ET-312 is a compact, high performance, and low power consumption GPS engine board. It uses SiRF
Star III chipset which can track up to 20 satellites at a time and perform fast TTFF in weak signal
environments. ET-312 is suitable for the following applications:
‧ Automotive navigation
‧ Personal positioning
‧ Fleet management
‧ Mobile phone navigation
‧ Marine navigation
Product Features:
SiRF star III high performance GPS Chipset
Very high sensitivity (Tracking Sensitivity: -159 dBm)
Extremely fast TTFF (Time To First Fix) at low signal level
One serial ports
4Mb flash
Built-in LNA
Compact size (28mm * 20 mm * 2.9mm) suitable for space-sensitive application
One size component, easy to mount on another PCB board
Support NMEA 0183 and SiRF binary protocol
Product Specifications
Chipset SiRF GSC3f/LP
Frequency L1, 1575.42 MHz
Code C/A Code
GPS Receiver
Protocol NMEA 0183 v2.2
Default:GGA,GSA,GSV,RMC
Support:VTG,GLL,ZDA)
SiRF binary and NMEA Command
Available Baud Rate 4,800 to 57,600 bps adjustable
2. RF Connect to External Active Antenna. While external antenna is used, the
optional power is needed.
3. GND Ground.
4. GND Ground.
5. GND Ground.
6. GND Ground.
7. VIN This is the main DC supply for a 3.3V +- 5% DC input power module board.
8. BATTERY This is the battery backup input that powers the SRAM and RTC when main
power is removed. Ty pical current draw is 15uA. Without an external backup
battery, the module/engine board will execute a cold star after every turn on.
To achieve the faster start-up offered by a hot or warm start, a battery
backup must be connected. The battery voltage should be between 2.0v and
9. GPIO1 User can use this I/O pin for special function.For example, on/off LED
10. TX This is the main transmits channel for outputting navigation and
measurement data to user’s navigation software or user written
software.Output TTL level, 0V ~ 2.85V
11. RX This is the main receive channel for receiving software command s to the
engine board from SiRFdemo software or from user written software.
/S Indicator
Longitude 12158.3416 dddmm.mmm
E/W Indicator W E=east or W=wes
Position Fix Indicator 1 See Table B-3
Satellites Used 07 Range 0 to 12
HDOP 1.0 Horizontal Dilution of Precision
MSL Altitude1 9.0 meters
Units M meters
Geoid Separation1 meters
Units M meters
Age of Diff. Corr. second
Diff. Ref. Station ID 0000
Checksum *18
<CR><LF> End of message termination
SiRF Technology Inc. does not support geoid corrections. Values are WGS84 ellipsoid heights.
N=north or S=south
ull fields when DGPS is not used
Version 1.4
Table B-3 Position Fix Indicator
Va l ue D es c ri
0 Fix not available or invali
1 GPS SPS Mode, fix vali
2 Differential GPS, SPS Mode , fix vali
3 GPS PPS Mode, fix vali
tion
GLL-Geographic Position-Latitude/Longitude
Table B-4 contains the values for the following example:
Name Exam
Message ID $GPGLL GLL protocol heade
Latitude 3723.2475 ddmm.mmmm
/S Indicator n N=north or S=south
Longitude 12158.3416 dddmm.mmm
E/W Indicator W E=east or W=wes
UTC Position 161229.487 hhmmss.sss
Status A A=data valid or V=data not valid
Checksum *2C
<CR><LF> End of message termination
le Units Description
GSA-GNSS DOP and Active Satellites
Table B-5 contains the values for the following example:
Message ID $GPGSAGSA protocol header
Mode1 A See Table B-6
Mode2 3 See Table B-7
Satellite Used1 07 Sv on Channel 1
Satellite Used1 02 Sv on Channel 2
…..
Satellite Used1 Sv on Channel 12
PDOP 1.8 Position dilution of Precision
HDOP 1.0 Horizontal dilution of Precision
VDOP 1.5 Vertical dilution of Precision
Checksum *33
<CR><LF> End of message termination
1. Satellite used in solution.
Table B-6 Mode1
Va l ue Description
M Manual-forced to operate in 2D or 3D mode
A 2Dautomatic-allowed to automatically switch 2D/3D
Table B-7 Mode 2
Va l ue Description
1 Fix Not Available
2 2D
3 3D
GSV-GNSS Satellites in View
Table B-8 contains the values for the following example:
umber of Messages1 2 Range 1 to 3
Message Numbe
Satellites in View 07
Satellite ID 07Channel 1(Range 1 to 32
Elevation 79degreesChannel 1(Maximum90
Azimuth 048degreesChannel 1(True, Range 0 to 359
SNR(C/No) 42dBHz Range 0 to 99,null when not trackin
……. …….
Satellite ID 27Channel 4 (Range 1 to 32
Elevation 27DegreesChannel 4(Maximum90
Azimuth 138DegreesChannel 4(True, Range 0 to 359
SNR(C/No) 42dBHz Range 0 to 99,null when not trackin
Checksum *71
<CR><LF> End of message termination
Depending on the number of satellites tracked multiple messages of GSV data may be required.
1
1 Range 1 to 3
Version 1.4
RMC-Recommended Minimum Specific GNSS Data
Table B-10 contains the values for the following example:
Message ID $GPRMC RMC protocol heade
UTC Time 161229.487 hhmmss.sss
Status A A=data valid or V=data not valid
Latitude 3723.2475 ddmm.mmmm
/S Indicator
Longitude 12158.3416 dddmm.mmm
E/W Indicator W E=east or W=wes
Speed Over Ground 0.13knots
Course Over Ground 309.62 degrees True
Date 120598 ddmm
Magnetic Variation2 degreesE=east or W=wes
Checksum *10
<CR><LF> End of message termination
SiRF Technology Inc. does not support magnetic declination. All “course over ground” data are
Message ID $GPVTG VTG protocol heade
Course 309.62 degreesMeasured headin
Reference T True
Course degreesMeasured headin
Reference MMagnetic
Speed 0.13 knotsMeasured horizontal speed
Units
Speed 0.2 Km/h
Units K Kilometers
Checksum *6E
<CR><LF> End of message termination
Knots
Measured horizontal speed
er hou
Version 1.4
2.2 NMEA Input Command
A). Set Serial Port ID:100 Set PORTA parameters and protocol
This command message is used to set the protocol(SiRF Binary, NMEA, or USER1) and/or the
communication parameters(baud, data bits, stop bits, parity). Generally,this command would be used to
switch the module back to SiRF Binary protocol mode where a more extensive command message set is
available. For example,to change navigation parameters. When a valid message is received,the parameters
will be stored in battery backed SRAM and then the receiver will restart using the saved parameters.
Example 1: Switch to SiRF Binary protocol at 9600,8,N,1
$PSRF100,0,9600,8,1,0*0C<CR><LF>
Example 2: Switch to User1 protocol at 38400,8,N,1
$PSRF100,4,38400,8,1,0*38<CR><LF>
**Checksum Field: The absolute value calculated by exclusive-OR the 8 data bits of
each character in the Sentence,between, but excluding “$” and “*”. The
hexadecimal value of the most significant and least significant 4 bits of the result are
convertted to two ASCII characters (0-9,A-F) for transmission. The most
significant character is transmitted first.
**<CR><LF> : Hex 0D 0A
Version 1.4
B). Navigation lnitialization ID:101 Parameters required for start
This command is used to initialize the module for a warm start, by providing current position (in X, Y, Z
coordinates),clock offset, and time. This enables the receiver to search for the correct satellite signals at
the correct signal parameters. Correct initialization parameters will enable the receiver to acquire signals
more quickly, and thus, produce a faster navigational solution.
When a valid Navigation Initialization command is received, the receiver will restart using the input
parameters as a basis for satellite selection and acquisition.