TRINAMIC TMC222 Technical data

TMC222 DATASHEET (V. 1.06 / March 15, 2007) 1
TMC222 – DATASHEET
Micro Stepping Stepper Motor Controller / Driver with Two Wire Serial Interface
TRINAMIC® Motion Control GmbH & Co. KG
SDA
SCL
VDD
GND
TST
open
GND
HW
CPN
CPP
1
2
3
4
5
6
7
8
9
10
TRINAMIC
TMC222
20
SWI
19
VBAT
18
OA1
GND
OA2
OB1
GND
OB2
VBAT
VCP
OB2
OB2 VBAT VBAT
VBAT
VCP
CPP
CPN
17
16
15
14
13
12
11
GND
1718192021222324
NC
GND
HW
OB1
GND
OA2
OB1
TMC 222
QFN32
Top view
open
TST
OA2
GND
GND
VDD
GND
3231302928272625
910111213141516
SCL
Sternstraße 67
D – 20357 Hamburg
GERMANY
12345678
OA1 OA1 VBAT VBAT VBAT SWI NC SDA
P +49 - (0) 40 - 51 48 06 - 0
F +49 - (0) 40 - 51 48 06 - 60
www.trinamic.com
info@trinamic.com
1 Features
The TMC222 is a combined micro-stepping stepper motor motion controller and driver with RAM and OTP memory. The RAM or OTP memory is used to store motor parameters and configuration settings. The TMC222 allows up to four bit of micro stepping and a coil current of up to 800 mA. After initialization it performs all time critical tasks autonomously based on target positions and velocity parameters. Communications to a host takes place via a two wire serial interface. Together with an inexpensive micro controller the TMC222 forms a complete motion control system. The main benefits of the TMC222 are:
Motor driver
Controls one stepper motor with four bit micro stepping
Programmable Coil current up to 800 mA
Supply voltage range operating range 8V ... 29V
Fixed frequency PWM current control with automatic selection of fast and slow decay mode
Full step frequencies up to 1 kHz
High temperature, open circuit, short, over-current and under-voltage diagnostics
Motion controller
Internal 16-bit wide position counter
Configurable speed and acceleration settings
Build-in ramp generator for autonomous positioning and speed control
On-the-fly alteration of target position
reference switch input available for read out
Two wire serial interface
Transfer rates up to 350 kbps
Diagnostics and status information as well as motion parameters accessible
Field-programmable node addresses (32)
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
2 TMC222 DATASHEET (V. 1.06 / March 15, 2007)
Life support policy
TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.
Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.
© TRINAMIC Motion Control GmbH & Co. KG 2007 Information given in this data sheet is believed to
be accurate and reliable. However no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result form its use.
Specifications subject to change without notice.
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
TMC222 DATASHEET (V. 1.06 / March 15, 2007) 3
Table of Contents
1 FEATURES................................................................................................................................1
2 GENERAL DESCRIPTION ........................................................................................................5
2.1 Block Diagramm..................................................................................................................5
2.2 Position Controller / Main Control........................................................................................5
2.3 Stepper Motor Driver ...........................................................................................................5
2.4 Two Wire Serial Interface ....................................................................................................5
2.5 Miscellaneous .....................................................................................................................6
2.6 Pin and Signal Descriptions.................................................................................................6
3 TYPICAL APPLICATION...........................................................................................................7
4 ORDERING INFORMATION......................................................................................................7
5 FUNCTIONAL DESCRIPTION...................................................................................................8
5.1 Position Controller and Main Controller ...............................................................................8
5.1.1 Stepping Modes ...........................................................................................................8
5.1.2 Velocity Ramp..............................................................................................................8
5.1.3 Examples for different Velocity Ramps.........................................................................9
5.1.4 Vmax Parameter........................................................................................................10
5.1.5 Vmin Parameter.........................................................................................................11
5.1.6 Acceleration Parameter..............................................................................................11
5.1.7 Position Ranges.........................................................................................................12
5.1.8 Secure Position..........................................................................................................12
5.1.9 External Switch ..........................................................................................................12
5.1.10 Motor Shutdown Management.................................................................................... 13
5.1.11 Reference Search / Position initialization....................................................................14
5.1.12 Temperature Management......................................................................................... 15
5.1.13 Battery Voltage Management .....................................................................................16
5.1.14 Internal handling of commands and flags ...................................................................17
5.2 RAM and OTP Memory..................................................................................................... 19
5.2.1 RAM Registers...........................................................................................................19
5.2.2 Status Flags...............................................................................................................20
5.2.3 OTP Memory Structure ..............................................................................................21
5.3 Stepper Motor Driver .........................................................................................................21
5.3.1 Coil current shapes.....................................................................................................22
5.3.2 Transition Irun to Ihold................................................................................................23
5.3.3 Chopper Mechanism ..................................................................................................24
6 TWO-WIRE SERIAL INTERFACE...........................................................................................25
6.1 Physical Layer................................................................................................................... 25
6.2 Communication on Two Wire Serial Bus Interface.............................................................25
6.3 Physical Address of the circuit........................................................................................... 26
6.4 Write data to TMC222....................................................................................................... 26
6.5 Read data from TMC222...................................................................................................27
6.6 Timing characteristics of the serial interface ......................................................................28
6.7 Application Commands Overview......................................................................................29
6.8 Command Description .......................................................................................................30
6.8.1 GetFullStatus1 ...........................................................................................................30
6.8.2 GetFullStatus2 ...........................................................................................................31
6.8.3 GetOTPParam ...........................................................................................................31
6.8.4 GotoSecurePosition ................................................................................................... 32
6.8.5 HardStop....................................................................................................................32
6.8.6 ResetPosition.............................................................................................................32
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
4 TMC222 DATASHEET (V. 1.06 / March 15, 2007)
6.8.7 ResetToDefault.......................................................................................................... 33
6.8.8 RunInit.......................................................................................................................33
6.8.9 SetMotorParam..........................................................................................................34
6.8.10 SetOTPParam ........................................................................................................... 34
6.8.11 SetPosition.................................................................................................................35
6.8.12 SoftStop..................................................................................................................... 35
6.9 Positioning Task Example .................................................................................................36
7 FREQUENTLY ASKED QUESTIONS...................................................................................... 38
7.1 Using the bus interface...................................................................................................... 38
7.2 General problems when getting started.............................................................................38
7.3 Using the device ............................................................................................................... 39
7.4 Finding the reference position...........................................................................................40
8 PACKAGE OUTLINE ..............................................................................................................41
8.1 SOIC-20............................................................................................................................ 41
8.2 QFN32..............................................................................................................................42
9 PACKAGE THERMAL RESISTANCE .....................................................................................43
9.1 SOIC-20 Package............................................................................................................. 43
10 ELECTRICAL CHARACTERISTICS....................................................................................44
10.1 Absolute Maximum Ratings........................................................................................... 44
10.2 Operating Ranges.......................................................................................................... 44
10.3 DC Parameters..............................................................................................................44
10.4 AC Parameters..............................................................................................................46
REVISION HISTORY......................................................................................................................47
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
TMC222 DATASHEET (V. 1.06 / March 15, 2007) 5
2 General Description
2.1 Block Diagramm
SWI SDA SCL
HW
TST
VBAT
VDD
Two Wire
Serial
Interface
Serial
Interface
Controller
Test
Voltage
Regulator
Position Controller
Main control
Registers
&
OTP + ROM
Oscillator
Decoder
Sinewave
table
DACs
Charge
Pump
VCP CP2 CP1
PWM
regulator
X
PWM
regulator
Y
Reference Voltage
&
Thermal Monitoring
2.2 Position Controller / Main Control
Motor parameters, e.g. acceleration, velocity and position parameters are passed to the main control block via the serial interface. These information are stored internally in RAM or OTP memory and are accessible by the position controller. This block takes over all time critical tasks to drive a stepper motor to the desired position under abiding the desired motion parameters. The main controller gets feedback from the stepper motor driver block and is able to arrange internal actions in case of possible problems. Diagnostics information about problems and errors are transferred to the serial interface block.
2.3 Stepper Motor Driver
Two H-bridges are employed to drive both windings of a bipolar stepper motor. The internal transistors can reach an output current of up to 800 mA. The PWM principle is used to force the given current through the coils. The regulation loop performs a comparison between the sensed output current and the internal reference. The PWM signals to drive the power transistors are derived from the output of the current comparator.
2.4 Two Wire Serial Interface
Communication between a host and the TMC222 takes places via the two wire bi-directional serial interface. Motion instructions and diagnostics information are provided to or from the Main Control block. It is possible to connect up to 32 devices on the same bus. Slave addresses are programmable via OTP memory or an external pin.
OA1
OA2
OB1
OB2
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
6 TMC222 DATASHEET (V. 1.06 / March 15, 2007)
VBAT
VBAT
VBAT
20141
2.5 Miscellaneous
Besides the main blocks the TMC222 contains the following:
an internal charge pump used to drive the high side transistors.
an internal oscillator running at 4 MHz +/- 10% to clock the two wire serial interface, the
positioning unit, and the main control block
internal voltage reference for precise referencing
a 5 Volts voltage regulator to supply the digital logic
protection block featuring Thermal Shutdown, Power-On-Reset, etc.
2.6 Pin and Signal Descriptions
SDA
SCL
VDD
GND
TST
open
GND
HW
CPN
CPP
2
3
4
5
6
7
8
9
10
TRINAMIC
TMC222
Name SOIC20 QFN32 Description
SDA 1 8 SDA Serial Data input/output
SCL 2 9 SCL Serial Clock input VDD 3 10 internal supply (needs external decoupling capacitor) GND 4,7,14,17 11,14,25,26,
31,32
TST 5 12 test pin (to be tied to ground in normal operation) open 6 13 must be left open
HW 8 15 hard-wired serial interface address bit input CPN 9 17 negative connection of external charge pump capacitor CPP 10 18 positive connection of external charge pump capacitor VCP 11 19 connection of external charge pump filter capacitor
VBAT 12, 19 3-5,20-22 battery voltage supply
OB2 13 23,24 negative end of phase B coil OB1 15 27,28 positive end of phase B coil OA2 16 29,30 negative end of phase A coil OA1 18 1,2 positive end of phase A coil SWI 20 6 reference switch input
NC 7,16 internally not connected (shields when connected to ground)
SWI
19
VBAT
18
OA1
17
GND
16
OA2
15
OB1
GND
13
OB2
12
VBAT
11
VCP
ground, heat sink
OA1
OA1 VBAT VBAT
VBAT
SWI
NC
SDA
OA2
OA2
GND
GND
32 31 30 29 28 27 26 25
1 2 3 4 5 6 7 8
TMC 222
QFN32
9 10 11 12 13 14 15 16
VDD
TST
GND
Top view
SCL
OB1
open
OB1
GND
GND
HW
GND
NC
OB2 OB2
VCP CPP CPN
17 18 19 20 21 22 23 24
Table 1: TMC222 Signal Description
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
TMC222 DATASHEET (V. 1.06 / March 15, 2007) 7
3 Typical Application
Two wire serial Interface
100 nF
1 µF Tantalum
External
SWI
VBAT
OA1
GND
OA2
OB1
20
19
18
17
16
15
1k? /1/4W
100 nF
SDA1
SCL2
VDD3
GND4
TST5
open6
Switch
SWI
2.7 nF
Connect to GND or V
BAT
M
GND
OB2
VBAT
VCP
14
13
100 nF
12
11
220 nF 16 V
100 µF
Connect to
GND or V
BAT
2.7 nF
1k? /1/4W
220 nF 16 V
GND7
HW8
CPN9
CPP10
Figure 1: TMC222 Typical Application
Notes :
Resistors tolerance +- 5%
2.7nF capacitors: 2.7nF is the minimum value, 10nF is the maximum value
the 1µF and 100µF must have a low ESR value
100nF capacitors must be close to pins VBB and VDD
220nF capacitors must be as close as possible to pins CPN, CPP, VCP and VBB to reduce EMC radiation.
V
BAT
8...29 V
4 Ordering Information
Part No. Package Peak Current Temperature Range
TMC222-PI20
(pre-series marking,
same IC as TMC222-SI)
TMC222-SI SOIC-20 800mA -40°C..125°C
TMC222-LI QFN32 800mA -40°C..125°C
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
SOIC-20 800 mA -40°C..125°C
Table 2: Ordering Information
8 TMC222 DATASHEET (V. 1.06 / March 15, 2007)
5 Functional Description
5.1 Position Controller and Main Controller
5.1.1 Stepping Modes
The TMC222 supports up to 16 micro steps per full step, which leads to smooth and low torque ripple motion of the stepping motor. Four stepping modes (micro step resolutions) are selectable by the user (see also Table 11):
Half step Mode
1/4 Micro stepping
1/8 Micro stepping
1/16 Micro stepping
5.1.2 Velocity Ramp
A common velocity ramp where a motor drives to a desired position is shown in the figure below. The motion consists of a acceleration phase, a phase of constant speed and a final deceleration phase. Both the acceleration and the deceleration are symmetrical. The acceleration factor can be chosen from a table with 16 entries. (Table 5: Acc Parameter on page 11). A typical motion begins with a start velocity Vmin. During acceleration phase the velocity is increased until Vmax is reached. After acceleration phase the motion is continued with velocity Vmax until the velocity has to be decreased in order to stop at the desired target position. Both velocity parameters Vmin and Vmax are programmable, whereas Vmin is a programmable ratio of Vmax. (See Table 3: Vmax Parameter on page 10 and Table 4: Vmin on page 11). The user has to take into account that Vmin is not allowed to change while a motion is ongoing. Vmax is only allowed to change under special circumstances. (See 5.1.4 Vmax Parameter on page 10).
The peak current value to be fed to each coil of the stepper-motor is selectable from a table with 16 possible values. It has to be distinguished between the run current Irun and the hold current Ihold. Irun is fed through the stepper motor coils while a motion is performed, whereas Ihold is the current to hold the stepper motor before or after a motion. More details about Irun and Ihold can be found in
5.3.1. and 5.3.2. Velocity resp. acceleration parameters are accessable via the serial interface. These parameters are
written via the SetMotorParam command (see 6.8.9) and read via the GetFullStatus1 command (see
6.8.1). Velocity V
[FS/s]
V
max
V
min
X
start
State of Motion
No
Movement
Acceleration
Phase Constant Velocity
Deceleration
Phase
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
X
target
Movement
time
[s]
No
TMC222 DATASHEET (V. 1.06 / March 15, 2007) 9
5.1.3 Examples for different Velocity Ramps
The following figures show some examples of typical motions under different conditions:
Velocity V
V
max
V
min
X
start
X
target_1
X
target_2
time
Figure 2: Motion with change of target position
Velocity V
V
max
V
min
X
start
X
target_1
X
target_2
time
Figure 3: Motion with change of target position while in deceleration phase
Velocity V
V
max
V
min
X
start
X
target
time
Figure 4: Short Motion Vmax is not reached
Velocity V
V
max
V
min
X
start
X
target_1
X
target_2
time
Figure 5: Linear Zero crossing (change of target position in opposite direction)
The motor crosses zero velocity with a linear shape. The velocity can be smaller than the programmed Vmin value during zero crossing. Linear zero crossing provides very low torque ripple to the stepper motor during crossing.
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
10 TMC222 DATASHEET (V. 1.06 / March 15, 2007)
5.1.4 Vmax Parameter
The desired maximum velocity Vmax can be chosen from the table below:
Stepping Mode Vmax
1/8 micro
stepping
[micro-steps/s]
1/16 micro
stepping
[micro-steps/s]
index
0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
Vmax
[FS/s]
99 136 273 546 1091 2182 167 334 668 1335 2670 197 395 790 1579 3159 213 425 851 1701 3403 228 456 912 1823 3647 243 273 546 1091 2182 4364 303 607 1213 2426 4852 334 668 1335 2670 5341 364 729 1457 2914 5829 395 790 1579 3159 6317 456 546 1091 2182 4364 8728 729 1457 2914 5829 11658 973
Vmax
group
A
B
C
D
Half-Step
Mode
[half-steps/s]
197 395 790 1579
486 973 1945 3891
912 1823 3647 7294
1945 3891 7782 15564
1/4 micro
stepping
[micro-steps/s]
Table 3: Vmax Parameter
Under special circumstances it is possible to change the Vmax parameters while a motion is ongoing. All 16 entries for the Vmax parameter are divided into four groups A, B, C and D. When changing Vmax during a motion take care that the new Vmax value is within the same group. Background: The TMC222 uses an internal pre-divider for positioning calculations. Within one group the pre-divider is equal. When changing Vmax between different groups during a motion, correct positioning is not ensured anymore.
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
TMC222 DATASHEET (V. 1.06 / March 15, 2007) 11
Vmin
Vmax
5.1.5 Vmin Parameter
The minimum velocity parameter is a programmable ratio between 1/32 and 15/32 of Vmax. It is also possible to set Vmin to the same velocity as Vmax by setting Vmin index to zero. The table below shows the possible rounded values of Vmin given within unit [FS/s].
Vmax group [A...D] and Vmax index [0…15]
index
factor
A B C D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 1 1/32 2 2/32 3 3/32 4 4/32 5 5/32 6 6/32 7 7/32 8 8/32
9 9/32 10 10/32 11 11/32 12 12/32 13 13/32 14 14/32 15 15/32
99 136 167 197 213 228 243 273 303 334 364 395 456 546 729 973
3 4 5 6 6 7 7 8 8 10 10 11 13 15 19 26 6 8 10 11 12 13 14 15 17 19 21 23 27 30 42 57
9 12 15 18 19 21 22 25 27 30 32 36 42 50 65 88 12 16 20 24 26 28 30 32 36 40 44 48 55 65 88 118 15 21 26 30 32 35 37 42 46 52 55 61 71 84 111 149 18 25 30 36 39 42 45 50 55 61 67 72 84 99 134 179 22 30 36 43 46 50 52 59 65 72 78 86 99 118 156 210 24 33 41 49 52 56 60 67 74 82 90 97 112 134 179 240 28 38 47 55 59 64 68 76 84 94 101 111 128 153 202 271 30 42 52 61 66 71 75 84 94 103 112 122 141 168 225 301 34 47 57 68 72 78 83 94 103 114 124 135 156 187 248 332 37 50 62 73 79 85 91 101 112 124 135 147 170 202 271 362 40 55 68 80 86 92 98 111 122 135 147 160 185 221 294 393 43 59 72 86 92 99 106 118 132 145 158 172 198 236 317 423 46 64 78 92 99 107 114 128 141 156 170 185 214 256 340 454
Table 4: Vmin values [FS/s] for all Vmin index – Vmax index combinations
5.1.6 Acceleration Parameter
The acceleration parameter can be chosen from a wide range of available values as described in the table below. Please note that the acceleration parameter is not to change while a motion is ongoing.
Acceleration Values in [FS/s2] dependent on Vmax
Acc index
0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
99 136 167 197 213 228 243 273 303 334 364 395 456 546 729 973
49 106 473
14785
29570
Vmax [FS/s]
218 735
1004 3609 6228
8848 11409 13970 16531
19092 21886 24447 27008 29570
34925 40047
Table 5: Acc Parameter
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
12 TMC222 DATASHEET (V. 1.06 / March 15, 2007)
Acc
2
The amount of equivalent full steps during acceleration phase can be computed by the next equation:
Nstep
2
V
?
?
V
2
minmax
?
5.1.7 Position Ranges
Position information is coded by using two’s complement format. Depending on the stepping mode (See 5.1.1) the position ranges are as listed in the following table:
Stepping Mode Position Range Full range excursion
Half-stepping -4096…+4095
(-212…+212-1)
1/4 micro-stepping -8192…+8191
(-213…+213-1)
1/8 micro-stepping -16384…+16383
(-214…+214-1)
1/16 micro-stepping -32768…+32767
(-215…+215-1)
8192 half-steps
213
16384 micro-steps
214
32768 micro-steps
215
65536 micro-steps
216
Table 6: Position Ranges
Target positions can be programmed via serial interface by using the SetPosition command (see
6.8.11). The actual motor position can be read by the GetFullStatus2 command (see 6.8.2).
5.1.8 Secure Position
The GotoSecurePosition command drives the motor to a pre-programmed secure position (see 6.8.4). The secure position is programmable by the user. Secure position is coded with 11 bits, therefore the resolution is lower than for normal positioning commands, as shown in the following table.
Stepping Mode Secure Position Resolution
Half-stepping 4 half steps 1/4 micro stepping 8 micro steps (1/4th) 1/8 micro stepping 16 micro steps (1/8th)
1/16 micro stepping 32 micro steps (1/16th)
Table 7: Secure Position Resolution
5.1.9 External Switch
Pin SWI (see Figure 1, on page 7) will attempt to source and sink current in/from the external switch pin. This is to check whether the external switch is open or closed, resp. if the pin is connected to ground or Vbat. The status of the switch can be read by using the GetFullStatus1 command. As long as the switch is open, the <ESW> flag is set to zero.
The ESW flag just represents the status of the input switch. The SWI input is intended as a physical interface for a mechanical switch that requires a cleaning current for proper operation. The SWI input detects if the switch is open or connected either to ground or to Vbat. The SWI input is not a digital logic level input. The status of the switch does not automatically perform actions as latching of the actual position. Those actions have to be realized by the application software.
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
TMC222 DATASHEET (V. 1.06 / March 15, 2007) 13
5.1.10 Motor Shutdown Management
The TMC222 is set into motor shutdown mode as soon as one of the following condition occurs:
The chip temperature rises above the thermal shutdown threshold T
. See 5.1.12 Temperature
tsd
Management on Page 15
The battery voltage drops below UV2 See 5.1.13 Battery Voltage Management on Page 16.
An electrical problem occurred, e.g. short circuit, open circuit, etc. In case of such an problem
flag <ElDef> is set to one.
Chargepump failure, indicated by <CPFail> flag set to one.
During motor shutdown the following actions are performed by the main controller:
H-bridges are set into high impedance mode
The target position register TagPos is loaded with the contents of the actual position register
ActPos.
The two-wire-serial-interface remains active during motor shutdown. To leave the motor shutdown state the following conditions must be true:
Conditions which led to a motor shutdown are not active anymore
A GetFullStatus1 command is performed via serial interface.
Leaving the motor shutdown state initiates the following
H-bridges in Ihold mode
Clock for the motor control digital circuitry is enabled
The charge pump is active again
Now the TMC222 is ready to execute any positioning command.
IMPORTANT NOTE: First, a GetFullStatus1 command has to be executed after power-on to activate the TMC222.
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
14 TMC222 DATASHEET (V. 1.06 / March 15, 2007)
5.1.11 Reference Search / Position initialization
A stepper motor does not provide information about the actual position of the motor. Therefore it is recommended to perform a reference drive after power-up or if a motor shutdown happened in case of a problem. The RunInit command initiates the reference search. The RunInit command consists of a Vmin and Vmax parameter and also position information about the end of first and second motion (6.8.8 RunInit).
A reference drive consists of two motions (Figure 6: RunInit): The first motion is to drive the motor into a stall position or a reference switch. The first motion is performed under compliance of the selected Vmax and Vmin parameter and the acceleration parameter specified in the RAM. The second motion has got a rectangular shape, without a acceleration phase and is to drive the motor out of the stall position or slowly towards the stall position again to compensate for the bouncing of the faster first motion to stop as close to the stall position as possible. The maximum velocity of the second motion equals to Vmin. The positions of Pos1 and Pos2 can be chosen freely (Pos1 > Pos2 or Pos1 < Pos2). After the second motion the actual position register is set to zero. Finally, the secure position will be traveled to if it is enabled (different from the most negative decimal value of –1024).
Once the RunInit command is started it can not be interrupted by any other command except a condition occurs which leads to a motor shutdown (See 5.1.10 Motor Shutdown Management ) or a HardStop command is received. Furthermore the master has to ensure that the target position of the first motion is not equal to the actual position of the stepper motor and that the target positions of the first and the second motion are not equal. This is very important otherwise the circuit goes into a deadlock state. Once the circuit finds itself in a deadlock state only a HardStop command followed by a GetFullStatus1 command will cause the circuit to leave the deadlock state.
Velocity V
[FS/s]
1st Motion
2nd Motion
V
max
V
min
Position X
Pos1 Pos2
[FS]
Figure 6: RunInit
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
TMC222 DATASHEET (V. 1.06 / March 15, 2007) 15
5.1.12 Temperature Management
The TMC222 provides an internal temperature monitoring. The circuit goes into shutdown mode if the temperature exceeds threshold T
, furthermore two thresholds are implemented to generate a
tsd
temperature pre-warning.
Low Temperatur
<Tinfo> = "01" <TW> = '0'
<TSD> = '0'
T° > TlowT° < Tlow
Normal Temp.
T° < Ttw &
GetFullStatus1
<Tinfo> = "00" <TW> = '0' <TSD> = '0'
T° < Ttw &
GetFullStatus1
Post
Thermal Warning
<Tinfo> = "00" <TW> = '1' <TSD> = '0'
T° > Ttw
Thermal Warning
<Tinfo> = "10" <TW> = '1' <TSD> = '0'
T° > TtsdT° < TtwT° > Ttw
Thermal Shutdown
<Tinfo> = "11"
<TW> = '1'
<TSD> = '1'
SoftStop, if motion
Motion = disabled
T° < TtsdT° > Ttsd
Post Thermal
Shutdown 1
<Tinfo> = "10"
<TW> = '1'
<TSD> = '1'
Motion = disabled
T° < TtwT° > Ttw
Post Thermal
Shutdown 2
<Tinfo> = "00"
<TW> = '1'
<TSD> = '1'
Motion = disabled
Copyright © 2004-2007 TRINAMIC Motion Control GmbH & Co. KG
Loading...
+ 32 hidden pages