VISHAY TLC.51 Technical data

TLC.51..
Vishay Semiconductors
Ultrabright LED, ø 5 mm Untinted Non-Diffused
Color Type Technology Angle of Half Intensity
±
Description
The TLC.51.. series is a clear, non diffused 5 mm LED for high end applications where supreme luminous intensity is required. These lamps with clear untinted plastic case utilize the highly developed ultrabright AlInGaP (AS) and InGaN technologies. The lens and the viewing angle is optimized to achieve best performance of light output and visibility.
Features
Untinted non diffused lensUtilizing ultrabright AlInGaP (AS) and
InGaN technology
High luminous intensityHigh operating temperature:
Tj (chip junction temperature) up to +125°C for AlInGaP devices
Luminous intensity and color categorized
for each packing unit
ESD–withstand voltage:
2 kV acc. to MIL STD 883 D, Method 3015.7 for AlInGaP, 1 kV for InGaN
94 8631
Applications
Interior an exterior lightingOutdoor LED panelsInstrumentation and front panel indicatorsCentral high mounted stop lights (CHMSL)
for motor vehicles
Replaces incandescent lampsTraffic signals and signsLight guide design
www.vishay.comDocument Number 83176
1 (7)Rev. A1, 05-Mar-02
TLC.51..
Vishay Semiconductors
Absolute Maximum Ratings
T
= 25C, unless otherwise specified
amb
TLCR51.. , TLCY51..
Parameter Test Conditions Symbol Value Unit Reverse voltage V DC forward current T Surge forward current tp 10 s I Power dissipation T Junction temperature T Operating temperature range T Storage temperature range T Soldering temperature t 5 s T Thermal resistance junction/ambient R
T
= 25C, unless otherwise specified
amb
TLCTG51.. , TLCB51..
85°C I
amb
85°C P
amb
R
F
FSM
V
amb
stg
sd
thJA
5 V
50 mA
1 A
135 mW
j
125 °C –40 to +100 °C –40 to +100 °C
260 °C
300 K/W
Parameter Test Conditions Symbol Value Unit Reverse voltage V DC forward current T Surge forward current tp 10 s I Power dissipation T
60°C I
amb
60°C P
amb
FSM
Junction temperature T Operating temperature range T Storage temperature range T Soldering temperature t 5 s T Thermal resistance junction/ambient R
R
F
V
j
amb
stg
sd
thJA
5 V
30 mA
0.1 A 135 mW 100 °C
–40 to +100 °C –40 to +100 °C
260 °C 300 K/W
Optical and Electrical Characteristics
T
= 25C, unless otherwise specified
amb
Red (TLCR51.. )
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous intensity IF = 50 mA TLCR5100 I Dominant wavelength IF = 50 mA Peak wavelength IF = 50 mA Spectral bandwidth at 50% I
rel maxIF
= 50 mA  18 nm Angle of half intensity IF = 50 mA ϕ ±9 deg Forward voltage IF = 50 mA V Reverse voltage IR = 10 A V Temperature coefficient of V Temperature coefficient of
F
d
IF = 50 mA TC IF = 50 mA TC
4300 11000 mcd
V
d p
F
R
VF
611 616 622 nm
622 nm
2.1 2.7 V
5 V
–3.5 mV/K
d
0.05 nm/K
www.vishay.com Document Number 83176 2 (7) Rev. A1, 05-Mar-02
TLC.51..
Vishay Semiconductors
Yellow (TLCY51.. )
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous intensity IF = 50 mA TLCY5100 I Dominant wavelength IF = 50 mA Peak wavelength IF = 50 mA
Spectral bandwidth at 50% I
rel maxIF
= 50 mA  17 nm Angle of half intensity IF = 50 mA ϕ ±9 deg Forward voltage IF = 50 mA V Reverse voltage IR = 10 A V Temperature coefficient of V Temperature coefficient of
F
d
IF = 50 mA TC IF = 50 mA TC
True Green (TLCTG51.. )
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous intensity IF = 30 mA TLCTG5100 I Dominant wavelength IF = 30 mA Peak wavelength IF = 30 mA Spectral bandwidth at 50% I
rel maxIF
= 30 mA  37 nm Angle of half intensity IF = 30mA ϕ ±9 deg Forward voltage IF = 30 mA V Reverse voltage IR = 10 A V Temperature coefficient of V Temperature coefficient of
F
d
IF = 30 mA TC IF = 30 mA TC
3200 7500 mcd
V
d p
F R
V
d p
F R
585 590 597 nm
593 nm
2.1 2.7 V
5 V
VF
d
–3.5 mV/K
0.1 nm/K
1800 5000 mcd
515 525 535 nm
520 nm
3.9 4.5 V
5 V
VF
d
–4.5 mV/K
0.02 nm/K
Blue (TLCB51.. )
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous intensity IF = 30 mA TLCB5100 I Dominant wavelength IF = 30 mA Peak wavelength IF = 30 mA Spectral bandwidth at 50% I
rel maxIF
= 30 mA  25 nm
V
d p
575 1500 mcd 462 470 476 nm
464 nm
Angle of half intensity IF = 30 mA ϕ ±9 deg Forward voltage IF = 30 mA V Reverse voltage IR = 10 A V Temperature coefficient of V Temperature coefficient of
F
d
IF = 30 mA TC IF = 30 mA TC
F R
VF
5 V
d
3.9 4.5 V
–5.0 mV/K
0.02 nm/K
www.vishay.comDocument Number 83176
3 (7)Rev. A1, 05-Mar-02
TLC.51..
Vishay Semiconductors
Typical Characteristics (T
160 140 120 100
V
P –Power Dissipation (mW)
16708
Yellow Red
80 60 40 20
0
0 20406080100120
T
– Ambient Temperature ( °C )
amb
= 25C, unless otherwise specified)
amb
Figure 1. Power Dissipation vs. Ambient Temperature
160 140 120 100
80 60 40
V
P –Power Dissipation (mW)
20
0
0 102030405060708090100
16709
Blue Truegreen
T
– Ambient Temperature ( °C )
amb
Figure 2. Power Dissipation vs. Ambient Temperature
60
50
40
Yellow Red
30
20
F
I –Forward Current ( mA )
10
0
0 20406080100120
16710
T
– Ambient Temperature ( °C )
amb
Figure 4. Forward Current vs. Ambient Temperature
60
50
Blue Truegreen
T
– Ambient Temperature ( °C )
amb
16711
40
30
20
F
I –Forward Current ( mA )
10
0
0 102030405060708090100
Figure 5. Forward Current vs. Ambient Temperature
100
90 80 70 60 50 40 30 20
F
I – Forward Current ( mA )
10
0
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
Red,
Yellow
VF – Forward Voltage ( V )15974
Figure 3. Forward Current vs. Forward Voltage
www.vishay.com Document Number 83176 4 (7) Rev. A1, 05-Mar-02
100
Blue
90
Truegreen
80 70 60 50 40 30 20
F
I – Forward Current ( mA )
10
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 VF – Forward Voltage ( V )16040
Figure 6. Forward Current vs. Forward Voltage
TLC.51..
Vishay Semiconductors
10.00
Red
1.00
0.10
Vrel
I – Relative Luminous Flux
0.01 1 10 100
IF – Forward Current ( mA )15978
Figure 7. Relative Luminous Intensity vs. Forward Current
10.00
Blue
1.00
0.10
10.00
Yellow
1.00
0.10
Vrel
I – Relative Luminous Flux
0.01 1 10 100
IF – Forward Current ( mA )15979
Figure 10. Relative Luminous Intensity vs. Forward Current
10.00
True Green
1.00
0.10
Vrel
I – Relative Luminous Flux
0.01 1 10 100
IF – Forward Current ( mA )16042
Figure 8. Relative Luminous Intensity vs. Forward Current
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Vrel
I – Relative Luminous Intensity
0.1
0.0 570 580 590 600 610 620 630 640 650 660 670
– Wavelength ( nm )16007
IF = 50 mARed
Figure 9. Relative Luminous Intensity vs. Wavelength
Vrel
I – Relative Luminous Flux
0.01 1 10 100
IF – Forward Current ( mA )16039
Figure 11. Relative Luminous Intensity vs. Forward Current
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Vrel
I – Relative Luminous Intensity
0.1
0.0 540 550 560 570 580 590 600 610 620 630 640
– Wavelength ( nm )16008
IF = 50 mAYellow
Figure 12. Relative Luminous Intensity vs. Wavelength
www.vishay.comDocument Number 83176
5 (7)Rev. A1, 05-Mar-02
TLC.51..
Vishay Semiconductors
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Vrel
I – Relative Luminous Intensity
0.1
0.0 400 420 440 460 480 500 520 540 560
– Wavelength ( nm )16069
IF = 30 mABlue
Figure 13. Relative Luminous Intensity vs. Wavelength
Dimensions in mm
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Vrel
I – Relative Luminous Intensity
0.1
0.0 460 480 500 520 540 560 580 600 620
– Wavelength ( nm )16068
IF = 30 mATrue Green
Figure 14. Relative Luminous Intensity vs. Wavelength
96 12121
www.vishay.com Document Number 83176 6 (7) Rev. A1, 05-Mar-02
TLC.51..
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid th e i r use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A , B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the
buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.comDocument Number 83176
7 (7)Rev. A1, 05-Mar-02
Loading...