
查询TZS4678供应商
Silicon Epitaxial Planar Z–Diodes
Features
D
Zener voltage specified at 50 mA
D
Maximum delta VZ given from 10 mA to 100 mA
D
Very high stability
D
Low noise
TZS4678...TZS4717
Vishay Telefunken
Applications
Voltage stabilization
Absolute Maximum Ratings
Tj = 25_C
Parameter Test Conditions Type Symbol Value Unit
Power dissipation R
Z–current I
Junction temperature T
Storage temperature range T
x
300K/W P
thJA
Maximum Thermal Resistance
Tj = 25_C
Parameter Test Conditions Symbol Value Unit
Junction ambient on PC board 50mmx50mmx1.6mm R
thJA
Electrical Characteristics
Tj = 25_C
Parameter Test Conditions Type Symbol Min Typ Max Unit
Forward voltage IF=100mA V
F
Z
stg
V
j
96 12009
500 mW
PV/V
Z
175
–65...+175
500 K/W
1.5 V
mA
°
C
°
C
Document Number 85613
Rev. 2, 01-Apr-99 1 (6)
www.vishay.de • FaxBack +1-408-970-5600

TZS4678...TZS4717
Vishay Telefunken
1)
Type
TZS4678 1.8 1.710 1.890 7.5 1.0 120 0.70
TZS4679 2.0 1.900 2.100 5.0 1.0 110 0.70
TZS4680 2.2 2.090 2.310 4.0 1.0 100 0.75
TZS4681 2.4 2.280 2.520 2.0 1.0 95 0.80
TZS4682 2.7 2.565 2.835 1.0 1.0 90 0.85
TZS4683 3.0 2.850 3.150 0.8 1.0 85 0.90
TZS4684 3.3 3.135 3.465 7.5 1.5 80 0.95
TZS4685 3.6 3.420 3.780 7.5 2.0 75 0.95
TZS4686 3.9 3.705 4.095 5.0 2.0 70 0.97
TZS4687 4.3 4.085 4.515 4.0 2.0 65 0.99
TZS4688 4.7 4.465 4.935 10 3.0 60 0.99
TZS4689 5.1 4.845 5.355 10 3.0 55 0.97
TZS4690 5.6 5.320 5.880 10 4.0 50 0.96
TZS4691 6.2 5.890 6.510 10 5.0 45 0.95
TZS4692 6.8 6.460 7.140 10 5.1 35 0.90
TZS4693 7.5 7.125 7.875 10 5.7 31.8 0.75
TZS4694 8.2 7.790 8.610 1.0 6.2 29.0 0.50
TZS4695 8.7 8.265 9.135 1.0 6.6 27.4 0.10
TZS4696 9.1 8.645 9.555 1.0 6.9 26.2 0.08
TZS4697 10 9.500 10.50 1.0 7.6 24.8 0.10
TZS4698 11 10.45 11.55 0,05 8.4 21.6 0.11
TZS4699 12 11.40 12.60 0.05 9.1 20.4 0.12
TZS4700 13 12.35 13.65 0.05 9.8 19.0 0.13
TZS4701 14 13.30 14.70 0.05 10.6 17.5 0.14
TZS4702 15 14.25 15.75 0.05 11.4 16.3 0.15
TZS4703 16 15.20 16.80 0.05 12.1 15.4 0.16
TZS4704 17 16.15 17.85 0.05 12.9 14.5 0.17
TZS4705 18 17.10 18.90 0.05 13.6 13.2 0.18
TZS4706 19 18.05 19.95 0.05 14.4 12.5 0.19
TZS4707 20 19.00 21.00 0.01 15.2 11.9 0.20
TZS4708 22 20.90 23.10 0.01 16.7 10.8 0.22
TZS4709 24 22.80 25.20 0.01 18.2 9.9 0.24
TZS4710 25 23.75 26.25 0.01 19.0 9.5 0.25
TZS4711 27 25.65 28.35 0.01 20.4 8.8 0.27
TZS4712 28 26.60 29.40 0.01 21.2 8.5 0.28
TZS4713 30 28.50 31.50 0.01 22.8 7.9 0.30
TZS4714 33 31.35 34.65 0.01 25.0 7.2 0.33
TZS4715 36 34.20 37.80 0.01 27.3 6.6 0.36
TZS4716 39 37.05 40.95 0.01 29.6 6.1 0.39
TZS4717 43 40.85 45.15 0.01 32.6 5.5 0.43
Zener Voltage VZ @ IZ = 50mA Max.
Reverse
Current
1)
Typ.
Min. Max. IR
V V V
3)
m
A V mA V
Test
Voltage
3)
VR
Max.
Zener
Current
IZM
Max.
Voltage
Change
2)
4)
D
VZ
www.vishay.de • FaxBack +1-408-970-5600 Document Number85613
Rev. 2, 01-Apr-992 (6)

TZS4678...TZS4717
Vishay Telefunken
1.) Toleranzing and voltage designation (VZ).
The type numbers shown have a standard tolerance of ± 5% on the nominal zener voltage.
2.) Maximum zener current ratings (I
Maximum zener current ratings are based on maximum zener voltage of the individual units.
3.) Reverse leakage current (I
).
R
Reverse leakage currents are guaranteed and measured at VR as shown on the table.
4.) Maximum voltage change (DVZ).
Voltage change is equal to the difference between V
Characteristics (Tj = 25_C unless otherwise specified)
ZM
).
at 100mA and VZ at 10mA.
Z
tot
P – Total Power Dissipation ( mW )
95 9602
Z
V – Voltage Change ( mV )
D
600
500
400
300
200
100
0
0 40 80 120 160
T
– Ambient Temperature ( °C )
amb
Figure 1. Total Power Dissipation vs.
Ambient Temperature
1000
Tj=25°C
100
IZ=5mA
10
200
1.3
1.2
1.1
1.0
Ztn
0.9
V – Relative Voltage Change
V
Ztn=VZt/VZ
(25°C)
TKVZ=10 10–4/K
–4
/K
8 10
6 10–4/K
4 10–4/K
–4
2 10
/K
0
–4
–2 10
–4 10–4/K
0.8
–60 0 60 120 180
95 9599
Tj – Junction Temperature ( °C )
Figure 3. Typical Change of Working Voltage vs.
Junction Temperature
15
–4
Z
10
5
IZ=5mA
0
/K
240
1
25
95 9598
0 5 10 15 20
VZ – Z-Voltage ( V )
Figure 2. Typical Change of Working Voltage under
Operating Conditions at T
Document Number 85613
amb
=25°C
VZ
–5
TK – Temperature Coefficient of V ( 10 /K
0102030
95 9600
VZ – Z-Voltage ( V )
Figure 4. Temperature Coefficient of Vz vs.
Z–Voltage
www.vishay.de • FaxBack +1-408-970-5600
40
50
Rev. 2, 01-Apr-99 3 (6)

TZS4678...TZS4717
Vishay Telefunken
200
150
VR=2V
Tj=25°C
100
50
D
C – Diode Capacitance ( pF )
0
20
95 9601
0 5 10 15
VZ – Z-Voltage ( V )
Figure 5. Diode Capacitance vs.
Z–Voltage
100
10
Tj=25°C
1
0.1
F
I – Forward Current ( mA )
0.01
0.001
0 0.2 0.4 0.6 0.8
95 9605
VF – Forward Voltage ( V )
Figure 6. Forward Current vs. Forward Voltage
25
1.0
50
40
30
20
Z
I – Z-Current ( mA )
10
0
15 20 25 30
95 9607
Figure 8. Z–Current vs. Z–Voltage
1000
W
100
5mA
10mA
10
Z
r – Differential Z-Resistance ( )
1
0 5 10 15 20
95 9606
Figure 9. Differential Z–Resistance
VZ – Z-Voltage ( V )
IZ=1mA
VZ – Z-Voltage ( V )
vs. Z–Voltage
P
tot
T
amb
=500mW
=25°C
35
Tj=25°C
25
100
80
P
=500mW
tot
T
=25°C
amb
60
40
Z
I – Z-Current ( mA )
20
0
20
95 9604
04 81216
VZ – Z-Voltage ( V )
Figure 7. Z–Current vs. Z–Voltage
www.vishay.de • FaxBack +1-408-970-5600 Document Number85613
Rev. 2, 01-Apr-994 (6)

1000
tp/T=0.5
100
tp/T=0.2
10
tp/T=0.1
tp/T=0.05
1
thp
Z – Thermal Resistance for Pulse Cond. (K/W)
–1
10
tp/T=0.02
Figure 10. Thermal Response
Dimensions in mm
10
0
tp/T=0.01
TZS4678...TZS4717
Vishay Telefunken
Single Pulse
iZM=(–VZ+(V
1
10
tp – Pulse Length ( ms )95 9603
2
+4rzjDT/Z
Z
R
=300K/W
thJA
D
T=T
jmax–Tamb
1/2
)
)/(2rzj)
thp
2
10
96 12071
Document Number 85613
Rev. 2, 01-Apr-99 5 (6)
www.vishay.de • FaxBack +1-408-970-5600

TZS4678...TZS4717
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly , any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.de • FaxBack +1-408-970-5600 Document Number85613
Rev. 2, 01-Apr-996 (6)