Waters Xevo TQ-XS Mass Overview And Maintenance Manual

Waters Xevo TQ-XS Mass Spectrometry System
Overview and Maintenance Guide
715004990 Revision A
Copyright © Waters Corporation 2016
All rights reserved

General information

© 2016 WATERS CORPORATION. PRINTED IN THE UNITED STATES OF AMERICA AND IN IRELAND. ALL RIGHTS RESERVED. THIS DOCUMENT OR PARTS THEREOF MAY NOT BE REPRODUCED IN ANY FORM WITHOUT THE WRITTEN PERMISSION OF THE PUBLISHER.
The information in this document is subject to change without notice and should not be construed as a commitment by Waters Corporation. Waters Corporation assumes no responsibility for any errors that may appear in this document. This document is believed to be complete and accurate at the time of publication. In no event shall Waters Corporation be liable for incidental or consequential damages in connection with, or arising from, its use. For the most recent revision of this document, consult the Waters Web site (waters.com).

Trademarks

ACQUITY® is a registered trademark of Waters Corporation.
ACQUITY UPLC® is a registered trademark of Waters Corporation.
Alliance® is a registered trademark of Waters Corporation.
Connections INSIGHT® is a registered trademark of Waters Corporation.
DART® is a registered trademark of ionSense Inc.
ESCi® is a registered trademark of Waters Corporation.
EdwardsTM is a trademark of Edwards Limited.
GELoader® is a registered trademark of Eppendorf-Netheler-Hinz GmbH.
iKeyTM is a trademark of Waters Corporation.
ionKeyTM is a trademark of Waters Corporation.
IntelliStartTM is a trademark of Waters Corporation.
LDTDTM is a trademark of Phytronix Technologies Inc.
Leybold® is a registered trademark of Oerlikon Leybold Vacuum GmbH.
LockSprayTM is a trademark of Waters Corporation.
MassLynx® is a registered trademark of Waters Corporation.
June 9, 2016, 715004990 Rev. A
Page ii
Nano LCTM is a trademark of Waters Corporation.
nanoACQUITY® is a registered trademark of Waters Corporation.
NanoFlowTM is a trademark of Waters Corporation.
nanoTile® is a registered trademark of Waters Corporation.
Oerlikon® is a registered trademark of OC Oerlikon Corporation AG.
OpenLynxTM is a trademark of Waters Corporation.
PEEKTM is a trademark of Victrex PLC.
PEEKsilTM is a trademark of SGE Analytical Science Pty Ltd.
RADARTM is a trademark of Waters Corporation.
ScanWaveTM is a trademark of Waters Corporation.
StepWaveTM is a trademark of Waters Corporation.
Swagelok® is a registered trademark of Swagelok Company.
SymbiosisTM is a trademark of Spark Holland Inc.
T-WaveTM is a trademark of Waters Corporation.
THE SCIENCE OF WHAT'S POSSIBLE® is a registered trademark of Waters Corporation.
TRIZAIC® is a registered trademark of Waters Corporation.
TargetLynxTM is a trademark of Waters Corporation.
UNIFI® is a registered trademark of Waters Corporation.
UniSprayTM is a trademark of Waters Corporation.
UPLC® is a registered trademark of Waters Corporation.
UltraPerformance LC® is a registered trademark of Waters Corporation.
Viton® is a registered trademark of DuPont Performance Elastomers LLC.
Waters® is a registered trademark of Waters Corporation.
Xevo® is a registered trademark of Waters Corporation.
ZSprayTM is a trademark of Waters Corporation.
All other trademarks or registered trademarks are the sole property of their respective owners.

Customer comments

Waters’ Technical Communications organization invites you to report any errors that you encounter in this document or to suggest ideas for otherwise improving it. Help us better
June 9, 2016, 715004990 Rev. A
Page iii
understand what you expect from our documentation so that we can continuously improve its accuracy and usability.
We seriously consider every customer comment we receive. You can reach us at
tech_comm@waters.com.

Contacting Waters

Contact Waters with enhancement requests or technical questions regarding the use, transportation, removal, or disposal of any Waters product. You can reach us via the Internet, telephone, or conventional mail.
Waters contact information
Contacting medium Information
Internet The Waters Web site includes contact information for Waters locations
Telephone and fax From the USA or Canada, phone 800-252-4752, or fax 508-872-1990.
worldwide. Visit www.waters.com
For other locations worldwide, phone and fax numbers appear in the Waters Web site.
Conventional mail Waters Corporation
Global Support Services 34 Maple Street Milford, MA 01757 USA

System manufacturing information

Manufacturer:
Waters Corporation
34 Maple Street
Milford, MA 01757
USA
Manufacturing site:
Waters Technologies Ireland Ltd.
Wexford Business Park
June 9, 2016, 715004990 Rev. A
Page iv
Drinagh, Wexford, Ireland

Safety considerations

Some reagents and samples used with Waters instruments and devices can pose chemical, biological, or radiological hazards (or any combination thereof). You must know the potentially hazardous effects of all substances you work with. Always follow Good Laboratory Practice (GLP), and consult your organization’s standard operating procedures as well as your local requirements for safety.

Considerations specific to the device

Power cord replacement hazard
Warning: To avoid electric shock, use the SVT-type power cord in the United States
and HAR-type (or better) cord in Europe. The main power cord must be replaced only with one of adequate rating. For information regarding what cord to use in other countries, contact your local Waters distributor.
Solvent leakage hazard
The source exhaust system is designed to be robust and leak-tight. Waters recommends you perform a hazard analysis assuming a maximum leak into the laboratory atmosphere of 10% LC eluate.
Warning: To avoid exposure to toxic substances and biohazards from O-ring leaks in the
source exhaust system, observe these precautions:
• Replace the source O-rings at intervals not exceeding one year.
• Prevent chemical degradation of the source O-rings, which can withstand exposure only to certain solvents, by determining whether any solvents you use are chemically compatible with the composition of the O-rings.
Bottle placement prohibition
Warning: To avoid injury from electrical shock or fire, and damage to the equipment, do not
place vessels containing liquid atop the workstation or ancillary equipment or otherwise expose those units to dripping or splashing liquids.
June 9, 2016, 715004990 Rev. A
Page v
Prohibited: Do not place vessels containing liquid—such as solvent bottles—atop the
workstation or ancillary equipment or otherwise expose those units to dripping or splashing liquids.
Spilled solvents hazard
Prohibited: To avoid equipment damage caused by spilled solvent, do not place
reservoir bottles directly atop an instrument or device or on its front ledge. Instead, place the bottles in the bottle tray, which serves as secondary containment in the event of spills.
Flammable solvents hazard
Warning: To prevent the ignition of flammable solvent vapors in the enclosed space of
a mass spectrometer’s ion source, ensure that these conditions are met:
• Nitrogen flows continuously through the source.
• A gas-fail device is installed, to interrupt the flow of LC solvent should the nitrogen supply fail.
• The nitrogen supply pressure does not fall below 400 kPa (4 bar, 58 psi) during an analysis requiring the use of flammable solvents.
When using flammable solvents, ensure that a stream of nitrogen continuously flushes the instrument’s source, and the nitrogen supply pressure remains above 400 kPa (4 bar, 58 psi). You must also install a gas-fail device that interrupts the solvent flowing from the LC system in the event the supply of nitrogen fails.
Glass breakage hazard
Warning: To avoid injuries from broken glass, falling objects, or exposure to toxic substances,
never place containers on top of the instrument or on its front covers.
High temperature hazard
Warning: To avoid burn injuries, avoid touching the source ion block assembly when
operating or servicing the instrument.
June 9, 2016, 715004990 Rev. A
Page vi
Mass spectrometer high temperature hazard
Source ion block assembly
Hazards associated with removing an instrument from service
Warning: To avoid personal contamination with biohazards, toxic materials, and corrosive
materials, wear chemical-resistant gloves when performing this procedure.
Warning: To avoid puncture injuries, handle sample needles, syringes, fused silica
lines, and borosilicate tips with extreme care.
Warning: To avoid eye injury from broken fused silica lines, use eye protection when
performing this procedure.
When you remove the instrument from use to repair or dispose of it, you must decontaminate all of its vacuum areas. These are the areas in which you can expect to encounter the highest levels of contamination:
• Source interior
• Waste tubing
• Exhaust system
• Rotary pump oil (where applicable)
The need to decontaminate other vacuum areas of the instrument depends on the kinds of samples the instrument analyzed and their levels of concentration. Do not dispose of the instrument or return it to Waters for repair until the authority responsible for approving its removal from the premises specifies the extent of decontamination required and the level of residual
June 9, 2016, 715004990 Rev. A
Page vii
contamination permissible. That authority must also prescribe the method of decontamination to be used and the appropriate protection for personnel undertaking the decontamination process.
You must handle items such as syringes, fused silica lines, and borosilicate tips used to carry sample into the source area in accordance with laboratory procedures for contaminated vessels and sharps. To avoid contamination by carcinogens, toxic substances, or biohazards, you must wear chemical-resistant gloves when handling or disposing of used oil.

Electrical power safety notice

Do not position the instrument so that it is difficult to disconnect the power cord.

Safety hazard symbol notice

Documentation needs to be consulted in all cases where the symbol is used to find out the nature of the potential hazard and any actions which have to be taken.

Equipment misuse notice

If equipment is used in a manner not specified by its manufacturer, protections against personal injury inherent in the equipment’s design can be rendered ineffective.

Safety advisories

Consult the "Safety advisories" appendix in this publication for a comprehensive list of warning advisories and notices.

Operating this device

When operating this device, follow standard quality-control (QC) procedures and the guidelines presented in this section.

Applicable symbols

Symbol Definition
Manufacturer
June 9, 2016, 715004990 Rev. A
Page viii
Symbol Definition
REF
Date of manufacture
Authorized representative of the European Community
Confirms that a manufactured product complies with all applicable European Community directives
Australia EMC compliant
or
Confirms that a manufactured product complies with all applicable United States and Canadian safety requirements
Consult instructions for use
Alternating current
Electrical and electronic equipment with this symbol may contain hazardous substances and should not be disposed of as general waste. For compliance with the Waste Electrical and Electronic Equipment Directive (WEEE) 2012/19/EU, contact Waters Corporation for the correct disposal and recycling instructions.
Serial number
Part number catalog number

Audience and purpose

This guide is for operators of varying levels of experience. It gives an overview of the device and explains how to prepare it for operation, change its modes of operation, and maintain it.

Intended use of the device

Waters designed the Xevo TQ-XS for use as a research tool to accurately, reproducibly, and robustly quantify target compounds present at the lowest possible levels in highly complex sample matrices. It is not for use in diagnostic procedures.
June 9, 2016, 715004990 Rev. A
Page ix
When fitted with Waters options (APCI, APGC, APPI, ASAP, ESCi, NanoFlow ESI, TRIZAIC, UniSpray, UPLC, ionKey), or optional third-party sources (DART, DESI, or LDTD), the Xevo TQ­XS does not comply with the European Union In Vitro Diagnostic Device Directive 98/79/EC.

Calibrating

To calibrate LC systems, adopt acceptable calibration methods using at least five standards to generate a standard curve. The concentration range for standards must include the entire range of QC samples, typical specimens, and atypical specimens.
When calibrating mass spectrometers, consult the calibration section of the operator’s guide for the instrument you are calibrating. In cases where an overview and maintenance guide, not an operator’s guide, accompanies the instrument, consult the instrument’s online Help system for calibration instructions.

Quality control

Routinely run three QC samples that represent subnormal, normal, and above-normal levels of a compound. If sample trays are the same or very similar, vary the location of the QC samples in the trays. Ensure that QC sample results fall within an acceptable range, and evaluate precision from day to day and run to run. Data collected when QC samples are out of range might not be valid. Do not report these data until you are certain that the instrument performs satisfactorily.

EMC considerations

FCC radiation emissions notice

Changes or modifications not expressly approved by the party responsible for compliance, could void the user's authority to operate the equipment. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Canada spectrum management emissions notice

This class A digital product apparatus complies with Canadian ICES-001.
Cet appareil numérique de la classe A est conforme à la norme NMB-001.
June 9, 2016, 715004990 Rev. A
Page x

ISM classification: ISM group 1 class A

This classification has been assigned in accordance with IEC CISPR 11 Industrial Scientific and Medical (ISM) instruments requirements.
Group 1 products apply to intentionally generated and/or used conductively coupled radio­frequency energy that is necessary for the internal functioning of the equipment.
Class A products are suitable for use in all establishments other than residential locations and those directly connected to a low voltage power supply network supplying a building for domestic purposes.
There may be potential difficulties in ensuring electromagnetic compatibility in other environments due to conducted as well as radiated disturbances.

EMC grounding requirements

Notice: To avoid difficulties in ensuring electromagnetic compatibility, if the
instrument's pump control cable is attached to the vacuum hose, ensure that the cable is grounded to the mass spectrometer.

EC authorized representative

Address Waters Corporation
Stamford Avenue Altrincham Road Wilmslow SK9 4AX UK
Telephone +44-161-946-2400
Fax +44-161-946-2480
Contact Quality manager
June 9, 2016, 715004990 Rev. A
Page xi

Table of contents

General information .......................................................................................................ii
Copyright notice ..................................................................................................................................... ii
Trademarks............................................................................................................................................ ii
Customer comments..............................................................................................................................iii
Contacting Waters ................................................................................................................................ iv
System manufacturing information ....................................................................................................... iv
Safety considerations............................................................................................................................. v
Considerations specific to the device .............................................................................................. v
Electrical power safety notice........................................................................................................viii
Safety hazard symbol notice .........................................................................................................viii
Equipment misuse notice ..............................................................................................................viii
Safety advisories ...........................................................................................................................viii
Operating this device ...........................................................................................................................viii
Applicable symbols........................................................................................................................viii
Audience and purpose.................................................................................................................... ix
Intended use of the device ............................................................................................................. ix
Calibrating .......................................................................................................................................x
Quality control.................................................................................................................................. x
EMC considerations............................................................................................................................... x
FCC radiation emissions notice....................................................................................................... x
Canada spectrum management emissions notice........................................................................... x
ISM classification: ISM group 1 class A.......................................................................................... xi
EMC grounding requirements......................................................................................................... xi
EC authorized representative ............................................................................................................... xi
1 Waters Xevo TQ-XS Overview .................................................................................19
1.1 IntelliStart technology....................................................................................................................20
1.2 ACQUITY UPLC/MS Xevo TQ-XS systems..................................................................................21
1.2.1 ACQUITY UPLC system......................................................................................................21
1.2.2 Waters ACQUITY Xevo TQ-XS UPLC/MS system.............................................................. 21
1.2.3 ACQUITY UPLC M-Class system........................................................................................22
1.2.4 Non-ACQUITY devices for use with the Xevo TQ-XS .........................................................22
June 9, 2016, 715004990 Rev. A
Page xii
1.2.5 Software and data system ...................................................................................................23
1.3 Ionization techniques and source probes...................................................................................... 23
1.3.1 Electrospray ionization ........................................................................................................24
1.3.2 ESCi.....................................................................................................................................24
1.3.3 APCI ....................................................................................................................................24
1.3.4 Dual-mode APPI/APCI source............................................................................................. 24
1.3.5 UniSpray..............................................................................................................................25
1.3.6 Low-flow ESI probe..............................................................................................................25
1.3.7 NanoFlow ESI source..........................................................................................................25
1.3.8 Atmospheric solids analysis probe (ASAP) .........................................................................25
1.3.9 APGC...................................................................................................................................26
1.3.10 TRIZAIC UPLC source ......................................................................................................26
1.3.11 ionKey source....................................................................................................................26
1.4 IntelliStart fluidics system..............................................................................................................26
1.4.1 Overview..............................................................................................................................26
1.4.2 System components ............................................................................................................28
1.4.3 System operation................................................................................................................. 28
1.5 Ion optics.......................................................................................................................................28
1.6 MS operating modes ..................................................................................................................... 29
1.7 MS/MS operating modes............................................................................................................... 30
1.7.1 Product (daughter) ion mode...............................................................................................31
1.7.2 Precursor (parent) ion mode................................................................................................ 31
1.7.3 MRM mode ..........................................................................................................................32
1.7.4 Constant neutral loss mode.................................................................................................33
1.7.5 Constant neutral gain mode.................................................................................................33
1.7.6 ScanWave daughter scan mode..........................................................................................33
1.8 Leak sensors.................................................................................................................................34
1.9 Vacuum system............................................................................................................................. 34
1.10 Rear panel...................................................................................................................................35
2 Preparing the mass spectrometer for operation ................................................... 37
2.1 Preparing to start the mass spectrometer ..................................................................................... 37
2.2 Starting the mass spectrometer ....................................................................................................38
2.3 Verifying the instrument’s state of readiness ................................................................................39
2.4 Monitoring the mass spectrometer LEDs ...................................................................................... 39
June 9, 2016, 715004990 Rev. A
Page xiii
2.4.1 Power LED...........................................................................................................................39
2.4.2 Operate LED........................................................................................................................ 40
2.5 Tuning and calibration information ................................................................................................ 40
2.6 Running the mass spectrometer at high flow rates ....................................................................... 40
2.7 Preparing the IntelliStart Fluidics system ...................................................................................... 41
2.7.1 Installing the reservoir bottles..............................................................................................41
2.7.2 Installing the low-volume vials .............................................................................................42
2.7.3 Adjusting the solvent delivery tube positions.......................................................................42
2.8 Purging the fluidics........................................................................................................................43
2.9 Rebooting the mass spectrometer ................................................................................................43
2.10 Leaving the mass spectrometer ready for operation...................................................................44
2.11 Emergency shutdown of the mass spectrometer ........................................................................ 45
3 Changing the mode of operation ............................................................................46
3.1 Changing the Mode of Operation .................................................................................................. 46
3.2 ESI, ESCi, and APCI modes ......................................................................................................... 46
3.2.1 ESI mode.............................................................................................................................46
3.2.2 ESCi mode...........................................................................................................................47
3.2.3 APCI mode ..........................................................................................................................47
3.2.4 Configuring for ESI/ESCi/APCI modes................................................................................47
3.2.5  Installing the probe adaptor ................................................................................................50
3.2.6 Installing the probe assembly ..............................................................................................53
3.2.7 Removing the probe adaptor ...............................................................................................60
3.2.8 Installing and removing the corona pin................................................................................61
3.3 Combined APPI/APCI source .......................................................................................................65
3.3.1 APPI operation.....................................................................................................................65
3.3.2 APCI operation ....................................................................................................................66
3.3.3 Dual-mode operation ...........................................................................................................67
3.3.4 The combined APPI/APCI source components...................................................................68
3.3.5 Installing the combined APPI/APCI source..........................................................................69
3.3.6 Removing the combined APPI/APCI source enclosure.......................................................70
3.4 UniSpray source............................................................................................................................ 71
3.4.1 Installing the UniSpray source.............................................................................................73
3.4.2 Removing the UniSpray source...........................................................................................76
3.5 NanoFlow ESI source ...................................................................................................................77
June 9, 2016, 715004990 Rev. A
Page xiv
3.5.1 Installing the NanoFlow source............................................................................................77
3.5.2 Fitting a borosilicate glass capillary (nanovial) ....................................................................80
3.5.3 Positioning the borosilicate glass capillary tip......................................................................83
3.5.4 Restarting a stalled borosilicate glass capillary electrospray...............................................83
3.6 ionKey source ...............................................................................................................................83
3.6.1 Installing the ionKey source................................................................................................. 84
3.6.2 Installing ionKey source software .......................................................................................88
3.6.3 Installing the camera in the ionKey source..........................................................................88
3.6.4 Removing an ionKey source................................................................................................ 88
4 Maintenance procedures ......................................................................................... 91
4.1 Maintenance schedule ..................................................................................................................91
4.2 Spare parts....................................................................................................................................93
4.3 Troubleshooting with Connections INSIGHT ................................................................................93
4.4 Safety and handling ......................................................................................................................94
4.5 Preparing the instrument for working on the source .....................................................................95
4.5.1 Using MassLynx software to prepare the instrument for operations on or inside its
source............................................................................................................................................95
4.6 Removing and refitting the source enclosure................................................................................96
4.6.1 Removing the source enclosure from the instrument ..........................................................96
4.6.2 Fitting the source enclosure to the instrument..................................................................... 98
4.7 Operating the source isolation valve ............................................................................................. 98
4.7.1 Closing the source isolation valve .......................................................................................99
4.7.2 Opening the source isolation valve.................................................................................... 100
4.8 Removing O-rings and seals.......................................................................................................100
4.9 Cleaning the instrument case...................................................................................................... 101
4.10 Emptying the nitrogen exhaust trap bottle................................................................................. 101
4.11 Maintaining the roughing pump.................................................................................................103
4.12 Cleaning the source components.............................................................................................. 103
4.13 Cleaning the sampling cone assembly...................................................................................... 103
4.13.1 Removing the sampling cone assembly from the source ................................................104
4.13.2 Disassembling the sampling cone assembly...................................................................105
4.13.3 Cleaning the sample cone and cone gas nozzle .............................................................108
4.13.4 Assembling the sampling cone assembly........................................................................ 109
June 9, 2016, 715004990 Rev. A
Page xv
4.13.5 Fitting the sampling cone assembly to the source........................................................... 110
4.14 Cleaning the ion block assembly............................................................................................... 111
4.14.1 Removing the ion block assembly from the source assembly.........................................111
4.14.2 Disassembling the source ion block assembly ................................................................114
4.14.3 Cleaning the ion block components................................................................................. 118
4.14.4 Assembling the source ion block assembly.....................................................................119
4.14.5 Fitting the ion block assembly to the source assembly....................................................120
4.15 Cleaning the StepWave ion guide assembly............................................................................. 121
4.15.1 Handling the StepWave ion guide assembly ...................................................................121
4.15.2 Removing the ion block support from the source assembly ............................................121
4.15.3 Removing the StepWave assembly from the source assembly.......................................123
4.15.4 Disassembling the StepWave ion guide assembly..........................................................127
4.15.5 Cleaning the StepWave ion guide assembly ...................................................................130
4.15.6 Assembling the StepWave ion guide assembly............................................................... 132
4.15.7 Fitting the StepWave assembly to the source assembly .................................................134
4.15.8 Fitting the ion block support to the source.......................................................................137
4.16 Replacing the probe assembly..................................................................................................137
4.16.1 Removing the probe assembly ........................................................................................137
4.17 Replacing the ESI probe tip and gasket....................................................................................139
4.17.1 Removing the ESI probe tip and gasket ..........................................................................139
4.17.2 Fitting the ESI probe tip and gasket.................................................................................141
4.18 Cleaning the APCI probe tip...................................................................................................... 142
4.19 Replacing the APCI probe heater .............................................................................................143
4.19.1 Removing the APCI probe heater.................................................................................... 143
4.19.2 Fitting the new APCI probe heater...................................................................................144
4.20 Cleaning or replacing the corona pin ........................................................................................146
4.21 Replacing the ion block source heater ...................................................................................... 146
4.22 Replacing the source assembly seals.......................................................................................150
4.22.1 Removing the probe adjuster assembly probe and source enclosure seals ...................151
4.22.2 Fitting the new source enclosure and probe adjuster assembly probe seals .................. 153
4.23 Replacing the air filter inside the front door............................................................................... 154
4.24 APPI/APCI source - changing the UV lamp bulb ......................................................................156
4.25 APPI/APCI source—cleaning the lamp window ........................................................................ 158
4.26 APPI/APCI source - replacing the APPI lamp drive seals.........................................................158
4.26.1 Removing the APPI lamp drive assembly seals ..............................................................159
June 9, 2016, 715004990 Rev. A
Page xvi
4.26.2 Fitting the new APPI lamp drive assembly O-rings..........................................................163
4.27 Replacing the UniSpray probe assembly .................................................................................. 165
4.27.1 Removing the UniSpray probe assembly ........................................................................165
4.27.2 Fitting the UniSpray probe assembly............................................................................... 166
4.28 Maintaining the UniSpray impactor pin .....................................................................................168
4.28.1 Removing and installing the UniSpray impactor pin ........................................................168
4.28.2 Cleaning or replacing the UniSpray impactor pin ............................................................169
4.29 Replacing the fluidic lines of the ionKey source........................................................................170
4.29.1 Removing a fluidic line..................................................................................................... 171
4.29.2 Installing a fluidic line....................................................................................................... 175
4.30 Cleaning the ionKey source and connectors............................................................................. 176
4.30.1 To remove buildup from electronic connectors................................................................ 177
4.30.2 To clean the outside surfaces of the ionKey source........................................................178
A Safety advisories ...................................................................................................179
A.1 Warning symbols ........................................................................................................................179
A.1.1 Specific warnings ..............................................................................................................180
A.2 Notices........................................................................................................................................182
A.3 Bottles Prohibited symbol ...........................................................................................................182
A.4 Required protection ....................................................................................................................182
A.5 Warnings that apply to all Waters instruments and devices .......................................................183
A.6 Warnings that address the replacing of fuses............................................................................. 187
A.7 Electrical symbols ....................................................................................................................... 188
A.8 Handling symbols .......................................................................................................................189
B External connections............................................................................................. 191
B.1 External wiring and vacuum connections ...................................................................................191
B.2 Connecting the EBARA oil-free roughing pump .........................................................................192
B.3 Making the electrical connections to the Ebara oil-free roughing pump .....................................197
B.4 Connecting to the nitrogen gas supply .......................................................................................198
B.5  Connecting to the collision cell gas supply ................................................................................199
June 9, 2016, 715004990 Rev. A
Page xvii
B.6  Connecting the nitrogen exhaust line ........................................................................................199
B.7 Connecting liquid waste lines .....................................................................................................201
B.8 Connecting the workstation (systems with no ACQUITY LC).....................................................204
B.8.1 Connecting to the workstation...........................................................................................204
B.9 Connecting Ethernet cables (systems with ACQUITY LC) ......................................................... 204
B.10 Input/output signal connectors..................................................................................................205
B.11 Connecting to the electricity source..........................................................................................207
C Materials of Construction and Compatible Solvents..........................................208
C.1 Preventing contamination ........................................................................................................... 208
C.2 Items exposed to solvent............................................................................................................208
C.3 Solvents used to prepare mobile phases ...................................................................................209
D IntelliStart Fluidics System Plumbing.................................................................. 211
D.1 Preventing contamination ........................................................................................................... 211
D.2 Plumbing schematic ...................................................................................................................211
D.3 ionKey and TRIZAIC source plumbing .......................................................................................212
D.4 Tubing specifications .................................................................................................................. 213
June 9, 2016, 715004990 Rev. A
Page xviii

1 Waters Xevo TQ-XS Overview

The Xevo TQ-XS is a tandem quadrupole, atmospheric pressure ionization (API) mass spectrometer. It is designed for routine HPLC/MS/MS and UPLC/MS/MS analyses in quantitative and qualitative applications, and can operate at fast acquisition speeds compatible with UltraPerformance LC.
You can use theXevo TQ-XS with the following high-performance ZSpray dual-orthogonal API sources:
• Standard multi-mode electrospray ionization/atmospheric pressure chemical ionization/ combined electrospray ionization and atmospheric pressure chemical ionization (ESI/APCI/ ESCi)
Requirement: Dedicated APCI operation requires an additional probe.
• Optional UniSpray source
• Optional dual-mode atmospheric pressure photoionization (APPI)/APCI
• Optional low-flow ESI
• Optional NanoFlow ESI
• Optional atmospheric solids analysis probe (ASAP)
• Optional atmospheric pressure gas chromatography (APGC)
• Optional TRIZAIC UPLC
• Optional ionKey source
You can also use the Xevo TQ-XS with the following optional third-party sources:
• Direct analysis in real time (DART)
• Desorption electrospary ionization (DESI)
• Laser diode thermal desorption (LDTD)
For additional details, refer to the appropriate manufacturer’s documentation.
Available source options can vary, depending on the software you use to operate the Xevo TQ­XS. Refer to the MassLynx or UNIFI online Help for more information about supported sources.
For mass spectrometer specifications, see the Waters Xevo TQ-XS Site Preparation Guide (715005172).
June 9, 2016, 715004990 Rev. A
Page 19
Figure 1–1: Waters Xevo TQ-XS
Source enclosure

1.1 IntelliStart technology

IntelliStart technology monitors instrument performance and indicates when the instrument is ready for use.
The software automatically tunes and mass calibrates the instrument, displays performance readbacks, and enables simplified setup of the system for use in routine analytical and open­access applications.
The IntelliStart fluidics system1 is built into the mass spectrometer. It delivers sample directly to the MS probe from the LC column or from three integral reservoirs. The integral reservoirs can also deliver sample through direct or combined infusion, enabling you to optimize instrument performance at analytical flow rates.
See IntelliStart fluidics system and the mass spectrometer’s online Help for further details on IntelliStart technology.
1
In Waters documents, the term “fluidics” refers to the IntelliStart Fluidics system, which is the instrument’s onboard system that delivers sample and solvent to the probe of the mass spectrometer. It can also denote plumbing components and fluid pathways within and between system modules.
June 9, 2016, 715004990 Rev. A
Page 20

1.2 ACQUITY UPLC/MS Xevo TQ-XS systems

The Waters Xevo TQ-XS is compatible with the ACQUITY UPLC systems. If you are not using an ACQUITY UPLC system, refer to the documentation relevant to your LC system.

1.2.1 ACQUITY UPLC system

The ACQUITY UPLC system includes a binary or quaternary solvent manager, sample manager, column heater or column manager, optional sample organizer, one or more detectors, a specialized ACQUITY UPLC column, and software to control the system.
For additional information, see the ACQUITY UPLC System Operator's Guide or Controlling Contamination in UltraPerformance LC/MS and HPLC/MS Systems (part number 715001307). You can find these documents on www.waters.com; click Services & Support > Support.
1.2.2

Waters ACQUITY Xevo TQ-XS UPLC/MS system

Figure 1–2: Waters ACQUITY Xevo TQ-XS UPLC/MS System
June 9, 2016, 715004990 Rev. A
Page 21
Probe adaptor
Source enclosure
Source enclosure release
Xevo TQ-XS
Access door to the fluidics
Sample manager
Binary solvent manager or Quaternary solvent manager
Sample organizer (optional on the ACQUITY UPLC system)
Column heater
Solvent tray
Access door to the fluidics valve
Removable panel for ACQUITY arm
Probe high voltage connector
Source interface sliding door

1.2.3 ACQUITY UPLC M-Class system

The ACQUITY UPLC M-Class system is designed for nano-scale and micro-scale separations.
M-Class system components are optimized for use with sub-2µm particle liquid chromatography and use reduced fluid volumes. The supported flow rate for a gradient elution ranges from 200 nL/min to 100 µL/min at 15,000 psi.
For further information, see the ACQUITY UPLC M-Class System Guide or Controlling Contamination in UltraPerformance LC/MS and HPLC/MS Systems (part number 715001307). You can find these documents on www.waters.com; click Services & Support > Support.
1.2.4

Non-ACQUITY devices for use with the Xevo TQ-XS

The following non-ACQUITY LC devices are validated for use with the Xevo TQ-XS:
• Waters Alliance 2695 separations module
• Waters Alliance 2795 separations module
June 9, 2016, 715004990 Rev. A
Page 22
• Waters 2998 PDA detector
• Waters 2487 UV detector
• Waters 1525µ binary gradient pump + 2777 autosampler

1.2.5 Software and data system

You can use MassLynx software v4.2 to control the mass spectrometer. The software enables these major operations:
• Configuring the system
• Creating LC and MS/MS methods that define operating parameters for a run
• Using IntelliStart software to automatically tune and mass calibrate the mass spectrometer
• Running samples
• Acquiring data
• Monitoring the run
• Processing data
• Reviewing data
1.2.5.1
1.3
• Printing data
MassLynx software
MassLynx software acquires, analyzes, manages, and distributes mass spectrometry, ultraviolet (UV), evaporative light scattering (ELS), and analog data. OpenLynx and TargetLynx XS application managers are included with MassLynx software.
See the MassLynx software user documentation and online Help for information about using MassLynx software.
You configure settings, monitor performance, run diagnostic tests, and maintain the system and its modules via the MassLynx Instrument Control application.
The Instrument Control software, which functions independently of MassLynx software, does not recognize or control data systems.
See the online Help for the Instrument Console system for additional details.

Ionization techniques and source probes

Note: Available source options can vary depending on the software used to operate the Xevo
TQ-XS. Refer to the instrument software's online Help for more information about supported sources.
June 9, 2016, 715004990 Rev. A
Page 23

1.3.1 Electrospray ionization

In electrospray ionization (ESI), a strong electrical charge is applied to the eluent as it emerges from a nebulizer. The droplets that compose the resultant aerosol undergo a reduction in size (solvent evaporation). As solvent continues to evaporate, the charge density increases until the droplet surfaces eject ions (ion evaporation). The ions can be singly or multiply charged.
To operate the source in ESI mode, you fit the source enclosure with an ESI probe adaptor and ESI probe assembly.
The standard ESI probe assembly accommodates flow rates of up to 2 mL/min, making it suitable for LC applications in the range of 100 µL/min to 2 mL/min. To reduce peak broadening for lower­flow-rate LC applications, such as 1-mm UPLC columns, use the optional, small-bore capillary, which can accommodate a maximum flow rate of 200 µL/min.
See also: ESI, ESCi, and APCI modes for further details.
1.3.2
1.3.3
1.3.4

ESCi

ESCi mode is supplied as standard equipment on the mass spectrometer. In ESCi, the standard ESI probe adaptor is used in conjunction with a corona pin, to allow alternating acquisition of ESI and APCI ionization data, which facilitates high throughput and wider compound coverage.
See ESI, ESCi, and APCI modes for further details.

APCI

An optional dedicated high-performance APCI interface is available. APCI produces singly charged protonated or deprotonated molecules for a broad range of nonvolatile analytes.
The APCI interface consists of the ESI/APCI/ESCi enclosure fitted with a corona pin and an APCI probe adaptor.
See ESI, ESCi, and APCI modes for further details.

Dual-mode APPI/APCI source

The optional, combined APPI/APCI source comprises an APCI probe adaptor and the APPI lamp drive assembly. The APPI lamp drive assembly comprises a UV lamp and a repeller electrode. In addition, a specially shaped, dual, APPI/APCI corona pin can be used. You can operate the source in APPI, APCI, or dual mode, which switches rapidly between APPI and APCI ionization modes.
See Combined APPI/APPI source for further details.
June 9, 2016, 715004990 Rev. A
Page 24

1.3.5 UniSpray

The UniSpray source enables the detection of a wide range of compounds in a single analysis. In contrast to Electrospray ionization, UniSpray uses a grounded capillary, and the resulting spray is directed at an impactor pin held at a voltage, creating smaller charged droplets, amenable to easy desolvation.
See UniSpray source for further details.
1.3.6
1.3.7

Low-flow ESI probe

The optional low-flow ESI probe is fitted with a narrow bore capillary suitable for use with flow rates from 5 µL/min to 100 µL/min. Its probe tip is optimized for this capillary.
The low-flow ESI probe replaces the standard ESI probe in the instrument’s source housing.
See the Low-flow ESI Probe Operator's Guide for further details.

NanoFlow ESI source

NanoFlow is the name given to several techniques that use low flow rate ESI. The NanoFlow source allows ESI in the flow rate range of 5 to 1,000 nL/min. For a given sample concentration, the ion currents observed approximate those seen in normal flow rate electrospray. However, for similar experiments, NanoFlow’s significant reduction in sample consumption accompanies significant increases in sensitivity.
The following options are available for the spraying capillary:
• Universal nebulizer sprayer (Nano LC). This option is for flow injection or for coupling to nano-UPLC. It uses a pump to regulate the flow rate downward to 100 nL/min. If a syringe pump is used, a gas-tight syringe is necessary to effect correct flow rates without leakage. A volume of 250 µL is recommended.
1.3.8
• Borosilicate glass capillaries (nanovials). Metal-coated, glass capillaries allow the lowest flow rates. They are usable for one sample, and then must be discarded.
• Capillary Electrophoresis (CE) or Capillary Electrochromatography (CEC) sprayer. This option uses a make-up liquid at the capillary tip that provides a stable electrospray. The make-up flow rate is less than 1 µL/min. See NanoFlow ESI source for further details.

Atmospheric solids analysis probe (ASAP)

The ASAP facilitates rapid analysis of volatile and semivolatile compounds in solids, liquids, and polymers. It is particularly suited to analyzing low-polarity compounds. The ASAP directly
June 9, 2016, 715004990 Rev. A
Page 25
replaces the ESI or APCI probe in the instrument’s source housing and has no external gas or electrical connections.
See the Atmospheric Solids Analysis Probe Operator's Guide Supplement for further details.

1.3.9 APGC

The Waters APGC couples an Agilent GC with the Xevo TQ-XS. Doing so enables you to perform LC and GC analyses in the same system, without compromising performance. The APGC provides complementary information to the LC/MS instrument, enabling analysis of compounds of low molecular weight and low-to-intermediate polarity.
See the Atmospheric Pressure GC Operator's Guide Supplement for further details.
1.3.10
1.3.11

TRIZAIC UPLC source

The TRIZAIC UPLC source accepts a nanoTile device, which combines the functions of an analytical column, trapping column, and nanospray emitter. This technology simplifies the implementation of capillary-scale chromatography and analysis of limited-volume samples.
See the TRIZAIC UPLC System Guide for further details.

ionKey source

The ionKey source integrates UPLC separation into the source of the mass spectrometer. The source accepts an iKey Separation Device, which contains the fluidic connections, electronics, ESI interface, heater, e-cord, and chemistry. Inserting the iKey simultaneously engages the electronic and fluidic connections. This technology eliminates the need to manually connect electronic cables and tubing, and simplifies the user experience.
See the ACQUITY UPLC M-Class System Guide (part number 715003588) and the ionKey/MS System Guide (part number 715004028) for further details.
See also: ionKey source.
1.4

IntelliStart fluidics system

1.4.1 Overview

The IntelliStart fluidics system is a solvent delivery system built into the mass spectrometer. It delivers sample directly to the MS probe in one of these ways:
June 9, 2016, 715004990 Rev. A
Page 26
• From the LC column.
• From three integral reservoirs. (The reservoirs can also deliver sample, by direct or combined infusion, to enable optimization at analytical flow rates.)
• From a wash reservoir that contains solvent for automated flushing of the instrument’s solvent delivery system.
For further information on the IntelliStart fluidics system, see IntelliStart Fluidics Plumbing and the diagram located on the inside of the fluidics access door (see Waters ACQUITY Xevo TQ-XS
UPLC/MS system).
Figure 1–3: IntelliStart fluidics system:
Reservoir C
Reservoir B
Reservoir A
Pump
Wash bottle, located in solvent tray
To waste system
LC
Column
Diverter valve
Probe
7-port selector valve
June 9, 2016, 715004990 Rev. A
Page 27

1.4.2 System components

The onboard system incorporates a 7-port selector valve, a multi-position diverter valve, a pump, and three sample reservoirs.
The sample reservoirs are mounted on the instrument’s front panel. When you select a solvent from the instrument console, an LED illuminates the appropriate reservoir. You can simultaneously illuminate all three reservoirs or extinguish the LEDs for light-sensitive samples.
Recommendation: Use reservoir A for the calibrant solution, reservoir B for tuning
compounds, and reservoir C for analyte/optimization solution.
1.4.3

System operation

The software automatically controls solvent and sample delivery during auto-tuning, auto­calibration, and method development, via the instrument console.
See the mass spectrometer’s online Help for additional details on IntelliStart software and operation of the instrument’s solvent delivery system.

1.5 Ion optics

The mass spectrometer’s ion optics operate as follows:
1. Samples from the LC or instrument’s solvent delivery system are introduced at atmospheric pressure into the ionization source, where they are ionized.
2. The ions pass through the sample cone into the vacuum system.
3. The resulting ion beam passes through the source sampling orifice, undergoing a certain amount of expansion.
4. The ion beam then passes into the entrance of the StepWave transfer optics. The entrance is large enough to efficiently capture ions in the expanded beam. The StepWave transfer optics comprise two stages. The first stage (conjoined ion guide) focuses the ion beam and directs it to the second stage (T-Wave ion guide). The off-axis design ensures that any neutral materials entering the source sampling orifice are actively extracted from the system.
5. The ions then pass to the first quadrupole, where they can be filtered according to their mass-to-charge ratio (m/z).
6. The mass-separated ions pass into the T-Wave/ScanWave collision cell, where they undergo collision-induced dissociation (CID) or pass to the second quadrupole. Any fragment ions can then be mass-analyzed by the second quadrupole.
7. The transmitted ions are detected by the photomultiplier detection system.
8. The signal is amplified, digitized, and sent to the mass spectrometry software:
June 9, 2016, 715004990 Rev. A
Page 28
Quadrupole 1 (MS1)
T-Wave/ScanWave collision cell
Quadrupole 2 (MS2)
Conversion dynode
Detector assembly
Photomultiplier tube
Source sampling orifice
Isolation valve
Z-Spray ion source
Sample inlet
Sample cone
Conjoined ion guide
StepWave
T-Wave ion guide

1.6 MS operating modes

The following table shows the MS operating modes.
June 9, 2016, 715004990 Rev. A
Page 29
Table 1–1: MS operating modes:
Operating mode MS1 Collision cell MS2
MS Pass all masses Resolving (scanning)
SIR Pass all masses Resolving (static)
MS1 Resolving (scanning) Pass all masses
In MS mode, the instrument can acquire data at scan speeds as high as 20,000 Da/s. Use this mode for instrument tuning and calibration before MS/MS analysis. See the mass spectrometer’s online Help for further information.
Use the selected ion recording (SIR) mode for quantitation when you cannot find a suitable fragment ion to perform a more specific multiple reaction monitoring (MRM) analysis (see MS/MS
operating modes for further details) . In SIR and MRM modes, neither quadrupole is scanned,
therefore no spectrum (intensity versus mass) is produced. The data obtained from SIR or MRM analyses derive from the chromatogram plot (specified mass intensity versus time).

1.7 MS/MS operating modes

The following table shows the MS/MS operating modes.
Table 1–2: MS/MS operating modes:
Operating mode MS1 Collision cell MS2
Product (daughter) ion spectrum
Precursor (parent) ion spectrum
MRM Static (at precursor
Constant neutral loss spectrum
Constant neutral gain spectrum
ScanWave daughter scan
Static (at precursor mass)
Scanning Static (at product
mass)
Scanning (synchronized with MS2)
Scanning (synchronized with MS2)
Static (at precursor mass)
Fragment precursor ions and pass all masses
Scanning
Scanning
mass)
Static (at product mass)
Scanning (synchronized with MS1)
Scanning (synchronized with MS1)
(synchronized with collision cell)
June 9, 2016, 715004990 Rev. A
Page 30
Loading...
+ 183 hidden pages