Waters 2410 Operator's Manual

Waters 2410
Differential Refractometer
Operator’s Guide
34 Maple Street
Milford, MA 01757
71500241002, Revision 3
NOTICE
The information in this document is subject to change without notice and should not be construed as a commitment by Waters® Corporation. Waters Corporation assumes no responsibility for any errors that may appear in this document. This guide is believed to be complete and accurate at the time of publication. In no event shall Waters Corporation be liable for incidental or consequential damages in connection with or arising from the use of this guide.
2001 WATERS CORPORATION. PRINTED IN THE UNITED STATES OF AMERICA.
ALL RIGHTS RESERVED. THIS DOCUMENT OR PARTS THEREOF MAY NOT BE REPRODUCED IN ANY FORM WITHOUT THE WRITTEN PERMISSION OF THE PUBLISHER.
Millennium® PIC and Waters are registered trademarks, and busLAC/E and PowerStation are trademarks of Waters Corporation.
Micromass is a registered trademark and MassLynx is a trademark of Micromass Ltd. All other trademarks or registered trademarks are the sole property of their respective owners.
Note
: When you use the instrument, follow generally accepted procedures for quality
control and methods development. If you observe a change in the retention of a particular compound, in the resolution
between two compounds, or in peak shape, immediately take steps to determine the reason for the changes. Until you determine the cause of a change, do not rely upon the results of the separations.
Note:
The installation category (Overvoltage Category) for this instrument is Level II. The Level II category pertains to equipment that receives its electrical power from a local lev el, such as an electrical wall outlet.
STOP
Attention:
responsible for compliance could void the user’s authority to operate the equipment.
Important:
par l’autorité résponsable de la conformité à la réglementation peut annuler de droit de l’utilisateur à exploiter l’équipement.
Achtung
ausdrückliche Genehmigung der für die ordnungsgemäße Funktionstüchtigkeit verantwortlichen Personen kann zum Entzug der Bedienungsbefugnis des Systems führen.
Avvertenza:
espressamente approvate da un ente responsabile per la conformità annulleranno l’autorità dell’utente ad operare l’apparecchiatura.
Atención
expresamente aprobado por la parte responsable del cumplimiento puede anular la autorización de la que goza el usario para utizar el equipo.
Changes or modifications to this unit not expressly approved by the party
Toute modefication sur cette unité n’ayant pas été expressément approuvée
: Jedewede Änderungen oder Modifikationen an dem Gerät ohne die
eventuali modifiche o alterazioni apportate a questa unità e non
: cualquier cambio o modificación realizado a esta unidad que no haya sido
Caution:
Use caution when working with any polymer tubing under pressure:
• Always wear eye protection when near pressurized polymer tubing.
• Extinguish all nearby flames.
• Do not use Tefzel tubing that has been severely stressed or kinked.
• Do not use Tefzel tubing with tetrahydrofuran (THF) or concentrated nitric or sulfuric acids.
• Be aware that methylene chloride and dimethyl sulfoxide cause Tefzel tubing to swell, which greatly reduces the rupture pressure of the tubing.
Attention
pression:
Vorsicht
angebracht:
: soyez très prudent en travaillant avec des tuyaux de polymères sous
• Portez toujours des lunettes de protection quand vous vous trouvez à proximité de tuyaux de polymères.
• Eteignez toutes les flammes se trouvant à proximité.
• N'utilisez pas de tuyau de Tefzel fortement abîmé ou déformé.
• N'utilisez pas de tuyau de Tefzel avec de l'acide sulfurique ou nitrique, ou du tétrahydrofurane (THT).
• Sachez que le chlorure de méthylène et le sulfoxyde de diméthyle peuvent provoquer le gonflement des tuyaux de Tefzel, diminuant ainsi fortement leur pression de rupture.
: Bei der Arbeit mit Polymerschläuchen unter Druck ist besondere Vorsicht
• In der Nähe von unter Druck stehenden Polymerschläuchen stets Schutzbrille
tragen.
• Alle offenen Flammen in der Nähe löschen.
• Keine Tefzel-Schläuche verwenden, die stark geknickt oder überbeansprucht sind.
• Tefzel-Schläuche nicht für Tetrahydrofuran (THF) oder konzentrierte Salpeter­oder Schwefelsäure verwenden.
• Durch Methylenchlorid und Dimethylsulfoxid können Tefzel-Schläuche quellen; dadurch wird der Berstdruck des Schlauches erheblich reduziert.
Precauzione
pressione:
• Indossare sempre occhiali da lavoro protettivi nei pressi di tubi di polimero pressurizzati.
• Estinguere ogni fonte di ignizione circostante.
• Non utilizzare tubi Tefzel soggetti a sollecitazioni eccessive o incurvati.
• Non utilizzare tubi Tefzel contenenti tetraidrofurano (THF) o acido solforico o nitrico concentrato.
• Tenere presente che il cloruro di metilene e il dimetilsolfossido provocano rigonfiamento nei tubi Tefzel, che riducono notevolmente il limite di pressione di rottura dei tubi stessi.
: prestare attenzione durante le operazioni con i tubi di polimero sotto
Advertencia:
• Protegerse siempre los ojos a proximidad de tubos de polimero bajo presión.
• Apagar todas las llamas que estén a proximidad.
• No utilizar tubos Tefzel que hayan sufrido tensiones extremas o hayan sido
• doblados.
• No utilizar tubos Tefzel con tetrahidrofurano o ácidos nítrico o sulfúrico concentrados.
• No olvidar que el cloruro de metileno y el óxido de azufre dimetilo inflan los tubos Tefzel lo que reduce en gran medida la presión de ruptura de los tubos.
manipular con precaución los tubos de polimero bajo presión:
Caution:
specified by the manufacturer, the protection provided by the equipment may be impaired.
The user shall be made aware that if the equipment is used in a manner not
Attention:
spécifiée par le fabricant, la protection assurée par le matériel risque d’être défectueuses.
Vorsicht:
Verwenddung des Gerätes unter Umständen nicht ordnungsgemäß funktionieren.
Precauzione:
usta in un modo specificato dal produttore, la protezione fornita dall’apparecchiatura potrà essere invalidata.
Advertencia:
especificada por el fabricante, las medidas de protección del equipo podrían ser insuficientes.
Caution:
rating.
Attention:
puissance afin d’éviter tout risque d’incendie.
Vorsicht:
gleichen Typs und Nennwertes ersetzen.
Precauzione:
con altri dello stesso tipo e amperaggio.
L’utilisateur doit être informé que si le matériel est utilisé d’une façon non
Der Benutzer wird darauf aufmerksam gemacht, dass bei unsachgemäßer
l’utente deve essere al corrente del fatto che, se l’apparecchiatura viene
El usuario deberá saber que si el equipo se utiliza de forma distinta a la
To protect against fire hazard, replace fuses with those of the same type and
Remplacez toujours les fusibles par d’autres du même type et de la même
Zum Schutz gegen Feuergefahr die Sicherungen nur mit Sicherungen des
per una buona protezione contro i rischi di incendio, sostituire i fusibili
Precaución:
el riesgo de incendio.
sustituya los fusibles por otros del mismo tipo y características para evitar
Caution:
power cord before servicing the instrument.
To avoid possible electrical shock, power off the instrument and disconnect the
Attention:
l’instrument et débranchez le cordon d’alimentation de la prise avant d’effectuer la maintenance de l’instrument.
Vorsicht:
abgeschaltet und vom Netz getrennt werden.
Precauzione:
il cavo di alimentazione prima di svolgere la manutenzione dello strumento.
Precaución:
de alimentación antes de realizar cualquier reparación en el instrumento.
Afin d’éviter toute possibilité de commotion électrique, mettez hors tension
Zur Vermeidung von Stromschlägen sollte das Gerät vor der Wartung
per evitare il rischio di scossa elettrica, spegnere lo strumento e scollegare
para evitar choques eléctricos, apague el instrumento y desenchufe el cab le
Commonly Used Symbols
Direct current Courant continu Gleichstrom Corrente continua Corriente continua
Alternating current Courant alternatif Wechs el s t r om Corrente alternata Corriente alterna
Protective conductor terminal Borne du conducteur de protection Schutzleiteranschluss Terminale di conduttore con protezione Borne del conductor de tierra
Frame or chassis terminal Borne du cadre ou du châssis Rahmen- oder Chassisanschluss Terminale di struttura o telaio Borne de la estructura o del chasis
Caution or refer to manual Attention ou reportez-vous au guide Vorsicht, oder lesen Sie das Handbuch Prestare attenzione o fare riferimento alla guida Actúe con precaución o consulte la guía
Commonly Used Symbols
Caution, hot surface or high temperature Attention, surface chaude ou température élevée Vorsicht, heiße Oberfläche oder hohe Temperatur Precauzione, superficie calda o elevata temperatura Precaución, superficie caliente o temperatura elevada
Caution, risk of electric shock (high voltage)•Attention, risque de commotion électrique (haute tension)
Vorsicht, Elektroschockgefahr (Hochspannung) Precauzione, rischio di scossa elettrica (alta tensione) Precaución, peligro de descarga eléctrica (alta tensión)
Caution, risk of needle-stick puncture Attention, risques de perforation de la taille d’une aiguille Vorsicht, Gefahr einer Spritzenpunktierung Precauzione, rischio di puntura con ago Precaución, riesgo de punción con aguja
(Continued)
Caution, ultraviolet light Attention, rayonnement ultrviolet Vorsicht, Ultraviolettes Licht Precauzione, luce ultravioletta Precaución, emisiones de luz ultravioleta
Waters 2410 Differential Refractometer Information
Intended Use
The W aters® 2410 Differential Refractometer can be used for in-vitro diagnostic testing to analyze many compounds, including diagnostic indicators and therapeutically monitoredcompounds. When you develop methods, follow the “Protocol for the Adoption ofAnalytical Methods in the Clinical Chemistry Laboratory,” American Journal ofMedical Technology, 44, 1, pages 30–37 (1978). This protocol covers good operatingprocedures and techniques necessary to validate system and method performance.
Biological Hazard
When you analyze physiological fluids, take all necessary precautions and treat all specimens as potentially infectious. Precautions are outlined in “CDC Guidelines on Specimen Handling,” CDC – NIH Manual, 1984.
Calibration
Follow acceptable methods of calibration with pure standards to calibrate methods. Use a minimum of five standards to generate a standard curve. The concentration range should cover the entire range of quality-control samples, typical specimens, and atypical specimens.
Quality Control
Routinely run three quality-control samples. Quality-control samples should represent subnormal, normal, and above-normal levels of a compound. Ensure that quality-control sample results are within an acceptable range, and evaluate precision from day to day and run to run. Data collected when quality-control samples are out of range may not be valid. Do not report this data until you ensure that chromatographic system performance is acceptable.

Table of Contents

How to Use This Guide Chapter 1
Waters 2410 Theory of Operation
1.1 Overview.........................................................................................................1-1
1.2 Theory of Operation........................................................................................ 1-2
1.2.1 Optical Refraction .............................................................................1-2
1.2.2 Differential Refractometry ................................................................1-7
1.2.3 Common RI Detection Problems ...................................................... 1-9
1.3 Principles of Operation.................................................................................. 1-10
1.3.1 Fluidics............................................................................................. 1-10
1.3.2 Optics .............................................................................................. 1-14
1.3.3 Electronics .......................................................................................1-15
Chapter 2 Installing the 2410 Refractometer
2.1 Introduction.....................................................................................................2-1
2.2 Site Selection and Power Requirements.......................................................... 2-2
2.3 Unpacking and Inspection............................................................................... 2-4
2.4 Making Electrical Power Connections............................................................ 2-5
2.5 Making Fluidic Connections...........................................................................2-5
2.5.1 Connecting a Column or Second Detector.........................................2-6
2.5.2 Connecting to Waste ......................................................................... 2-7
2.5.3 Connecting to a Drip Tray .................................................................2-8
Table of Contents xi
Chapter 3 Making Signal Connections
3.1 Component Connection Overview.................................................................. 3-1
3.2 Making IEEE-488 Signal Connections ........................................................... 3-3
3.2.1 Connecting to a Waters Data System Using the IEEE-488 Bus ........3-3
3.2.2 Connecting to a Waters PowerLine System Controller ..................... 3-7
3.2.3 Connecting to a Manual Injector .......................................................3-7
3.3 Making Non-IEEE-488 Signal Connections................................................... 3-8
3.3.1 Connecting to a Stand-Alone 2690 Separations Module.................3-10
3.3.2 Connecting to the Waters 745/745B/746 Data Module .................. 3-13
3.3.3 Connecting to a Chart Recorder ...................................................... 3-15
3.3.4 Connecting to the Waters 845/860 ExpertEase System ..................3-16
3.3.5 Connecting Injection Trigger Signals .............................................3-16
3.3.6 Polarity Connections .......................................................................3-18
3.4 Connecting the External Column Heaters..................................................... 3-19
Chapter 4 Preparing Solvents
4.1 Common Solvent Problems............................................................................. 4-1
4.2 Selecting a Solvent.......................................................................................... 4-2
4.3 Solvent Degassing........................................................................................... 4-4
4.3.1 Gas Solubility.....................................................................................4-5
4.3.2 Solvent Degassing Methods .............................................................. 4-5
4.3.3 Solvent Degassing Considerations .................................................... 4-6
Chapter 5 Using the 2410 Refractometer
5.1 Using the Front Panel...................................................................................... 5-1
5.1.1 Keypad Functions .............................................................................. 5-4
5.2 Selecting Parameter Values .............................................................................5-9
xii Table of Contents
5.2.1 Sensitivity Guidelines ........................................................................5-9
5.2.2 Scale Factor Guidelines ...................................................................5-10
5.2.3 Time Constant Guidelines ...............................................................5-11
5.2.4 Temperature Guidelines (Ext1 °C, Ext2 °C, Int °C) .......................5-12
5.2.5 Polarity Guidelines ..........................................................................5-13
5.3 Starting Up the 2410 Refractometer..............................................................5-13
5.4 Shutting Down the 2410 Refractometer........................................................5-15
Chapter 6 Maintenance Procedures
6.1 Cleaning the Fluidic Path.................................................................................6-1
6.2 Replacing Fuses...............................................................................................6-3
Chapter 7 Troubleshooting
7.1 Troubleshooting Overvie w ..............................................................................7-1
7.2 Chromatography Troubleshooting...................................................................7-2
7.2.1 Abnormal Baseline.............................................................................7-3
7.2.2 Erratic or Incorrect Retention Times .................................................7-7
7.2.3 Poor Peak Resolution ........................................................................7-9
7.2.4 Incorrect Qualitative/Quantitative Results ......................................7-11
7.3 Diagnostics ....................................................................................................7-13
7.3.1 Operating the Startup Diagnostics....................................................7-13
7.3.2 Operating the User-Initiated Diagnostics ........................................7-13
7.4 Hardware Troubleshooting ............................................................................7-16
Chapter Appendix A Specifications
Chapter Appendix B Spare Parts/Accessories
Table of Contents xiii
Appendix C Warranty Information
C.1 Limited Express Warranty...............................................................................C-1
C.2 Shipments, Damages, Claims, and Returns.....................................................C-4
Index
xiv Table of Contents
Figures
1-1 Waters 2410 Differential Refractometer..................................................1-1
1-2 Effect of Density on RI............................................................................ 1-4
1-3 Refraction of Light................................................................................... 1-5
1-4 Presence of Sample Changes the Photodiode Signal...............................1-6
1-5 How Refraction Changes
1-6 Waters 2410 Refractometer Fluidics...................................................... 1-11
1-7 Waters 2410 Refractometer Fluidic Paths..............................................1-13
1-8 Waters 2410 Differential Refractometer Optics Bench
Assembly Light Path..............................................................................1-15
2-1 Major Steps in Installing the 2410 Differential Refractometer................2-1
2-2 Dimensions of the 2410 Refractometer ................................................... 2-2
2-3 Waters 2410 Refractometer Rear Panel ...................................................2-4
2-4 Fluidic Connections.................................................................................2-6
2-5 Ferrule and Compression Screw Assembly ............................................. 2-7
f
.......................................................................1-8
3-1 Waters 2410 Differential Refractometer Rear Panel................................ 3-2
3-2 Overview of Connecting Components to the
2410 Differential Refractometer.............................................................. 3-3
3-3 Waters Millennium System IEEE-488 Connections................................ 3-4
3-4 Waters 845/860 System IEEE-488 Connections......................................3-4
3-5 Waters Alliance System IEEE-488 Connections .....................................3-5
3-6 Waters PowerLine System Controller IEEE-488 Connections................ 3-7
3-7 Waters 2410 Rear Panel Analog-Out/Event-In Connectors.....................3-9
3-8 Auto Zero Connections Between the 2690 Separations Module
and the 2410 Refractometer................................................................... 3-11
3-9 Chart Mark Connections Between the 2690 Separations Module
and the 2410 Refractometer................................................................... 3-12
3-10 Chart Mark and Auto Zero Connections Between
the 2690 Separations Module and the 2410 Refractometer................... 3-13
Table of Contents xv
3-11 Connections to a Waters 745/745B/746 Data Module........................... 3-14
3-12 Analog Output Connections to a Chart Recorder .................................. 3-15
3-13 Analog Output Connections to the Bus SAT/IN Module....................... 3-16
3-14 Auto Zero Connectionto a Manual Injector...........................................3-17
3-15 Chart Mark Connections to a Manual Injector ...................................... 3-18
3-16 2410 Refractometer External Column Heater Ports ..............................3-20
5-1 Display, LED Indicators, and Keypad......................................................5-2
5-2 Effects of Sensitivity Settings................................................................5-10
5-3 Effects of Filter Time Constant Settings................................................5-12
6-1 Removing and Replacing Fuses...............................................................6-4
xvi Table of Contents
Tables
1-1 Fluidic Line Inner Diameters............................................................ 1-12
2-1 Installation Site Requirements.................................................................2-3
3-1 Component Connection Summary...........................................................3-1
3-2 Waters 2410 Refractometer Inject Start Connections........................ 3-6
3-3 Waters 2410 Connections to a Manual Injector ................................ 3-7
3-4 Waters 2410 Analog-Out/Event-In Connections............................... 3-9
3-5 Auto Zero Connections Between the 2690 Separations Module
3-6 Chart Mark Connections Between the 2690 Separations Module
3-7 Chart Mark and Auto Zero Connections Between the
3-8 Analog Output Connections to a 745/745B/746 Data Module ........ 3-13
3-9 Analog Output Connections to a Chart Recorder............................ 3-15
and the 2410 Refractometer ........................................................... 3-10
and the 2410 Refractometer ........................................................... 3-11
2690 Separations Module and the 2410 Refractometer................... 3-12
3-10 Analog Output Connections to the Bus SAT/IN Module................. 3-16
3-11 Auto Zero Connections to a Manual Injector.................................. 3-17
3-12 Chart Mark Connections to a Manual Injector ................................ 3-18
3-13 Polarity Options............................................................................. 3-19
4-1 Refractive Indices of Common Solvents..................................................4-3
5-1 Indicator LED Functions..........................................................................5-3
5-2 Keypad Functions............................................................................ 5-4
6-1 Voltage and Fuse Requirements...............................................................6-4
7-1 Abnormal Baseline Troubleshooting................................................ 7-4
7-2 Retention Time Troubleshooting...................................................... 7-7
Table of Contents xvii
7-3 Resolution Troubleshooting ........................................................... 7-10
7-4 Incorrect Results Troubleshooting.................................................. 7-12
7-5 User Diagnostics............................................................................ 7-14
7-6 Waters 2410 Hardware Troubleshooting ......................................... 7-16
A-1 Operational Specifications...................................................................... A-1
A-2 Integrator Output..............................................................................A-2
A-3 Optical Component Specifications....................................................A-2
A-4 Environmental Specifications...........................................................A-2
A-5 Dimensions ......................................................................................A-3
A-6 Electrical Specifications...................................................................A-3
A-7 Power Source Specification..............................................................A-3
B-1 Recommended Spare Parts ...............................................................B-1
C-1 Waters 2410 Warranty Periods.................................................................C-4
xviii Table of Contents

How to Use This Guide

Purpose of This Guide
The
Waters 2410 Differential Refractometer Operator’ s Guide
Waters® 2410 Differential Refractometer and provides installation and maintenance procedures.
Audience
This guide is intended for use by anyone interested in installing, using, maintaining, and troubleshooting the 2410 differential refractometer.
Structure of This Guide
The
Waters 2410 Differential Refractometer Operator’s Guide
appendixes. Each page is marked with a tab and a footer to facilitate access to information within the chapter or appendix.
The table below describes the material covered in each chapter and appendix.
describes the features and use of the
is divided into chapters and
Chapter 1, Waters 2410 Theory of Operation
Chapter 2, Installing the 2410 Refractometer
Chapter 3, Making Signal Connections
Chapter 4, Preparing Solvents
Chapter 5, Using the 2410 Refractometer
Chapter 6, Maintenance Procedures
Chapter 7, Troubleshooting
Describes the product and the principles of differential refractometry and 2410 differential refractometer operation.
Describes the 2410 differential refractometer installation procedures.
Describes how to connect other components of your chromatography system to the 2410 differential refractometer.
Discusses the importance of filtering and degassing solvents for effective operation.
Describes how to power on and off and operate the 2410 differential refractometer.
Describes maintenance and parts replacement procedures for the 2410 differential refractometer.
Provides tables describing symptoms, possible causes, and corrective actions for 2410 differential refractometer operational problems.
xix
Appendix A, Specifications
Provides specifications for the 2410 differential refractometer.
Appendix B, Spare Parts/Accessories
Appendix C, Warranty Information
Lists the recommended spare parts for the 2410 differential refractometer.
Includes warranty and service information for the 2410 differential refractometer.
Related Documents
The following table lists other documents related to the operation of the Waters 2410 Differential Refractometer.
W aters 2690 Separ ations Module Operator’s Guide
Waters 600E Multisolvent Delivery System User’s Guide
Waters Bus SAT/IN Module Installation Guide
Millennium Software User’s Guide, Vol. I and Vol. II
Describes the procedures for unpacking, installing, using, maintaining, and troubleshooting the Waters 2690 Separations Module.
Describes the procedures for installing, using, maintaining, and troubleshooting the Waters 600E Multisolvent Delivery System.
Provides the procedures for installing the Waters Bus SAT/IN Module.
Describes the Millennium Chromatography Manager software used in both the Millennium 2010 workstation and the Millennium 2020 client/server system.
xx
Conventions Used in This Guide
This guide uses the following conventions to make text easier to understand.
Bold
text indicates user action. For example:
Press 0, then press
Italic
text denotes new or important words, and is also used for emphasis. For example:
An
instrument method
• Instructions to click a specific icon include the icon in the left column of the page. For example:
Click the Projects view icon. The Projects vie w appears with all e xisting project folders.
Notes, Attentions, and Cautions
• Notes call out information that is important to the operator. For example:
Note:
Record your results before you proceed to the next step.
• Attentions provide information about preventing possible damage to the system or equipment. For example:
Enter
for the remaining fields.
tells the software how to acquire data.
STOP
Attention:
window.
• Cautions provide information essential to the safety of the operator. For example:
Caution:
practices when operating the system.
Caution:
and unplug the power cord before you perform maintenance procedures.
Caution:
before removing it for replacement or adjustment.
To avoid damaging the detector flow cell, do not touch the flow cell
To avoid chemical or electrical hazards, always observe safe laboratory
To avoid the possibility of electrical shock, always power off the detector
To avoid the possibility of burns, power off the lamp at least 30 minutes
xxi
xxii
Chapter 1

Waters 2410 Theory of Operation

1.1 Overview ........................................................... 1-1
1.2 Theory of Operation.......................................... 1-2
1.3 Principles of Operation.................................... 1-10
1
Waters 2410 Theory of Operation
This chapter introduces you to the Waters® 2410 Differential Refractometer. It summarizes the 2410 differential refractometer features and the principles of differential refractometry, and describes the theory and principles of operation.
Refer to Appendix A, Specifications, for system specifications, and to
Solvents

1.1 Overview

The Waters 2410 Differential Refractometer, shown in Figure 1-1, is a differential refractive index detector designed for high performance liquid chromatography applications. It can operate as a stand-alone unit with an integrator or chart recorder, or with a Waters system controller or Waters data system.
, for solvent considerations.
1
Chapter 4, Preparing
Waters 2410
Differential Refractometer Detector
TP01531
Figure 1-1 Waters 2410 Differential Refractometer
Overview 1-1
1
Range and Sensitivity
The 2410 detector functions with solvents with refractive indices between 1.00 and 1.75. The measurement range of the instrument is 5 × 10–8 to 5 × 10–3 refractive index units full scale (RIUFS).
Features
Features of the 2410 differential refractometer include:
• Patented countercurrent heat exchanger and temperature-controlled cell for stable operation under varying conditions
• Auto zero and auto purge for automated operation
• Built-in pressure relief to protect flow cell
• Auto diagnostics
• Two external column heater controls
• Battery backup to retain parameter settings when the detector is powered off or during power interruptions
• Long-life LED light source

1.2 Theory of Operation

The W aters 2410 Dif ferential Refractometer uses optical refraction to monitor the concentrations of sample components in your eluent. This section describes:
• Optical refraction
• Differential refractometry
• Common problems in refractometry

1.2.1 Optical Refraction

When a beam of light passes from one medium into another, it changes its speed. If the light enters the second medium at an angle that is not perpendicular to the medium’s surface, the light is bent (refracted).
The extent to which a medium refracts light is its velocity of light in a vacuum to the velocity of light in the medium. It is a physical property of the medium, with a dimensionless integer value represented by the letter n.
This section discusses:
• Factors that affect RI
1-2 Waters 2410 Theory of Operation
refractive inde x
(RI), calculated as the ratio of the
• Measuring refraction
• Using changes in RI for sample detection
Factors That Affect RI
The refractive index of a medium is solely dependent on the speed of light in the medium. The speed of light in a medium is constant for a given wa velength of light at a specified temperature and pressure.
Wavelength
The refractive index of a medium has a specific value that changes with the wavelength of the incident light beam. Since the 2410 differential refractometer uses monochromatic light at a fixed wavelength, the effect of different wavelengths of light on RI is not discussed in this guide.
Density
The density of the medium also affects its RI. At a fixed wavelength, the relationship between the density of a medium and its RI is generally, but not necessarily, linear. The most important of the factors that affect the density of a medium are:
• Composition
• Temperature
• Pressure
Figure 1-2 illustrates the effect of density on the RI of two solutions. The refractive index of a sucrose solution changes linearly with concentration over this range of compositions, but a methanol solution exhibits a nonlinear region between concentrations of 45 and 55 percent.
1
Theory of Operation 1-3
1
Weight Percent Sucrose in Water
Refractive Index
Density (g/mL)
Weight Percent Methanol in Water
Refractive Index
Figure 1-2 Effect of Density on RI
1-4 Waters 2410 Theory of Operation
Density (g/mL)
Measuring Refraction
The extent to which a beam of light is refracted when it enters a medium depends on two factors:
• The angle at which the light enters the new medium (the
• The refractive indices of the new media
angle of incidence
)
1
The angle of a refracted light beam through the new medium is its
angle of refraction
.
Figure 1-3 illustrates the relationship between angle of incidence, angle of refraction, and refractive index.
Incoming Light Beam Perpendicular to Surface
Angle of Incidence
Medium 1, RI = n Medium 2, RI = n
Refracted Light Beam
θ
2
1 2
Angle of Refraction
θ
1
Figure 1-3 Refraction of Light
The relationship between the refractive indices of the two media and the angles of incidence and refraction is described by Snell’s Law:
n1(sin
θ
where:
θ
= Angle of incidence
1
θ
= Angle of refraction
2
n
= RI of medium 1
1
n
= RI of medium 2
2
) = n2(sin
1
θ
)
2
Theory of Operation 1-5
You can use Snell’s Law to calculate the RI of a sample solution from the angle of incidence, the RI of the solvent, and the angle of refraction.
1
Using Changes in RI for Sample Detection
As the separated components of a sample pass through the refractometer flow cell:
• The composition of the sample solution in the flow cell changes.
• The RI of the solution changes.
• The light beam passing through the solution is refracted.
The refractometer detects the position of the refracted light beam, creating a signal that differs from the baseline signal.
Figure 1-4 shows how refraction by the sample in the flow cell changes the proportion of light on each element of the photodiode.
Dual Element
Dual-Element
Photodiode
Photodiode
Collimating
Collimating Lens
Lens
Sample Side
Sample Side of Flow Cell
of Flow Cell
Sample in
Sample in
Sample Side
Sample Side
of Flow Cell
of Flow Cell
Reference
Reference Side of Flow Cell
Side of
Flow Cell
Figure 1-4 Presence of Sample Changes the Photodiode Signal
1-6 Waters 2410 Theory of Operation
Incident Light
Reference Side
of Flow Cell
Reference Side of Flow Cell
Loading...
+ 116 hidden pages