VISHAY TLC.58 Technical data

VISHAY
Vishay Semiconductors
\

Description

The TLC.58.. series is a clear, non diffused 5 mm LED for high end applications where supreme luminous intensity and a very small emission angle is required.
These lamps with clear untinted plastic case utilize the highly developed ultrabright AlInGaP and GaP technologies.
The very small viewing angle of these devices provide a very high luminous intensity.

Features

• Untinted non diffused lens
• Utilizing ultrabright AllnGaP and InGaN technol­ogy
• Very high luminous intensity
• Very small emission angle
• High operating temperature: T
(chip junction tem-
j
perature) up to 125 °C for AllnGaP devices
• Luminous intensity and color categorized for each packing unit
• ESD-withstand voltage: 2 kV acc. to MIL STD 883 D, Method 3015.7 for AllnGaP, 1 kV for InGaN

Applications

Interior and exterior lighting Outdoor LED panels, displays Instrumentation and front panel indicators Central high mounted stop lights (CHMSL) for motor
vehicles Replaces incandescent lamps Traffic signals and signs Light guide design
TLC.58..
94 8631
Parts Table
Part Color, Luminous Intensity Te c h n ol o g y
TLCR5800 Red, IV > 7500 mcd AllGaP on GaAs
TLCY5800 Ye ll o w, IV > 5750 mcd AllGaP on GaAs
TLCTG5800 True green, IV > 2400 mcd InGaN on SiC
TLCB5800 Blue, IV > 750 mcd InGaN on SiC
Absolute Maximum Ratings
T
= 25 °C, unless otherwise specified
amb
TLCR5800 , TLCY5800 , TLCTG5800 , TLCB5800
Paramete r Test c o n d ition Part Symbol Val ue Unit
Reverse voltage V
DC forward current T
Document Number 83178
Rev. 2, 03-Apr-03
85°C TLCR5800 I
amb
T
85°C TLCR5800 I
amb
T
60°C TLCTG5800 I
amb
T
60°C TLCTG5800 I
amb
R
F
F
F
F
5 V
50 mA
50 mA
30 mA
30 mA
www.vishay.com
1
TLC.58..
Vishay Semiconductors
Paramete r Test condition Part Symbol Val ue Unit
Surge forward current tp 10 µs TLCR5800 I
tp 10 µs TLCR5800 I
tp 10 µs TLCTG5800 I
tp 10 µs TLCTG5800 I
Power dissipation T
Junction temperature TLCR5800 T
Operating temperature range T
Storage temperature range T
Soldering temperature t 5 s, 2 mm from body T
Thermal resistance junction/ ambient
85°C TLCR5800 P
amb
T
85°C TLCR5800 P
amb
T
60°C TLCTG5800 P
amb
T
60°C TLCTG5800 P
amb
TLCR5800 T
TLCTG5800 T
TLCTG5800 T
R
FSM
FSM
FSM
FSM
amb
stg
sd
thJA
VISHAY
1 A
1 A
0.1 A
0.1 A
V
V
V
V
j
j
j
j
135 mW
135 mW
135 mW
135 mW
125 °C
125 °C
100 °C
100 °C
- 40 to + 100 °C
- 40 to + 100 °C
260 °C
300 K/W
Optical and Electrical Characteristics
T
= 25 °C, unless otherwise specified
amb
Red
TLCR5800
Paramete r Test condition Part Symbol Min Ty p. Max Unit
Luminous intensity
1)
Dominant wavelength IF = 50 mA λ
Peak wavelength IF = 50 mA λ
Spectral bandwidth at 50 % I
max
Angle of half intensity IF = 50 mA ϕ ± 4 deg
Forward voltage IF = 50 mA V
Reverse voltage IR = 10 µA V
Temperature coefficient of VFIF = 50 mA TC
Temperature coefficient of λ
1)
in one Packing Unit I
VMax./IVMin.
IF = 50 mA TLCR5800 I
IF = 50 mA ∆λ 18 nm
rel
= 50 mA TC
dIF
V
d
p
F
R
VF
λd
7500 20000
611 616 622 nm
622 nm
2.1 2.7 V
5 V
- 3.5 mV/K
0.05 nm/K
1.6
www.vishay.com
2
Document Number 83178
Rev. 2, 03-Apr-03
VISHAY
TLC.58..
Vishay Semiconductors
Yellow
TLCY5800
Paramete r Test c o n d ition Par t Symbol Min Ty p . Max Unit
Luminous intensity
1)
Dominant wavelength IF = 50 mA λ
Peak wavelength IF = 50 mA λ
Spectral bandwidth at 50 % I
max
IF = 50 mA TLCY5800 I
IF = 50 mA ∆λ 17 nm
rel
5750 14000 mcd
V
d
p
585 590 597 nm
593 nm
Angle of half intensity IF = 50 mA ϕ ± 4 deg
Forward voltage IF = 50 mA V
Reverse voltage IR = 10 µA V
Temperature coefficient of VFIF = 50 mA TC
Temperature coefficient of λ
1)
in one Packing Unit I
VMax./IVMin.
= 50 mA TC
dIF
1.6
F
R
VF
λd
5 V
2.1 2.7 V
- 3.5 mV/K
0.1 nm/K
Pure green
Paramete r Test c o n d ition Par t Symbol Min Ty p . Max Unit
Luminous intensity
1)
Dominant wavelength IF = 30 mA λ
Peak wavelength IF = 30 mA λ
Spectral bandwidth at 50 % I
max
Angle of half intensity IF = 30 mA ϕ ± 4 deg
Forward voltage IF = 30 mA V
Reverse voltage IR = 10 µA V
Temperature coefficient of VFIF = 30 mA TC
Temperature coefficient of λ
1)
in one Packing Unit I
VMax./IVMin.
IF = 30 mA TLCTG5800 I
IF = 30 mA ∆λ 37 nm
rel
= 30 mA TC
dIF
2400 7000 mcd
V
d
p
F
R
515 525 535 nm
520 nm
3.9 4.5 V
5 V
VF
λd
- 4.5 mV/K
0.02 nm/K
1.6
Blue
TLCB5800
Paramete r Test c o n d ition Par t Symbol Min Ty p . Max Unit
Luminous intensity
1)
Dominant wavelength IF = 30 mA λ
Peak wavelength IF = 30 mA λ
Spectral bandwidth at 50 % I
max
Angle of half intensity IF = 30 mA ϕ ± 4 deg
Forward voltage IF = 30 mA V
Reverse voltage IR = 10 µA V
Temperature coefficient of VFIF = 30 mA TC
Temperature coefficient of λ
1)
in one Packing Unit I
VMax./IVMin.
Document Number 83178
Rev. 2, 03-Apr-03
IF = 30 mA TLCB5800 I
IF = 30 mA ∆λ 25 nm
rel
= 30 mA TC
dIF
V
d
p
F
R
750 2500 mcd
462 470 476 nm
464 nm
3.9 4.5 V
5 V
VF
λd
- 5.0 mV/K
0.02 nm/K
1.6
www.vishay.com
3
TLC.58..
Vishay Semiconductors
VISHAY
Typical Characteristics (T
160
140
120
Yellow
100
Red
80
60
40
V
P –Power Dissipation (mW)
20
0
0 20406080100120
16708
T
– Ambient Temperature ( °C)
amb
= 25 °C unless otherwise specified)
amb
Figure 1. Power Dissipation vs. Ambient Temperature
160
140
120
100
80
60
40
V
P –Power Dissipation (mW)
20
0
16709
Blue Truegreen
0 1020304050607080 90100
T
– Ambient Temperature ( °C )
amb
60
50
40
Yellow Red
30
20
F
I –Forward Current ( mA )
10
0
0 20406080100120
16710
T
– Ambient Temperature ( °C )
amb
Figure 4. Forward Current vs. Ambient Temperature
60
16711
50
40
30
20
F
I –Forward Current ( mA )
10
Blue Truegreen
0
0 1020304050607080 90100
T
– Ambient Temperature ( °C )
amb
Figure 2. Power Dissipation vs. Ambient Temperature
100
90
80
70
60
50
40
30
20
F
I –Forward Current ( mA )
10
0
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
15974
Red Yellow
VF– Forward Voltage(V)
Figure 3. Forward Current vs. Forward Voltage
www.vishay.com
4
Figure 5. Forward Current vs. Ambient Temperature
100
90
80
Blue Truegreen
70
60
50
40
30
20
F
I – Forward Current ( mA )
10
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5
16040
VF – Forward Voltage ( V )
Figure 6. Forward Current vs. Forward Voltage
Document Number 83178
Rev. 2, 03-Apr-03
VISHAY
TLC.58..
Vishay Semiconductors
10.00
Red
1.00
0.10
Vrel
I – Relative Luminous Intensity
0.01 1 10 100
15978
IF – Forward Current ( mA )
Figure 7. Relative Luminous Flux vs. Forward Current
10.00
Blue
1.00
0.10
V rel
I - Relative Luminous Intensity
15979
10.00
1.00
0.10
0.01
Yellow
1 10 100
IF- Forward Current ( mA )
Figure 10. Relative Luminous Flux vs. Forward Current
10.00
True Green
1.00
0.10
Vrel
I – Relative Luminous Intensity
0.01 1 10 100
16042
IF – Forward Current ( mA )
Figure 8. Relative Luminous Flux vs. Forward Current
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Vrel
I – Relative Luminous Intensity
0.1
0.0 570 580590 600610 620 630 640 650 660 670
16007
l – Wavelength ( nm )
IF = 50 mARed
Figure 9. Relative Intensity vs. Wavelength
Vrel
I – Relative Luminous Intensity
0.01 1 10 100
16039
IF – Forward Current ( mA )
Figure 11. Relative Luminous Flux vs. Forward Current
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Vrel
I – Relative Luminous Intensity
0.1
0.0 540 550560 570580 590 600 610 620 630 640
16008
l – Wavelength ( nm )
IF = 50 mAYellow
Figure 12. Relative Intensity vs. Wavelength
Document Number 83178
Rev. 2, 03-Apr-03
www.vishay.com
5
TLC.58..
Vishay Semiconductors
VISHAY
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Vrel
0.1
I – Relative Luminous Intensity
0.0 460 480 500 520 540 560 580 600 620
16068
l – Wavelength ( nm )
IF = 30 mATrue Green
Figure 13. Relative Intensity vs. Wavelength

Package Dimensions in mm

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
rel
I – Relative Intensity
0.2
0.1
0.0 400 420 440 460 480 500 520 540 560
17539
l – Wavelength ( nm )
Figure 14. Relative Intensity vs. Wavelength
IF = 30 mABlue
www.vishay.com
6
9511476
Document Number 83178
Rev. 2, 03-Apr-03
VISHAY
TLC.58..
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
Document Number 83178
Rev. 2, 03-Apr-03
www.vishay.com
7
Loading...