Vishay IRF830B Data Sheet

www.vishay.com
TO-220AB
G
D
S
IRF830B
Vishay Siliconix
D Series Power MOSFET
PRODUCT SUMMARY
VDS (V) at TJ max. 550
R
max. () at 25 °C VGS = 10 V 1.5
DS(on)
Q
max. (nC) 20
g
Q
(nC) 3
gs
Q
(nC) 5
gd
Configuration Single
G
N-Channel MOSFET
FEATURES
• Optimal design
- Low area specific on-resistance
- Low input capacitance (C
iss
)
- Reduced capacitive switching losses
- High body diode ruggedness
- Avalanche energy rated (UIS)
• Optimal efficiency and operation
- Low cost
- Simple gate drive circuitry
D
- Low figure-of-merit (FOM): R
- Fast switching
on
x Q
g
• Material categorization: for definitions of compliance please see www.vishay.com/doc?99912
APPLICATIONS
• Consumer electronics
- Displays (LCD or plasma TV)
S
• Server and telecom power supplies
- SMPS
• Industrial
- Welding
- Induction heating
- Motor drives
• Battery chargers
ORDERING INFORMATION
Package TO-220AB
Lead (Pb)-free IRF830BPbF
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER SYMBOL LIMIT UNIT
Drain-Source Voltage V
Gate-Source Voltage AC (f > 1 Hz) 30
T
= 25 °C
Continuous Drain Current (T
Pulsed Drain Current
Linear Derating Factor 0.83 W/°C
Single Pulse Avalanche Energy
Maximum Power Dissipation P
Operating Junction and Storage Temperature Range T
Drain-Source Voltage Slope T
Reverse Diode dV/dt
Soldering Recommendations (Peak temperature)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature.
= 50 V, starting TJ = 25 °C, L = 2.3 mH, Rg = 25 , IAS = 5 A.
b. V
DD
c. 1.6 mm from case. d. I
ID, starting TJ = 25 °C.
SD
= 150 °C) VGS at 10 V
J
a
b
d
c
C
= 100 °C 3.4
C
= 125 °C
J
for 10 s 300 °C
DS
V
GS
I
D
IDM 10
E
AS
D
, T
J
stg
dV/dt
500
± 30
5.3
28.8 mJ
104 W
-55 to +150 °C
24
0.28
V Gate-Source Voltage
AT
V/ns
S16-0109-Rev. B, 25-Jan-16
For technical questions, contact: hvm@vishay.com
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
1
Document Number: 91520
IRF830B
S
D
G
www.vishay.com
THERMAL RESISTANCE RATINGS
PARAMETER SYMBOL TYP. MAX. UNIT
Maximum Junction-to-Ambient R
Maximum Junction-to-Case (Drain) R
thJA
thJC
-62
-1.2
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Static
Drain-Source Breakdown Voltage V
V
Temperature Coefficient VDS/TJ Reference to 25 °C, ID = 250 μA - 0.58 - V/°C
DS
Gate-Source Threshold Voltage (N) V
Gate-Source Leakage I
Zero Gate Voltage Drain Current I
Drain-Source On-State Resistance R
Forward Transconductance
a
DS
GS(th)
V
GSS
DSS
VGS = 10 V ID = 2.5 A - 1.2 1.5
DS(on)
g
fs
Dynamic
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Effective Output Capacitance, Energy
b
Related
Effective Output Capacitance, Time
c
Related
Total Gate Charge Q
Gate-Drain Charge Q
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Gate Input Resistance R
iss
-34-
oss
-6-
rss
C
o(er)
C
o(tr)
g
-5-
gd
d(on)
r
-1428
d(off)
-1122
f
f = 1 MHz, open drain - 1.7 -
g
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current I
Pulsed Diode Forward Current I
Diode Forward Voltage V
Reverse Recovery Time t
Reverse Recovery Charge Q
Reverse Recovery Current I
S
SM
SD
rr
rr
RRM
MOSFET symbol showing the
integral reverse P - N junction diode
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature. b. C c. C
is a fixed capacitance that gives the same energy as C
oss(er)
is a fixed capacitance that gives the same charging time as C
oss(tr)
VGS = 0 V, ID = 250 μA 500 - - V
VDS = VGS, ID = 250 μA 3 - 5 V
= ± 30 V - - ± 100 nA
GS
VDS = 500 V, VGS = 0 V - - 1
= 400 V, VGS = 0 V, TJ = 125 °C - - 10
V
DS
VDS = 20 V, ID = 2.5 A - 1.8 - S
VGS = 0 V,
V
= 100 V,
DS
f = 1 MHz
= 0 V to 400 V, VGS = 0 V
V
DS
V
= 10 V ID = 2.5 A, VDS = 400 V
GS
= 400 V, ID = 2.5 A
V
DD
R
= 9.1 , V
g
GS
= 10 V
TJ = 25 °C, IS = 4 A, VGS = 0 V - - 1.2 V
TJ = 25 °C, IF = IS = 2.5 A,
dI/dt = 100 A/μs, V
while VDS is rising from 0 % to 80 % V
oss
while V
oss
= 20 V
R
is rising from 0 % to 80 % V
DS
Vishay Siliconix
°C/W
- 325 -
-31-
-41-
-1020
-1224
-1122
--5
--20
- 320 - ns
-1.2-μC
-8-A
.
DSS
DSS
.
μA
pF
nC Gate-Source Charge Qgs -3-
ns
A
S16-0109-Rev. B, 25-Jan-16
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
For technical questions, contact: hvm@vishay.com
2
Document Number: 91520
www.vishay.com
VDS, Drain-to-Source Voltage (V)
I
D
, Drain-to-Source Current (A)
0
3
6
9
12
TJ = 25 °C
TOP 15 V
14 V 13 V 12 V 11 V 10 V 9 V
6 V
7 V
8 V
0 5 10 15 20 25 30
VDS, Drain-to-Source Voltage (V)
I
D
, Drain-to-Source Current (A)
2
01020
0
8
4
6
T
J
= 150 °C
5152530
TOP 15 V
14 V 13 V 12 V 11 V 10 V
9.0 V
8.0 V
7.0 V
6.0 V
5.0 V
VGS, Gate-to-Source Voltage (V)
I
D
, Drain-to-Source Current (A)
010 2551520
0
3
6
9
12
TJ = 150 °C
TJ = 25 °C
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
IRF830B
Vishay Siliconix
3
ID = 2.5 A
2.5
2
1.5
Fig. 1 - Typical Output Characteristics
, Drain-to-Source
1
DS(on)
R
0.5
On Resistance (Normalized)
0
- 40 - 20020 40 60 80 100 120
- 60
V
= 10 V
GS
140
160
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
1000
C
iss
V
= 0 V, f = 1 MHz
GS
= Cgs + Cgd, Cds Shorted
C
100
C
10
Capacitance (pF)
1
0 100 200 300 400 500
iss
= C
C
rss
gd
C
= Cds + C
oss
oss
C
rss
gd
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
S16-0109-Rev. B, 25-Jan-16
Fig. 3 - Typical Transfer Characteristics
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
24
20
16
12
8
, Gate-to-Source Voltage (V)
4
GS
V
0
0 3 6 9 12 15 18
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
3
For technical questions, contact: hvm@vishay.com
VDS = 400 V
= 250 V
V
DS
= 100 V
V
DS
Qg, Total Gate Charge (nC)
Document Number: 91520
Loading...
+ 5 hidden pages