Vishay IRF9610, SiHF9610 Data Sheet

Power MOSFET
IRF9610, SiHF9610
Vishay Siliconix
PRODUCT SUMMARY
VDS (V) - 200
(Ω)V
R
DS(on)
Q
(Max.) (nC) 11
g
Q
(nC) 7.0
gs
Q
(nC) 4.0
gd
Configuration Single
TO-220
= - 10 V 3.0
GS
G
S
FEATURES
• Dynamic dV/dt Rating
• Fast Switching
• Ease of Paralleling
• Simple Drive Requirements
• Lead (Pb)-free Available
DESCRIPTION
The Power MOSFETs technology is the key to Vishay’s advanced line of Power MOSFET transistors. The efficient geometry and unique processing of the Power MOSFETs design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness.
The TO-220 package is universally preferred for all
S
D
G
D
P-Channel MOSFET
commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
ORDERING INFORMATION
Package TO-220
Lead (Pb)-free
SnPb
IRF9610PbF SiHF9610-E3 IRF9610 SiHF9610
Available
RoHS*
COMPLIANT
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER SYMBOL LIMIT UNIT
Drain-Source Voltage V
Gate-Source Voltage V
T
= 25
Continuous Drain Current V
Pulsed Drain Current
a
at - 10 V
GS
C
T
C
= 100
DS
± 20
GS
I
D
IDM - 7.0
Linear Derating Factor 0.16 W/°C
Maximum Power Dissipation T
Inductive Current, Clamp I
Peak Diode Recovery dV/dt
c
Operating Junction and Storage Temperature Range T
= 25 °C P
C
D
LM
dV/dt - 5.0 V/ns
, T
J
stg
Soldering Recommendations (Peak Temperature) for 10 s 300
Mounting Torque 6-32 or M3 screw
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 5). b. Not applicable.
c. I
- 1.8 A, dI/dt 70 A/µs, VDD VDS, TJ 150 °C.
SD
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91080 www.vishay.com S09-0046-Rev. A, 19-Jan-09 1
- 200
- 1.8
- 1.0
20 W
- 7.0 A
- 55 to + 150
d
10 lbf · in
1.1 N · m
V
A
°C
IRF9610, SiHF9610
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER SYMBOL TYP. MAX. UNIT
Maximum Junction-to-Ambient R
Maximum Junction-to-Case (Drain) R
thJA
thCS
thJC
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Static
Drain-Source Breakdown Voltage V
Temperature Coefficient ΔVDS/TJ Reference to 25 °C, ID = - 1 mA - - 0.23 -
V
DS
Gate-Source Threshold Voltage V
Gate-Source Leakage I
Zero Gate Voltage Drain Current I
Drain-Source On-State Resistance R
Forward Transconductance g
Dynamic
Input Capacitance C
Reverse Transfer Capacitance C
Total Gate Charge Q
Gate-Drain Charge Q
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Internal Drain Inductance L
Internal Source Inductance L
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current I
Pulsed Diode Forward Current
a
Body Diode Voltage V
Body Diode Reverse Recovery Time t
Body Diode Reverse Recovery Charge Q
Forward Turn-On Time t
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 5). b. Pulse width 300 µs; duty cycle 2 %.
DS
GS(th)
V
GSS
DSS
DS(on)
fs
iss
-50-
oss
-15-
rss
g
--7.0
gs
--4.0
gd
d(on)
r
-10-
d(off)
-8.0-
f
D
V
DS
VGS = - 10 V ID = -0.90 A
V
GS
R
Between lead, 6 mm (0.25") from package and center of
S
S
I
SM
SD
rr
rr
on
die contact
MOSFET symbol showing the integral reverse p - n junction diode
TJ = 25 °C, IS = - 1.8 A, VGS = 0 V
TJ = 25 °C, IF = - 1.8 A, dI/dt = 100 A/µs
-62
0.50 -
°C/WCase-to-Sink, Flat, Greased Surface R
-6.4
VGS = 0 V, ID = - 250 µA - 200 - -
VDS = VGS, ID = - 250 µA - 2.0 -
= ± 20 V - -
GS
VDS = - 200 V, VGS = 0 V - -
= - 160 V, VGS = 0 V, TJ = 125 °C - -
VDS = - 50 V, ID = - 0.90 A
VGS = 0 V,
V
= - 25 V,
DS
f = 1.0 MHz, see fig. 10
b
b
--
0.90 - -
- 170 -
- 4.0 V
± 100 nA
- 100
- 500
3.0 Ω
--11
= - 3.5 A, VDS = - 160 V,
I
= - 10 V
D
see fig. 11 and 18
b
-8.0-
= - 100 V, ID = - 0.90 A,
V
DD
= 50 Ω, RD = 110 Ω, see fig. 17
G
G
G
b
D
S
D
S
b
-15-
-4.5-
-7.5-
--- 1.8
--- 7.0
--- 5.8V
- 240 360 ns
b
-1.72.C
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
V
V/°C
µA
S
pFOutput Capacitance C
nC Gate-Source Charge Q
ns
nH
A
www.vishay.com Document Number: 91080 2 S09-0046-Rev. A, 19-Jan-09
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
IRF9610, SiHF9610
Vishay Siliconix
, Drain Current (A)
D
I
91080_01
, Drain Current (A)
D
I
91080_02
- 2.40
V
= - 10, - 9, - 8, - 7 V
GS
- 1.92
- 1.44
- 0.96
- 0.48
80 µs Pulse Test
0.00
- 10
0
- 20
- 30 - 40
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
- 2.40
- 1.92
- 1.44
- 0.96
- 0.48
0.00 0 - 4 - 6 - 8 - 10
T
= - 55 °C
J
T
= 25 °C
J
T
= 125 °C
J
80 µs Pulse Test
> I
V
DS
- 2
V
Gate-to-Source Voltage (V)
,
GS
D(on)
Fig. 2 - Typical Transfer Characteristics
x R
DS(on)
- 6 V
- 5 V
- 4 V
max.
- 50
, Drain Current (A)
D
I
91080_03
, Drain Current (A)
D
Negative I
91080_04
- 2.40
V
= - 10, - 9, - 8 V
GS
- 1.92
- 1.44
- 0.96
- 0.48
80 µs Pulse Test
0.00 0 - 4 - 6 - 8 - 10
- 2
V
Drain-to-Source Voltage (V)
,
DS
Fig. 3 - Typical Saturation Characteristics
2
10
5
2
Operation in this area limited
by R
DS(on)
10
5
2
1
5
2
0.1
25
110
TC = 25 °C
= 150 °C
T
J
Single Pulse
25
2
10
Negative VDS, Drain-to-Source Voltage (V)
Fig. 4 - Maximum Safe Operating Area
- 7 V
- 6 V
- 5 V
- 4 V
µs
100
1 ms
10 ms
25
10
3
2.0
1.0
0.5
D = 0.5
P
DM
1/t2
thJC
thJC
t
1
= 6.4 °C/W
(t)
t
2
, Normalized Effective Transient
thJC
(t)/R
thJC
Z
91080_05
0.2
0.1
0.05
0.02
Thermal Impedence (Per Unit)
0.01 10
0.2
0.1
0.05
0.02
0.01
25 25 25 25 25 25
-5
Single Pulse (Transient Thermal Impedence)
-4
10
-3
10
-2
10
Notes:
1. Duty Factor, D = t
2. Per Unit Base = R
- TC = PDM Z
3. T
JM
0.1 1.0 10
t1, Square Wave Pulse Duration (s)
Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration
Document Number: 91080 www.vishay.com S09-0046-Rev. A, 19-Jan-09 3
IRF9610, SiHF9610
Vishay Siliconix
2.0
80 µs Pulse Test V
> I
x R
DS
D(on)
DS(on)
max.
1.6
1.2
0.8
,Transconductance (S)
fs
0.4
g
TJ = - 55 °C
TJ = 25 °C
TJ = 125 °C
0.0 0
- 0.48 - 0.96 - 1.44 - 1.92 - 2.40
91080_06
I
Drain Current (A)
,
D
Fig. 6 - Typical Transconductance vs. Drain Current
- 10.0
- 5.0
- 2.0
- 1.0
TJ = 150 °C
- 0.5
, Drain Current (A)
D
I
- 0.2
TJ = 25 °C
2.5
I
= - 0.6 A
D
V
= - 10 V
GS
2.0
1.5
1.0
(Normalized)
0.5
, Drain-to-Source On Resistance
DS(on)
0.0
R
91080_09
- 40
TJ, Junction Temperature (°C)
12080400
Fig. 9 - Normalized On-Resistance vs. Temperature
500
400
300
C
200
C, Capacitance (pF)
100
C
C
iss
oss
rss
V
= 0 V, f = 1 MHz
GS
= Cgs + Cgd, Cds Shorted
C
iss
= C
C
rss
gd
C
, C
C
oss
= Cds +
Cgs + C
gs
Cgs + C
gd
160
gd
gd
- 0.1
- 6.8
91080_07
- 2.0
VSD, Source-to-Drain Voltage (V)
- 5.6- 4.4- 3.2
Fig. 7 - Typical Source-Drain Diode Forward Voltage
1.25
1.15
1.05
0.95
- 8.0
91080_10
0
- 10
0 - 50- 40- 30- 20
VDS, Drain-to-Source Voltage (V)
Fig. 10 - Typical Capacitance vs. Drain-to-Source Voltage
20
ID = - 1.8 A
V
= - 100 V
16
V
= - 40 V
12
DS
8
V
= - 60 V
DS
DS
, Gate-to-Source Voltage (V)
, Drain-to-Source Breakdown
DSS
BV
91080_08
Voltage (Normalized)
0.85
0.75
- 40
80400
TJ, Junction Temperature (°C)
Fig. 8 - Breakdown Voltage vs. Temperature
120
160
GS
4
For test circuit see figure 18
Negative V
91080_11
0
02864
QG, Total Gate Charge (nC)
Fig. 11 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com Document Number: 91080 4 S09-0046-Rev. A, 19-Jan-09
IRF9610, SiHF9610
Vishay Siliconix
, Drain-to-Source
DS(on)
R
91080_12
7
R
measured with current pulse of
DS(on)
2.0 µs duration. Initial T
6
(Heating effect of 2.0 µs pulse is minimal.)
5
4
3
2
On Resistance (Ω)
1
0
- 1
0
- 2 - 3 - 4
ID, Drain Current (A)
= 25 °C.
J
V
GS
= - 10 V
V
- 5
= - 20 V
GS
- 6
- 7
, Drain Current (A)
D
Negative I
91080_13
2.0
1.6
1.2
0.8
0.4
0.0 25
1251007550
TC, Case Temperature (°C)
Fig. 12 - Typical On-Resistance vs. Drain Current Fig. 13 - Maximum Drain Current vs. Case Temperature
20
150
VGS = - 10 V
15
10
5
, Power Dissipation (W)
D
P
91080_14
0
0 20 100806040
TC, Case Temperature (°C)
120
140
Fig. 14 - Power vs. Temperature Derating Curve
L
Vary tp to obtain required I
L
t
p
D.U.T.
I
L
VDD = 0.5 V
DS
V
DS
EC = 0.75 V
V
DD
E
C
0.05 Ω
DS
-
+
I
L
t
p
E
C
V
DS
Fig. 15 - Clamped Inductive Test Circult Fig. 16 - Clamped Inductive Waveforms
V
DD
Document Number: 91080 www.vishay.com S09-0046-Rev. A, 19-Jan-09 5
IRF9610, SiHF9610
Vishay Siliconix
V
DS
V
GS
R
G
- 10 V
Pulse width 1 µs Duty factor 0.1 %
Fig. 17a - Switching Time Test Circuit
D.U.T.
R
D
15 V
Q
-
+
V
DD
GS
V
G
Q
G
Q
GD
Charge
Fig. 18a - Basic Gate Charge Waveform
Current regulator
Same type as D.U.T.
t
t
d(on)
V
GS
r
t
d(off)
t
f
10 %
90 %
V
DS
Fig. 17b - Switching Time Waveforms
50 kΩ
0.2 µF
12 V
0.3 µF
D.U.T.
V
GS
- 3 mA
I
G
Current sampling resistors
I
D
Fig. 18b - Gate Charge Test Circuit
-
V
+
DS
www.vishay.com Document Number: 91080 6 S09-0046-Rev. A, 19-Jan-09
IRF9610, SiHF9610
Peak Diode Recovery dV/dt Test Circuit
Vishay Siliconix
D.U.T.
+
Circuit layout considerations
Low stray inductance
Ground plane
Low leakage inductance
-
current transformer
+
-
R
G
dV/dt controlled by R
ISD controlled by duty factor "D"
D.U.T. - device under test
Compliment N-Channel of D.U.T. for driver
Driver gate drive
P.W.
Period
-
D =
G
P.W.
Period
+
+
V
DD
-
= - 10 V*
V
GS
waveform
SD
Body diode forward
current
waveform
DS
Body diode forward drop
Ripple 5 %
= - 5 V for logic level and - 3 V drive devices
GS
dI/dt
Diode recovery
dV/dt
V
DD
I
SD
Reverse recovery current
Re-applied voltage
D.U.T. I
D.U.T. V
Inductor current
* V
Fig. 19 - For P-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91080
.
Document Number: 91080 www.vishay.com S09-0046-Rev. A, 19-Jan-09 7
www.vishay.com
M
*
3
2
1
L
L(1)
D
H(1)
Q
Ø P
A
F
J(1)
b(1)
e(1)
e
E
b
C
Package Information
Vishay Siliconix
TO-220-1
DIM.
A 4.24 4.65 0.167 0.183
b 0.69 1.02 0.027 0.040
b(1) 1.14 1.78 0.045 0.070
c 0.36 0.61 0.014 0.024
D 14.33 15.85 0.564 0.624
E 9.96 10.52 0.392 0.414
e 2.41 2.67 0.095 0.105
e(1) 4.88 5.28 0.192 0.208
F 1.14 1.40 0.045 0.055
H(1) 6.10 6.71 0.240 0.264
J(1) 2.41 2.92 0.095 0.115
L 13.36 14.40 0.526 0.567
L(1) 3.33 4.04 0.131 0.159
Ø P 3.53 3.94 0.139 0.155
Q 2.54 3.00 0.100 0.118
ECN: X15-0364-Rev. C, 14-Dec-15 DWG: 6031
Note
• M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM
MILLIMETERS INCHES
MIN. MAX. MIN. MAX.
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Revison: 14-Dec-15
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ASE Xi’an
For technical questions, contact: hvm@vishay.com
Package Picture
1
Document Number: 66542
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Revision: 13-Jun-16
1
Document Number: 91000
Loading...