Verifone CM5P User Manual

Page 1
SC20 Hardware Design
Smart LTE Module Series
Rev: SC20_Hardware_Design_V1.4
Date: 2017-10-17
www.quectel.com
Page 2
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122
Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
7thFloor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China
Tel: +86 21 5108 6236
Email: info@quectel.com
Or our local office. For more information, please visit:
http://quectel.com/support/sales.htm
For technical support, or to report documentation errors, please visit:
http://quectel.com/support/technical.htm
Or email to: support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION
AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE
FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF
DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR
REGISTRATION OF A UTILITY MODEL OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved.
Page 3
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122
About the Document
History
Revision
Date
Author
Description
1.0
2016-04-12
Tony GAO
Initial
1.1
2016-05-04
Mark ZHANG
1. Updated RF Receiving Sensitivity
2. Updated Operation Temperature
1.2
2016-07-22
Sea BAI
Added Chapters 2.4, 3.6~3.22, 4, 5 and 9
1.3
2016-08-19
Sea BAI
Updated Charging Parameters in Table 41
1.4
2017-10-17
Sea BAI/
Beny ZHU/
Jenson WU
1. Modified the name of SC20-CE to SC20-CE
R1.1
2. Added the frequency bands of SC20-E,
SC20-A, SC20-AU and SC20-J modules
(Tables 2, 3, 4 and 5)
3. Added descriptions of Wi-Fi 5GHz frequency
band (Tables 27, 28 and 35)
4. Updated SC20 module operating frequencies
(Table 33)
5. Updated reference circuit design for GNSS
passive antenna (Figure 37)
6. Updated antenna requirements (Table 38)
7. Added the current consumption of SC20-E,
SC20-A, SC20-AU and SC20-J (Tables 44,
45, 46 and 47)
8. Updated RF output power (Table 48)
9. Added the RF receiving sensitivity of
SC20-E, SC20-A, SC20-AU and SC20-J
(Tables 50, 51, 52 and 53)
Page 4
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122
Contents
About the Document..................................................................................................................................................2
Contents........................................................................................................................................................................3
Table Index................................................................................................................................................................... 6
Figure Index................................................................................................................................................................. 8
1 Introduction....................................................................................................................................................... 10
1.1. Safety Information.................................................................................................................................10
2 Product Concept...............................................................................................................................................13
2.1. General Description..............................................................................................................................13
2.2. Key Features......................................................................................................................................... 16
2.3. Functional Diagram.............................................................................................................................. 19
2.4. Evaluation Board...................................................................................................................................20
3 Application Interfaces.....................................................................................................................................21
3.1. General Description..............................................................................................................................21
3.2. Pin Assignment..................................................................................................................................... 22
3.3. Pin Description......................................................................................................................................23
3.4. Power Supply........................................................................................................................................ 34
3.4.1. Power Supply Pins.....................................................................................................................34
3.4.2. Decrease Voltage Drop.............................................................................................................34
3.4.3. Reference Design for Power Supply.......................................................................................35
3.5. Turn on and off Scenarios................................................................................................................... 36
3.5.1. Turn on Module Using the PWRKEY......................................................................................36
3.5.2. Turn off Module...........................................................................................................................38
3.6. VRTC Interface......................................................................................................................................38
3.7. Power Output.........................................................................................................................................39
3.8. Battery Charge and Management......................................................................................................40
3.9. USB Interface........................................................................................................................................41
3.10. UART Interfaces....................................................................................................................................43
3.11. (U)SIM Interfaces..................................................................................................................................45
3.12. SD Card Interface.................................................................................................................................47
3.13. GPIO Interfaces.................................................................................................................................... 49
3.14. I2C Interfaces........................................................................................................................................51
3.15. ADC Interfaces......................................................................................................................................52
3.16. Motor Drive Interface............................................................................................................................52
3.17. LCM Interface........................................................................................................................................53
3.18. Touch Panel Interface..........................................................................................................................55
3.19. Camera Interfaces................................................................................................................................56
3.19.1. Rear Camera Interface..............................................................................................................56
3.19.2. Front Camera Interface.............................................................................................................58
3.19.3. Design Considerations.............................................................................................................. 60
3.20. Sensor Interfaces..................................................................................................................................61
Page 5
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122
3.21. Audio Interfaces....................................................................................................................................62
3.21.1. Reference Circuit Design for Microphone..............................................................................63
3.21.2. Reference Circuit Design for Receiver Interface.................................................................. 63
3.21.3. Reference Circuit Design for Headphone Interface............................................................. 64
3.21.4. Reference Circuit Design for Loudspeaker Interface...........................................................64
3.21.5. Audio Interface Design Considerations..................................................................................65
3.22. Emergency Download Interface.........................................................................................................65
4 Wi-Fi and BT...................................................................................................................................................... 66
4.1. Wi-Fi Overview......................................................................................................................................66
4.1.1. Wi-Fi Performance..................................................................................................................... 66
4.2. BT Overview.......................................................................................................................................... 68
4.2.1. BT Performance......................................................................................................................... 69
5 GNSS....................................................................................................................................................................70
5.1. GNSS Performance..............................................................................................................................70
5.2. GNSS RF Design Guidance............................................................................................................... 70
6 Antenna Interface.............................................................................................................................................72
6.1. Main/Rx-diversity Antenna Interfaces................................................................................................72
6.1.1. Operating Frequency.................................................................................................................72
6.1.2. Reference Design of Main and Rx-diversity Antenna Interfaces....................................... 74
6.1.3. Reference Design of RF Layout.............................................................................................. 74
6.2. Wi-Fi/BT Antenna Interface.................................................................................................................76
6.3. GNSS Antenna Interface.....................................................................................................................77
6.3.1. Recommended Circuit for Passive Antenna..........................................................................78
6.3.2. Recommended Circuit for Active Antenna............................................................................. 78
6.4. Antenna Installation..............................................................................................................................79
6.4.1. Antenna Requirement................................................................................................................79
6.4.2. Recommended RF Connector for Antenna Installation.......................................................80
7 Electrical, Reliability and Radio Characteristics.....................................................................................82
7.1. Absolute Maximum Ratings................................................................................................................ 82
7.2. Power Supply Ratings..........................................................................................................................82
7.3. Charging Performance Specifications...............................................................................................83
7.4. Operating Temperature........................................................................................................................84
7.5. Current Consumption...........................................................................................................................84
7.6. RF Output Power..................................................................................................................................99
7.7. RF Receiving Sensitivity....................................................................................................................101
7.8. Electrostatic Discharge......................................................................................................................105
8 Mechanical Dimensions...............................................................................................................................106
8.1. Mechanical Dimensions of the Module...........................................................................................106
8.2. Recommended Footprint...................................................................................................................108
8.3. Top and Bottom Views of the Module............................................................................................. 109
9 Storage, Manufacturing and Packaging..................................................................................................110
Page 6
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122
9.1. Storage.................................................................................................................................................110
9.2. Manufacturing and Soldering............................................................................................................111
9.3. Packaging.............................................................................................................................................113
10 Appendix A References............................................................................................................................... 115
11 Appendix B GPRS Coding Schemes........................................................................................................119
12 Appendix C GPRS Multi-slot Classes...................................................................................................... 120
13 Appendix D EDGE Modulation and Coding Schemes.........................................................................122
Page 7
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122

Table Index

TABLE 1: SC20-CE R1.1 FREQUENCY BANDS
........................................................................................................
13
TABLE 2: SC20-E FREQUENCY BANDS
.....................................................................................................................
14
TABLE 3: SC20-A FREQUENCY BANDS
.....................................................................................................................
14
TABLE 4: SC20-AU FREQUENCY BANDS
..................................................................................................................
15
TABLE 5: SC20-J FREQUENCY BANDS
......................................................................................................................
15
TABLE 6: SC20 KEY FEATURES
...................................................................................................................................
16
TABLE 7: I/O PARAMETERS DEFINITION
...................................................................................................................
23
TABLE 8: PIN DESCRIPTION
.........................................................................................................................................
23
TABLE 9: POWER DESCRIPTION
.................................................................................................................................
39
TABLE 10: PIN DEFINITION OF USB INTERFACE
....................................................................................................
41
TABLE 11: USB TRACE LENGTH INSIDE THE MODULE
........................................................................................
43
TABLE 12: PIN DEFINITION OF UART INTERFACES
...............................................................................................
43
TABLE 13: PIN DEFINITION OF (U)SIM INTERFACES
.............................................................................................
45
TABLE 14: PIN DEFINITION OF SD CARD INTERFACE
..........................................................................................
47
TABLE 15: SD CARD TRACE LENGTH INSIDE THE MODULE
..............................................................................
48
TABLE 16: PIN DEFINITION OF GPIO INTERFACES
................................................................................................
49
TABLE 17: PIN DEFINITION OF I2C INTERFACES
...................................................................................................
51
TABLE 18: PIN DEFINITION OF ADC INTERFACES
.................................................................................................
52
TABLE 19: PIN DEFINITION OF MOTOR DRIVE INTERFACE
.................................................................................
52
TABLE 20: PIN DEFINITION OF LCM INTERFACE
....................................................................................................
53
TABLE 21: PIN DEFINITION OF TOUCH PANEL INTERFACE
.................................................................................
55
TABLE 22: PIN DEFINITION OF REAR CAMERA INTERFACE
...............................................................................
57
TABLE 23: PIN DEFINITION OF FRONT CAMERA INTERFACE
.............................................................................
58
TABLE 24: MIPI TRACE LENGTH INSIDE THE MODULE
........................................................................................
60
TABLE 25: PIN DEFINITION OF SENSOR INTERFACES
.........................................................................................
61
TABLE 26: PIN DEFINITION OF AUDIO INTERFACES
.............................................................................................
62
TABLE 27: Wi-Fi TRANSMITTING PERFORMANCE
.................................................................................................
66
TABLE 28: Wi-Fi RECEIVING PERFORMANCE
.........................................................................................................
67
TABLE 29: BT DATA RATE AND VERSION
..................................................................................................................
68
TABLE 30: BT TRANSMITTING AND RECEIVING PERFORMANCE
.....................................................................
69
TABLE 31: GNSS PERFORMANCE
..............................................................................................................................
70
TABLE 32: PIN DEFINITION OF MAIN/RX-DIVERSITY ANTENNA INTERFACES
................................................
72
TABLE 33: SC20 MODULE OPERATING FREQUENCIES
.......................................................................................
72
TABLE 34: PIN DEFINITION OF Wi-Fi/BT ANTENNA INTERFACE
..........................................................................
76
TABLE 35: Wi-Fi/BT FREQUENCY
................................................................................................................................
77
TABLE 36: PIN DEFINITION OF GNSS ANTENNA INTERFACE
..............................................................................
77
TABLE 37: GNSS FREQUENCY
....................................................................................................................................
78
TABLE 38: ANTENNA REQUIREMENTS
.......................................................................................................................
79
TABLE 39: ABSOLUTE MAXIMUM RATINGS
..............................................................................................................
82
TABLE 40: SC20 MODULE POWER SUPPLY RATINGS
..........................................................................................
82
TABLE 41: CHARGING PERFORMANCE SPECIFICATIONS
..................................................................................
83
Page 8
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122
TABLE 42: OPERATING TEMPERATURE....................................................................................................................84
TABLE 43: SC20-CE R1.1 CURRENT CONSUMPTION............................................................................................84
TABLE 44: SC20-E CURRENT CONSUMPTION........................................................................................................ 87
TABLE 45: SC20-A CURRENT CONSUMPTION........................................................................................................ 91
TABLE 46: SC20-AU CURRENT CONSUMPTION..................................................................................................... 93
TABLE 47: SC20-J CURRENT CONSUMPTION......................................................................................................... 97
TABLE 48: RF OUTPUT POWER................................................................................................................................... 99
TABLE 49: SC20-CE R1.1 RF RECEIVING SENSITIVITY...................................................................................... 101
TABLE 50: SC20-E RF RECEIVING SENSITIVITY................................................................................................... 102
TABLE 51: SC20-A RF RECEIVING SENSITIVITY................................................................................................... 102
TABLE 52: SC20-AU RF RECEIVING SENSITIVITY................................................................................................ 103
TABLE 53: SC20-J RF RECEIVING SENSITIVITY....................................................................................................104
TABLE 54: ELECTROSTATIC DISCHARGE CHARACTERISTICS ( TEMPERATURE: 25ºC, HUMIDITY: 45%)
............................................................................................................................................................................................ 105
TABLE 55: REEL PACKAGING.....................................................................................................................................114
TABLE 56: RELATED DOCUMENTS........................................................................................................................... 115
TABLE 57: TERMS AND ABBREVIATIONS................................................................................................................ 115
TABLE 58: DESCRIPTION OF DIFFERENT CODING SCHEMES.........................................................................119
TABLE 59: GPRS MULTI-SLOT CLASSES................................................................................................................ 120
TABLE 60: EDGE MODULATION AND CODING SCHEMES................................................................................. 122
Page 9
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122

Figure Index

FIGURE 1: FUNCTIONAL DIAGRAM
............................................................................................................................
20
FIGURE 2: PIN ASSIGNMENT (TOP VIEW)
................................................................................................................
22
FIGURE 3: VOLTAGE DROP SAMPLE
.........................................................................................................................
34
FIGURE 4: STAR STRUCTURE OF THE POWER SUPPLY
.....................................................................................
35
FIGURE 5: REFERENCE CIRCUIT OF POWER SUPPLY
........................................................................................
35
FIGURE 6: TURN ON THE MODULE USING DRIVING CIRCUIT
...........................................................................
36
FIGURE 7: TURN ON THE MODULE USING KEYSTROKE
.....................................................................................
37
FIGURE 8: TIMING OF TURNING ON MODULE
........................................................................................................
37
FIGURE 9: TIMING OF TURNING OFF MODULE
......................................................................................................
38
FIGURE 10: RTC POWERED BY COIN CELL
............................................................................................................
38
FIGURE 11: RTC POWERED BY CAPACITOR
...........................................................................................................
39
FIGURE 12: REFERENCE DESIGN FOR BATTERY CHARGING CIRCUIT
.........................................................
40
FIGURE 13: USB INTERFACE REFERENCE DESIGN (OTG IS NOT SUPPORTED)
.........................................
42
FIGURE 14: USB INTERFACE REFERENCE DESIGN (OTG IS SUPPORTED)
..................................................
42
FIGURE 15: REFERENCE CIRCUIT WITH LEVEL TRANSLATOR CHIP (FOR UART1)
....................................
44
FIGURE 16: RS232 LEVEL MATCH CIRCUIT (FOR UART1)
...................................................................................
44
FIGURE 17: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
..............................................................................................................................................................................................
46
FIGURE 18: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR46
FIGURE 19: REFERENCE CIRCUIT FOR SD CARD INTERFACE
.........................................................................
48
FIGURE 20: REFERENCE CIRCUIT FOR MOTOR CONNECTION
........................................................................
53
FIGURE 21: REFERENCE CIRCUIT DESIGN FOR LCM INTERFACE
..................................................................
54
FIGURE 22: REFERENCE DESIGN FOR BACKLIGHT DIRVING CIRCUIT
.........................................................
55
FIGURE 23: REFERENCE CIRCUIT DESIGN FOR TP INTERFACE
......................................................................
56
FIGURE 24: REFERENCE CIRCUIT DESIGN FOR REAR CAMERA INTERFACE
.............................................
58
FIGURE 25: REFERENCE CIRCUIT DESIGN FOR FRONT CAMERA INTERFACE
...........................................
59
FIGURE 26: REFERENCE CIRCUIT DESIGN FOR MICROPHONE INTERFACE
...............................................
63
FIGURE 27: REFERENCE CIRCUIT DESIGN FOR RECEIVER INTERFACE
......................................................
63
FIGURE 28: REFERENCE CIRCUIT DESIGN FOR HEADPHONE INTERFACE
.................................................
64
FIGURE 29: REFERENCE CIRCUIT DESIGN FOR LOUDSPEAKER INTERFACE
.............................................
64
FIGURE 30: REFERENCE CIRCUIT DESIGN FOR EMERGENCY DOWNLOAD INTERFACE
........................
65
FIGURE 31: REFERENCE CIRCUIT DESIGN FOR MAIN AND RX-DIVERSITY ANTENNA INTERFACES
....
74
FIGURE 32: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB
..............................................................................
75
FIGURE 33: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB
........................................................
75
FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE
GROUND)
...........................................................................................................................................................................
75
FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE
GROUND)
...........................................................................................................................................................................
76
FIGURE 36: REFERENCE CIRCUIT DESIGN FOR Wi-Fi/BT ANTENNA
...............................................................
77
FIGURE 37: REFERENCE CIRCUIT DESIGN FOR GNSS PASSIVE ANTENNA
.................................................
78
FIGURE 38: REFERENCE CIRCUIT DESIGN FOR GNSS ACTIVE ANTENNA
....................................................
79
Page 10
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
/ 122
FIGURE 39: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)...................................................... 80
FIGURE 40: MECHANICALS OF UF.L-LP CONNECTORS.......................................................................................81
FIGURE 41: SPACE FACTOR OF MATED CONNECTORS (UNIT: MM)................................................................ 81
FIGURE 42: MODULE TOP AND SIDE DIMENSIONS............................................................................................ 106
FIGURE 43: MODULE BOTTOM DIMENSIONS (TOP VIEW).................................................................................107
FIGURE 44: RECOMMENDED FOOTPRINT (TOP VIEW)......................................................................................108
FIGURE 45: TOP VIEW OF THE MODULE................................................................................................................ 109
FIGURE 46: BOTTOM VIEW OF THE MODULE....................................................................................................... 109
FIGURE 47: RECOMMENDED STENCIL DESIGN FOR LGA PADS.....................................................................111
FIGURE 48: REFLOW SOLDERING THERMAL PROFILE..................................................................................... 112
FIGURE 49: TAPE DIMENSIONS.................................................................................................................................113
FIGURE 50: REEL DIMENSIONS................................................................................................................................ 113
Page 11
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
1-10
/ 122

1 Introduction

This document defines the SC20 module and describes its air interface and hardware interface which are
connected with customers’ application.
This document can help customers quickly understand module interface specifications, electrical and
mechanical details as well as other related information of SC20 module. Associated with application note
and user guide, customers can use SC20 module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service
or repair of any cellular terminal or mobile incorporating SC20 module. Manufacturers of the cellular
terminal should send the following safety information to users and operating personnel, and incorporate
these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for
customers’ failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an
accident. Using a mobile while driving (even with a handsfree kit) causes
distraction and can lead to an accident. You must comply with laws and regulations
restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is
switched off. The operation of wireless appliances in an aircraft is forbidden, so as
to prevent interference with communication systems. Consult the airline staff about
the use of wireless devices on boarding the aircraft, if your device offers an
Airplane Mode which must be enabled prior to boarding an aircraft.
Switch off your wireless device when in hospitals,clinics or other health care
facilities. These requests are designed to prevent possible interference with
sensitive medical equipment.
Page 12
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
1-11
/ 122
Cellular terminals or mobiles operating over radio frequency signal and cellular
network cannot be guaranteed to connect in all conditions, for example no mobile
fee or with an invalid (U)SIM card. While you are in this condition and need
emergent help, please remember using emergency call. In order to make or
receive a call, the cellular terminal or mobile must be switched on and in a service
area with adequate cellular signal strength.
Your cellular terminal or mobile contains a transmitter and receiver. When it is ON,
it receives and transmits radio frequency energy. RF interference can occur if it is
used close to TV set, radio, computer or other electric equipment.
In locations with potentially explosive atmospheres, obey all posted signs to turn
off wireless devices such as your phone or other cellular terminals. Areas with
potentially explosive atmospheres include fuelling areas, below decks on boats,
fuel or chemical transfer or storage facilities, areas where the air contains
chemicals or particles such as grain, dust or metal powders, etc.
Please do not discard. Maybe wireless devices have an impact on the environment
so please do not arbitrarily discarded.
Operation frequency range and related output power levels for
2G/WCDMA/LTE, BT , BLE , WiFi 2.4GHz , WiFi 5GHz, WiFi 5.8GHz and
GPS.
Bluetooth
Bluetooth LE
802.11a/b/g/n (HT20/40/80)
GSM 900
DCS1800
WCDMA B1
WCDMA B8
LTE B1
LTE B3
LTE B7
LTE B8
LTE B28
2402MHz - 2480 MHz @ 8.96dBm
2402MHz - 2480MHz @ 6.92dBm
2412MHz - 2472 MHz @ 16.82dBm
5150MHz - 5250 MHz @ 17.26dBm
5250MHz - 5350 MHz @ 17.07dBm
5470MHz - 5725 MHz @ 16.36dBm
5725MHz - 5850 MHz @ 13.4dBm
880MHz - 915MHz @ 35dBm
1710MHz - 1785MHz @ 32dBm
1920MHz - 1980MHz @ 25dBm
880MHz - 915MHz @ 25 dBm
1920MHz - 1980MHz @ 25dBm
1710MHz - 1785MHz @ 25dBm
2500MHz - 2570MHz @ 25dBm
880MHz - 915MHz @ 25dBm
703MHz –748 MHz @ 25dBm
Page 13
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
1-12
/ 122
LTE B40
GPS Receiver
2300MHz - 2400MHz @25dBm
1575.42MHz
The device is restricted to indoor use only when operating in the 5150 to 5350
MHz frequency range.
Page 14
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
2-13
/ 122

2 Product Concept

2.1. General Description

SC20 is a series of Smart LTE module based on Qualcomm platform and Android operating system, and
provides industrial grade performance. It supports worldwide LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+,
HSDPA, HSUPA, WCDMA, TD-SCDMA, CDMA, EDGE and GPRS coverage, and also supports
short-range wireless communication via Wi-Fi 802.11a/b/g/n and BT4.1 LE. Additionally, SC20 integrates
GPS/GLONASS/BeiDou satellite positioning systems. Due to multiple speech and audio and video
codecs as well as the built-in high performance AdrenoTM304 graphics processing unit, it enables smooth
play of 720P videos. The module also offers multiple audio and video input/output interfaces as well as
abundant GPIO interfaces.
SC20 module contains five variants: SC20-CE R1.1, SC20-E, SC20-A, SC20-AU and SC20-J. The
following tables show the supported frequency bands and network standards of SC20.
Table 1: SC20-CE R1.1 Frequency Bands
Type
Frequency
LTE-FDD
B1/B3/B5/B8
LTE-TDD
B38/B39/B40/B41
WCDMA
B1/B8
TD-SCDMA
B34/B39
CDMA
BC0
GSM
900/1800MHz
Wi-Fi 802.11a/b/g/n
2400MHz~2482MHz
5180MHz~5825MHz
BT4.1 LE
2402MHz~2480MHz
GNSS
GPS: 1575.42MHz±1.023MHz
GLONASS: 1597.5MHz~1605.8MHz
Page 15
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
2-14
/ 122
BeiDou: 1561.098MHz±2.046MHz
Table 2: SC20-E Frequency Bands
Type
Frequency
LTE-FDD
B1/B3/B5/B7/B8/B20
LTE-TDD
B38/B40/B41
WCDMA
B1/B5/B8
GSM
850/900/1800/1900MHz
Wi-Fi 802.11a/b/g/n
2400MHz~2482MHz
5180MHz~5825MHz
BT4.1 LE
2402MHz~2480MHz
GNSS
GPS: 1575.42MHz±1.023MHz
GLONASS: 1597.5MHz~1605.8MHz
BeiDou: 1561.098MHz±2.046MHz
Table 3: SC20-A Frequency Bands
Type
Frequency
LTE-FDD
B2/B4/B5/B7/B12/B13/B25/B26
WCDMA
B1/B2/B4/B5/B8
GSM
850/1900MHz
Wi-Fi 802.11a/b/g/n
2400MHz~2482MHz
5180MHz~5825MHz
BT4.1 LE
2402MHz~2480MHz
GNSS
GPS: 1575.42MHz±1.023MHz
GLONASS: 1597.5MHz~1605.8MHz
BeiDou: 1561.098MHz±2.046MHz
Page 16
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
2-15
/ 122
Table 4: SC20-AU Frequency Bands
Type
Frequency
LTE-FDD
B1/B3/B5/B7/B8/B28
LTE-TDD
B40
WCDMA
B1/B2/B5/B8
GSM
850/900/1800/1900MHz
Wi-Fi 802.11a/b/g/n
2400MHz~2482MHz
5180MHz~5825MHz
BT4.1 LE
2402MHz~2480MHz
GNSS
GPS: 1575.42MHz±1.023MHz
GLONASS: 1597.5MHz~1605.8MHz
BeiDou: 1561.098MHz±2.046MHz
Table 5: SC20-J Frequency Bands
Type
Frequency
LTE-FDD
B1/B3/B8/B18/B19/B26
LTE-TDD
B41
WCDMA
B1/B6/B8/B19
Wi-Fi 802.11a/b/g/n
2400MHz~2496MHz
5180MHz~5825MHz
BT4.1 LE
2402MHz~2480MHz
GNSS
GPS: 1575.42MHz±1.023MHz
GLONASS: 1597.5MHz~1605.8MHz
BeiDou: 1561.098MHz±2.046MHz
SC20 is an SMD type module, which can be embedded into applications through its 210-pin pads
including 146 LCC signal pads and 64 other pads. With a compact profile of 40.5mm × 40.5mm × 2.8mm,
SC20 can meet almost all requirements for M2M applications such as CPE, wireless POS, smart
metering, router, data card, automotive, smart phone, digital signage, alarm panel, security and industry
PDA, etc.
Page 17
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
2-16
/ 122

2.2. Key Features

The following table describes the detailed features of SC20 module.
Table 6: SC20 Key Features
Feature
Details
Applications Processor
ARM Cortex-A7 microprocessor cores (quad-core) up to 1.1GHz
512KB L2 cache
Modem DSP
QDSP6 v5 core up to 691.2MHz
768KB L2 cache
Memory
8GB EMMC+8Gb LPDDR3
Operating System
Android 6.0
Power Supply
Supply voltage: 3.5V~4.2V
Typical supply voltage: 3.8V
Transmitting Power
Class 4 (33dBm±2dB) for GSM850 and EGSM900
Class 1 (30dBm±2dB) for DCS1800 and PCS1900
Class E2 (27dBm±3dB) for GSM850 and EGSM900 8-PSK
Class E2 (26dBm±3dB) for DCS1800 and PCS1900 8-PSK
Class 3 (24dBm+1/-3dB) for WCDMA bands
Class 3 (24dBm+3/-1dB) for CDMA BC0
Class 2 (24dBm+1/-3dB) for TD-SCDMA bands
Class 3 (23dBm±2dB) for LTE-FDD bands
Class 3 (23dBm±2dB) for LTE-TDD bands
LTE Features
Support 3GPP R8 Cat.4 FDD and TDD
Support 1.4 to 20 MHz RF bandwidth
Support DL 2 x 2 MIMO
FDD: Max 150Mbps (DL)/Max 50Mbps (UL)
TDD: Max 130Mbps (DL)/Max 35Mbps (UL)
UMTS Features
Support 3GPP R8 DC-HSDPA/HSPA+/HSDPA/HSUPA/WCDMA
Support 16-QAM, 64-QAM and QPSK modulation
DC-HSDPA: Max 42Mbps (DL)
HSUPA: Max 5.76Mbps (UL)
WCDMA: Max 384Kbps (DL)/Max 384Kbps (UL)
TD-SCDMA Features
Support CCSA Release 3
Max 4.2Mbps (DL)/Max 2.2Mbps (UL)
CDMA2000 Features
Support 3GPP2 CDMA2000 1X Advanced, CDMA2000 1x EV-DO Rev.A
EVDO: Max 3.1Mbps (DL)/Max 1.8Mbps (UL)
1X Advanced: Max 307.2Kbps (DL)/Max 307.2Kbps (UL)
Page 18
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
2-17
/ 122
GSM Features
R99:
CSD: 9.6kbps, 14.4kbps
GPRS:
Support GPRS multi-slot class 33 (33 by default)
Coding scheme: CS-1, CS-2, CS-3 and CS-4
Max 85.6Kbps (UL)/Max 107Kbps (DL)
EDGE:
Support EDGE multi-slot class 33 (33 by default)
Support GMSK and 8-PSK for different MCS (Modulation and Coding
Scheme)
Downlink coding schemes: CS 1-4 and MCS 1-9
Uplink coding schemes: CS 1-4 and MCS 1-9
Max 236.8Kbps (UL)/Max 296Kbps (DL)
WLAN Features
Support 2.4GHz and 5GHz frequency bands
Support 802.11a/b/g/n, maximally up to 150Mbps
Support AP mode
Bluetooth Feature
BT4.1 LE
GNSS Features
GPS/GLONASS/BeiDou
SMS
Text and PDU mode
Point-to-point MO and MT
SMS cell broadcast
SMS storage: ME by default
LCM Interface
4-lane MIPI_DSI, up to 1.5Gbps per lane
Support WVGA (2-lane MIPI_DSI), up to 720p (4-lane MIPI_DSI)
24bit color depth
Camera Interfaces
Use MIPI_CSI, up to 1.5Gbps per lane
Support two cameras:
2-lane MIPI_CSI for rear camera, max pixel up to 8MP
1-lane MIPI_CSI for front camera, max pixel up to 2MP
Video Codec
Video encoding:
H.264 BP/MP – 720p @30fps
MPEG-4 SP/H.263 P0 – WVGA @30fps
VP8 – WVGA @30fps
Video decoding:
H.264 BP/MP/HP – 1080P @30fps
MPEG-4 SP/ASP –1080P @30fps
DivX 4x/5x/6x –1080P @30fps
H.263 P0 – WVGA @30fps
VP8 –1080P @30 fps
(HEVC) H.265 MP 8 bit –1080P @30fps
Audio Interfaces
Audio input:
2 groups of analog microphone input, integrating internal bias voltage
Page 19
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
2-18
/ 122
Audio output:
Class AB stereo headphone output
Class AB earpiece differential output
Class D speaker differential amplifier output
Audio Codec
HR, FR, EFR, AMR, AMR-WB
USB Interface
Compliant with USB 2.0 specification; the data transfer rate can reach up
to 480Mbps
Used for AT command communication, data transmission, software
debugging and firmware upgrade
Support USB OTG (Need additional 5V power supply chip)
USB Driver: Support Windows XP, Windows Vista, Windows 7/8/8.1
(U)SIM Interfaces
2 groups of (U)SIM interfaces
Support USIM/SIM card: 1.8V, 2.95V
Support Dual SIM Dual Standby (supported by default)
UART Interfaces
2 UART interfaces: UART1 and UART2
UART1: 4-wire UART interface with RTS/CTS hardware flow control;
baud rate up to 4Mbps
UART2: 2-wire UART interface used for debugging
Motor Drive Interface
Drive ERM motor
SD Card Interface
Support SD 3.0, 4-bit SDIO
Support hot-plug
I2C Interfaces
3 groups of I2C
Used for peripherals such as camera, sensor, touch panel, etc.
ADC Interfaces
Support 3 ADC interfaces
Used for input voltage sense, battery temperature detection and general
purpose ADC
Real Time Clock
Supported
Antenna Interfaces
Main antenna, DRX antenna, GNSS antenna and Wi-Fi/BT antenna
Physical Characteristics
Size: (40.5±0.15) × (40.5±0.15) × (2.8±0.2)mm
Package: LCC
Weight: approx. 9.8g
Temperature Range
Operating temperature range: -35°C~+65°C
1)
Extended temperature range: -40°C~+75°C
2)
Firmware Upgrade
Over USB interface
RoHS
All hardware components are fully compliant with EU RoHS directive
Page 20
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
2-19
/ 122
1.
1)
Within operation temperature range, the module is 3GPP compliant.
2.
2)
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like P
out
might reduce in their value and exceed the specified tolerances. When the temperature
returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

2.3. Functional Diagram

The following figure shows a block diagram of SC20 and illustrates the major functional parts.
Power management
Radio frequency
Baseband
LPDDR3+EMMC flash
Peripheral interfaces
--USB interface
--UART interfaces
--(U)SIM interfaces
--SD card interface
--GPIO interfaces
--I2C interfaces
--ADC interfaces
--LCM (MIPI) interface
--TP interface
--CAM (MIPI) interface
--Audio interfaces
NOTES
Page 21
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
2-20
/ 122
Figure 1: Functional Diagram

2.4. Evaluation Board

In order to help customers develop applications with SC20 conveniently, Quectel supplies the evaluation
board (SMART EVB), USB to RS232 converter cable, USB data cable, power adapter, battery, earphone,
antenna and other peripherals to control or test the module. For more details, please refer to
document [1].
Page 22
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-21
/ 122

3 Application Interfaces

3.1. General Description

SC20 is equipped with 146-pin 1.0mm pitch SMT pads plus 64-pin ground/reserved pads that can be
embedded into cellular application platform. The following chapters provide the detailed description of
pins/interfaces listed below.
Power supply
VRTC interface
USB interface
UART interfaces
SD card interface
GPIO interfaces
I2C interfaces
ADC interfaces
Motor drive interface
LCM interface
(U)SIM interfaces
TP interface
Camera interfaces
Sensor interfaces
Audio interfaces
Emergency download interface
Page 23
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-22
/ 122

3.2. Pin Assignment

The following figure shows the pin assignment of SC20 module.
Figure 2: Pin Assignment (Top View)
Page 24
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-23
/ 122

3.3. Pin Description

The following tables show the SC20’s pin definition.
Table 7: I/O Parameters Definition
Type
Description
IO
Bidirectional
DI
Digital input
DO
Digital output
PI
Power input
PO
Power output
AI
Analog input
AO
Analog output
OD
Open drain
Table 8: Pin Description
Power Supply
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
VBAT_BB
1, 2
PI
Power supply for
module’s
baseband part.
Vmax=4.2V
Vmin=3.5V
Vnorm=3.8V
It must be able to
provide sufficient
current up to 3.0A.
It is suggested to
use a zener diode
for voltage
stabilization.
VBAT_RF
145, 146
PI
Power supply for
module’s RF part.
Vmax=4.2V
Vmin=3.5V
Vnorm=3.8V
VRTC
126
PI/PO
Power supply for
internal RTC
circuit.
VOmax=3.2V
VI=2.0V~3.25V
If unused, keep this
pin open.
LDO5_1V8
111
PO
1.8V output power
supply
Vnorm=1.8V
IOmax=20mA
Power supply for
external GPIO’s pull
up circuits and level
conversion circuit.
Page 25
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-24
/ 122
LDO6_1V8
125
PO
1.8V output power
supply
Vnorm=1.8V
IOmax=100mA
Power supply for
peripherals.
2.2uF~4.7uF
capacitor is
recommended to be
applied to the
LDO6_1V8 pin.
If unused, keep this
pin open.
LDO17_2V85
129
PO
2.85V output
power supply
Vnorm=2.85V
IOmax=300mA
Power supply for
peripherals.
2.2uF~4.7uF
capacitor is
recommended to be
applied to the
LDO17_2V85 pin.
If unused, keep this
pin open.
SD_LDO11
38
PO
Power supply for
SD card.
Vnorm=2.95V
IOmax=600mA
SD_LDO12
32
PO
1.8V/2.95V output
power supply
Vnorm=2.95V
IOmax=50mA
Power supply for
SD’s pull up circuits.
GND
3, 7, 12,
15, 27,
51, 62,
69, 76,
78, 85,
86, 88,
89, 120,
122, 130,
132, 135,
140, 143,
144,
147~150,
160~178,
180~182,
184~186,
188~189,
192~193,
198~200,
201~208,
GND
Page 26
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-25
/ 122
209
Audio Interfaces
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
MIC1P
AI
Microphone
positive input for
channel 1
MIC_GND
MIC reference
ground
MIC2P
AI
Microphone
positive input for
channel 2
EARP
AO
Earpiece positive
output
EARN
AO
Earpiece negative
output
SPKP
10
AO
Speaker positive
output
SPKN
11
AO
Speaker negative
output
HPH_R
136
AO
Headphone right
channel output
HPH_GND
137
AI
Headphone virtual
ground
HPH_L
138
AO
Headphone left
channel output
HS_DET
139
AI
Headset insertion
detection
High level by
default.
USB Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
USB_VBUS
141, 142
PI
USB power supply
Vmax=6.3V
Vmin=4.35V
Vnorm=5.0V
Used for USB 5V
power input and
USB detection.
USB_DM
13
IO
USB differential
data bus (minus)
Compliant with USB
2.0 standard
specification.
Require differential
impedance of 90Ω. USB_DP
14
IO
USB differential
data bus (plus)
USB_ID
16AIUSB ID detection
High level by
default.
Page 27
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-26
/ 122
(U)SIM Interfaces
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
USIM2_
DETECT
17
DI
(U)SIM2 card
hot-plug detection
VILmax=0.63V
VIHmin=1.17V
Active Low. External
pull-up resistor is
required.
If unused, keep this
pin open.
USIM2_RST
18
DO
(U)SIM2 card reset
signal
VOLmax=0.4V
VOHmin=
0.8×USIM2_VDD
USIM2_CLK
19
DO
(U)SIM2 card
clock signal
VOLmax=0.4V
VOHmin=
0.8×USIM2_VDD
USIM2_DATA
20
IO
(U)SIM2 card data
signal
VILmax=
0.2×USIM2_VDD
VIHmin=
0.7×USIM2_VDD
VOLmax=0.4V
VOHmin=
0.8×USIM2_VDD
USIM2_VDD
21
PO
(U)SIM2 card
power supply
For 1.8V (U)SIM:
Vmax=1.85V
Vmin=1.75V
For 2.95V (U)SIM:
Vmax=3.1V
Vmin=2.8V
Either 1.8V or 2.95V
(U)SIM card is
supported by the
module
automatically.
USIM1_
DETECT
22
DI
(U)SIM1 card
hot-plug detection
VILmax=0.63V
VIHmin=1.17V
Active low. External
pull-up resistor is
required.
If unused, keep this
pin open.
USIM1_RST
23
DO
(U)SIM1 card reset
signal
VOLmax=0.4V
VOHmin=
0.8×USIM1_VDD
USIM1_CLK
24
DO
(U)SIM1 card
clock signal
VOLmax=0.4V
VOHmin=
0.8×USIM1_VDD
USIM1_DATA
25
IO
(U)SIM1 card data
signal
VILmax=
0.2×USIM1_VDD
VIHmin=
0.7×USIM1_VDD
Page 28
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-27
/ 122
VOLmax=0.4V
VOHmin=
0.8×USIM1_VDD
USIM1_VDD
26
PO
(U)SIM1 card
power supply
For 1.8V (U)SIM:
Vmax=1.85V
Vmin=1.75V
For 2.95V (U)SIM:
Vmax=3.1V
Vmin=2.8V
Either 1.8V or 2.95V
(U)SIM card is
supported by the
module
automatically
UART Interfaces
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
UART1_TX
34
DO
UART1 transmit
data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep this
pin open.
UART1_RX
35DIUART1 receive data
VILmax=0.63V
VIHmin=1.17V
1.8V power domain.
If unused, keep this
pin open.
UART1_CTS
36
DI
UART1 clear to
send
VILmax=0.63V
VIHmin=1.17V
1.8V power domain.
If unused, keep this
pin open.
UART1_RTS
37
DO
UART1 request to
send
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep this
pin open.
UART2_RX
93
DI
UART2 receive
data.
Debug port by
default.
VILmax=0.63V
VIHmin=1.17V
1.8V power domain.
If unused, keep this
pin open.
UART2_TX
94
DO
UART2 transmit
data.
Debug port by
default.
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep this
pin open.
SD Card Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
SD_CLK
39
DO
High speed digital
clock signal of SD
card
1.8V SD card:
VOLmax=0.45V
VOHmin=1.4V
2.95V SD card:
VOLmax=0.37V
Page 29
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-28
/ 122
VOHmin=2.2V
SD_CMD
40
IO
Command signal of
SD card
1.8V SD card:
VILmax=0.58V
VIHmin=1.27V
VOLmax=0.45V
VOHmin=1.4V
2.95V SD card:
VILmax=0.73V
VIHmin=1.84V
VOLmax=0.37V
VOHmin=2.2V
SD_DATA0
41
IO
High speed
bidirectional digital
signal lines of SD
card
1.8V SD card:
VILmax=0.58V
VIHmin=1.27V
VOLmax=0.45V
VOHmin=1.4V
2.95V SD card:
VILmax=0.73V
VIHmin=1.84V
VOLmax=0.37V
VOHmin=2.2V
SD_DATA1
42
IO SD_DATA2
43
IO SD_DATA3
44
IO
SD_DET
45
DI
SD card insertion
detection
VILmax=0.63V
VIHmin=1.17V
Active low
Touch Panel (TP) Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
TP_INT
30DIInterrupt signal of TP
VILmax=0.63V
VIHmin=1.17V
1.8V power domain.
TP_RST
31DOReset signal of TP
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
Active low.
TP_I2C_SCL
47ODI2C clock signal of TP
1.8V power domain.
TP_I2C_SDA
48ODI2C data signal of TP
1.8V power domain.
LCM Interface
Page 30
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-29
/ 122
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
PWM
29
DO
Adjust the backlight
brightness.
PWM control signal.
VOLmax=0.45V
VOHmax=VBAT_BB
LCD_RST
49DOLCD reset signal
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
Active low.
LCD_TE
50
DI
LCD tearing effect
signal
VILmax=0.63V
VIHmin=1.17V
1.8V power domain.
MIPI_DSI_
CLKN
52
AO
MIPI DSI clock signal
(negative)
MIPI_DSI_
CLKP
53
AO
MIPI DSI clock signal
(positive)
MIPI_DSI_
LN0N
54
AO
MIPI DSI data signal
(negative)
MIPI_DSI_
LN0P
55
AO
MIPI DSI data signal
(positive)
MIPI_DSI_
LN1N
56
AO
MIPI DSI data signal
(negative)
MIPI_DSI_
LN1P
57
AO
MIPI DSI data signal
(positive)
MIPI_DSI_
LN2N
58
AO
MIPI DSI data signal
(negative)
MIPI_DSI_
LN2P
59
AO
MIPI DSI data signal
(positive)
MIPI_DSI_
LN3N
60
AO
MIPI DSI data signal
(negative)
MIPI_DSI_
LN3P
61
AO
MIPI DSI data signal
(positive)
Camera Interfaces
Pin Name
Pin No
I/O
Description
DC Characteristics
Comment
MIPI_CSI0_
CLKN
63
AI
MIPI CSI clock signal
(negative)
MIPI_CSI0_
CLKP
64
AI
MIPI CSI clock signal
(positive)
Page 31
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-30
/ 122
MIPI_CSI0_
LN0N
65
AI
MIPI CSI data signal
(negative)
MIPI_CSI0_
LN0P
66
AI
MIPI CSI data signal
(positive)
MIPI_CSI0_
LN1N
67
AI
MIPI CSI data signal
(negative)
MIPI_CSI0_
LN1P
68
AI
MIPI CSI data signal
(positive)
MIPI_CSI1_
CLKN
70
AI
MIPI CSI clock signal
(negative)
MIPI_CSI1_
CLKP
71
AI
MIPI CSI clock signal
(positive)
MIPI_CSI1_
LN0N
72
AI
MIPI CSI data signal
(negative)
MIPI_CSI1_
LN0P
73
AI
MIPI CSI data signal
(positive)
CAM0_MCLK
74
DO
Clock signal of rear
camera
VOLmax=0.45V
VOHmin=1.35V
CAM1_MCLK
75
DO
Clock signal of front
camera
VOLmax=0.45V
VOHmin=1.35V
CAM0_RST
79
DO
Reset signal of rear
camera
VOLmax=0.45V
VOHmin=1.35V
CAM0_PWD
80
DO
Power down signal of
rear camera
VOLmax=0.45V
VOHmin=1.35V
CAM1_RST
81
DO
Reset signal of front
camera
VOLmax=0.45V
VOHmin=1.35V
CAM1_PWD
82
DO
Power down signal of
front camera
VOLmax=0.45V
VOHmin=1.35V
CAM_I2C_
SCL
83
OD
I2C clock signal of
camera
1.8V power domain.
CAM_I2C_
SDA
84
OD
I2C data signal of
camera
1.8V power domain.
Keypad Interfaces
Page 32
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-31
/ 122
Pin Name
Pin No
I/O
Description
DC Characteristics
Comment
PWRKEY
114
DI
Turn on/off the
module
VILmax=0.63V
VIHmin=1.17V
Pull-up to 1.8V
internally, active low.
KEY_VOL_
UP
95DIVolume up
VILmax=0.63V
VIHmin=1.17V
If unused, keep this
pin open.
KEY_VOL_
DOWN
96DIVolume down
VILmax=0.63V
VIHmin=1.17V
If unused, keep this
pin open.
SENSOR_I2C Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
SENSOR_I2C
_SCL
91
OD
I2C clock signal for
external sensor
1.8V power domain.
SENSOR_I2C
_SDA
92
OD
I2C data signal for
external sensor
1.8V power domain.
ADC Interfaces
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
ADC
128
AI
General purpose
ADC
Maximum voltage
not exceeding 1.7V
VBAT_SNS
133AIInput voltage sense
Maximum input
voltage is 4.5V.
VBAT_
THERM
134
AI
Battery temperature
detection
RF Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
ANT_MAIN
87IOMain antenna
50Ω impedance
ANT_DRX
131AIDiversity antenna
ANT_GNSS
121AIGNSS antenna
ANT_WIFI/BT
77IOWi-Fi/BT antenna
GPIO Interfaces
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
Page 33
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-32
/ 122
GPIO_23
33IOGPIO
GPIO_32
90IOGPIO
GPIO_31
97IOGPIO
GPIO_92
98IOGPIO
GPIO_88
99IOGPIO
GPIO_89
100IOGPIO
GPIO_69
101IOGPIO
GPIO_68
102IOGPIO
GPIO_97
103IOGPIO
GPIO_110
104IOGPIO
GPIO_0
105IOGPIO
GPIO_98
106IOGPIO
GPIO_94
107IOGPIO
GPIO_36
108IOGPIO
GPIO_65
109IOGPIO
GPIO_96
110IOGPIO
GPIO_58
112IOGPIO
GPIO_99
113IOGPIO
GPIO_95
115IOGPIO
GPIO_11
116IOGPIO
GPIO_10
117IOGPIO
GPIO_9
118IOGPIO
GPIO_8
119IOGPIO
GPIO_16
123IOGPIO
GPIO_17
124IOGPIO
Page 34
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-33
/ 122
Other Interfaces
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
VIB_DRV
28POMotor drive
Connected to the
negative terminal of
the motor.
RESET_N
179DIReset the module
USB_BOOT
46
DI
Force the module to
boot from USB port
Set USB_BOOT pin
to high level will
force the module to
enter into
emergency
download mode.
CHARGE_
SEL
127
DI
Used for charger
selection
If it is open,
internal charger is
used;
If it is connected to
GND, external
charger is used.
Reserved Interface
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
RESERVED
151, 152,
153, 154,
155, 156,
157, 158,
159, 183,
187, 190,
191, 194,
195, 196,
197, 199,
202, 203,
204, 205,
206, 207,
210
Reserved pins
Not connected by
default.
Page 35
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-34
/ 122

3.4. Power Supply

3.4.1. Power Supply Pins

SC20 provides four VBAT pins dedicated to connection with the external power supply. Two VBAT_RF
pins are used for module’s RF part; two VBAT_BB pins are used for module’s baseband part.

3.4.2. Decrease Voltage Drop

The power supply range of the module is 3.5V~4.2V, and the recommended value is 3.8V. The power
supply performance, such as load capacity, voltage ripple, etc. directly influences the module’s
performance and stability. Under ultimate conditions, the module may have a transient peak current up to
3A. If the supply voltage is not enough, there will be voltage drops, and if the voltage drops below 3.1V,
the module will be turned off automatically. Therefore, please make sure the input voltage will never drop
below 3.1V.
Figure 3: Voltage Drop Sample
To decrease voltage drop, a bypass capacitor of about 100µF with low ESR (ESR=0.7Ω) should be used,
and a multi-layer ceramic chip capacitor (MLCC) should also be reserved due to its ultra-low ESR. It is
recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and
place these capacitors close to VBAT_BB/RF pins. The main power supply from an external application
has to be a single voltage source and can be expanded to two sub paths with star structure. The width of
VBAT_BB trace should be no less than 1.5mm, and the width of VBAT_RF trace should be no less than
2mm. In principle, the longer the VBAT trace is, the wider it will be.
In addition, in order to get a stable power source, it is suggested to use a 0.5W zener diode and place it
as close to the VBAT_BB/RF pins as possible. The following figure shows the star structure of the power
supply.
Page 36
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-35
/ 122
Figure 4: Star Structure of the Power Supply

3.4.3. Reference Design for Power Supply

The power design for the module is very important, as the performance of module largely depends on the
power source. The power supply of SC20 should be able to provide sufficient current up to 3A at least. If
the voltage drop between the input and output is not too high, it is suggested to use an LDO to supply
power for the module. If there is a big voltage difference between the input source and the desired output
(VBAT), a buck converter is preferred to be used as the power supply.
The following figure shows a reference design for +5V input power source which adopts an LDO
(MIC29302WU) from MICREL. The typical output voltage is 3.8V and the maximum load current is 3.0A.
Figure 5: Reference Circuit of Power Supply
Page 37
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-36
/ 122
1. It is suggested that customers should switch off the power supply for module in abnormal state, and
then switch on the power to restart the module.
2. The module supports battery charging function by default. If the above power supply design is
adopted, please make sure the charging function is disabled by software, or connect VBAT to
Schottky diode in series to avoid the reverse current to the power supply chip.

3.5. Turn on and off Scenarios

3.5.1. Turn on Module Using the PWRKEY

The module can be turned on by driving PWRKEY pin to a low level for at least 1.6s. PWRKEY pin is
pulled to 1.8V internally. It is recommended to use an open drain/collector driver to control the PWRKEY.
A simple reference circuit is illustrated in the following figure.
Figure 6: Turn on the Module Using Driving Circuit
The other way to control the PWRKEY is using a button directly. A TVS component is indispensable to be
placed nearby the button for ESD protection. A reference circuit is shown in the following figure.
NOTES
Page 38
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-37
/ 122
Figure 7: Turn on the Module Using Keystroke
The turning on scenario is illustrated in the following figure.
Figure 8: Timing of Turning on Module
Make sure that VBAT is stable before pulling down PWRKEY pin. The recommended time between them
is no less than 30ms. PWRKEY pin cannot be pulled down all the time.
NOTE
Page 39
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-38
/ 122

3.5.2. Turn off Module

Set the PWRKEY pin low for at least 1s, and then choose to turn off the module when the prompt window
comes up.
The other way to turn off the module is to drive PWRKEY to a low level for at least 8s. The module will
execute forced shutdown. The forced power-down scenario is illustrated in the following figure.
Figure 9: Timing of Turning off Module

3.6. VRTC Interface

The RTC (Real Time Clock) can be powered by an external power source through VRTC when the
module is powered down and there is no power supply for the VBAT. The external power source can be
capacitor or rechargeable battery (such as coil cells) according to application demands. The following are
some reference circuit designs when an external battery or capacitor is utilized for powering RTC.
Figure 10: RTC Powered by Coin Cell
Page 40
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-39
/ 122
Figure 11: RTC Powered by Capacitor
If RTC is ineffective, it can be synchronized through network after the module is powered on.
2.0V~3.25V input voltage range and 3.0V typical value for VRTC. When VBAT is disconnected, the
average consumption is about 5uA.
When powered by VBAT, the RTC error is 50ppm. When powered by VRTC, the RTC error is
200ppm.
If the rechargeable battery is used, the ESR of the battery should be less than 2K, and it is
recommended to use the MS621FE FL11E of SEIKO.
If large capacitance capacitor is selected, it is recommended to use a 100uF capacitor with low ESR.
The capacitor will be able to power the real-time clock for 45 seconds.

3.7. Power Output

SC20 supports output of regulated voltages for peripheral circuits. During application, it is recommended
to use parallel capacitors (33pF and 10pF) in the circuit to suppress high frequency noise.
Table 9: Power Description
Pin Name
Voltage Range (V)
Default Voltage (V)
Driving Current (mA)
IDLE
LDO5_1V8
-
1.820KEEP
LDO6_1V8
-
1.8
100
/
LDO17_2V85
-
2.85
300
/
SD_LDO12
1.750~3.337
2.95
50
/
SD_LDO11
1.750~3.337
2.95
600
/
USIM1_VDD
1.750~3.337
1.80/2.95
50
Page 41
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-40
/ 122
USIM2_VDD
1.750~3.337
1.80/2.95
50

3.8. Battery Charge and Management

SC20 module can recharge batteries. The battery charger in SC20 module supports trickle charging,
constant current charging and constant voltage charging modes, which optimize the charging procedure
for Li-ion batteries.
Trickle charging: There are two steps in this mode. When the battery voltage is below 2.8V, a 90mA
trickle charging current is applied to the battery. When the battery voltage is charged up and is
between 2.8V and 3.2V, the charging current can be set to 450mA maximally.
Constant current mode (CC mode): When the battery is increased to between 3.2V and 4.2V, the
system will switch to CC mode. The maximum charging current is 1.44A when adapter is used for
battery charging; and the maximum charging current is 450mA while USB charging.
Constant voltage mode (CV mode): When the battery voltage reaches the final value 4.2V, the
system will switch to CV mode and the charging current will decrease gradually. When the battery
level reaches 100%, the charging is completed.
SC20 module supports battery temperature detection in the condition that the battery integrates a
thermistor (47K 1% NTC thermistor with B-constant of 4050K by default; SDNT1608X473F4050FTF of
SUNLORD is recommended) and the thermistor is connected to VBAT_THERM pin. The default battery
temperature range is -3.0°C~48.5°C. If VBAT_THERM pin is not connected, there will be malfunctions
such as battery charging failure, battery level display error, etc.
A reference design for battery charging circuit is shown as below.
Figure 12: Reference Design for Battery Charging Circuit
Page 42
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-41
/ 122
Mobile devices such as mobile phones and handheld POS systems are powered by batteries. When
different batteries are utilized, the charging and discharging curve has to be modified correspondingly so
as to achieve the best effect.
If thermistor is not available in the battery, or adapter is utilized for powering module, then there is only
need for VBAT and GND connection. In this case, the system may mistakenly judge that the battery
temperature is abnormal, which will cause battery charging failure. In order to avoid this, VBAT_THERM
should be connected to GND via a 47KΩ resistor. If VBAT_THERM is unconnected, the system will be
unable to detect the battery, making battery cannot be charged.
VBAT_SNS pin must be connected. Otherwise, the module will have abnormalities in voltage detection,
as well as associated power on/off and battery charging and discharging issues.

3.9. USB Interface

SC20 contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0
specification and supports high speed (480Mbps) and full speed (12Mbps) modes. The USB interface is
used for AT command communication, data transmission, software debugging and firmware upgrade.
The following table shows the pin definition of USB interface.
Table 10: Pin Definition of USB Interface
Pin Name
Pin No.
I/O
Description
Comment
USB_VBUS
141, 142
PI
USB power supply
4.35V~6.3V.
Typical 5.0V.
USB_DM
13IOUSB differential data bus (minus)
Require differential
impedance of 90Ω USB_DP
14IOUSB differential data bus (plus)
USB_ID
16AIUSB ID detection
High level by default
USB_VBUS can be powered by USB power or adapter. It can also be used for detecting USB connection,
as well as for battery charging via the internal PMU. The input voltage of power supply ranges from 4.35
to 6.3V, and the typical value is 5V. SC20 module supports charging management for a single Li-ion
battery, but varied charging parameters should be set for batteries with varied models or capacities. The
module is available a built-in linear-charging circuit which supports maximally 1.44A charging current.
The following are two USB interface reference designs for customers to choose from.
Page 43
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-42
/ 122
Figure 13: USB Interface Reference Design (OTG is not Supported)
Figure 14: USB Interface Reference Design (OTG is Supported)
SC20 supports OTG protocol. If OTG function is needed, please refer to the above figure for the reference
design. AW3605DNR is a high efficiency DC-DC chip manufactured by AWINIC, and customers can
choose according to their own demands.
In order to ensure USB performance, please comply with the following principles while designing USB
interface.
Page 44
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-43
/ 122
It is important to route the USB signal traces as differential pairs with total grounding. The impedance
of USB differential trace is 90Ω.
Keep the ESD protection devices as close as possible to the USB connector. Pay attention to the
influence of junction capacitance of ESD protection devices on USB data lines. Typically, the
capacitance value should be less than 2pF.
Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
important to route the USB differential traces in inner-layer with ground shielding on not only upper
and lower layer but also right and left sides.
Make sure the trace length difference between USB_DM and USB_DP is not exceeding 6.6mm.
Table 11: USB Trace Length Inside the Module
PIN
Signal
Length (mm)
Length Difference (DP-DM)
13
USB_DM
29.43
-0.07
14
USB_DP
29.36

3.10. UART Interfaces

The module provides two UART interfaces:
UART1: 4-wire UART interface which supports hardware flow control
UART2: 2-wire UART interfaces and is used for debugging
Table 12: Pin Definition of UART Interfaces
Pin Name
Pin No
I/O
Description
Comment
UART1_TX
34DOUART1 transmit data
1.8V power domain.
If it is unused, keep it open.
UART1_RX
35DIUART1 receive data
1.8V power domain.
If it is unused, keep it open.
UART1_CTS
36DIUART1 clear to send
1.8V power domain.
If it is unused, keep it open.
UART1_RTS
37DOUART1 request to send
1.8V power domain.
If it is unused, keep it open.
UART2_RX
93
DI
UART2 receive data.
Debug port by default.
1.8V power domain.
If it is unused, keep it open.
UART2_TX
94
DO
UART2 transmit data.
Debug port by default.
1.8V power domain.
If it is unused, keep it open.
Page 45
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-44
/ 122
UART1 provides 1.8V logic level. A level translator should be used if customers’ application is equipped
with a 3.3V UART interface. A level translator TXS0104PWR provided by Texas Instruments is
recommended. The following figure shows the reference design.
Figure 15: Reference Circuit with Level Translator Chip (for UART1)
The following figure is an example of connection between SC20 and PC. A voltage level translator and a
RS-232 level translator chip are also recommended to be added between the module and PC, as these
two UART interfaces do not support the RS-232 level, while support the 1.8V CMOS level only.
Figure 16: RS232 Level Match Circuit (for UART1)
UART2 is similar to UART1. Please refer to UART1 reference circuit designs for UART2’s.
NOTE
Page 46
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-45
/ 122

3.11. (U)SIM Interfaces

SC20 provides 2 (U)SIM interfaces which circuitry meet ETSI and IMT-2000 requirements. Dual SIM Card
Dual Standby is supported by default. Both 1.8V and 2.95V (U)SIM cards are supported, and the (U)SIM
card interfaces are powered by the internal power supply of SC20 module.
Table 13: Pin Definition of (U)SIM Interfaces
Pin Name
Pin No
I/O
Description
Comment
USIM2_DETECT
17DI(U)SIM2 card hot-plug detection
Active Low. External pull-up
resistor is required.
If unused, keep this pin open.
USIM2_RST
18DO(U)SIM2 card reset signal
USIM2_CLK
19DO(U)SIM2 card clock signal
USIM2_DATA
20IO(U)SIM2 card data signal
Pull-up to USIM2_VDD with a
10K resistor.
USIM2_VDD
21PO(U)SIM2 card power supply
Either 1.8V or 2.95V (U)SIM
card is supported by the
module automatically.
USIM1_DETECT
22DI(U)SIM1 card hot-plug detection
Active low. External pull-up
resistor is required.
If unused, keep this pin open.
USIM1_RST
23DO(U)SIM1 card reset signal
USIM1_CLK
24DO(U)SIM1 card clock signal
USIM1_DATA
25IO(U)SIM1 card data signal
Pull-up to USIM1_VDD with a
10K resistor.
USIM1_VDD
26PO(U)SIM1 card power supply
Either 1.8V or 2.95V (U)SIM
card is supported by the
module automatically.
SC20 supports (U)SIM card hot-plug via the USIM_DETECT pin. A reference circuit for (U)SIM interface
with an 8-pin (U)SIM card connector is shown below.
Page 47
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-46
/ 122
Figure 17: Reference Circuit for (U)SIM Interface with an 8-pin (U)SIM Card Connector
If there is no need to use USIM_DETECT, please keep it open. The following is a reference circuit for
(U)SIM interface with a 6-pin (U)SIM card connector.
Figure 18: Reference Circuit for (U)SIM Interface with a 6-pin (U)SIM Card Connector
In order to ensure good performance and avoid damage of (U)SIM cards, please follow the criteria below
in (U)SIM circuit design:
Keep placement of (U)SIM card connector as close to the module as possible. Keep the trace length
of (U)SIM card signals as less than 200mm as possible.
Keep (U)SIM card signals away from RF and VBAT traces.
A 100nF filter capacitor shall be reserved for USIM_VDD, and its maximum capacitance should not
exceed 1uF. The capacitor should be placed near to (U)SIM card.
To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and
shield them with ground. USIM_RST also needs ground protection.
Page 48
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-47
/ 122
In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic
capacitance not exceeding 50pF. The 22Ω resistors should be added in series between the module
and (U)SIM card so as to suppress EMI spurious transmission and enhance ESD protection. Please
note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
The 33pF capacitors should be added in parallel on USIM_DATA, USIM_CLK and USIM_RST signal
lines so as to filter RF interference, and they should be placed as close to the (U)SIM card connector
as possible.

3.12. SD Card Interface

SC20 module supports SD cards with 4-bit data interfaces or SDIO devices. The pin definition of the SD
card interface is shown below.
Table 14: Pin Definition of SD Card Interface
Pin Name
Pin No
I/O Description
Comment
SD_LDO11
38POPower supply for SD card
Vnorm=2.95V
IOmax=600mA
SD_LDO12
32PO1.8V/2.95V output power supply
Support 1.8V or 2.95V
power supply.
The maximum drive
current is 50mA.
SD_CLK
39DOHigh speed digital clock signal of SD card
Control characteristic
impedance as 50Ω.
SD_CMD
40
I/O
Command signal of SD card
SD_DATA0
41
I/O
High speed bidirectional digital signal
lines of SD card
SD_DATA1
42
I/O
SD_DATA2
43
I/O
SD_DATA3
44
I/O
SD_DET
45DISD card insertion detection
Active low
A reference circuit for SD card interface is shown as below.
Page 49
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-48
/ 122
Figure 19: Reference Circuit for SD Card Interface
SD_LDO11 is a peripheral driver power supply for SD card. The maximum drive current is approx. 600mA.
Because of the high drive current, it is recommended that the trace width is 0.6mm or more. In order to
ensure the stability of drive power, a 2.2uF capacitor should be added in parallel near the SD card
connector.
CMD, CLK, DATA0, DATA1, DATA2 and DATA3 are all high speed signal lines. In PCB design, please
control the characteristic impedance of them as 50Ω, and do not cross with other traces. It is
recommended to route the trace on the inner layer of PCB, and keep the same trace length for CLK, CMD,
DATA0, DATA1, DATA2 and DATA3. CLK additionally needs ground shielding.
Layout guidelines:
Control impedance as 50Ω±10%, and ground shielding is required.
The total trace length difference between CLK and other signal line traces should not exceed 1mm.
Table 15: SD Card Trace Length Inside the Module
Pin No.
Signal
Length (mm)
Comment
39
SD_CLK
14.60
40
SD_CMD
14.55
41
SD_DATA0
14.53
42
SD_DATA1
14.56
43
SD_DATA2
14.53
Page 50
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-49
/ 122
44
SD_DATA3
14.57

3.13. GPIO Interfaces

SC20 has abundant GPIO interfaces with logic level of 1.8V. The pin definition is listed below.
Table 16: Pin Definition of GPIO Interfaces
PIN
Pin Name
GPIO
Default state
Comment
30
TP_INT
GPIO_13
B-PD: nppukp
Wakeup
31
TP_RST
GPIO_12
B-PD: nppukp
Wakeup
33
GPIO_23
GPIO_23
B-PD: nppukp
34
UART1_TX
GPIO_20
BH-PD: nppukp
Wakeup
35
UART1_RX
GPIO_21
B-PD: nppukp
UART1_RX Wakeup
36
UART1_CTS
GPIO_111
B-PD: nppukp
Wakeup
37
UART1_RTS
GPIO_112
B-PD: nppukp
Wakeup
45
SD_DET
GPIO_38
B-PD: nppukp
Wakeup
47
TP_I2C_SCL
GPIO_19
B-PD: nppukp
48
TP_I2C_SDA
GPIO_18
B-PD: nppukp
49
LCD_RST
GPIO_25
B-PD: nppukp
Wakeup
50
LCD_TE
GPIO_24
B-PD: nppukp
74
CAM0_CLK
GPIO_26
B-PD: nppukp
75
CAM1_CLK
GPIO_27
B-PD: nppukp
79
CAM0_RST
GPIO_35
B-PD: nppukp
Wakeup
80
CAM0_PWD
GPIO_34
B-PD: nppukp
Wakeup
81
CAM1_RST
GPIO_28
B-PD: nppukp
Wakeup
82
CAM1_PWD
GPIO_33
B-PD: nppukp
Page 51
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-50
/ 122
83
CAM_I2C_SCL
GPIO_30
B-PD: nppukp
84
CAM_I2C_SDA
GPIO_29
B-PD: nppukp
90
GPIO_32
GPIO_32
B-PD: nppukp
91
SENSOR_I2C_SCL
GPIO_7
B-PD: nppukp
92
SENSOR_I2C_SDA
GPIO_6
B-PD: nppukp
93
UART2_RX
GPIO_5
B-PD: nppukp
Wakeup
94
UART2_TX
GPIO_4
B-PD: nppukp
95
KEY_VOL_UP
GPIO_90
B-PD: nppukp
Wakeup
96
KEY_VOL_DOWN
GPIO_91
B-PD: nppukp
Wakeup
97
GPIO_31
GPIO_31
B-PD: nppukp
Wakeup
98
GPIO_92
GPIO_92
B-PD: nppukp
Wakeup
99
GPIO_88
GPIO_88
B-PD: nppukp
100
GPIO_89
GPIO_89
B-PD: nppukp
101
GPIO_69
GPIO_69
B-PD: nppukp
102
GPIO_68
GPIO_68
B-PD: nppukp
103
GPIO_97
GPIO_97
B-PD: nppukp
Wakeup
104
GPIO_110
GPIO_110
B-PD: nppukp
Wakeup
105
GPIO_0
GPIO_0
B-PD: nppukp
106
GPIO_98
GPIO_98
B-PD: nppukp
Wakeup
107
GPIO_94
GPIO_94
B-PD: nppukp
Wakeup
108
GPIO_36
GPIO_36
B-PD: nppukp
Wakeup
109
GPIO_65
GPIO_65
B-PD: nppukp
Wakeup
110
GPIO_96
GPIO_96
B-PD: nppukp
Wakeup
112
GPIO_58
GPIO_58
B-PD: nppukp
Wakeup
113
GPIO_99
GPIO_99
B-PD: nppukp
Page 52
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-51
/ 122
115
GPIO_95
GPIO_95
B-PD: nppukp
Wakeup
116
GPIO_11
GPIO_11
B-PD: nppukp
Wakeup
117
GPIO_10
GPIO_10
B-PD: nppukp
118
GPIO_9
GPIO_9
B-PD: nppukp
119
GPIO_8
GPIO_8
B-PD: nppukp
123
GPIO_16
GPIO_16
B-PD: nppukp
124
GPIO_17
GPIO_17
B-PD: nppukp
Wakeup: interrupt pins that can wake up the system
B: Bidirectional digital with CMOS input
H: High-voltage tolerant
PD: nppukp = default pull-down with programmable options following the colon (:)

3.14. I2C Interfaces

SC20 provides 3 groups of I2C interfaces which only support the master mode. As an open drain output,
the I2C interfaces need a pull-up resistor on its external circuit, and the recommended logic level is 1.8V.
Table 17: Pin Definition of I2C Interfaces
Pin Name
Pin No
I/O Description
Comment
TP_I2C_SCL
47ODI2C clock signal of touch panel
Used for touch panel TP_I2C_SDA
48ODI2C data signal of touch panel
CAM_I2C_SCL
83ODI2C clock signal of camera
Used for camera CAM_I2C_SDA
84ODI2C data signal of camera
SENSOR_I2C_
SCL
91ODI2C clock signal for external sensor
Used for external sensor SENSOR_I2C_
SDA
92ODI2C data signal for external sensor
NOTE
Page 53
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-52
/ 122

3.15. ADC Interfaces

SC20 module provides three analog-to-digital converter (ADC) interfaces, and the pin definition is shown
below.
Table 18: Pin Definition of ADC Interfaces
Pin Name
Pin No
I/O Description
Comment
ADC
128AIGeneral purpose ADC
Max input voltage is 1.7V
VBAT_SNS
133AIInput voltage sense
Max input voltage is 4.5V
VBAT_THERM
134AIBattery temperature detection
Internal pull-up; externally
connect to GND with a 47K NTC
thermistor
The resolution of the ADC is up to 16 bits.
When the input voltage exceeds the maximum input voltage of VBAT_SNS pin, resistor divider cannot be
used in the circuit design. Instead, general purpose ADC with resistor divider input can be used.

3.16. Motor Drive Interface

The pin of motor drive interface is listed below.
Table 19: Pin Definition of Motor Drive Interface
Pin Name
Pin No
I/O Description
Comment
VIB_DRV
28POMotor drive
Connected to the negative terminal of the motor
The motor is driven by an exclusive circuit, and a reference circuit design is shown below.
NOTE
Page 54
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-53
/ 122
Figure 20: Reference Circuit for Motor Connection
When the motor stops, the redundant electricity can be discharged from the circuit loop formed by diodes,
thus avoiding component damages.

3.17. LCM Interface

SC20 module provides an LCM interface meeting MIPI DSI specification. The interface supports high
speed differential data transmission, with up to four lanes and a transmission rate up to 1.5Gbps per lane.
It supports maximally 720P resolution displays.
Table 20: Pin Definition of LCM Interface
Pin Name
Pin No
I/O
Description
Comment
LDO6_1V8
125
PO
1.8V output power supply for
LCM logic circuit and DSI
1.8V normal voltage.
Vnorm=1.8V
IOmax=100mA
LDO17_2V85
129
PO
2.85V output power supply for
LCM analog circuits
2.85V normal voltage.
Vnorm=2.85V
IOmax=300mA
PWM
29
DO
Adjust the backlight brightness.
PWM control signal.
LCD_RST
49DOLCD reset signal
Active low
LCD_TE
50DILCD tearing effect signal
Page 55
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-54
/ 122
MIPI_DSI_CLKN
52
AO
MIPI DSI clock signal
(negative)
MIPI_DSI_CLKP
53
AO
MIPI DSI clock signal
(positive)
MIPI_DSI_LN0N
54
AO
MIPI DSI data signal
(negative)
MIPI_DSI_LN0P
55
AO
MIPI DSI data signal
(positive)
MIPI_DSI_LN1N
56
AO
MIPI DSI data signal
(negative)
MIPI_DSI_LN1P
57
AO
MIPI DSI data signal
(positive)
MIPI_DSI_LN2N
58
AO
MIPI DSI data signal
(negative)
MIPI_DSI_LN2P
59
AO
MIPI DSI data signal
(positive)
MIPI_DSI_LN3N
60
AO
MIPI DSI data signal
(negative)
MIPI_DSI_LN3P
61
AO
MIPI DSI data signal
(positive)
Four-lane MIPI DSI is needed for connection with 720P displays. The following is a reference circuit
design, by taking the connection with LCM interface on LHR050H41-00 (IC: ILI9881C) from HUARUI
Lighting as an example.
Figure 21: Reference Circuit Design for LCM Interface
Page 56
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-55
/ 122
MIPI are high speed signal lines. It is recommended that common-mode filters should be added in series
near the LCM connector, so as to improve protection against electromagnetic radiation interference.
ICMEF112P900MFR from ICT is recommended.
When compatible design with other displays is required, please connect the LCD_ID pin of LCM to the
module’s ADC pin, and please note that the output voltage of LCD_ID cannot exceed the voltage range of
ADC pin.
Backlight driving circuit needs to be designed for LCM, and a reference circuit design is shown in the
following figure. Backlight brightness adjustment can be realized by PWM pin of SC20 module through
adjusting the duty ratio.
Figure 22: Reference Design for Backlight Dirving Circuit

3.18. Touch Panel Interface

SC20 provides a set of I2C interface for connection with Touch Panel (TP), and also provides the
corresponding power supply and interrupt pins. The definition of TP interface pins is illustrated below.
Table 21: Pin Definition of Touch Panel Interface
Pin Name
Pin No
I/O
Description
Comment
LDO6_1V8
125
PO
1.8V output power supply for
TP I/O power
Pull-up power supply of I2C.
1.8V normal voltage
LDO17_2V85
129
PO
2.85V output power supply
for TP VDD power
TP power supply.
2.85V normal voltage
TP_INT
30DIInterrupt signal of TP
TP_RST
31DOReset signal of TP
Active low
Page 57
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-56
/ 122
TP_I2C_SCL
47ODI2C clock signal of TP
TP_I2C_SDA
48ODI2C data signal of TP
The following illustrates a TP interface reference circuit, by taking the connection with TP interface on
LHR050H41-00 (IC: GT9147) from HUARUI Lighting as an example.
Figure 23: Reference Circuit Design for TP Interface

3.19. Camera Interfaces

Based on standard MIPI CSI video input interface, SC20 module supports two cameras, and the
maximum pixel of the rear camera can be up to 8MP. The video and photo quality is determined by
various factors such as the camera sensor, camera lens quality, etc. It is recommended to select a proper
camera model, according to the specification of cameras verified and recommended by Quectel.
The following models of camera sensors have been verified by Quectel:
For rear camera: Hi843 of SK Hynix, T4KA3 of TOSHIBA
For front camera: Hi259 of SK Hynix, SP2508 of SuperPix

3.19.1. Rear Camera Interface

The rear camera realizes transmission and control via its FPC and a connector which is connected to the
module. SC20 rear camera interface integrates a two-lane MIPI CSI for differential data transmission, and
it maximally supports 8MP cameras.
The pin definition of rear camera interface is shown below.
Page 58
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-57
/ 122
Table 22: Pin Definition of Rear Camera Interface
Pin Name
Pin No
I/O
Description
Comment
LDO6_1V8
125
PO
1.8V output power supply for
DOVDD of camera
1.8V normal voltage.
Vnorm=1.8V
IOmax=100mA
LDO17_2V85
129
PO
2.85V output power supply for
AVDD of camera
2.85V normal voltage.
Vnorm=2.85V
IOmax=300mA
MIPI_CSI0_CLKN
63
AI
MIPI CSI clock signal
(negative)
MIPI_CSI0_CLKP
64
AI
MIPI CSI clock signal
(positive)
MIPI_CSI0_LN0N
65
AI
MIPI CSI data signal
(negative)
MIPI_CSI0_LN0P
66
AI
MIPI CSI data signal
(positive)
MIPI_CSI0_LN1N
67
AI
MIPI CSI data signal
(negative)
MIPI_CSI0_LN1P
68
AI
MIPI CSI data signal
(positive)
CAM0_MCLK
74DOClock signal of rear camera
CAM0_RST
79DOReset signal of rear camera
CAM0_PWD
80DOPower down signal of rear camera
CAM_I2C_SCL
83ODI2C clock signal of camera
CAM_I2C_SDA
84ODI2C data signal of camera
The following is a reference circuit design for rear camera interface, by taking the connection with T4KA3
camera as an example.
Page 59
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-58
/ 122
Figure 24: Reference Circuit Design for Rear Camera Interface
DVDD_1V2 is used to power the rear camera core, and VDD_AF_2V8 is used to power the rear camera
AF circuit. Both of them are powered by an external LDO.

3.19.2. Front Camera Interface

The front camera interface integrates a differential data interface meeting one-lane MIPI CSI standard,
and is tested to support 2MP cameras.
The pin definition of front camera interface is shown below.
Table 23: Pin Definition of Front Camera Interface
Pin Name
Pin No
I/O
Description
Comment
LDO6_1V8
125
PO
1.8V output power supply for
DOVDD of camera
1.8V normal voltage.
Vnorm=1.8V
IOmax=100mA
NOTE
Page 60
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-59
/ 122
LDO17_2V85
129
PO
2.85V output power supply for
AVDD of camera
2.85V normal voltage.
Vnorm=2.85V
IOmax=300mA
MIPI_CSI1_CLKN
70
AI
MIPI CSI clock signal
(negative)
MIPI_CSI1_CLKP
71
AI
MIPI CSI clock signal
(positive)
MIPI_CSI1_LN0N
72
AI
MIPI CSI data signal
(negative)
MIPI_CSI1_LN0P
73
AI
MIPI CSI data signal
(positive)
CAM1_MCLK
75DOClock signal of front camera
CAM1_RST
81DOReset signal of front camera
CAM1_PWD
82
DO
Power down signal of front
camera
CAM_I2C_SCL
83ODI2C clock signal of camera
CAM_I2C_SDA
84ODI2C data signal of camera
The following is a reference circuit design for front camera interface, by taking the connection with
SP2508 camera as an example.
Figure 25: Reference Circuit Design for Front Camera Interface
Page 61
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-60
/ 122

3.19.3. Design Considerations

Special attention should be paid to the definition of video device interface in schematic design.
Different video devices will have varied definitions for their corresponding connectors. Assure the
device and the connectors are correctly connected.
MIPI are high speed signal lines, supporting maximum data rate up to 1.5Gbps. The differential
impedance should be controlled as 100Ω. Additionally, it is recommended to route the trace on the
inner layer of PCB, and do not cross it with other traces. For the same video device, all the MIPI
traces should keep the same length. In order to avoid crosstalk, a distance of 1.5 times of the trace
width is recommended to be maintained among MIPI signal lines. During impedance matching, do
not connect GND on different planes so as to ensure impedance consistency.
It is recommended to select a low capacitance TVS for ESD protection and the recommended
parasitic capacitance is below 1pF.
Route MIPI traces according to the following rules:
a) The total trace length should not exceed 305mm;
b) Control the differential impedance as 100Ω±10%;
c) Control intra-lane length difference within 0.67mm;
d) Control inter-lane length difference within 1.3mm.
Table 24: MIPI Trace Length Inside the Module
PIN
Pin Name
Length (mm)
Length Difference (P-N)
52
MIPI_DSI_CLKN
7.08
-0.63
53
MIPI_DSI_CLKP
6.45
54
MIPI_DSI_LN0N
6.15
-0.30
55
MIPI_DSI_LN0P
5.85
56
MIPI_DSI_LN1N
6.64
-0.04
57
MIPI_DSI_LN1P
6.60
58
MIPI_DSI_LN2N
8.20
0.74
59
MIPI_DSI_LN2P
8.94
60
MIPI_DSI_LN3N
9.28
0.96
61
MIPI_DSI_LN3P
10.24
63
MIPI_CSI0_CLKN
10.55
0.54
64
MIPI_CSI0_CLKP
11.09
Page 62
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-61
/ 122
65
MIPI_CSI0_LN0N
12.13
0.40
66
MIPI_CSI0_LN0P
12.53
67
MIPI_CSI0_LN1N
13.73
0.76
68
MIPI_CSI0_LN1P
14.49
70
MIPI_CSI1_CLKN
17.32
0.13
71
MIPI_CSI1_CLKP
17.45
72
MIPI_CSI1_LN0N
18.89
0.35
73
MIPI_CSI1_LN0P
19.24

3.20. Sensor Interfaces

SC20 module supports communication with sensors via I2C interface, and it supports ALS/PS, Compass,
G-sensor, and Gyroscopic sensors.
Verified sensor models by Quectel include: BST-BMA223, STK3311-WV, MPU-6881 and MMC35240PJ.
Table 25: Pin Definition of Sensor Interfaces
Pin Name
Pin No
I/O
Description
Comment
SENSOR_I2C_SCL
91ODI2C clock signal for external sensor
SENSOR_I2C_SDA
92ODI2C data signal for external sensor
GPIO_88
99DIGyroscope sensor interrupt signal 2
Default configuration;
but not limited to
these GPIO pins
GPIO_89
100DIGyroscope sensor interrupt signal 1
GPIO_94
107DIProximity sensor interrupt signal
GPIO_36
108DICompass sensor interrupt signal
GPIO_65
109DIGravity sensor interrupt signal 2
GPIO_96
110DIGravity sensor interrupt signal 1
Page 63
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-62
/ 122

3.21. Audio Interfaces

SC20 module provides two analog input channels and three analog output channels. The following table
shows the pin definition.
Table 26: Pin Definition of Audio Interfaces
Pin Name
Pin No
I/O
Description
Comment
MIC1P
4AIMicrophone positive input for channel 1
MIC_GND
MIC reference ground
MIC2P
6AIMicrophone positive input for channel 2
EARP
8AOEarpiece positive output
EARN
9AOEarpiece negative output
SPKP
10AOSpeaker positive output
SPKN
11AOSpeaker negative output
HPH_R
136AOHeadphone right channel output
HPH_GND
137AIHeadphone virtual ground
HPH_L
138AOHeadphone left channel output
HS_DET
139AIHeadset insertion detection
High level by default
The module offers two audio input channels which are both single-ended channels.
The earpiece interface uses differential output.
The loudspeaker interface uses differential output as well. The output channel is available with a
Class-D amplifier whose output power is 879mW when VBAT is 4.2V and load is 8Ω.
The headphone interface features stereo left and right channel output, and headphone insert
detection function is supported.
Page 64
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-63
/ 122

3.21.1. Reference Circuit Design for Microphone

Figure 26: Reference Circuit Design for Microphone Interface

3.21.2. Reference Circuit Design for Receiver Interface

Figure 27: Reference Circuit Design for Receiver Interface
Page 65
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-64
/ 122

3.21.3. Reference Circuit Design for Headphone Interface

Figure 28: Reference Circuit Design for Headphone Interface

3.21.4. Reference Circuit Design for Loudspeaker Interface

Figure 29: Reference Circuit Design for Loudspeaker Interface
Page 66
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-65
/ 122

3.21.5. Audio Interface Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10pF and 33pF) for
filtering out RF interference, thus reducing TDD noise. The 33pF capacitor is applied for filtering out RF
interference when the module is transmitting at EGSM900MHz. Without placing this capacitor, TDD noise
could be heard. Moreover, the 10pF capacitor here is used for filtering out 1800MHz RF interference.
Please note that the resonant frequency point of a capacitor largely depends on the material and
production technique. Therefore, customers would have to discuss with their capacitor vendors to choose
the most suitable capacitor for filtering out high-frequency noises.
The severity degree of the RF interference in the voice channel during GSM transmitting largely depends
on the application design. In some cases, GSM900 TDD noise is more severe; while in other cases,
DCS1800 TDD noise is more obvious. Therefore, a suitable capacitor can be selected based on the test
results. Sometimes, even no RF filtering capacitor is required.
The capacitor which is used for filtering out RF noise should be close to the audio device or audio
interface. The trace should be as short as possible, and it is recommended to route the trace for
capacitors first and then for other points.
In order to decrease radio or other signal interference, RF antennas should be placed away from audio
interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the
audio traces.
The differential audio traces must be routed according to the differential signal layout rule.

3.22. Emergency Download Interface

USB_BOOT is an emergency download interface. Pull up to LDO5_1V8 during power-up will force the
module enter into emergency download mode. This is an emergency option when there are failures such
as abnormal startup or running. For convenient firmware upgrade and debugging in the future, please
reverse this pin. The reference circuit design is shown as below.
Figure 30: Reference Circuit Design for Emergency Download Interface
Page 67
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
4-66
/ 122

4 Wi-Fi and BT

SC20 module provides a shared antenna interface ANT_WIFI/BT for Wi-Fi and Bluetooth (BT) functions.
The interface impedance is 50Ω. External antennas such as PCB antenna, sucker antenna and ceramic
antenna can be connected to the module via the interface, so as to achieve Wi-Fi and BT functions.

4.1. Wi-Fi Overview

SC20 series module supports 2.4GHz/5GHz double-band WLAN wireless communication based on IEEE
802.11a/b/g/n standard protocols. The maximum data rate is up to 150Mbps.
The features are as below:
Support Wake-on-WLAN (WoWLAN)
Support ad hoc mode
Support WAPI SMS4 hardware encryption
Support AP mode
Support Wi-Fi Direct
Support MCS 0-7 for HT20 and HT40

4.1.1. Wi-Fi Performance

The following table lists the Wi-Fi transmitting and receiving performance of SC20 module.
Table 27: Wi-Fi Transmitting Performance
Standard
Rate
Output Power
2.4GHz
802.11b
1Mbps
16dBm±2.5dB
802.11b
11Mbps
16dBm±2.5dB
802.11g
6Mbps
16dBm±2.5dB
802.11g
54Mbps
14dBm±2.5dB
802.11n HT20
MCS0
15dBm±2.5dB
Page 68
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
4-67
/ 122
802.11n HT20
MCS7
13dBm±2.5dB
802.11n HT40
MCS0
14dBm±2.5dB
802.11n HT40
MCS7
13dBm±2.5dB
5GHz
802.11a
6Mbps
15dBm±2.5dB
802.11a
54Mbps
13dBm±2.5dB
802.11n HT20
MCS0
14dBm±2.5dB
802.11n HT20
MCS7
12dBm±2.5dB
802.11n HT40
MCS0
14dBm±2.5dB
802.11n HT40
MCS7
12dBm±2.5dB
Table 28: Wi-Fi Receiving Performance
Standard
Rate
Sensitivity
2.4GHz
802.11b
1Mbps
-96dBm
802.11b
11Mbps
-87dBm
802.11g
6Mbps
-91dBm
802.11g
54Mbps
-74dBm
802.11n HT20
MCS0
-90dBm
802.11n HT20
MCS7
-72dBm
802.11n HT40
MCS0
-87dBm
802.11n HT40
MCS7
-68dBm
5GHz
802.11a
6Mbps
-90dBm
802.11a
54Mbps
-71dBm
802.11n HT20
MCS0
-88dBm
802.11n HT20
MCS7
-69dBm
802.11n HT40
MCS0
-86dBm
Page 69
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
4-68
/ 122
802.11n HT40
MCS7
-66dBm
Referenced specifications are listed below:
IEEE 802.11n WLAN MAC and PHY, October 2009 + IEEE 802.11-2007 WLAN MAC and PHY, June
2007
IEEE Std 802.11b, IEEE Std 802.11d, IEEE Std 802.11e, IEEE Std 802.11g, IEEE Std 802.11i: IEEE
802.11-2007 WLAN MAC and PHY, June 2007

4.2. BT Overview

SC20 module supports BT4.1 (BR/EDR+BLE) specification, as well as GFSK, 8-DPSK, π/4-DQPSK
modulation modes.
Maximally support up to 7 wireless connections.
Maximally support up to 3.5 piconets at the same time.
Support one SCO (Synchronous Connection Oriented) or eSCO connection.
The BR/EDR channel bandwidth is 1MHz, and can accommodate 79 channels. The BLE channel
bandwidth is 2MHz, and can accommodate 40 channels.
Table 29: BT Data Rate and Version
Version
Data rate
Maximum Application Throughput
Comment
1.2
1 Mbit/s
>80 Kbit/s
2.0 + EDR
3 Mbit/s
>80 Kbit/s
3.0 + HS
24 Mbit/s
Reference 3.0 + HS
4.0
24 Mbit/s
Reference 4.0 LE
Referenced specifications are listed below:
Bluetooth Radio Frequency TSS and TP Specification 1.2/2.0/2.0 + EDR/2.1/2.1+ EDR/3.0/3.0 + HS,
August 6, 2009
Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0, December 15, 2009
Page 70
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
4-69
/ 122

4.2.1. BT Performance

The following table lists the BT transmitting and receiving performance of SC20 module.
Table 30: BT Transmitting and Receiving Performance
Transmitter Performance
Packet Types
DH5
2-DH5
3-DH5
Transmitting Power
10dBm±2.5dB
8dBm±2.5dB
8dBm±2.5dB
Receiver Performance
Packet Types
DH5
2-DH5
3-DH5
Receiving Sensitivity
-93dBm
-92dBm
-86dBm
Page 71
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
5-70
/ 122

5 GNSS

SC20 module integrates a Qualcomm IZat™ GNSS engine (GEN 8C) which supports multiple positioning
and navigation systems including GPS, GLONASS and BeiDou. With an embedded LNA, the module
provides greatly improved positioning accuracy.

5.1. GNSS Performance

The following table lists the GNSS performance of SC20 module in conduction mode.
Table 31: GNSS Performance
Parameter
Description
Typ.
Unit
Sensitivity (GNSS)
Cold start
-146
dBm
Reacquisition
-158
dBm
Tracking
-160
dBm
TTFF (GNSS)
Cold start
32
s
Warm start
30
s
Hot start
s
Static Drift (GNSS)
CEP-50
m

5.2. GNSS RF Design Guidance

Bad design of antenna and layout may cause reduced GPS receiving sensitivity, longer GPS positioning
time, or reduced positioning accuracy. In order to avoid this, please follow the reference design rules as
below:
Page 72
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
5-71
/ 122
Maximize the distance between the GNSS RF part and the GPRS RF part (including trace routing
and antenna layout) to avoid mutual interference.
In user systems, GNSS RF signal lines and RF components should be placed far away from high
speed circuits, switched-mode power supplies, power inductors, the clock circuit of single-chip
microcomputers, etc.
For applications with harsh electromagnetic environment or with high requirement on ESD protection,
it is recommended to add ESD protective diodes for the antenna interface. Only diodes with ultra-low
junction capacitance such as 0.05pF can be selected. Otherwise, there will be effects on the
impedance characteristic of RF circuit loop, or attenuation of bypass RF signal may be caused.
Control the impedance of either feeder line or PCB trace as 50Ω, and keep the trace length as short
as possible.
Refer to Chapter 6.3 for GNSS reference circuit design.
Page 73
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-72
/ 122

6 Antenna Interface

SC20 antenna interface includes a main antenna, an Rx-diversity/MIMO antenna, a GNSS antenna and a
Wi-Fi/BT antenna. The antenna interface has an impedance of 50Ω.

6.1. Main/Rx-diversity Antenna Interfaces

The pin definition of main/Rx-diversity antenna interfaces is shown below.
Table 32: Pin Definition of Main/Rx-diversity Antenna Interfaces
Pin Name
Pin No.
I/O
Description
Comment
ANT_MAIN
87IOMain antenna
50Ω impedance
ANT_DRX
131AIDiversity antenna
50Ω impedance

6.1.1. Operating Frequency

Table 33: SC20 Module Operating Frequencies
3GPP Band
Receive
Transmit
Unit
GSM850
869~894
824~849
MHz
EGSM900
925~960
880~915
MHz
DCS1800
1805~1880
1710~1785
MHz
PCS1900
1930~1990
1850~1910
MHz
WCDMA Band1
2110~2170
1920~1980
MHz
WCDMA Band2
1930~1990
1850~1910
MHz
WCDMA Band4
2110~2155
1710~1755
MHz
Page 74
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-73
/ 122
WCDMA Band5
869~894
824~849
MHz
WCDMA Band6
875~885
830~840
MHz
WCDMA Band8
925~960
880~915
MHz
WCDAM Band19
875~890
830~845
MHz
CDMA BC0
869~894
824~849
MHz
TD-SCDMA Band34
2010~2025
2010~2025
MHz
TD-SCDMA Band39
1880~1920
1880~1920
MHz
LTE-FDD Band1
2110~2170
1920~1980
MHz
LTE-FDD Band2
1930~1990
1850~1910
MHz
LTE-FDD Band3
1805~1880
1710~1785
MHz
LTE-FDD Band4
2110~2155
1710~1755
MHz
LTE-FDD Band5
869~894
824~849
MHz
LTE-FDD Band7
2620~2690
2500~2570
MHz
LTE-FDD Band8
925~960
880~915
MHz
LTE-FDD Band12
729~746
699~716
MHz
LTE-FDD Band13
746~756
777~787
MHz
LTE-FDD Band18
860~875
815~830
MHz
LTE-FDD Band19
875~890
830~845
MHz
LTE-FDD Band20
791~821
832~862
MHz
LTE-FDD Band25
1930~1995
1850~1915
MHz
LTE-FDD Band26
859~894
814~849
MHz
LTE-FDD Band28
758~803
703~748
MHz
LTE-TDD Band38
2570~2620
2570~2620
MHz
LTE-TDD Band39
1880~1920
1880~1920
MHz
LTE-TDD Band40
2300~2400
2300~2400
MHz
Page 75
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-74
/ 122
LTE-TDD Band41
2555~2655
2555~2655
MHz
The bandwidth of LTE-TDD Band 41 for SC20-J is 2545MHz~2655MHz, and the corresponding channel
range is 40140~41240.
6.1.2. Reference Design of Main and Rx-diversity Antenna Interfaces
A reference circuit design for main and Rx-diversity antenna interfaces is shown as below. A π-type
matching circuit should be reserved for better RF performance. The π-type matching components
(R1/C1/C2, R2/C3/C4) should be placed as close to the antennas as possible and are mounted according
to the actual debugging. C1, C2, C3 and C4 are not mounted and a 0Ω resistor is mounted on R1 and R2
respectively by default.
Figure 31: Reference Circuit Design for Main and Rx-diversity Antenna Interfaces

6.1.3. Reference Design of RF Layout

For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50Ω. The
impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant,
the distance between signal layer and reference ground (H), and the clearance between RF trace and
ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic
impedance control. The following are reference designs of microstrip line or coplanar waveguide line with
different PCB structures.
NOTE
Page 76
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-75
/ 122
Figure 32: Microstrip Line Design on a 2-layer PCB
Figure 33: Coplanar Waveguide Line Design on a 2-layer PCB
Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)
Page 77
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-76
/ 122
Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)
In order to ensure RF performance and reliability, the following principles should be complied with in RF
layout design:
Use impedance simulation tool to control the characteristic impedance of RF traces as 50Ω.
The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully
connected to ground.
The distance between the RF pins and the RF connector should be as short as possible, and all the
right angle traces should be changed to curved ones.
There should be clearance area under the signal pin of the antenna connector or solder joint.
The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around
RF traces and the reference ground could help to improve RF performance. The distance between
the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).
For more details about RF layout, please refer to document [4].

6.2. Wi-Fi/BT Antenna Interface

The following tables show the pin definition and frequency specification of the Wi-Fi/BT antenna interface.
Table 34: Pin Definition of Wi-Fi/BT Antenna Interface
Pin Name
Pin No.
I/O
Description
Comment
ANT_WIFI/BT
77
IO
Wi-Fi/BT antenna interface
50Ω impedance
Page 78
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-77
/ 122
Table 35: Wi-Fi/BT Frequency
Type
Frequency
Unit
802.11a/b/g/n
2400~2482
5180~5825
MHz BT4.1 LE
2402~2480
MHz
The supported Wi-Fi frequencies of SC20-J are 2400MHz~2496MHz and 5180MHz~5825MHz.
A reference circuit design for Wi-Fi/BT antenna interface is shown as below. A π-type matching circuit
should be reserved for better RF performance. The π-type matching components (R1, C1, C2) should be
placed as close to the antenna as possible and are mounted according to the actual debugging. C1 and
C2 are not mounted and a 0Ω resistor is mounted on R1 by default.
Figure 36: Reference Circuit Design for Wi-Fi/BT Antenna

6.3. GNSS Antenna Interface

The following tables show pin definition and frequency specification of GNSS antenna interface.
Table 36: Pin Definition of GNSS Antenna Interface
Pin Name
Pin No.
I/O
Description
Comment
ANT_GNSS
121AIGNSS antenna interface
50Ω impedance
NOTE
Page 79
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-78
/ 122
Table 37: GNSS Frequency
Type
Frequency
Unit
GPS
1575.42±1.023
MHz
GLONASS
1597.5~1605.8
MHz
BeiDou
1561.098±2.046
MHz

6.3.1. Recommended Circuit for Passive Antenna

GNSS antenna interface supports passive ceramic antennas and other types of passive antennas. When
the passive antenna is placed far away from the module (that is, the antenna trace is long), it is
recommended to add an external LNA circuit for better GNSS receiving performance, and the LNA should
be placed close to the antenna. A reference circuit design is given below.
Figure 37: Reference Circuit Design for GNSS Passive Antenna

6.3.2. Recommended Circuit for Active Antenna

The active antenna is powered by VCC power supply through the R1 and L1 power paths shown in the
following figure. The common power supply voltage ranges from 3.3V to 5.0V. Although featuring low
power consumption, the active antenna still requires stable and clean power supplies. It is recommended
to use high performance LDO as the power supply. A reference design of GNSS active antenna is shown
below.
Page 80
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-79
/ 122
Figure 38: Reference Circuit Design for GNSS Active Antenna

6.4. Antenna Installation

6.4.1. Antenna Requirement

The following table shows the requirement on main antenna, RX-diversity antenna, Wi-Fi/BT antenna and
GNSS antenna.
Table 38: Antenna Requirements
Type
Requirements
GSM/WCDMA/TD-SCDMA/
LTE
VSWR: ≤ 2
Gain (dBi): 1
Max Input Power (W): 50
Input Impedance (Ω): 50
Polarization Type: Vertical
Cable Insertion Loss: < 1dB
(GSM850, EGSM900, WCDMA B5/B6/B8/B19, CDMA BC0, LTE-FDD
B5/B8/B12/B13/B18/B19/B20/B26/B28)
Cable Insertion Loss: < 1.5dB
(DCS1800, PCS1900, WCDMA B1/B2/B4, TD-SCDMA B34/B39,
LTE-FDD B1/B2/B3/B4/B25, LTE-TDD B39)
Cable Insertion Loss: < 2dB
(LTE-FDD B7, LTE-TDD B38/B40/B41)
Wi-Fi/BT
VSWR: ≤ 2
Gain (dBi): 1
Max Input Power (W): 50
Input Impedance (Ω): 50
Page 81
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-80
/ 122
Polarization Type: Vertical
Cable Insertion Loss: < 1dB
GNSS
Frequency range: 1565MHz~1607MHz
Polarization: RHCP or linear
VSWR: < 2 (Typ.)
Passive Antenna Gain: > 0dBi
Active Antenna Noise Figure: < 1.5dB
Active Antenna Total Gain: > 18dBi (Typ.)

6.4.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector
provided by HIROSE.
Figure 39: Dimensions of the U.FL-R-SMT Connector (Unit: mm)
Page 82
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
6-81
/ 122
U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.
Figure 40: Mechanicals of U.FL-LP Connectors
The following figure describes the space factor of mated connector.
Figure 41: Space Factor of Mated Connectors (Unit: mm)
For more details, please visit http://www.hirose.com.
Page 83
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-82
/ 122
7 Electrical, Reliability and Radio
Characteristics

7.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are
listed in the following table.
Table 39: Absolute Maximum Ratings
Parameter
Min.
Max.
Unit
VBAT
-0.56V
USB_VBUS
-0.516V
Peak Current of VBAT
03A
Voltage on Digital Pins
-0.3
2.3
V

7.2. Power Supply Ratings

Table 40: SC20 Module Power Supply Ratings
Parameter
Description
Conditions
Min.
Typ.
Max.
Unit
VBAT
VBAT
The actual input voltages must
stay between the minimum and
maximum values.
3.5
3.8
4.2
V
Voltage drop
during transmitting
burst
Maximum power control level at
EGSM900.
400
mV
Page 84
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-83
/ 122
I
VBAT
Peak supply
current (during
transmission slot)
Maximum power control level at
EGSM900.
1.8
3.0
A USB_VBUS
USB detection
4.35
5.0
6.3
V
VRTC
Power supply
voltage of backup
battery.
2.0
3.0
3.25
V

7.3. Charging Performance Specifications

Table 41: Charging Performance Specifications
Parameter
Min.
Typ.
Max.
Unit
Trickle charging-A current
819099
mA
Trickle charging-A threshold voltage range (15.62mV steps)
2.5
2.796
2.984
V
Trickle charging-B threshold voltage range (18.75mV steps)
3.0
3.2
3.581
V
Charge voltage range (25mV steps)
4.2
4.775
V
Charge voltage accuracy
+/-2
%
Charge current range (90mA steps)
90
1440
mA
Charge current accuracy
+/-10
%
Charge termination current:
when charge current is from 90mA to 450mA
%
Charge termination current:
when charge current is from 450mA to 1440mA
7.4
%
Page 85
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-84
/ 122

7.4. Operating Temperature

The operating temperature is listed in the following table.
Table 42: Operating Temperature
Parameter
Min.
Typ.
Max.
Unit
Operating temperature range
1)
-35
+25
+65
ºC
Extended temperature range
2)
-40
+75
ºC
1.
1)
Within operation temperature range, the module is 3GPP compliant.
2.
2)
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like P
out
might reduce in their value and exceed the specified tolerances. When the temperature
returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

7.5. Current Consumption

The values of current consumption are shown below.
Table 43: SC20-CE R1.1 Current Consumption
Parameter
Description
Conditions
Typ.
Unit
I
VBAT
OFF state
Power down
20
uA
GSM/GPRS supply current
Sleep (USB disconnected)
@DRX=2
3.85
mA
Sleep (USB disconnected)
@DRX=5
3.01
mA
Sleep (USB disconnected)
@DRX=9
2.91
mA
WCDMA supply current
Sleep (USB disconnected)
@DRX=6
3.30
mA
NOTES
Page 86
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-85
/ 122
Sleep (USB disconnected)
@DRX=7
2.79
mA
Sleep (USB disconnected)
@DRX=8
2.49
mA
Sleep (USB disconnected)
@DRX=9
2.33
mA
LTE-FDD supply current
Sleep (USB disconnected)
@DRX=5
5.60
mA
Sleep (USB disconnected)
@DRX=6
3.83
mA
Sleep (USB disconnected)
@DRX=7
3.02
mA
Sleep (USB disconnected)
@DRX=8
2.65
mA
LTE-TDD supply current
Sleep (USB disconnected)
@DRX=5
5.49
mA
Sleep (USB disconnected)
@DRX=6
3.87
mA
Sleep (USB disconnected)
@DRX=7
3.05
mA
Sleep (USB disconnected)
@DRX=8
2.67
mA
GSM voice call
GSM900
PCL=5 @31.84dBm
TBD
mA
GSM900
PCL=12 @18.49dBm
TBD
mA
GSM900
PCL=19 @4.95dBm
TBD
mA
DCS1800
PCL=0 @28.91dBm
TBD
mA
DCS1800
PCL=7 @15.35dBm
TBD
mA
DCS1800
PCL=15 @-0.21dBm
TBD
mA
CDMA voice call BC0 (max power)
@23.91dBm
TBD
mA
BC0 (min power)
@-60.28dBm
TBD
mA
WCDMA voice call
Band1 (max power)
@22.61dBm
TBD
mA
Page 87
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-86
/ 122
Band8 (max power)
@22.74dBm
TBD
mA
EDGE data transfer
EDGE900 (1UL/4DL)
@26.29dBm
TBD
mA
EDGE900 (2UL/3DL)
@26.15dBm
TBD
mA
EDGE900 (3UL/2DL)
@26.06dBm
TBD
mA
EDGE900 (4UL/1DL)
@25.92dBm
TBD
mA
DCS1800 (1UL/4DL)
@24.89dBm
TBD
mA
DCS1800 (2UL/3DL)
@24.74dBm
TBD
mA
DCS1800 (3UL/2DL)
@24.54dBm
TBD
mA
DCS1800 (4UL/1DL)
@24.44dBm
TBD
mA
CDMA data transfer
BC0 (max power)
@23.68dBm
TBD
mA
WCDMA data transfer
Band 1 (HSDPA)
@21.64dBm
TBD
mA
Band 8 (HSDPA)
@21.61dBm
TBD
mA
Band 1 (HSUPA)
@21.36dBm
TBD
mA
Band 8 (HSUPA)
@21.56dBm
TBD
mA
LTE data transfer
LTE-FDD Band1
@22.96dBm
TBD
mA
LTE-FDD Band3
@22.95dBm
TBD
mA
LTE-FDD Band5
@22.90dBm
TBD
mA
LTE-FDD Band8
@23.17dBm
TBD
mA
LTE-TDD Band38
@22.02dBm
TBD
mA
LTE-TDD Band39
@22.13dBm
TBD
mA
LTE-TDD Band40
TBD
mA
Page 88
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-87
/ 122
@22.01dBm
LTE-TDD Band41
@22.31dBm
TBD
mA
Table 44: SC20-E Current Consumption
Parameter
Description
Conditions
Typ.
Unit
I
VBAT
OFF state
Power down
20
uA
GSM/GPRS supply current
Sleep (USB disconnected)
@DRX=2
3.58
mA
Sleep (USB disconnected)
@DRX=5
2.46
mA
Sleep (USB disconnected)
@DRX=9
2.13
mA
WCDMA supply current
Sleep (USB disconnected)
@DRX=6
2.99
mA
Sleep (USB disconnected)
@DRX=7
2.35
mA
Sleep (USB disconnected)
@DRX=8
2.01
mA
Sleep (USB disconnected)
@DRX=9
1.85
mA
LTE-FDD supply current
Sleep (USB disconnected)
@DRX=5
5.51
mA
Sleep (USB disconnected)
@DRX=6
3.56
mA
Sleep (USB disconnected)
@DRX=7
2.62
mA
Sleep (USB disconnected)
@DRX=8
2.14
mA
LTE-TDD supply current
Sleep (USB disconnected)
@DRX=5
5.93
mA
Sleep (USB disconnected)
@DRX=6
3.74
mA
Sleep (USB disconnected)
@DRX=7
2.70
mA
Sleep (USB disconnected)
@DRX=8
2.17
mA
GSM voice call
GSM850
PCL=5 @33.13dBm
263.8
mA
Page 89
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-88
/ 122
GSM850
PCL=12 @19.15dBm
134.7
mA
GSM850
PCL=19 @5.31dBm
109.2
mA
EGSM900
PCL=5 @33.07dBm
271.2
mA
EGSM900
PCL=12 @19.53dBm
137.3
mA
EGSM900
PCL=19 @5.59dBm
110.6
mA
DCS1800
PCL=0 @30.00dBm
203.0
mA
DCS1800
PCL=7 @16.45dBm
150.7
mA
DCS1800
PCL=15 @0.67dBm
130.8
mA
PCS1900
PCL=0 @29.72dBm
195.9
mA
PCS1900
PCL=7 @16.72dBm
151.3
mA
PCS1900
PCL=15 @0.98dBm
130.0
mA
WCDMA voice call
Band 1 (max power)
@23.18dBm
544.1
mA
Band 5 (max power)
@23.22dBm
513.5
mA
Band 8 (max power)
@23.29dBm
522.7
mA
GPRS data transfer
GPRS850 (1UL/4DL)
@33.12dBm
265.9
mA
GPRS850 (2UL/3DL)
@33.02dBm
435.1
mA
GPRS850 (3UL/2DL)
@30.50dBm
478.8
mA
GPRS850 (4UL/1DL)
@29.49dBM
564.0
mA
GPRS900 (1UL/4DL)
@33.10dBm
272.7
mA
GPRS900 (2UL/3DL)
@33.00dBm
445.0
mA
GPRS900 (3UL/2DL)
@30.96dBm
512.0
mA
Page 90
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-89
/ 122
GPRS900 (4UL/1DL)
@29.93dBm
599.2
mA
DCS1800 (1UL/4DL)
@29.96dBm
205.8
mA
DCS1800 (2UL/3DL)
@29.86dBm
314.3
mA
DCS1800 (3UL/2DL)
@29.73dBm
420.8
mA
DCS1800 (4UL/1DL)
@29.63dBm
531.7
mA
PCS1900 (1UL/4DL)
@29.77dBm
199.3
mA
PCS1900 (2UL/3DL)
@29.64dBm
307.2
mA
PCS1900 (3UL/2DL)
@29.54dBm
411.5
mA
PCS1900 (4UL/1DL)
@29.34dBm
518.7
mA
EDGE data transfer
EDGE850 (1UL/4DL)
@26.75dBm
172.2
mA
EDGE850 (2UL/3DL)
@27.13dBm
266.6
mA
EDGE850 (3UL/2DL)
@26.63dBm
353.1
mA
EDGE850 (4UL/1DL)
@26.54dBm
446.9
mA
EDGE900 (1UL/4DL)
@27.05dBm
182
mA
EDGE900 (2UL/3DL)
@27.13dBm
177.4
mA
EDGE900 (3UL/2DL)
@27.28dBm
278.3
mA
EDGE900 (4UL/1DL)
@27.19dBm
371.0
mA
DCS1800 (1UL/4DL)
@26.04dBm
170.6
mA
DCS1800 (2UL/3DL)
@25.98dBm
260.5
mA
DCS1800 (3UL/2DL)
@25.71dBm
349.8
mA
DCS1800 (4UL/1DL)
@25.46dBm
440.2
mA
Page 91
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-90
/ 122
PCS1900 (1UL/4DL)
@26.14dBm
171.0
mA
PCS1900 (2UL/3DL)
@26.11dBm
260.5
mA
PCS1900 (3UL/2DL)
@26.11dBm
349.6
mA
PCS1900 (4UL/1DL)
@25.70dBm
442.3
mA
WCDMA data transfer
Band 1 (HSDPA)
@22.43dBm
503.8
mA
Band 5 (HSDPA)
@22.23dBm
471.6
mA
Band 8 (HSDPA)
@22.24dBm
481.6
mA
Band 1 (HSUPA)
@22.30dBm
504.6
mA
Band 5 (HSUPA)
@21.93dBm
460.5
mA
Band 8 (HSUPA)
@21.90dBm
464.8
mA
LTE data transfer
LTE-FDD Band1
@23.29dBm
737
mA
LTE-FDD Band3
@23.29dBm
756
mA
LTE-FDD Band5
@23.44dBm
636
mA
LTE-FDD Band7
@23.28dBm
842
mA
LTE-FDD Band8
@23.44dBm
639
mA
LTE-FDD Band20
@23.36dBm
684
mA
LTE-TDD Band38
@23.19dBm
427
mA
LTE-TDD Band40
@23.17dBm
427
mA
LTE-TDD Band41
@23.19dBm
455
mA
Page 92
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-91
/ 122
Table 45: SC20-A Current Consumption
Parameter
Description
Conditions
Typ.
Unit
I
VBAT
OFF state
Power down
20
uA
GSM/GPRS supply current
Sleep USB disconnected)
@DRX=2
4.08
mA
Sleep (USB disconnected)
DRX=5
3.10
mA
Sleep (USB disconnected)
DRX=9
2.77
mA
WCDMA supply current
Sleep (USB disconnected)
DRX=6
3.86
mA
Sleep (USB disconnected)
DRX=7
2.90
mA
Sleep (USB disconnected)
DRX=8
2.55
mA
Sleep (USB disconnected)
DRX=9
2.43
mA
FDD-LTE supply current
Sleep (USB disconnected)
DRX=5
6.60
mA
Sleep (USB disconnected)
DRX=6
4.24
mA
Sleep (USB disconnected)
DRX=7
3.11
mA
Sleep (USB disconnected)
DRX=8
2.77
mA
GSM voice call
GSM850
PCL=5 @32.23dBm
254.60
mA
GSM850
PCL=12 @18.34dBm
136.30
mA
GSM850
PCL=19 @4.87dBm
111.30
mA
PCS1900
PC=L0 @29.14dBm
196.60
mA
PCS1900
PCL=7 @16.23dBm
158.40
mA
PCS1900
PCL=15 @0.62dBm
135.50
mA
WCDMA voice call Band 1 (max power)
@23.24dBm
548.13
mA
Band 2 (max power)
575.70
mA
Page 93
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-92
/ 122
@23.40dBm
Band 4 (max power)
@23.20dBm
561.35
mA
Band 5 (max power)
@23.47dBm
558.00
mA
Band 8 (max power)
@23.5dBm
557.10
mA
GPRS data transfer
GPRS850 (1UL/4DL)
@32.18dBm
254.50
mA
GPRS850 (2UL/3DL)
@32.00dBm
410.70
mA
GPRS850 (3UL/2DL)
@30.43dBm
496.10
mA
GPRS850 (4UL/1DL)
@29.37dBm
573.90
mA
PCS1900 (1UL/4DL)
@29.13dBm
198.70
mA
PCS1900 (2UL/3DL)
@29.19dBm
306.50
mA
PCS1900 (3UL/2DL)
@29.05dBm
408.90
mA
PCS1900 (4UL/1DL)
@28.84dBm
514.60
mA
EDGE data transfer
EDGE850 (1UL/4DL)
@26.39dBm
186.00
mA
EDGE850 (2UL/3DL)
@26.30dBm
280.00
mA
EDGE850 (3UL/2DL)
@26.30dBm
368.00
mA
EDGE850 (4UL/1DL)
@26.07dBm
456.00
mA
PCS1900 (1UL/4DL)
@25.70dBm
184.40
mA
PCS1900 (2UL/3DL)
@25.55dBm
276.60
mA
PCS1900 (3UL/2DL)
@25.39dBm
365.20
mA
PCS1900 (4UL/1DL)
@25.17dBm
456.50
mA
WCDMA data transfer
Band 1 (HSDPA)
@22.24dBm
506.35
mA
Page 94
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-93
/ 122
Band 2 (HSDPA)
@22.44dBm
535.10
mA
Band 4 (HSDPA)
@22.23dBm
523.07
mA
Band 5 (HSDPA)
@22.38dBm
513.13
mA
Band 8 (HSDPA)
@22.47dBm
512.30
mA
Band 1 (HSUPA)
@22.2dBm
516.00
mA
Band2 (HSUPA)
@22.4dBm
545.60
mA
Band 4 (HSUPA)
@21.93dBm
527.93
mA
Band 5 (HSUPA)
@22.26dBm
528.94
mA
Band 8 (HSUPA)
@22 dBm
507.70
mA
LTE data transfer
LTE-FDD Band2
@23.05dBm
710.01
mA
LTE-FDD Band4
@23.3dBm
736.50
mA
LTE-FDD Band5
@23.13dBm
626.18
mA
LTE-FDD Band7
@22.75dBm
733.40
mA
LTE-FDD Band12
@22.74dBm
606.02
mA
LTE-FDD Band13
@23.3dBm
674.84
mA
LTE-FDD Band25
@23.2dBm
665.62
mA
LTE-FDD Band26
@23.57dBm
718.75
mA
Table 46: SC20-AU Current Consumption
Parameter
Description
Conditions
Typ.
Unit
I
VBAT
OFF state
Power down
20
uA
GSM/GPRS supply
Sleep (USB disconnected)
TBD
mA
Page 95
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-94
/ 122
current
DRX=2
Sleep (USB disconnected)
DRX=5
TBD
mA
Sleep (USB disconnected)
DRX=9
TBD
mA
WCDMA supply current
Sleep (USB disconnected)
DRX=6
TBD
mA
Sleep (USB disconnected)
DRX=7
TBD
mA
Sleep (USB disconnected)
DRX=8
TBD
mA
Sleep (USB disconnected)
DRX=9
TBD
mA
LTE-FDD supply
current
Sleep (USB disconnected)
DRX=5
TBD
mA
Sleep (USB disconnected)
DRX=6
TBD
mA
Sleep (USB disconnected)
DRX=7
TBD
mA
Sleep (USB disconnected)
DRX=8
TBD
mA
LTE-TDD supply
current
Sleep (USB disconnected)
DRX=5
TBD
mA
Sleep (USB disconnected)
DRX=6
TBD
mA
Sleep (USB disconnected)
DRX=7
TBD
mA
Sleep (USB disconnected)
DRX=8
TBD
mA
GSM voice call
GSM850
PCL=5 @32.96dBm
268
mA
GSM850
PCL=12 @18.83dBm
133
mA
GSM850
PCL=19 @5.31dBm
109
mA
GSM900
PCL=5 @32.96dBm
267
mA
GSM900
PCL=12 @19.21dBm
137
mA
GSM900
PCL=19 @5.60dBm
108
mA
Page 96
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-95
/ 122
PCS1800
PC=L0 @29.93dBm
202
mA
PCS1800
PCL=7 @16.29dBm
152
mA
PCS1800
PCL=15 @0.62dBm
131
mA
PCS1900
PC=L0 @29.67dBm
194
mA
PCS1900
PCL=7 @16.74dBm
149
mA
PCS1900
PCL=15 @1.09dBm
130
mA
WCDMA voice call
Band 1 (max power)
@23.33dBm
561
mA
Band 2 (max power)
@23.51dBm
521
mA
Band 5 (max power)
@23.37dBm
551
mA
Band 8 (max power)
@23.38dBm
478
mA
GPRS
data transfer
GPRS850 (1UL/4DL)
@32.91dBm
267
mA
GPRS850 (2UL/3DL)
@32.73dBm
TBD
mA
GPRS850 (3UL/2DL)
@30.72dBm
503
mA
GPRS850 (4UL/1DL)
@29.38dBm
574
mA
GSM900 (1UL/4DL)
@32.92dBm
266
mA
GSM900 (2UL/3DL)
@32.74dBm
TBD
mA
GSM900 (3UL/2DL)
@30.85dBm
509
mA
GSM900 (4UL/1DL)
@29.58dBm
583
mA
DCS1800 (1UL/4DL)
@39.81dBm
205
mA
DCS1800 (2UL/3DL)
@39.70dBm
316
mA
DCS1800 (3UL/2DL)
@29.50dBm
TBD
mA
Page 97
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-96
/ 122
DCS1800 (4UL/1DL)
@29.34dBm
530
mA
PCS1900 (1UL/4DL)
@29.58dBm
TBD
mA
PCS1900 (2UL/3DL)
@29.48dBm
TBD
mA
PCS1900 (3UL/2DL)
@29.31dBm
TBD
mA
PCS1900 (4UL/1DL)
@29.40dBm
TBD
mA
EDGE
data transfer
EDGE850 (1UL/4DL)
@26.70dBm
TBD
mA
EDGE850 (2UL/3DL)
@27.02dBm
300
mA
EDGE850 (3UL/2DL)
@26.60dBm
389
mA
EDGE850 (4UL/1DL)
@26.33dBm
457
mA
GSM900 (1UL/4DL)
@26.87dBm
178
mA
GSM900 (2UL/3DL)
@27.27dBm
276
mA
GSM900 (3UL/2DL)
@26.85dBm
394
mA
GSM900 (4UL/1DL)
@26.53dBm
490
mA
DCS1800 (1UL/4DL)
@25.39dBm
197
mA
DCS1800 (2UL/3DL)
@25.40dBm
287
mA
DCS1800 (3UL/2DL)
@25.35dBm
373
mA
DCS1800 (4UL/1DL)
@25.05dBm
461
mA
PCS1900 (1UL/4DL)
@26.03dBm
168
mA
PCS1900 (2UL/3DL)
@26.07dBm
257
mA
PCS1900 (3UL/2DL)
@25.81dBm
345
mA
PCS1900 (4UL/1DL)
@25.70dBm
436
mA
Page 98
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-97
/ 122
WCDMA data transfer
Band 1 (HSDPA)
@23.02dBm
517
mA
Band 2 (HSDPA)
@23.11dBm
550
mA
Band 5 (HSDPA)
@22.68dBm
486
mA
Band 8 (HSDPA)
@22.72dBm
466
mA
Band 1 (HSUPA)
@22.39dBm
521
mA
Band2 (HSUPA)
@23.19dBm
509
mA
Band 5 (HSUPA)
@22.44dBm
503
mA
Band 8 (HSUPA)
@22.25dBm
474
mA
LTE data transfer
LTE-FDD Band1
@23.37dBm
698
mA
LTE-FDD Band3
@23.06dBm
709
mA
LTE-FDD Band5
@23.25dBm
643
mA
LTE-FDD Band7
@22.82dBm
802
mA
LTE-FDD Band8
@23.47dBm
620
mA
LTE-FDD Band28
@23.13dBm
756
mA
LTE-TDD Band40
@23.24dBm
388
mA
Table 47: SC20-J Current Consumption
Parameter
Description
Conditions
Typ.
Unit
I
VBAT
OFF state
Power down
20
uA
WCDMA supply
current Sleep (USB disconnected)
DRX=6
TBD
mA
Sleep (USB disconnected)
DRX=7
TBD
mA
Sleep (USB disconnected)
TBD
mA
Page 99
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-98
/ 122
DRX=8
Sleep (USB disconnected)
DRX=9
TBD
mA
LTE-FDD supply
current
Sleep (USB disconnected)
DRX=5
TBD
mA
Sleep (USB disconnected)
DRX=6
TBD
mA
Sleep (USB disconnected)
DRX=7
TBD
mA
Sleep (USB disconnected)
DRX=8
TBD
mA
LTE-TDD supply
current
Sleep (USB disconnected)
DRX=5
TBD
mA
Sleep (USB disconnected)
DRX=6
TBD
mA
Sleep (USB disconnected)
DRX=7
TBD
mA
Sleep (USB disconnected)
DRX=8
TBD
mA
WCDMA voice call
Band 1 (max power)
@22.97dBm
TBD
mA
Band 6 (max power)
@22.99dBm
TBD
mA
Band 8 (max power)
@23.20dBm
TBD
mA
Band 19 (max power)
@22.99dBm
TBD
mA
WCDMA data transfer
Band 1 (HSDPA)
@22.13dBm
482
mA
Band 6 (HSDPA)
@22.28dBm
TBD
mA
Band 8 (HSDPA)
@22.17dBm
471
mA
Band 19 (HSDPA)
@22.31dBm
500
mA
Band 1 (HSUPA)
@21.4dBm
494
mA
Band 6 (HSUPA)
@22.11dBm
TBD
mA
Band 8 (HSUPA)
@21.57dBm
472
mA
Page 100
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
7-99
/ 122
Band 19 (HSUPA)
@22.10dBm
TBD
mA
LTE data transfer
LTE-FDD Band1
@23.64dBm
TBD
mA
LTE-FDD Band3
@23.52dBm
TBD
mA
LTE-FDD Band8
@23.40dBm
637
mA
LTE-FDD Band18
@23.45dBm
TBD
mA
LTE-FDD Band19
@23.42dBm
TBD
mA
LTE-FDD Band26
@23.36dBm
TBD
mA
LTE-TDD Band41
@23.23dBm
451
mA

7.6. RF Output Power

The following table shows the RF output power of SC20 module.
Table 48: RF Output Power
Frequency
Max.
Min.
GSM850
33dBm±2dB
5dBm±5dB
EGSM900
33dBm±2dB
5dBm±5dB
DCS1800
30dBm±2dB
0dBm±5dB
PCS1900
30dBm±2dB
0dBm±5dB
WCDMA Band1
24dBm+1/-3dB
<-49dBm
WCDMA Band2
24dBm+1/-3dB
<-49dBm
WCDMA Band4
24dBm+1/-3dB
<-49dBm
WCDMA Band5
24dBm+1/-3dB
<-49dBm
WCDMA Band6
24dBm+1/-3dB
<-49dBm
Loading...