.
OtP triP. Pressing ESCAPE at
OtP triP message will flash
20

Store Settings

The instrument can store 10 set-ups for each output in non-volatile memory; the parameters stored are range, voltage, current limit, OVP and OCP. The output state and remote sense setting are not stored.
To store a set-up press SHIFT, STORE, store no., OK; the store no. is any key 0 to 9. After key-presses SHIFT, STORE, the display shows
cancelled (the light goes off). At this point, pressing any number key will display that number in place of the
e.g.
StorE 1.E, StorE 2.F . Any number of stores can be checked by pressing one
number after another (i.e. without having to press SHIFT, STORE each time) before the selection is confirmed with the OK key. A full store can be overwritten with new settings. At any time before the OK key is pressed the store function can be exited without saving a set-up by pressing ESCAPE or by waiting 10 seconds from the last key entry.
and show either E (store Empty) or F (store Full) beside it,

Deleting Stored Settings

Any store can be returned to 'empty' as follows: select the store by pressing SHIFT, STORE, store no.; at that point press . The display now shows
dELEt 2.F ; pressing OK deletes the content of the store.

Recall Settings

To recall a set-up press SHIFT, RECALL, store no., OK; the store no. is any key 0 to 9. After key-presses SHIFT, RECALL, the display shows
(the light goes off). At this point, pressing any key 0 to 9 will preview the voltage and current settings of that store number; the settings flash to indicate preview mode.
Any number of stores can be previewed by pressing one number after another (i.e. without having to press SHIFT, RECALL each time) before the selection is confirmed with the OK key. Empty stores are indicated by flashing
pressed the Recall function can be exited without recalling a set-up by pressing ESCAPE or by waiting 10 seconds from the last key entry.
StorE - ; the SHIFT function is
dELEt in place of StorE , e.g.
rECAL – ; the SHIFT function is cancelled
in every digit position. At any time before the OK key is
Settings may be recalled with the output on or off. However, if the recalled setting involves a range change the output is turned off to avoid any 'glitches'. After pressing SHIFT, RECALL, store no., the ON/OFF key will flash (as well as the OK key) if completing the recall involves a range change. The output may be turned off with the ON/OFF key and the recall then completed by pressing OK, or OK may be pressed directly in which case the output is automatically turned off and the recall completed.

Extra Functions

Variations on some of the factory default functions can be set by the user by using the # extra functions facility. Each function change, detailed in the list below is accessed by pressing SHIFT,
#, nn, when nn is the 2-digit number in the list below; the display changes to SHIFT, # and the buzzer gives a confirmation beep when the 2-digit number entry is complete.
As indicated in the opening paragraph of this section, the # functions can be set independently (i.e. differently) for each main output; note, however, that the #02, #03 and #21 functions which apply to the Auxiliary Output can only be set when CONTROLis assigned to Output 1.
# Code Function
00 Main Output always off at power-up (factory default) 01 Main Output status at power-up the same as at last power-down 02 Aux Output always off at power up (factory default).
03 Aux Output status at power up the same as at last power down.
HASH No._ after
Set with control assigned to Output 1.
Set with control assigned to Output 1.
21
20 Alarm output 'open' for main Output off, 'closed' for main Output on 21 Alarm output 'closed' when Aux Output is in Current Limit.
Set with control assigned to Output 1; applies to Output 1 alarm only. 22 Alarm output 'closed' when over-temperature trip occurs 23 Alarm output 'closed' when sense trip occurs 24 Alarm output 'closed' when over-current trip occurs 25 Alarm output 'closed' when over-voltage trip occurs 26 Alarm output 'closed' when any trip occurs (factory default) 30 Buzzer off 31 Buzzer on (factory default). A single beep indicates confirmation, a double beep
indicates a wrong entry. 40 Jog digit flashes, JOG indicator only flashes when jog is 'hidden' 41 JOG indicator always flashes, except when 'hidden' (factory default) 42 JOG indicator doesn't flash, except when 'hidden' (lazy flash) 91 Loads default calibration parameters. Refer to Calibration section. 92 Shows firmware version number in the display 93 Sets these # settings to their factory default 99 Enter calibration mode. Refer to Calibration section.

Factory Default Settings

The ex-factory default settings (which will apply at first power-up) are as follows:
Range: 35V/3A Voltage: 1·000V Current Limit: 1·000A OVP: 40V OCP: 5·5A Output: Output off; local Sense # Settings: 00 Main Output always off at power-up 02 Aux Output always off at power up (an Output 1 # function only). 26 Alarm output 'closed' when any trip condition occurs 31 Buzzer on 41 JOG indicator always flashes; 'lazy' flash when hidden RS232: 9,600 Baud (XDL 35-5TP only) Address: 11 (XDL 35-5TP only)

Error Messages

The following hardware errors are indicated by showing the appropriate error number in the display. The OK key will flash and if pressed the error will be ignored and operation will continue as described.
Error No. Error Description Action on pressing OK
1 Calibration constants corrupted at power-up Loads default calibration parameters 2 # functions corrupted at power-up Loads default # settings 3 Power-down settings not correctly loaded at
power up
Switching the instrument off with the error message showing will leave all settings unchanged.
22
Loads factory default power-up settings

Main Outputs – Link Mode

In Link mode, selected by pressing the LINK key, the key parameters of the two Main Outputs are adjusted together; when Link mode has been selected both CONTROLkeys (1 and 2) are lit to show that both outputs are selected.
The following paragraphs only describe the differences between independent and linked operation; they should be read in conjunction with the corresponding paragraphs in the Main Outputs section.
Linked Mode Operation Overview
Control of the two main outputs can be "linked" so that changes are applied to both outputs simultaneously. There can be several reasons for wanting to do this:
1. Series or Parallel Wiring The user may wish to create an output with either twice the voltage or twice the current
capability, see the Series or Parallel Connection with Other Outputs section on page 20. Linked mode provides a convenient means for controlling the two outputs when they are series or parallel connected.
2. Tracking Voltages (or Currents)
When in linked mode, using Numeric Set will set equal voltages and/or currents on the two outputs. Control of the outputs can also be linked with different voltages and/or currents set on the outputs. Use of the Jog control will then make equal changes to the two outputs.
3. Simultaneous Recall of Stored Settings
Each output has its own set of 10 memories. However, when in linked mode, a further set of 10 memories is available which can store settings for both outputs. Voltages and currents can be set individually for each output and the control put into linked mode before storing. The stored settings can then be recalled to both outputs simultaneously.
Note:
The existing settings for Output 1 can be duplicated on Output 2 using the Copy function before or after linking.
When in linked mode the control functions are limited to Set Range, Set Volts and Set Current (Numeric Set and Jog set), plus Store and Recall. OVP, OCP and Sense cannot be changed while in linked mode.
Control of On/Off for each output remains separate when in linked mode. To switch the outputs On or Off together the Multi-Output Control buttons must be used which are independent of linked mode.

Selecting Link Mode

The only constraint on selecting Link mode is that both Main Outputs must already be set to the same Range; in particular, the outputs may be linked even if their output voltage and current limit settings are different. Pressing LINK when different ranges are set will cause the buzzers to sound twice and the Range indicator of the previously unselected output to flash for 2 seconds.
Selecting Link mode will cancel any Jog selection set on either Main Output.

Set Voltage and Set Current Limit

Setting the output voltage and current limit by numeric entry or Jog control is essentially the same as for the outputs in independent mode. Using numeric entry the two outputs will be set to exactly the same new voltage and current limit, irrespective of the settings at the time the outputs were linked. Note that there can be a finite time difference between the changes on the two outputs, even if they are changing from the same initial setting; typically this time difference should be no more than 40ms (80ms max). However, if the settings were different at the time the outputs were linked, changing the voltage or current limit using the Jog control will maintain the difference between the two outputs by incrementing/decrementing each output by the same step,
23
i.e. the outputs will 'track' each other. Tracking will be maintained until one of the outputs reaches the range limit, at which time each further Jog step will cause the buzzer to sound for that output (but with the output remaining at the range limit) whilst the in-range output continues to change, i.e. 'tracking' ceases and the outputs converge with each further step. If the increment/decrement is reversed the new (smaller) difference between the outputs is maintained until one output reaches the range limit in the other direction.
If Link mode is exited whilst Jog is selected, Jog continues to be active on the selected output.

Store and Recall

In Link mode a further 10 non-volatile memories are available which are quite separate from the 10 memories for each output in independent mode. The parameters stored are Range, Voltage, Current Limit, OVP and OCP. Operation in Link mode is exactly as described in the Store, Recall and Delete paragraphs of the Main Outputs section; the display messages described in these sections appear in both displays when Link mode is selected.

OVP, OCP and Sense

OVP, OCP and Sense can only be set when either channel is independently selected. The settings are maintained when Link mode is selected; OVP and OCP can be saved as part of a Link mode set-up but the Sense setting cannot. If an attempt is made to change OVP, OCP or Sense whilst in Link mode the display of Output 1 will flash SELCt 1or2 to remind the user that these parameters must be set independently for each channel. Press ESCAPE to cancel the flashing display, assign control to the appropriate channel using the CONTROL 1 or 2 keys and set OVP, OCP, or Sense as described for the individual outputs.

Output Power

Pressing SHIFT, V x A causes the output power of both outputs to be displayed simultaneously in their respective displays (V x A in the voltage display,
described for independent operation.

Extra Functions

The # functions described in the Extra Functions paragraph of the Main Outputs section can also be set when the instrument is in Link mode; both displays will show SHIFT, #. Any # function set in this way will of course be the same for both outputs. However,
the # functions can be different for each output if they are separately set whilst in independent mode and the function selection will be maintained for each output even when the outputs are in Link mode.

Bus Type and Address/Baud Rate

The Bus Type, Address and Baud Rate can only be selected when control is assigned to Output
2. The Output 2 display is used to show the parameters being set, exactly as described for independent operation. If an attempt is made to set these parameters in Links mode, or with Output 1 selected, the display of Output 1 flashes
Output 2. Press Escape to clear the display prompt (or wait for it to time out), then select Output 2.

Main Outputs – Copy Function

UA in the current display) exactly as
HASH No._ after pressing
SELCt P.U._2 as a prompt to select
24
The principle settings of Output 1 can be copied to Output 2 using the Copy function, irrespective of the CONTROL mode (1, 2 or LINK) currently selected. The parameters copied are Range, Voltage, Current Limit, OVP and OCP; the status of Sense, ON/OFF, Jog and the Store contents are not copied.
Pressing SHIFT, COPY 1>2 causes the Voltage, Current and Range settings of Output 1 to appear on the displays of Output 2 in flashing mode; the OK key also flashes. Pressing OK confirms and implements the Copy operation; pressing ESCAPE at that point abandons the operation.
If the Copy operation will cause a range change to Output 2, and if Output 2 is ON, the Output 2 ON/OFF key also flashes and the output is turned OFF when OK is pressed; the output can also be turned off directly with its ON/OFF key before OK is pressed.

Auxiliary Output

The AUXILIARY output can provide up to 1 Amp at 2.7V, 3.3V or 5.0V. The output voltage is set by a front-panel slide-switch and the current limit is fixed at ≥1Amp. The output terminals are duplicated on the rear panel (screwless terminals) for rack use; there is no remote sense capability. The output is switched On and Off electronically by the front panel switch or via one of the remote control interfaces; no other function can be remote controlled on this output. Current Limit is indicated when the output voltage has dropped by ~100mV; at this point the output will typically source 1.5A and will maintain this current as the load impedance is reduced to a short­circuit. If a short-circuit is maintained the output will eventually enter thermal shutdown.
25

Remote Operation (XDL 35-5TP only)

The instrument can be remotely controlled via its RS232, USB or GPIB interfaces. When using RS232 it can either be the only instrument connected to the controller or it can be part of an addressable RS232 chain which permits up to 32 instruments to be addressed from one RS232 port.
The USB interface operates internally through the instrument's RS232 interface. USB remote control consequently operates exactly as described for single-instrument RS232 use but via the USB connector. The instrument operates at the maximum Baud rate (19200) in USB mode. The virtual COM port on the controlling computer, which is set up using the driver software supplied, must be set to the same Baud rate. Application software on the computer can then access the instrument as if it is connected via the RS232 connector. The USB port cannot, however, be used as part of an addressable RS232 chain.
Some of the following sections are general and apply to all modes (single instrument RS232, USB, addressable RS232 chain and GPIB); others are clearly only relevant to a particular interface or mode. It is only necessary to read the general sections plus those specific to the intended remote control mode.
Remote command format and the remote commands themselves are detailed in the Remote Commands chapter.

Control Bus, Instrument Address and Baud Rate Selection

For successful operation each instrument connected to a GPIB bus or addressable RS232 chain must be assigned a unique address. For addressable RS232 all instruments in the chain must be set to the same Baud rate.
To change the interface settings the CONTROL mode must first be set to 2 (i.e. Output 2 only selected).
Press SHIFT, Bus Type to display the currently selected bus type. To change to another bus type scroll through the available types using the rotary control until the required type is displayed. Press OK to select the displayed type or ESCAPE to retain the previous selection.
Press SHIFT, Addr/Baud to display the currently selected instrument bus address. If the currently selected bus type is RS232 then pressing Addr/Baud again displays the currently selected Baud rate and repeated presses alternate between the two. To change the address scroll through the available addresses using the rotary control when the address is displayed. The address can be set between 1 and 31 inclusive and the same address is used for both GPIB and addressable RS232; the address setting is ignored in USB mode. To change the Baud rate scroll through the available rates using the rotary control when the Baud rate is displayed. Press OK to select the last displayed address and Baud rate or ESCAPE to retain the previous selections. Note that RS232 must be selected before the Baud rate can be selected; the Baud rate is fixed at maximum (19200) for USB.

Remote/Local Operation

26
At power-on the instrument will be in the local state with the REM indicator off. In this state all keyboard operations are possible. When the instrument is addressed to listen and a command is received the remote state will be entered and REM will be turned on. In this state the keyboard is locked out and remote commands only will be processed. The instrument may be returned to the local state by pressing the LOCAL key; however, the effect of this action will only remain until the instrument is addressed again or receives another character from the interface, when the remote state will once again be entered.

RS232 Interface

RS232 Interface Connector

The 9-way D-type serial interface connector is located on the instrument rear panel. The pin connections are as shown below:
Pin Name Description
1 - No internal connection 2 TXD Transmitted data from instrument 3 RXD Received data to instrument 4 - No internal connection 5 GND Signal ground 6 - No internal connection 7 RXD2 Secondary received data (addressable RS232 only) 8 TXD2 Secondary transmitted data (addressable RS232 only) 9 GND Signal ground (addressable RS232 only)

Single Instrument RS232 Connections

For single instrument remote control only pins 2, 3 and 5 are connected to the PC. However, for correct operation links must be made in the connector at the PC end between pins 1, 4 and 6 and between pins 7 and 8, see diagram. Pins 7 and 8 of the instrument must not be connected to the PC, i.e. do not use a fully wired 9–way cable.
Baud Rate is set as described above in Address and Baud Rate Selection; the other parameters are fixed as follows:
Start Bits: 1 Parity: None Data Bits: 8 Stop Bits: 1

Addressable RS232 Connections

For addressable RS232 operation pins 7, 8 and 9 of the instrument connector are also used. Using a simple cable assembly, a 'daisy chain' connection system between any number of instruments, up to the maximum of 32 can be made, as shown below:
The daisy chain consists of the transmit data (TXD), receive date (RXD) and signal ground lines only. There are no control/handshake lines. This makes XON/XOFF protocol essential and allows the inter-connection between instruments to contain just 3 wires. The wiring of the adaptor cable is shown below:
27
All instruments on the interface must be set to the same baud rate and all must be powered on, otherwise instruments further down the daisy chain will not receive any data or commands.
The other parameters are fixed as follows:
Start Bits: 1 Parity: None Data Bits: 8 Stop Bits: 1

RS232 Character Set

Because of the need for XON/XOFF handshake it is possible to send ASCII coded data only; binary blocks are not allowed. Bit 7 of ASCII codes is ignored, i.e. assumed to be low. No distinction is made between upper and lower case characters in command mnemonics and they may be freely mixed. The ASCII codes below 20H (space) are reserved for addressable RS232 interface control. In this manual 20H, etc. means 20 in hexadecimal

Addressable RS232 Interface Control Codes

All instruments intended for use on the addressable RS232 bus use the following set of interface control codes. Codes between 00H and 1FH which are not listed here as having a particular meaning are reserved for future use and will be ignored. Mixing interface control codes inside instrument commands is not allowed except as stated below for CR and LF codes and XON and XOFF codes.
When an instrument is first powered on it will automatically enter the Non- Addressable mode. In this mode the instrument is not addressable and will not respond to any address commands. This allows the instrument to function as a normal RS232 controllable device. This mode may be locked by sending the Lock Non-Addressable mode control code, 04H. The controller and instrument can now freely use all 8 bit codes and binary blocks but all interface control codes are ignored. To return to addressable mode the instrument must be powered off.
28
To enable addressable mode after an instrument has been powered on the Set Addressable Mode control code, 02H, must be sent. This will then enable all instruments connected to the addressable RS232 bus to respond to all interface control codes. To return to Non-Addressable mode the Lock Non-Addressable mode control code must be sent which will disable addressable mode until the instruments are powered off.
Before an instrument is sent a command it must be addressed to listen by sending the Listen Address control code, 12H, followed by a single character which has the lower 5 bits corresponding to the unique address of the required instrument, e.g. the codes A-Z or a-z give the addresses 1-26 inclusive while @ is address 0 and so on. Once addressed to listen the instrument will read and act upon any commands sent until the listen mode is cancelled.
Because of the asynchronous nature of the interface it is necessary for the controller to be informed that an instrument has accepted the listen address sequence and is ready to receive commands. The controller will therefore wait for Acknowledge code, 06H, before sending any commands, The addressed instrument will provide this Acknowledge. The controller should time­out and try again if no Acknowledge is received within 5 seconds.
Listen mode will be cancelled by any of the following interface control codes being received:
12H Listen Address followed by an address not belonging to this instrument. 14H Talk Address for any instrument. 03H Universal Unaddress control code. 04H Lock Non-Addressable mode control code. 18H Universal Device Clear.
Before a response can be read from an instrument it must be addressed to talk by sending the Talk Address control code, 14H, followed by a single character which has the lower 5 bits corresponding to the unique address of the required instrument, as for the listen address control code above. Once addressed to talk the instrument will send the response message it has available, if any, and then exit the talk addressed state. Only one response message will be sent each time the instrument is addressed to talk.
Talk mode will be cancelled by any of the following interface control codes being received:
12H Listen Address for any instrument. 14H Talk Address followed by an address not belonging to this instrument. 03H Universal Unaddress control code. 04H Lock Non-Addressable mode control code. 18H Universal Device Clear.
Talk mode will also be cancelled when the instrument has completed sending a response message or has nothing to say.
The interface code 0AH (LF) is the universal command and response terminator; it must be the last code sent in all commands and will be the last code sent in all responses.
The interface code 0DH (CR) may be used as required to aid the formatting of commands; it will be ignored by all instruments. Most instruments will terminate responses with CR followed by LF.
The interface code 13H (XOFF) may be sent at any time by a listener (instrument or controller) to suspend the output of a talker. The listener must send 11H (XON) before the talker will resume sending. This is the only form of handshake control supported by addressable RS232 mode.

Full List of Addressable RS232 Interface Control Codes

02H Set Addressable Mode. 03H Universal Unaddress control code. 04H Lock Non-Addressable mode control code. 06H Acknowledge that listen address received. 0AH Line Feed (LF); used as the universal command and response terminator. 0DH Carriage Return (CR); formatting code, otherwise ignored. 11H Restart transmission (XON). 12H Listen Address - must be followed by an address belonging to the required instrument. 13H Stop transmission (XOFF). 14H Talk Address - must be followed by an address belonging to the required instrument. 18H Universal Device Clear.
29
Loading...
+ 88 hidden pages