on glass fibre printed board (40 x 25 x 1.5) mm3 plated with 35 µm Cu
1)
R
thChA
450K/W
Document Number 85002
Rev. 1.5, 25-Nov-04
www.vishay.com
1
BF961
Vishay Semiconductors
Electrical DC Characteristics
T
= 25 °C, unless otherwise specified
amb
Paramete rTest conditionPartSymbolMinTy p.MaxUnit
Drain - source breakdown
= 10 µA, - V
I
D
voltage
Gate 1 - source breakdown
voltage
Gate 2 - source breakdown
voltage
Gate 1 - source leakage current ± V
Gate 2 - source leakage current ± V
Drain currentV
Gate 1 - source cut-off voltageV
Gate 2 - source cut-off voltageV
± I
G1S
± I
G2S
G1S
G2S
= 15 V, V
DS
= 15 V, V
DS
= 20 µA
I
D
= 15 V, V
DS
= 10 mA, V
= 10 mA, V
= 5 V, V
= 5 V, V
Electrical AC Characteristics
T
= 25 °C, unless otherwise specified
amb
V
= 15 V, ID = 10 mA, V
DS
Paramete rTest conditionSymbolMinTy p.MaxUnit
Forward transadmittance| y
Gate 1 input capacitanceC
Gate 2 input capacitanceV
Feedback capacitanceC
Output capacitanceC
Power gainG
AGC rangeV
Noise figureG
= 4 V, f = 1 MHz
G2S
G1S
S
f = 200 MHz
G2S
S
f = 200 MHz
= 0, V
= 2 mS, GL = 0.5 mS,
= 4 to - 2 V, f = 200 MHz∆G
= 2 mS, GL = 0.5 mS,
G1S
G1S
= - V
G2S
G1S
= 0, V
= 4 VV
G2S
= VDS = 0± V
G2S
= VDS = 0± V
G1S
= VDS = 0± I
= VDS = 0± I
= 4 V BF961I
G2S
BF961AI
BF961BI
= 4 V,
G2S
= 0, ID = 20 µA- V
G1S
= 4 VC
G2S
VISHAY
(BR)DS
(BR)G1SS
(BR)G2SS
G1SS
G2SS
DSS
DSS
DSS
- V
G1S(OFF)
G2S(OFF)
|12 15mS
21s
issg1
issg2
rss
oss
G
ps
ps
F1.82.5dB
20V
814V
814V
100nA
100nA
420mA
410.5mA
9.520mA
3.5V
3.5V
3.7pF
1.6pF
25fF
1.6pF
20dB
50dB
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
300
250
200
150
100
50
tot
P-Total Power Dissipation ( mW )
0
0 20 4 0 6 0 80 100 120 140 160
96 12159
T
- Ambient Temperature ( °C)
amb
Figure 1. Total Power Dissipation vs. Ambient Temperature
www.vishay.com
2
22
20
18
16
14
12
10
8
6
D
I – Drain Current ( mA)
4
2
0
024681012141618202224
96 12160
VDS– Drain Source Voltage(V)
V
G1S
Figure 2. Drain Current vs. Drain Source Voltage
= 0.6 V
0.4 V
0.2 V
0
–0.2 V
–0.4 V
–0.6 V
–0.8 V
Document Number 85002
Rev. 1.5, 25-Nov-04
VISHAY
BF961
Vishay Semiconductors
24
22
20
VDS=15V
I
=10mA
DS
V
= 0.5 V
G1S
18
16
0V
14
12
10
8
6
–0.5 V
4
2
21S
0
Y– ForwardTransadmittance ( mS )
–2–10123456
V
96 12161
– Gate 2 Source Voltage(V)
G2S
Figure 3. Forward Transadmittance vs. Gate 2 Source Voltage
22
VDS=15V
20
f=1MHz
18
16
14
12
10
8
6
0V
4
2
21S
Y– ForwardTransadmittance ( mS )
0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
V
96 12162
- Gate 1 Source Voltage ( V )
G1S
V
=5V
G2S
4V
3V
2V
1V
4.0
3.6
3.2
2.8
VDS=15V
=0
V
G1S
f=1MHz
2.4
2.0
1.6
1.2
0.8
0.4
issg2
C– Gate 2 Input Capacitance ( pF )
0.0
–2–101234567
V
96 12164
– Gate 2 Source Voltage(V)
G2S
Figure 6. Gate 2 Input Capacitance vs. Gate 2 Source Voltage
3.0
V
=4V
G2S
f=1MHz
2.5
2.0
1.5
1.0
oss
0.5
C– Output Capacitance ( pF )
0.0
0246810121416182022
96 12165
VDS- Drain Source V oltage ( V )
Figure 4. Forward Transadmittance vs. Gate 1 Source Voltage
4.0
3.5
3.0
2.5
VDS=15V
=4V
V
G2S
f=1MHz
2.0
1.5
1.0
0.5
issg1
C– Gate 1 Input Capacitance ( pF )
0.0
–2.0–1.5–1.0–0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
V
96 12163
– Gate 1 Source Voltage(V)
G1S
Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage
Document Number 85002
Rev. 1.5, 25-Nov-04
Figure 7. Output Capacitance vs. Drain Source Voltage
18
600 MHz
400 MHz
f =700 MHz
500 MHz
VDS=15V
V
G2S
I
= 5...20 mA
D
f = 50...700 MHz
=4V
16
14
12
10
11
8
6
Im(y ) (mS)
4
2
300 MHz
200 MHz
100 MHz
0
012345678910
96 12166
Re (y11)(mS)
Figure 8. Short Circuit Input Admittance
www.vishay.com
3
BF961
Vishay Semiconductors
10
VDS=15V
5
0
–5
–10
21
–15
Im(y ) (mS)
–20
–25
–30
0 2 4 6 8 10121416182022242628
96 12167
Figure 9. Short Circuit Forward Transfer Admittance
=4V
V
G2S
f = 50...700 MHz
ID=5mA
10 mA
20 mA
600 MHz
700 MHz
Re (y21)(mS)
f=50MHz
100 MHz
200 MHz
300 MHz
400 MHz
500 MHz
VISHAY
7.0
6.5
6.0
5.5
ID=5mA
5.0
4.5
4.0
3.5
22
3.0
2.5
Im(y ) (mS)
2.0
1.5
1.0
0.5
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
96 12168
300 MHz
200 MHz
100 MHz
500 MHz
400 MHz
Re (y22)(mS)
Figure 10. Short Circuit Output Admittance
f = 700 MHz
600 MHz
ID=20mA
VDS=15V
=4V
V
G2S
I
= 5...20 mA
D
f = 50...700 MHz
www.vishay.com
4
Document Number 85002
Rev. 1.5, 25-Nov-04
VISHAY
BF961
Vishay Semiconductors
VDS = 15 V, ID = 5 to 20 mA, V
S
11
j
j0.5
j0.2
0
0.20.5125
12920
S
21
I = 20 mA
D
I = 10 mA
D
I =5mA
D
–j0.2
–j0.5
Figure 11. Input Reflection Coefficient
180 °
–150°
700 MHz
120°60°
200
50
500
–j
90°
400
700MHz
0.81.6
= 4 V, Z0 = 50 Ω
G2S
j2
j5
∞
50
100
–j5
300
–j2
30°
0°
–30 °
S
12
90 °
600
°–60°
–90 °
60 °
300
0.040.08
30 °
0°
–30°
12921
180°
–150 °
120°
150°
700 MHz
–120
Figure 13. Reverse Transmission Coefficient
S
22
j
j0.5
j0.2
0
0.20.5125
–j0.2
700 MHz
j2
500
100
300
–j5
j5
∞
ı
12922
–120°–60°
Figure 12. Forward Transmission Coefficient
Document Number 85002
Rev. 1.5, 25-Nov-04
–90 °
12923
–j0.5
–j
–j2
Figure 14. Output Reflection Coefficient
www.vishay.com
5
BF961
Vishay Semiconductors
Package Dimensions in mm
VISHAY
96 12242
www.vishay.com
6
Document Number 85002
Rev. 1.5, 25-Nov-04
VISHAY
BF961
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.