Volkswagen Self Study Program 246 – Variable Valve Timing with fluted variator SSP-246-Variable-valve-timing

Page 1
Service.
Self-study programme 246
Variable Valve Timing
with fluted variator
Design and Function
Page 2
The demands on combustion engines continue to grow. On one hand, customers want more power and torque, while on the other, one cannot lose sight of fuel economy and increasingly stringent emissions laws. In regard to valve timing, this means that engine-speed and load dependent adjustment of the inlet and exhaust camshafts is indispensable. Therefore, of course, adjustment systems are continuously being improved in technical design as well as in means of adjustment.
In this self-study programme, we would like to introduce to you the design and operation of the new camshaft adjuster with fluted variators. At Volkswagen, first the 2.8 litre V6 and the 2.3 litre V5 engines will be equipped with this system. Later other engines, such as the W8 and W12 engines will be equipped with this variable valve timing system.
The self-study programme presents the design and
operation of new developments.
The contents are not updated.
2
246_148
Note
Please refer to the intended Service literature for current instructions for testing,
settings and repairs.
Page 3
Table of Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Variable valve timing . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Advancing the inlet camshaft. . . . . . . . . . . . . . . . . . . . .10
Retarding the inlet camshaft . . . . . . . . . . . . . . . . . . . . . 11
Inlet camshaft regulation . . . . . . . . . . . . . . . . . . . . . . . .12
Exhaust camshaft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Exhaust camshaft, basic setting . . . . . . . . . . . . . . . . . . . 14
Exhaust camshaft, idle . . . . . . . . . . . . . . . . . . . . . . . . . .15
Oil system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Engine management . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Self-diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Test your knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3
Page 4
Introduction
The task of variable valve timing
Variable valve timing has the task of setting the most advantageous valve timing for the particular engine for the operating modes idle, maximum power and torque as well as exhaust gas recirculation.
TDC
Idle
At idle, the camshafts are set so that the inlet camshaft opens late and, consequently, closes late as well. The exhaust camshaft is set so that it closes well before TDC. Due to the minimal gas residue from combustion, this leads to smooth idling.
Ec
Io
Ic
Power
To achieve good power at high engine speeds, the exhaust valves are opened late. In this way, the expansion of the burned gases can act against the pistons longer. The inlet valves open after TDC and close well after BDC. In this way, the dynamic self-charging effect of the entering air is used to increase power.
Eo
BDC
TDC
Ec
Io
Ic
246_001
Eo
BDC
Intake
Compression
Power
Exhaust
Io: Inlet opens
Ic: Inlet closes
Eo: Exhaust opens
Ec: Exhaust closes
246_002
4
Page 5
Torqu e
TDC
To achieve maximum torque, a high degree of volumetric efficiency must be attained. This requires that the inlet valves be opened early. Because they open early, they close early as well, which avoids pressing out the fresh gases.
The exhaust camshaft closes just before TDC.
Exhaust gas recirculation
Internal exhaust gas recirculation can be achieved by adjusting the inlet and exhaust camshafts. In this process, exhaust gas flows from the exhaust port into the inlet port while the valves overlap (inlet and exhaust valves are both open). The amount of overlap determines the
amount of recirculated exhaust gas. The inlet camshaft is set so that it opens well before TDC and the exhaust camshaft does not close until just before TDC. As a result, both valves are open and exhaust gas is recirculated. The advantage of internal exhaust gas recirculation over external exhaust gas recirculation is the fast reaction of the system and very even distribution of the recirculated exhaust gases.
Io
Ec
Io
Ic
Ec
BDC
TDC
Ic
BDC
Eo
246_003
Eo
246_004
The illustrated valve timing is intended to demonstrate the basic principle and the effects of variable camshaft timing. Of course every engine has valve timing adapted to its mechanics and its engine management.
5
Page 6
Variable valve timing
Design of variable valve timing
The variable valve timing system consists of the following components:
Two fluted variators
The fluted variator for adjusting the inlet camshaft is fitted directly on the inlet camshaft. It adjusts the inlet camshaft according to signals from the engine control unit. The fluted variator for adjusting the exhaust camshaft is fitted directly on the exhaust camshaft. It adjusts the exhaust camshaft according to signals from the engine control unit. Both fluted variators are hydraulically operated and are connected to the engine oil system via the control housing.
The illustration shows the arrangement of the variable valve timing system on the V5 and V6 engines.
Inlet camshaft fluted variator
Oil gallery to ring channels in camshafts
Control housing
N205
N318
6
Exhaust camshaft fluted variator
246_146
Page 7
The control housing
The control housing is attached to the cylinder head. Oil galleries to both fluted variators are located in the control housing.
Two solenoid valves
There are two solenoid valves located in the control housing. They direct oil pressure to both fluted variators according to the signal from the engine control unit. Inlet camshaft timing adjustment valve -1- (N205) is responsible for the inlet camshaft, and exhaust camshaft timing adjustment valve -1- (N318) is responsible for the exhaust camshaft.
The illustration shows the arrangement of the variable valve timing system on one cylinder head of the W8 and W12 engines.
Oil gallery to ring channels in camshafts
Control housing
Inlet camshaft fluted variator
N205
N318
Exhaust camshaft fluted variator
246_025
The design and operation of the illustrated engine versions is the same. They differ only in the arrangement and shape of some components.
7
Page 8
Variable valve timing
Operation of variable valve timing
The engine control unit controls the variable valve timing. To adjust the camshafts, it requires information about engine speed, engine load and temperature and the positions of the crankshaft and camshafts. To adjust the camshaft, the engine control unit actuates the solenoid valves N205 and N318.
Hall sender 1 G40
Hall sender 1 G163
They in turn open oil galleries in the control housing. Engine oil flows through the control housing and camshaft into the fluted variators. The fluted variators turn and adjust the camshaft according to the specifications of the engine control unit.
Inlet camshaft
Engine control unit
Exhaust camshaft
N205
N318
Oil pump
Engine speed
Air mass and air temperature (engine load)
Coolant temperature
8
246_012
Page 9
This section goes into more detail about the adjustment of the camshafts. The parts, the design and the operation are the subject of the following pages.
Inlet camshaft adjustment
The inlet camshaft is regulated by the engine control unit over the entire speed range of the engine. The maximum adjustment is 52° CA. The adjustment is dependent on the adjustment map stored in the engine control unit.
Fluted variator
Design of the fluted variator for the inlet camshaft
The adjusting mechanism consists of:
Housing with outer rotor (directly joined to timing chain)
Inner rotor (directly joined to camshaft)
Outer rotor
Oil galleries
Inner rotor
246_155
9
Page 10
Variable valve timing
Inlet camshaft
How the camshaft is advanced
The inlet camshaft is set in the position “inlet valves open before TDC” for exhaust gas recirculation and for increasing torque. To change the position, the engine control unit actuates inlet camshaft timing adjustment valve 1 (N205). When actuated, the valve moves the control piston. In the control housing, the oil gallery for timing advance is opened according to the degree of adjustment. Consequently, the engine oil under pressure flows through the control housing into
If the variable valve timing fails to function, the fluted variator will be pressed by the oil pressure to the basic position of 25° after TDC.
the ring channel in the camshaft. Then the oil flows through the five drillings in the face of the camshaft into the five advance chambers of the fluted variator. There it presses against the flutes of the inner rotor. The inner rotor turns relative to the outer rotor (and crankshaft), turning the camshaft with it. Consequently, the camshaft turns further in the direction of crankshaft rotation and the inlet valves open sooner.
Advance oil gallery
Oil return
Control housing
Ring channels
Frontal drillings
Control piston
10
Engine oil pressure
Oil return
246_150
Page 11
How the camshaft is retarded
When the engine is idling or when a great deal of power is required from the engine, the inlet camshaft is rotated so that the inlet valves open late, that is, after TDC. To retard the inlet camshaft, the engine control unit actuates inlet camshaft timing adjustment valve 1 (N205). The solenoid valve opens the gallery for timing retardation by moving the control piston. Oil flows through the control housing into the ring channel of the camshaft. The oil flows through drillings in the camshaft to the pocket hole of the securing bolt for the camshaft adjuster. From there, it flows through 5 drillings in the camshaft
adjuster into the oil chamber for timing retardation behind the flutes of the inner rotor. The oil presses the inner rotor and the camshaft in the direction of camshaft rotation and the valves open later.
At the same time that the oil gallery for timing retardation opens, the control piston opens the oil return for the gallery for timing advance, relieving pressure in it. The rotation in the direction of retardation presses the oil out of the timing advance oil chamber which flows out through the timing advance oil gallery.
Pocket hole for securing bolt
Timing retardation oil gallery
Oil return
Control housing
Ring channel
Inner flute
Frontal drilling
Control piston
Engine oil pressure
Oil return
246_151
11
Page 12
Variable valve timing
How regulation works
Regulation enables continuous variation of the inlet camshaft between advanced and retarded, whereby the total variation is a maximum of 52° crankshaft angle. On the basis of the Hall sender signal, the engine control unit detects the momentary position of the inlet camshaft. The camshafts can then be adjusted according to the map saved in the engine control unit. When actuated by the engine control unit, inlet camshaft timing adjustment valve 1 (N205) pushes the control piston in the direction, for example, of advanced timing. Oil pressure travels through the control housing into the
camshaft adjuster and presses the camshaft in the “advanced” position. Pushing the control piston in the “advanced” direction automatically opens the oil return of the oil channel for retarding timing. When the desired angle of adjustment is attained, the control piston is moved by the actuation of inlet camshaft timing adjustment valve 1 (N205) to a position in which the pressure is held in both chambers of the adjuster. If the timing is later retarded, the process runs in the opposite direction.
N205
246_150
N205
246_152
12
Page 13
Exhaust camshaft
Exhaust camshaft adjustment
As you saw in the preceding pages, the inlet camshaft is regulated by the control unit. In contrast to that, the exhaust camshaft can only be controlled. The control unit sets the variator only to the basic position or the idle position. The maximum angle of adjustment is 22° crankshaft angle.
Design of the fluted variator for the exhaust camshaft: The fluted variator for the exhaust camshaft is identical in design to the fluted variator for the inlet camshaft. Only the inner rotor is wider because the adjustment is only 22° crankshaft angle.
Outer rotor
Oil galleries
Inner rotor
Wider flutes
246_156
13
Page 14
Variable valve timing
Basic position
The exhaust camshaft is in its basic position when the engine is starting and at engine speeds above idle. The exhaust valves then close shortly before TDC. The exhaust camshaft is in this position in the operating modes power, torque and exhaust gas recirculation. The exhaust camshaft timing adjustment valve 1 (N318) is not actuated in these ranges.
How the basic position works
In the basic position, the exhaust camshaft is positioned so that the valves close shortly before TDC. The exhaust camshaft timing adjustment valve 1 (N318) is not actuated by the engine control unit. In this position, the oil gallery for timing retardation is open. Through oil galleries, oil pressure reaches the ring channel of the exhaust camshaft. From there, it travels through the frontal drillings in the camshaft to the oil chamber of the camshaft adjuster. From there it presses against the flutes of the inner rotor. The flutes turn to stop, turning the camshaft along with it. The camshaft remains in this position as long as the solenoid is not actuated.
Pocket hole for securing bolt
Oil gallery for basic position
Oil return
Control housing
Ring channel
Flute
Frontal drilling
Inner rotor
Outer rotor
Control piston
14
Engine oil pressure
Oil return
246_157
Page 15
Idle
How the idle position works
The exhaust camshaft is set to the “advanced” position from idle to engine speeds to about 1,200 rpm.
The exhaust camshaft timing adjustment valve 1 (N318) is actuated by the engine control unit. This pushes the control piston and opens another oil gallery in the control housing. The engine oil now flows into the other ring channel in the camshaft and through the drilled camshaft into the camshaft adjuster. There it presses against the flutes of the inner rotor. The flutes are pressed in the direction of engine rotation, taking the camshaft with them, so that the exhaust valves open and close earlier. The oil from the chamber in front of the flutes runs through the drilling in the camshaft adjuster, the pocket hole of the securing bolt and the ring channel of the camshaft back to the solenoid valve. In the solenoid valve it flows through the oil return in the control box cover.
Pocket hole for securing bolt
Oil return
Control housing
Ring channels
Inner rotor
Frontal drillings
Outer rotor
Control piston
Engine oil pressure
Oil return
246_156
15
Page 16
Variable valve timing
Oil system
The following pages introduce the oil system. The variable valve timing system operates at an oil pressure of 0.7 bar and above.
Course of oil under pressure
Oil pressure created by the oil pump flows through the cylinder block to the cylinder head and from there through an oil strainer into the control housing of the camshaft adjuster. Through galleries in the control housing, it reaches the ring channel in the camshaft and from there it travels through frontal drillings in the camshaft into the camshaft adjuster.
Camshaft adjuster
Course of oil without pressure
Oil from the chambers in the camshaft adjuster without pressure flows through the ring channel in the camshaft back to the control housing. Oil flows from the control housing back to the solenoid valve.
From the solenoid valve, it flows through the timing chain cover back to the sump.
Inlet camshaft
Exhaust camshaft
Camshaft adjuster
16
Control housing with
solenoid valves
Oil supply Oil return
Oil
246_013
The oil course to the exhaust camshaft is identical with that to the inlet camshaft.
Cylinder head
Cylinder block
Oil pump
Sump
Page 17
System overview for V5 and V6 engines
Engine management
Engine control unit
Hall sender 1 G40
Hall sender 2 G163
Engine speed sender G28
Air mass meter G70
Inlet camshaft timing adjustment valve 1 (N205)
Exhaust camshaft timing adjustment valve 1 (N318)
Coolant temperature sender G62
Diagnosis connection
246_029
17
Page 18
Engine management
Engine control unit
The engine control unit, the sensors which provide it with information and the final controls which are actuated by the control unit are the subject of the following pages. The descriptions of the final controls and sensors in this self-study programme refer to engines with one exhaust and one inlet camshaft each. Engines with more than one exhaust and one inlet camshaft require, of course, a Hall sender and a valve for camshaft adjustment for each camshaft.
The engine control unit is responsible for controlling camshaft adjustment. To this end, maps for inlet and exhaust camshaft adjustment are stored in the engine control unit. These maps exist for each mode of engine operation in which camshaft adjustment is active. For example, these operating modes:
engine warm-up phase
or for the engine at operating temperature.
The new functional structure of the engine control unit is based on engine torque as the base value for all further engine management measures calculated by the ECU. The base value, torque, is calculated directly in the engine control unit. To calculate torque, the control unit uses the signals from the air mass meter and the engine speed sender.
18
246_017
Page 19
Learning ability of the system
The entire variable valve timing system is adaptive. This adaptability compensates for component and assembly tolerances as well as wear occurring during engine use.
The engine control unit automatically initiates adaptation when the engine is idling and the coolant temperature is greater than 60° C.
During adaptation at idle, the engine control unit uses signals from the engine speed sender and the Hall senders to check the idle settings of the inlet and exhaust camshafts. If the actual value does not agree with the specification stored in the control unit, the next time that the camshafts are adjusted, they will be corrected to the specification.
TDC
BDC
Specification
Adaptation value
Actual value
246_009
19
Page 20
Engine management
Air mass meter G70
The air mass meter G70 is located in the intake tract of the engine. The air mass meter signal is used by the engine control unit to calculate the volumetric efficiency. On the basis of volumetric efficiency, the lambda
) value and the ignition timing, the engine
(O
2
control unit calculates the torque.
Use of signal
Consequences of loss of signal
246_148
In the variable valve timing system, the signal is used for load-dependent adjustment of the camshaft.
If the air mass meter fails, the engine control unit creates a substitute signal. Camshaft adjustment continues to operate according to the given operating conditions.
20
Page 21
Engine speed sender G28
The engine speed sender G28 is located in the crankcase. It senses electromagnetically the teeth (60 minus 2) of the sender rotor on the crankshaft. With this signal, the engine control unit can detect the engine speed and the TDC position of the crankshaft. But to adjust the camshaft, the engine control unit requires the precise location of the crankshaft. To detect precisely the position of the crankshaft, the engine control unit uses the signals from the individual teeth of the sender rotor. The gap in the sender rotor serves as the zero point (TDC) and each sender rotor tooth marks 6° crankshaft angle.
246_149
Example:
1 tooth = 6° crankshaft angle x 60 teeth = 360° crankshaft angle, corresponding to one revolution of the crankshaft. The gap of 2 teeth (TDC detection) corresponds to 12° crankshaft angle.
Use of signal
Consequences of loss of signal
In the variable valve timing system, the signal is used for engine-speed-dependent adjustment of the camshaft.
If this signal fails, the engine stops and cannot be started again.
21
Page 22
Engine management
Hall sender G40 and Hall sender 2 G163
Both Hall senders are located in the timing chain cover. The have the task of informing the engine control unit of the positions of the inlet and exhaust camshafts. They do this by reading the quick start sender rotor located on the respective camshaft. With Hall sender 1 G40 the engine control unit detects the position of the inlet camshaft and with Hall sender 2 G163, the position of the exhaust camshaft.
Use of signal
Hall sender 1 G40
The engine control unit uses the engine speed sender signal to detect the position of the crankshaft. With the signals for the camshafts in addition, the control unit calculates the position of the camshafts relative to the crankshaft. The control unit needs these positions for the precise adjustment of the camshafts and to start the engine quickly.
Hall sender 2 G163
246_036
22
Consequences of loss of signal
Engines with more than one exhaust and one inlet camshaft require of course one Hall sender per camshaft.
If only one Hall sender fails, camshafts will not be adjusted. But the engine will continue to run and will start after it has been stopped. If both Hall senders fail, the engine will continue to run until the next time that it is stopped. It will not be possible to restart the engine.
Page 23
Coolant temperature sender G62
The coolant temperature sender G62 is located in the thermostat housing. It informs the engine control unit of the current engine temperature.
246_028
Use of signal
Consequences of loss of signal
The sender signal is used for temperature­dependent start of camshaft adjustment.
If the signal fails, the control unit uses a substitute temperature stored in it.
23
Page 24
Engine management
Inlet camshaft timing adjustment valve N205 and exhaust camshaft timing adjustment valve N318
Both valves are integrated in the camshaft adjustment control housing. They have the task of directing oil pressure to the camshaft adjusters depending on the direction and distance of adjustment according to specifications from the control unit. To adjust the camshafts, the valves are actuated with a variable duty cycle (on-off ratio) by the control unit. Inlet camshaft timing adjustment valve N205 adjusts the inlet camshaft and exhaust camshaft timing adjustment valve N318 adjusts the exhaust camshaft.
Consequences of loss of signal
N205
If an electrical wire to the camshaft timing adjuster is defective, or a camshaft timing adjuster fails, camshaft adjustment will not be performed.
N318
246_143
24
Engines with more than one exhaust and one inlet camshaft require of course one camshaft timing adjustment valve per camshaft.
Page 25
Circuit diagram of V5 and V6 engines
87a
15
87a 15
S
N205 N318
J220
G163G40
G28 Engine speed sender G40 Hall sender 1 G62 Coolant temperature sender G163 Hall sender 2 J220 Engine control unit N205 Inlet camshaft timing adjustment valve 1
G28
G62
G70
246_026
N318 Exhaust camshaft timing adjustment valve 1
Output signal Input signal Positive Earth
87a Positive behind fuel pump relay J17
25
Page 26
Engine management
Self-diagnosis
The components of the variable valve timing are checked during self-diagnosis. To diagnose camshaft adjustment, please use current workshop literature and the vehicle diagnosis device VAS 5051.
246_023
The sensors and final controls shown in colour will be tested during self-diagnosis and guided fault finding.
Hall sender 1 G40
Hall sender 2 G163
Engine speed sender G28
Air mass meter G70
Engine control unit
Inlet camshaft timing adjustment valve 1 (N205)
26
Coolant temperature sender G62
246_030
Exhaust camshaft timing adjustment valve 1 (N318)
Diagnosis connection
Page 27
Test your knowledge
1. Which statement is correct?
a. With variable camshafts, valve timing can be better adapted to the varying operating modes of
the engine.
b. Valve timing has no effect on the operating modes.
2. The camshafts are adjusted with regard to which operating modes?
a. Torque
b. Idle
c. Exhaust gas recirculation
d. Power
3. How are the camshafts adjusted?
a. pneumatically
b. hydraulically
c. mechanically
4. Name the components.
1
2
1.) _____________________________________
2.) _____________________________________
3
4
3.) _____________________________________
6
5
4.) _____________________________________
5.) _____________________________________
7
8
6.) _____________________________________
7.) _____________________________________
246_012
8.) _____________________________________
27
Page 28
Test your knowledge
5. Name the components
1.) ________________________________
1
6
5
3
4
246_036
6. How are the camshafts adjusted and by how many degrees?
a. The inlet camshaft can only be set to two positions.
The maximum adjustment path is 22° crankshaft angle.
b. The inlet camshaft can be set to any point along the adjustment path.
The maximum adjustment path is 52° crankshaft angle.
2
2.) ________________________________
3.) ________________________________
4.) ________________________________
5.) ________________________________
6.) ________________________________
c. The exhaust camshaft can be set to any point along the adjustment path
The maximum adjustment path is 52° crankshaft angle.
d. The exhaust camshaft can only be set to two positions.
The maximum adjustment path is 22° crankshaft angle.
7. To adjust the camshafts, the camshaft timing adjustment valves must be actuated. What actuates them?
a. The camshaft timing adjustment control unit
b. The engine control unit.
8. What creates the pressure for adjusting the camshafts?
a. The vacuum pump
28
b. The engine oil pump
Page 29
29
Answers
1.) a
2.) a, b, c, d
3.) b
4.)1Hall sender 1 G40
2 Hall sender 2 G163 3 Inlet camshaft 4 Exhaust camshaft 5 Inlet camshaft adjustment timing valve 1 N205 6 Exhaust camshaft adjustment timing valve 1 N318 7 Engine control unit 8Oil pump
5.) 1 Outer rotor, connected to timing chain 2 Inner rotor, connected to camshaft 3 Inlet camshaft adjustment timing valve 1 N205 4 Exhaust camshaft adjustment timing valve 1 N318 5Hall sender 1 G40 6 Hall sender 2 G163
6.) b, d
7. ) b
8.) b
Notes
Page 30
246
For internal use only © VOLKSWAGEN AG, Wolfsburg
All rights reserved. Subject to technical change without notice
040.2810.65.20 Technical status 7/01
This paper was made with chlorine free
bleached cellulose.
Loading...