VISHAY BF998, BF998R, BF998RW User Manual

查询BF998A供应商
BF998/BF998R/BF998RW
N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode
Applications
Input and mixer stages in UHF tuners.
Features
D
Integrated gate protection diodes
D
Low noise figure
D
Low feedback capacitance
D
High cross modulation performance
D
Low input capacitance
D
High AGC-range
D
High gain
Vishay Telefunken
21
94 9279
13 579
43
BF998 Marking: MO Plastic case (SOT 143) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
2
1
13 56613 654
34
BF998RW Marking: WMO Plastic case (SOT 343R) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
21
94 9278
95 10831
43
BF998R Marking: MOR Plastic case (SOT 143R) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
Document Number 85011 Rev. 4, 23-Jun-99
www.vishay.de FaxBack +1-408-970-5600
1 (9)
BF998/BF998R/BF998RW
G2S
Vishay Telefunken
Absolute Maximum Ratings
T
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Symbol Value Unit Drain - source voltage V Drain current I Gate 1/Gate 2 - source peak current ±I Gate 1/Gate 2 - source voltage ±V Total power dissipation T
60 °C P
amb
Channel temperature T Storage temperature range T
DS
D
G1/G2SM
G1S/G2S
tot Ch stg
Maximum Thermal Resistance
T
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Symbol Value Unit
Channel ambient on glass fibre printed board (25 x 20 x 1.5) mm
plated with 35mm Cu
3
R
thChA
12 V 30 mA 10 mA
7 V 200 mW 150
–65 to +150
450 K/W
°
C
°
C
Electrical DC Characteristics
T
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Type Symbol Min Typ Max Unit
Drain - source breakdown voltage
Gate 1 - source breakdown voltage
Gate 2 - source breakdown voltage
Gate 1 - source leakage current
Gate 2 - source leakage current
Drain current VDS = 8 V, V
Gate 1 - source cut-off voltage
Gate 2 - source cut-off voltage
ID = 10 mA, –V
= –V
G1S
±I
= 10 mA,
G1S
V
= VDS = 0
G2S
±I
= 10 mA,
G2S
V
= VDS = 0
G1S
±V
= 5 V,
G1S
V
= VDS = 0
G2S
±V
= 5 V,
G2S
V
= VDS = 0
G1S
V
= 4 V
G2S
VDS = 8 V, V ID = 20 mA
VDS = 8 V, V ID = 20 mA
G2S
G1S
G2S
G1S
= 4 V
= 0,
= 4 V,
= 0,
BF998/BF998R/
BF998RW
BF998A/BF998RA/
BF998RAW
BF998B/BF998RB/
BF998RBW
V
(BR)DS
±V
(BR)G1SS
±V
(BR)G2SS
±I
±I
I
I
I
–V
G1S(OFF)
–V
G2S(OFF)
G1SS
G2SS
DSS
DSS
DSS
12 V
7 14 V
7 14 V
4 18 mA
4 10.5 mA
9.5 18 mA
1.0 2.0 V
0.6 1.0 V
50 nA
50 nA
www.vishay.de FaxBack +1-408-970-5600 2 (9)
Document Number 85011
Rev. 4, 23-Jun-99
Electrical AC Characteristics
g
g
BF998/BF998R/BF998RW
Vishay Telefunken
VDS = 8 V, ID = 10 mA, V
= 4 V, f = 1 MHz , T
G2S
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Symbol Min Typ Max Unit Forward transadmittance y Gate 1 input capacitance C Gate 2 input capacitance V
G1S
= 0, V
= 4 V C
G2S
Feedback capacitance C Output capacitance C Power gain GS = 2 mS, GL = 0.5 mS, f = 200 MHz G
GS = 3,3 mS, GL = 1 mS, f = 800 MHz G
AGC range V
= 4 to –2 V, f = 800 MHz
G2S
21 24 mS
21s
2.1 2.5 pF
1.1 pF 25 fF
1.05 pF 28 dB
40 dB
D
issg1 issg2
rss
oss
ps ps
G
ps
16.5 20 dB
Noise figure GS = 2 mS, GL = 0.5 mS, f = 200 MHz F 1.0 dB
GS = 3,3 mS, GL = 1 mS, f = 800 MHz F 1.5 dB
Document Number 85011 Rev. 4, 23-Jun-99
www.vishay.de FaxBack +1-408-970-5600
3 (9)
BF998/BF998R/BF998RW
Vishay Telefunken
Typical Characteristics (T
300
250
200
150
100
50
tot
P – Total Power Dissipation ( mW )
0
0 20 40 60 80 100 120 140 160
T
– Ambient Temperature ( °C )96 12159
amb
Figure 1. Total Power Dissipation vs.
Ambient Temperature
30
V
V
=4V
G2S
25
20
G1S
= 25_C unless otherwise specified)
amb
20
VDS=8V
16
12
8
D
I – Drain Current ( mA )
4
0
–0.6 –0.2 0.2 0.6 1.0 1.4
V
– Gate 2 Source Voltage ( V )12817
G2S
Figure 4. Drain Current vs. Gate 2 Source Voltage
3.0
=0.6V
0.4V
2.5
2.0
VDS=8V
V
=4V
G2S
f=1MHz
5V
4V
3V
2V
1V
0
V
=–1V
G1S
15
10
D
I – Drain Current ( mA )
5
0
0246810
VDS – Drain Source Voltage ( V )12812
0.2V
0 –0.2V –0.4V
Figure 2. Drain Current vs. Drain Source Voltage
20
VDS=8V
16
12
8
D
4
I – Drain Current ( mA )
0
–0.8 –0.4 0.0 0.4 0.8 1.2
V
G1S
6V
5V
4V
– Gate 1 Source Voltage ( V )12816
3V
2V
1V
0
V
=–1V
G2S
Figure 3. Drain Current vs. Gate 1 Source Voltage
1.5
1.0
0.5
issg1
C – Gate 1 Input Capacitance ( pF )
0
–2 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5
V
– Gate 1 Source Voltage ( V )12863
G1S
Figure 5. Gate 1 Input Capacitance vs.
Gate 1 Source Voltage
3.0
V
=4V
2.5
2.0
1.5
1.0
oss
0.5
C – Output Capacitance ( pF )
0
24681012
VDS – Drain Source Voltage ( V )12864
G2S
f=1MHz
Figure 6. Output Capacitance vs. Drain Source Voltage
www.vishay.de FaxBack +1-408-970-5600 4 (9)
Document Number 85011
Rev. 4, 23-Jun-99
BF998/BF998R/BF998RW
Vishay Telefunken
10
f=800MHz
0
–10
4V 3V
2V
1V
0
–20
–0.2V
–30
2
21
–40
S – Transducer Gain ( dB )
–0.4V
V
=–0.8V
G2S
–50
–1 –0.5 0.0 0.5 1.0 1.5
V
– Gate 1 Source Voltage ( V )12818
G1S
Figure 7. Transducer Gain vs. Gate 1 Source Voltage
32
VDS=8V
28
f=1MHz
24 20 16 12
8 4
21s
y – Forward Transadmittance ( mS )
0
0
1V
0 4 8 1216202428
ID – Drain Current ( mA )12819
V
=4V
G2S
3V
2V
5 0
f=100...1300MHz
–5 –10 –15 –20
21
Im ( y ) ( mS )
20mA –25 –30
VDS=8V
V
=4V
G2S
ID=5mA
10mA
f=100MHz
400MHz
700MHz
1000MHz
–35 –40
1300MHz
0 4 8 12 16 20 24 28 32
Re (y21) ( mS )12821
Figure 10. Short Circuit Forward Transfer Admittance
9 8 7 6 5 4
22
3
Im ( y ) ( mS )
2 1
100MHz
0
0 0.25 0.50 0.75 1.00 1.25 1.50
f=1300MHz
400MHz
Re (y22) ( mS )12822
1000MHz
700MHz
f=100...1300MHz
VDS=15V V
=4V
G2S
I
=10mA
D
Figure 8. Forward Transadmittance vs. Drain Current
20 18 16 14 12 10
11
8 6
Im ( y ) ( mS )
4 2
700MHz
400MHz
100MHz
0
02468101214
f=1300MHz
1000MHz
Re (y11) ( mS )12820
VDS=8V
=4V
V
G2S
I
=10mA
D
f=100...1300MHz
Figure 9. Short Circuit Input Admittance
Document Number 85011 Rev. 4, 23-Jun-99
Figure 11. Short Circuit Output Admittance
www.vishay.de FaxBack +1-408-970-5600
5 (9)
BF998/BF998R/BF998RW
ÁÁ
Vishay Telefunken
VDS = 8 V, ID = 10 mA, V
S
11
j
j0.5
j0.2
S
0
–j0.2
21
0.2
0.5
–j0.5
12 960
1
1300MHz
–j
2
1000
Figure 12. Input reflection coefficient
= 4 V , Z0 = 50
G2S
j2
j5
5
–j2
1
100
–j5
W
S
12
90°
120°
150°
1300MHz
180°
–150°
–120° –60°
12 973
Figure 14. Reverse transmission coefficient
S
22
1200
200
100
–90°
60°
0.08 0.16
30°
0°
–30°
90°
100
180°
150°
–150°
12 962
120°
400
–120° –60°
700
–90°
60°
1000
1300MHz
1 2
Figure 13. Forward transmission coefficient
30°
–30°
j
j0.5
j0.2
0°
0
–j0.2
12 963
–j0.5
0.2
0.5
1
1300MHz
–j
j2
j5
2
5
–j2
100
1
–j5
Figure 15. Output reflection coefficient
www.vishay.de FaxBack +1-408-970-5600 6 (9)
Document Number 85011
Rev. 4, 23-Jun-99
Dimensions of BF998 in mm
BF998/BF998R/BF998RW
Vishay Telefunken
Dimensions of BF998R in mm
96 12240
Document Number 85011 Rev. 4, 23-Jun-99
96 12239
www.vishay.de FaxBack +1-408-970-5600
7 (9)
BF998/BF998R/BF998RW
Vishay Telefunken
Dimensions of BF998RW in mm
96 12238
www.vishay.de FaxBack +1-408-970-5600 8 (9)
Document Number 85011
Rev. 4, 23-Jun-99
BF998/BF998R/BF998RW
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly , any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Document Number 85011 Rev. 4, 23-Jun-99
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.de FaxBack +1-408-970-5600
9 (9)
Loading...