
查询TZMC供应商
Silicon Epitaxial Planar Z–Diodes
Features
D
Very sharp reverse characteristic
D
Low reverse current level
D
Available with tighter tolerances
D
Very high stability
D
Low noise
TZMC...
Vishay Telefunken
Applications
Voltage stabilization
Absolute Maximum Ratings
Tj = 25_C
Parameter Test Conditions Type Symbol Value Unit
Power dissipation R
Z–current I
Junction temperature T
Storage temperature range T
x
300K/W P
thJA
Maximum Thermal Resistance
Tj = 25_C
Parameter Test Conditions Symbol Value Unit
Junction ambient on PC board 50mmx50mmx1.6mm R
thJA
Electrical Characteristics
Tj = 25_C
Parameter Test Conditions Type Symbol Min Typ Max Unit
Forward voltage IF=200mA V
F
Z
stg
V
j
94 9371
500 mW
PV/V
Z
175
–65...+175
500 K/W
1.5 V
mA
°
C
°
C
Document Number 85611
Rev. 3, 01-Apr-99 1 (6)
www.vishay.de • FaxBack +1-408-970-5600

TZMC...
Vishay Telefunken
Type V
ZnomIZT
TZMC... V mA V
for VZT and r
1)
r
zjT
W W
at I
zjk
ZKIR
mA
and IR at V
m
A
2)
m
A
R
TK
VZ
V %/K
2V4 2.4 5 2.28 to 2.56 < 85 < 600 1 < 50 < 100 1 –0.09 to –0.06
2V7 2.7 5 2.5 to 2.9 < 85 < 600 1 < 10 < 50 1 –0.09 to –0.06
3V0 3.0 5 2.8 to 3.2 < 90 < 600 1 < 4 < 40 1 –0.08 to –0.05
3V3 3.3 5 3.1 to 3.5 < 90 < 600 1 < 2 < 40 1 –0.08 to –0.05
3V6 3.6 5 3.4 to 3.8 < 90 < 600 1 < 2 < 40 1 –0.08 to –0.05
3V9 3.9 5 3.7 to 4.1 < 90 < 600 1 < 2 < 40 1 –0.08 to –0.05
4V3 4.3 5 4.0 to 4.6 < 90 < 600 1 < 1 < 20 1 –0.06 to –0.03
4V7 4.7 5 4.4 to 5.0 < 80 < 600 1 < 0.5 < 10 1 –0.05 to +0.02
5V1 5.1 5 4.8 to 5.4 < 60 < 550 1 < 0.1 < 2 1 –0.02 to +0.02
5V6 5.6 5 5.2 to 6.0 < 40 < 450 1 < 0.1 < 2 1 –0.05 to +0.05
6V2 6.2 5 5.8 to 6.6 < 10 < 200 1 < 0.1 < 2 2 0.03 to 0.06
6V8 6.8 5 6.4 to 7.2 < 8 < 150 1 < 0.1 < 2 3 0.03 to 0.07
7V5 7.5 5 7.0 to 7.9 < 7 < 50 1 < 0.1 < 2 5 0.03 to 0.07
8V2 8.2 5 7.7 to 8.7 < 7 < 50 1 < 0.1 < 2 6.2 0.03 to 0.08
9V1 9.1 5 8.5 to 9.6 < 10 < 50 1 < 0.1 < 2 6.8 0.03 to 0.09
10 10 5 9.4 to 10.6 < 15 < 70 1 < 0.1 < 2 7.5 0.03 to 0.1
11 11 5 10.4 to 11.6 < 20 < 70 1 < 0.1 < 2 8.2 0.03 to 0.11
12 12 5 11.4 to 12.7 < 20 < 90 1 < 0.1 < 2 9.1 0.03 to 0.11
13 13 5 12.4 to 14.1 < 26 < 110 1 < 0.1 < 2 10 0.03 to 0.11
15 15 5 13.8 to 15.6 < 30 < 110 1 < 0.1 < 2 11 0.03 to 0.11
16 16 5 15.3 to 17.1 < 40 < 170 1 < 0.1 < 2 12 0.03 to 0.11
18 18 5 16.8 to 19.1 < 50 < 170 1 < 0.1 < 2 13 0.03 to 0.11
20 20 5 18.8 to 21.2 < 55 < 220 1 < 0.1 < 2 15 0.03 to 0.11
22 22 5 20.8 to 23.3 < 55 < 220 1 < 0.1 < 2 16 0.04 to 0.12
24 24 5 22.8 to 25.6 < 80 < 220 1 < 0.1 < 2 18 0.04 to 0,12
27 27 5 25.1 to 28.9 < 80 < 220 1 < 0.1 < 2 20 0.04 to 0.12
30 30 5 28 to 32 < 80 < 220 1 < 0.1 < 2 22 0.04 to 0.12
33 33 5 31 to 35 < 80 < 220 1 < 0.1 < 2 24 0.04 to 0.12
36 36 5 34 to 38 < 80 < 220 1 < 0.1 < 2 27 0.04 to 0.12
39 39 2.5 37 to 41 < 90 < 500 0.5 < 0.1 < 5 30 0.04 to 0.12
43 43 2.5 40 to 46 < 90 < 600 0.5 < 0.1 < 5 33 0.04 to 0.12
47 47 2.5 44 to 50 < 110 < 700 0.5 < 0.1 < 5 36 0.04 to 0.12
51 51 2.5 48 to 54 < 125 < 700 0.5 < 0.1 < 10 39 0.04 to 0.12
56 56 2.5 52 to 60 < 135 < 1000 0.5 < 0.1 < 10 43 0.04 to 0.12
62 62 2.5 58 to 66 < 150 < 1000 0.5 < 0.1 < 10 47 0.04 to 0.12
68 68 2.5 64 to 72 < 200 < 1000 0.5 < 0.1 < 10 51 0.04 to 0.12
75 75 2.5 70 to 79 < 250 < 1500 0.5 < 0.1 < 10 56 0.04 to 0.12
1)
Tighter tolerances available on request:
TZMA... ± 1% of V
TZMB... ± 2% of V
TZMF... ± 3% of V
2)
at Tj= 150°C
www.vishay.de • FaxBack +1-408-970-5600 Document Number 85611
Znom
Znom
Znom
Rev. 3, 01-Apr-992 (6)

Characteristics (Tj = 25_C unless otherwise specified)
TZMC...
Vishay Telefunken
600
500
400
300
200
100
tot
P – Total Power Dissipation ( mW )
0
0 40 80 120 160
T
95 9602
– Ambient Temperature ( °C )
amb
Figure 1. Total Power Dissipation vs.
Ambient Temperature
1000
Tj=25°C
100
IZ=5mA
10
Z
V – Voltage Change ( mV )
D
1
0 5 10 15 20
95 9598
VZ – Z-Voltage ( V )
Figure 2. Typical Change of Working Voltage
under Operating Conditions at T
amb
200
=25°C
1.3
1.2
1.1
1.0
Ztn
0.9
V – Relative Voltage Change
V
Ztn=VZt/VZ
(25°C)
TKVZ=10 10–4/K
–4
/K
8 10
–4
6 10
/K
4 10–4/K
–4
/K
2 10
0
–4
–2 10
–4 10–4/K
/K
0.8
240
95 9599
–60 0 60 120 180
Tj – Junction Temperature ( °C )
Figure 3. Typical Change of Working Voltage vs.
Junction Temperature
15
–4
Z
10
5
IZ=5mA
0
VZ
–5
TK – Temperature Coefficient of V ( 10 /K
25
95 9600
0102030
VZ – Z-Voltage ( V )
40
50
Figure 4. Temperature Coefficient of Vz vs.
Z–Voltage
200
150
VR=2V
Tj=25°C
100
50
D
C – Diode Capacitance ( pF )
0
25
95 9601
0 5 10 15
VZ – Z-Voltage ( V )
20
Figure 5. Diode Capacitance vs. Z–Voltage
Document Number 85611
Rev. 3, 01-Apr-99 3 (6)
www.vishay.de • FaxBack +1-408-970-5600

TZMC...
Vishay Telefunken
100
10
Tj=25°C
1
0.1
F
I – Forward Current ( mA )
0.01
0.001
0 0.2 0.4 0.6 0.8
95 9605
VF – Forward Voltage ( V )
Figure 6. Forward Current vs. Forward Voltage
100
80
P
=500mW
tot
T
=25°C
amb
60
40
Z
I – Z-Current ( mA )
20
0
04 81216
95 9604
VZ – Z-Voltage ( V )
Figure 7. Z–Current vs. Z–Voltage
1.0
20
50
P
=500mW
40
tot
T
=25°C
amb
30
20
Z
I – Z-Current ( mA )
10
0
15 20 25 30
95 9607
VZ – Z-Voltage ( V )
Figure 8. Z–Current vs. Z–Voltage
1000
W
IZ=1mA
100
5mA
10mA
10
Z
r – Differential Z-Resistance ( )
1
Tj=25°C
0 5 10 15 20
95 9606
VZ – Z-Voltage ( V )
Figure 9. Differential Z–Resistance vs. Z–Voltage
35
25
1000
tp/T=0.5
100
tp/T=0.2
10
tp/T=0.1
tp/T=0.02
tp/T=0.05
1
thp
Z – Thermal Resistance for Pulse Cond. (K/W)
–1
10
0
10
tp/T=0.01
Single Pulse
1
10
iZM=(–VZ+(V
2
+4rzjDT/Z
Z
R
=300K/W
thJA
D
T=T
jmax–Tamb
1/2
)
)/(2rzj)
thp
2
10
tp – Pulse Length ( ms )95 9603
Figure 10. Thermal Response
www.vishay.de • FaxBack +1-408-970-5600 Document Number 85611
Rev. 3, 01-Apr-994 (6)

Dimensions in mm
TZMC...
Vishay Telefunken
96 12070
Document Number 85611
Rev. 3, 01-Apr-99 5 (6)
www.vishay.de • FaxBack +1-408-970-5600

TZMC...
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly , any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.de • FaxBack +1-408-970-5600 Document Number 85611
Rev. 3, 01-Apr-996 (6)