Trane CGAD020C, CGAD040C, CGAD070C, CGAD100C, CGAD025C User Manual

...
CGAD Liquid Chillers
Air-Cooled Scroll Compressor 20 to 150 Tons
Models: 50 or 60 Hz CGAD020C CGAD040C CGAD070C CGAD100C
CGAD025C CGAD050C CGAD030C CGAD060C
Junho 2006
CGAD080C CGAD120C CGAD090C CGAD150C
CG-PRC002A-EN
Introduction
CGAD Air-Cooled Liquid Chillers Designed for great performance. Built to last.
For more than 40 years Trane has been using the best resources available on development engineering, production and marketing to produce quality equip­ments.
All this tradition and know-how were gathered to develop the new generation of CGAD liquid chillers 20 to 150 Tons, equipped with scroll compressors.
© 2004. American Standard Inc. All rights reserved.
CG-PRC002A-EN
Contents
Introduction Model Description General Data CGAD 20-150TR
Selection Procedures Application Considerations Performance Adjustment Factors Performance Data
Performance Data R-22 Performance Data R-407C
Electrical Data Controls Dimensional Data
CGAD 020C CGAD 025C / 030C CGAD 040C CGAD 050C / 060C
02 04 05
06 07 09 11
11 12
13 16 20
20 21 22
23 CGAD 070C 24 CGAD 080 / 090C 25 CGAD 100C 26 CGAD 120C 27 CGAD 150C 28 CGAD 150C Maintenance and Air Circulation Clearances
29
30
CG-PRC002A-EN
Mechanical Specifications General Dimensions
31
32
3
Model Description
C G A
D
1, 2, 3 4 5, 6, 7 8 9 10 11 12 13 14 15,16
0 7 0
C 3 2 0 0 A T
0 0
Dígits 1,2,3 - Model
CGA - Cold Generation Air
Dígit 4 - Model Series
D = Série D
Dígits 5,6,7 - Nominal Capacity (Tons)
020
= 20 Tons
025
= 25 Tons
030
= 30 Tons
040
= 40 Tons
050
= 50 Tons
060
= 60 Tons 070 = 70 Tons 080 = 80 Tons 090 = 90 Tons 100 = 100 Tons 120 = 120 Tons 150 = 150 Tons
Dígit 8 - Service Digit
C = Versão “C”
Dígito 9 - Power Suply and Comand Voltage
3 = 220V/60Hz/3ph - no accessories K = 380V/60Hz/3ph - no accessories 4 = 440V/60Hz/3ph - no accessories H = 380V/50Hz/3ph - no accessories R = 220V/60Hz/3ph - with circuit breaker S = 380V/60Hz/3ph - with circuit breaker T = 440V/60Hz/3ph - with circuit breaker U = 380V/50Hz/3ph - with circuit breaker V = 220V/60Hz/3ph - with disconnect switch X = 380V/60Hz/3ph - with disconnect switch Y = 440V/60Hz/3ph - with disconnect switch Z = 380V/50Hz/3ph - with disconnect switch
Digit 10 - Refrigerant Type
2 = Refrigerant R-22 4 = Refrigerant R-407C
Digit 11 - Piping Configuration
0
= Standard Piping A = Piping with Service Valves in Suction and Discharge Lines. B
= Piping with Solenoid Valve C = Piping with Solenoid Valve and Service Valves in Suction and
Discharge Lines.
Digit 12 - CH-530 Control Modules
0=Standard Control Module 1 = With Alarm Relay 2 = With Remoto Setpoint Adjustment 3 = With Ice Making / Demand Limit 4 = With Communication COMM3 5 = With Alarm + External Setp. 6 = With Alarm + Ice Making / Demand Limit 7 = With Alarm + Communication COMM3 8 = External Setp. + Ice Making / Demand Limit 9 = External Setp. + Communication COMM3 A = Ice Making / Demand Limit + COMM3 B = Alarm + Ext. Setp. + Ice Making /Dem. Lim. C = Alarm + Ext. Setp. + COMM3 D = Alarm + Ice Making/Dem. Lim + COMM3 E = Ext. Setp. + Ice Making/Dem. Lim. + COMM3 F = All modules
Digit 13 - Coil Type
A = Coil with Aluminum Fins S = Coil with Special protection
(Yellow Fin)
Digit 14 - Expansion Valve
T = Thermostatic Expansion Valve E = Electronic Expansion Valve (only R-22)
Digits 15 and 16 - Accessories
4
Contact the Marketing Department.
The product code describes optional configuration, capacity and features. It is very important to indicate the correct order of the equipment code in order to avoid future problems in the shipment. Each digit of the product code is described above.
CG-PRC002A-EN
General
Nominal Capacity
Nominal System
Nominal Current
Nominal Capacity
Nominal System
Nominal Current
CSHA100
CSHA100
CSHA100
CSHA100
Nominal Capacity
Storage Volume
Min. water flow
Max. water flow
Total face area
Operating weight
Shipping weight
Refrigerant type
Capacity stages
Data
Tab. 01 - General Data - CGAD 20-90 TR - 50 or 60 Hz
Model 60 Hz
(2)
(2)
kW/Tons
kW/Tons
Standard
Optional
Efficiency
50 Hz
Efficiency
Compressor
Model Type
Quantity 2
Evaporator
Inlet connection Outlet connection
Condenser
Type No. of coils 2 2 2 4 4 4 4 4 4 4 4 4
Fins per inches No. of rows
Fans
Quantity 2 3 3 4 6 6 6 8 8 6 8 Diameter Air flow RPM RPM Motor power Transmission type Direct Direct Direct Direct Direct Direct Direct Direct Direct Direct Direct Direct
General Data
No. of circuits 1 1 1 2 2 2 2 2 2 2 2 2
CGAD020 CGAD025 CGAD030 CGAD040 CGAD050 CGAD060 CGAD070 CGAD080 CGAD090 CGAD100 CGAD120 CGAD150
Tons
kW
A 72,6 89,3 105,7 148,8 177,0 211,8 251,2 286,4 319,2 277,1 377,4 422,1
Tons
kW
A 42,7 52,4 62,1 87,3 103,9 124,3 147,5 168,1 187,3 131,2 160,8 192,6
Tons
Liters
m3/h m3/h
m2
mm
m3/h
kW
%
kg kg
18,5 23,5 27,1 37,3 46,9 53,8 67,3 77,0 84,1 95,9 117,7 145,2 20,4 26,7 31,0 42,3 52,6 62,2 75,8 86,3 94,8 109,4 139,0 165,2
1,103 1,136 1,144 1,134 1,122 1,156 1,126 1,121 1,127 1,141 1,181 1,138
15,2 19,3 22,7 30,6 38,5 45,1 55,2 64,5 70,5 86,1 105,8 129,8 16,9 22,1 25,7 35,1 43,6 51,6 62,9 71,6 78,7 95,7 121,4 141,0
1,114 1,147 1,132 1,148 1,134 1,145 1,140 1,110 1,117 1,112 1,148 1,086
CSHA100
Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll
32.620 45.870 44.170 64.560 95.140 95.140 97.690 122.330 122.330 98.118 130.824 163.530
R-407C R-407C R-407C R-407C R-407C R-407C R-407C R-407C R-407C R-407C R-407C R-407C
50/100 50/100 50/100 25 / 50 20/50 25 / 50 31/50 31/50 33/50 25/50 17/50 17/50
CSHA150
10 15/10 15 10 15/10 15 14 / 10 15 / 10 15 25 20 25
44 41 62 52 79 143 151 143 122 122 173 277
5,5 6,8 8,2 10,9 13,6 16,3 19,0 21.8 24.5 27,3 34,1 42,2
16,4 20,5 24,5 32,7 40,9 49,0 57.2 65.5 73.4 81,8 102,2 139,0
2" 2" 2" 2"
4,7 4,7 4,7 8,5 11,0 11,0 14,0 14,7 14,7 13,1 16,9 19,5
16 16 14 16 16 16 14 14 14 16 16 16
2 2 3 2 2 2 3 3 3 3 3 3
762 762 762 762 762 762 762 762 762 762 762 762
880 880 880 880 880 880 880 880 880 1140 1140 1140
0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 1,12 1,12 1,12
R-22 R-22 R-22 R-22 R-22 R-22 R-22 R-22 R-22 R-22 R-22 R-22
1340 1420 1480 1910 2210 2500 3000 3240 3220 3775 4135 4653 1300 1380 1420 1860 2130 2360 2850 3100 3100 3653 3962 4376
CSHA150 CSHA100
1 / 1
2 4
2 1/2" 2 1/2" 2 1/2" 2 1/2"
Aluminum fins, 3/8"- OD copper tubes
75 / 100 70/100 75 / 100 63/100 63/100 83/100 75/100 67/100 67/100
CSHA150
2 / 2
CSHA150
3" 4" 4" 4" 4" 4" 6" 6" 3" 4" 4" 4" 4" 4" 6" 6"
CSHA140
4
CSHA150
4 / 2 4 / 2
CSHA150
ZR300 ZR250 ZR300
6 4 6 6
10
Note s :
(1 ) D a t a b as e d o n o p er a tio n co nd itio n s a c o rd ing to s t a n d a rt ARI 59 0 - 9 2
(2 ) T h e s e cu r re n t v a lues ref e r to (3 ) T h e s e va lues to th e glo b a l e q u ip m en t c o n s u m p ti o n ( c o m p ress o r s a n d fa n s) (4 ) T h e s e cu r re n t v a lues ref e r to 3 8 0 V / 50 H z power su p p l y (5 ) T h e measu r e m e n ts shown take in t o a c c o u n t th e depth of t he e letric a l fra m e coup l e d to the e q u ipment (s e e p a g e 27 o f thi s m an u a l) (6 ) T h e floor are a measu r e m e n ts d o n o t take in to a c c o nt the b a s e o f the e lectric a l fr a m e co u p led to the e q u ip m en t .
220 V / 6 0 H z
pow e r su p p ly
CG-PRC002A-EN
5
Selection Procedures
Liquid chiller capacity tables 03 and 04, on pages 11 and 12 show the most frequent leaving water temperatures. The table reflects a temperature drop of 5,5 ºC (10ºF) through the evaporator. For low tempera­ture selections, refer to figures 04 and 05 for Adjustment Factors of Ethylene and Propylene Glycol. To select a CGAD Air-Cooled Liquid Chiller Trane, the following information is required: 1 Thermal project load of project in tons of cooling. 2 Chilled water temperature project drop. 3 Leaving chilled water project temperature. 4 Project ambient temperature and refriger­ant type.
The evaporator flow is determined through the following formulas:
GPM =
L/s =
NOTE 1:
The flow should be within the limits specified in table 01, General Data (page 05).
Tons X 24
Temperature drop (°F)
kW (Capacity) X 0,239
Temperature drop (°C)
Selection example: Data:
System load required= 70 Tons. Leaving chilled water temp. = 7ºC Chilled water temperature drop = 5,5ºC (10°F) Project ambient temperature = 35ºC
1 Calculate the required chilled water flow using the formula below: GPM =
70 Tons x 24 10ºF 2 Using table 03 (Performance Data - R-22), a CGAD 080 unit at these conditions will output 76,2 Tons with a compressor consumption of 81,1 kW.
3 Determine the evaporator pressure drop using the flow and the evaporator water pressure drop curves, figure 05. Introducing the curve at 168 GPM, the pressure drop for an evaporator with the nominal value of 80 Tons is 9 ft, or 2,74 m.
4 For selection of low temperature units, or applications in which the altitude is significantly above sea level, or the temperature drop is different from 5,5 ºC, contact a local Trane engineer for further information.
= 168 GPM
For example: Corrected capacity = Capacity (not adjusted) x Glycol Capacity Adjustment Factor Corrected Flow = Flow (not adjusted) x Glycol Flow Rate Adjustment Factor
5 The final unit selection is: CGAD 080B Refrigerant Type: R-22 Cooling capacity =76,2 Tons. Entering temperatures = 12,5 °C Leaving chilled water temperature = 7ºC Chilled water flow =168 GPM Evaporator pressure drop =2,74 m Compressor consumption = 81,1 kW
NOTE 2:
Minimum leaving chilled water tempera­ture setpoint
The minimum leaving chilled water temperature setpoint is 4ºC. For applica­tions where a lower setpoint is required, a glycol solution must be used. Contact the local Trane engineer for further information.
Note: The selection above is an example for manual equipment selection. Please note that a more accurate data check is required for a correct selection.
6
CG-PRC002A-EN
Application Considerations
Unit Sizing
Unit capacities are listed in the Perfor­mance Data section. Intentionally over­sizing a unit to assure adequate capacity is not recommended. The excess in the system and compressor capacity calcula­tion results in an over-sized liquid chiller. In addition, an oversized unit is usually more expensive to purchase, install and operate. If over-sizing is desired, consider using two units.
Unit Placement
1 Setting the Unit
2 Isolation and Sound Transmissions
The most effective isolation solution is to locate the unit away from any sound sensitive area. Structurally transmitted sound can be reduced by vibration eliminators. Spring isolators have proved to be of little efficiency in CGAD Air-Cooled Liquid Chiller installations and thus are not recommended. An acoustical engineer should always be consulted on applica­tions with critical acoustic reduction levels. For maximum isolation, water lines and electrical conduits should also be isolated. Wall sleeves and rubber-isolated piping hangers can be used to reduce the sound transmitted through water piping. To reduce the sound transmitted through electrical conduits, use flexible electrical conduits. State and local codes on sound emissions should always be considered. As the environment in which a sound source is located affects the sound pressure, unit placement must be carefully evaluated.
Two conditions should be avoided in order to achieve optimum performance: warm air recirculation and coil starvation. Warm air recirculation occurs when the airflow from the condenser fans discharged back at the condenser coil inlet, due to installation site restrictions.
B - Provide Vertical Clearance
C - Provide Side Clearance
D - Provide enough clearance between devices
Coil starvation occurs when the free airflow to the condenser coil is restricted. Both warm air recirculation and coil starvation cause reductions in unit efficiency and capacity, due to the associated high discharge pressures. See page 24 (Mainte­nance and air circulation clearances).
4 Unit Location
A General
Unobstructed airflow for the condenser is essential to assure efficient operation and the liquid chiller capacity. When determin­ing unit placement, careful considerations must be given to assure enough air flow across the condenser heat-transfer surface.
CG-PRC002A-EN
E - Installations in locations surrounded by walls
7
Application Considerations
Evaporator hydraulic piping components
The figure below shows how to proceed with the installation of the water piping. An air purge is placed on the evaporator and at the water outlet. Provide additional air purges at high piping points to release it from the chilled water system.
Evaporator Drain
The evaporator drain connection must be piped to an available strainer in order to drain the evaporator even during operati­on. Install a gate valve in the drain line.
Thermometers and Manometers
It is essential to install thermometers (ite­ms 5 and 12 in the figure) and manometers (item 9) at the chilled water inlet and outlet. These instruments must be installed close to the unit, with a maxi­mum scale of 1°C for thermometers and 0,1 kgf/cm2 for manometers.
Important: In order to avoid evaporator damages, do not exceed a 150-psig wa­ter pressure.
The manometer with connection should be installed at water inlet and outlet accor­ding to item 9 in the figure below in order to avoid reading mistakes. Manometers and thermometers must be installed at the appropriate height to avoid parallax errors*. Thermometers must be of glass or mer­cury-scale type, with colored contrasting fluid, and provide easy reading.
- Manometers must be equipped with
siphons;
- Install gate valves to isolate the manome-
ters when they are not being used.
Use piping joints to facilitate assembly and disassembly services.
Inlet and outlet must be equipped with gate valves to isolate the evaporator during service, and a globe valve must be instal­led at the outlet to adjust the water flow.
Flow-Switch
Verify that safety interlockings, particularly the flow-switch, are installed in straight and horizontal runs, with vanes adequate to the pipe diameter, and the distance from cur­ves and valves must be at least 5 times its diameter, on each side.
Water treatment
The use of untreated or improperly treated water may result in scaling, erosion, corro­sion, algae and slime. The services of a qualified water treatment specialist should be engaged to determine what treatment, if any, is advisable. Trane do Brasil assumes no responsibility for equipment failures resulting from the use of untreated or improperly treated water.
8
9
1
2
3
4
5
Fig. 01 - Components
* Parallax error: Apparent displacement of an object, when the observation point changes. It is especially said of the apparent deviation of a measure instrument needle, when it is not observed from a vertical point of view (parallax error).
8
Legend
1 - Drain 2- Joint 3- Flexible Connection 4- Water Flow Switch
10
11
12
14
S
6
7
13
5- Thermometer 6- Globe Valve 7- Cage Valve 8 - Air Purge 9- Manometers with cage valves 10- Joint 11- Flexible Connection 12- Thermometer
E
13- Water Filter 14- Cage Valve
E- Water Inlet S- Water Output
CG-PRC002A-EN
Performance Adjustment Factors
Fig. 02 - Evaporator Pressure Drop - 20 to 60 Tons Units
Load loss (Ft. of water)
Unit Conversion
From: Gallons/min (GPM)
Feet of water (Ft Water) Pa
To: L/s
Multiplier: 0,06308
2990
Fig. 03 - Evaporator Pressure Drop - 70 to 90 Tons Units
Load loss (Ft. of water)
Evaporator Water Flow (GPM)
Evaporator Water Flow ( L/s )
Load loss (kPa)
Evaporator Water Flow (GPM)
CG-PRC002A-EN
9
Performance Adjustment Factors
Fig. 03a - Evaporator Pressure Drop - 100 to 120 Tons Units
Conversão de Unidades
De: Galões/min (GPM)
Pés de Água (Ft Água)
Para: Multiplicador: L/s 0,06308
Pa 2990
Fig. 03b - Evaporator Pressure Drop - 150 Tons Units
10
CG-PRC002A-EN
Performance Adjustment Factors
Fig. 04 - Ethylene Glycol Performance Factors
Flow GPM Capacity Compressor Power
Adjustment Factor
% of Ethylene Glycol in Weight
Tab. 02 - Altitude Correction Factors
Altitude Capacity Consum ption Water Flow
0
500 1000 1500 2000 2500 3000
1,000 0,997 0,994 0,991 0,987 0,983 0,978
1,000 1,012 1,024 1,037 1,052 1,067 1,084
1,000 0,997 0,994 0,991 0,987 0,983 0,978
Fig. 05 - Propylene Glycol Performance Factors
Flow GPM Capacity Compressor Power
Adjustment Factor
% de Propylene Glycol in Weight
Fig. 06 - Ethylene and Propylene Freezing Points
Ethylene Glycol
Propylene Glycol
Temperature °F
Temperature°C
CG-PRC002A-EN
% of Antifreezing in Weight
11
Performance Data
Tab. 03a -Performance Data - R- 22 (TSA = 4ºC)
Water Leaving
Temperature =
30
35
40
Condenser entering Air Temperature (ºC)
45
4ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
17,5 16,8
9,5 16,8 18,8
9,1 16,0 20,9
8,7 15,1 23,3
8,2
020
025
22,1
25,5 35,3 44,1
21,7
25,8 34,9 42,9
12,0
13,9 19,2 24,1
21,1
24,5 33,8 42,3
24,0
28,3 38,9 47,4
11,5
13,3 18,4 23,1
20,2
23,3 32,2 40,4
26,6
31,2 43,4 52,5
11,0
12,7 17,6 22,0
19,1
22,1 30,6 38,4
29,4
34,3 48,4 58,1
10,4
12,1 16,7 20,9
030
040
050
060
070
080
50,7
63,7 72,6 79,5 91,6
51,7
63,5 71,8 79,7 95,4
27,6
34,7 39,6 43,4 50,0 61,0 76,0
48,5
61,0 69,6 76,2 87,6
56,8
70,2 78,9 87,5
26,5
33,3 37,9 41,5 48,0 59,0 72,0
46,3
58,2 66,4 72,6 83,7
62,6
77,7 86,8 96,2
25,2
31,7 36,2 39,6 46,0 56,0 69,0
43,9
55,2 63,0 68,9 79,4 96,2
69,0
85,9 95,6
23,9
30,1 34,3 37,6 43,0 53,0 66,0
090
103,5 131,5 152,2
112,5 143,8 164,9
105,8 123,7 159,2 180,7
Tab. 03b -Performance Data - R- 22 (TSA = 5ºC)
Water Leaving
Temperature =
30
35
40
Condenser entering Air Temperature (ºC)
45
5ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
18,0
16,9
17,2
18,9
16,4
21,1
15,6
23,5
9,8
9,4
9,0
8,5
020
025
22,8
26,3 36,3 45,5
21,9
26,0 35,2 43,2
12,4
14,3 19,8 24,8
21,8
25,2 34,8 43,6
24,2
28,6 39,2 47,8
11,9
13,7 19,0 23,8
20,8
24,0 33,2 41,6
26,8
31,4 43,7 52,9
11,3
13,1 18,1 22,7
19,7
22,8 31,5 39,6
29,6
34,6 48,7 58,5
10,7
12,4 17,2 21,6
030
040
050
060
070
080
52,2
65,6 74,9 82,0 94,6
52,1
64,1 72,5 80,4 96,4
28,5
35,8 40,8 44,7 52,0 63,0 78,0
50,0
62,9 71,8 78,5 90,6
57,3
70,9 79,6 88,3
27,3
34,3 39,1 42,8 49,0 61,0 75,0
47,7
60,0 68,5 74,9 86,3
63,1
78,3 87,6 97,0
26,0
32,7 37,3 40,8 47,0 58,0 71,0
45,3
56,9 65,0 71,1 82,0 99,5
69,5
86,6 96,4
24,7
31,0 35,5 38,7 45,0 54,0
090
104,6 132,9 153,8
113,7 145,3 166,6
106,7 125,1 160,7
100
112,4 138,6 120,6 141,0
107,5 132,6
102,5 127,0
100
116,1 142,5 121,9 142,5
110,8 136,9
105,5 131,0
Tab. 03e -Performance Data - R- 22 (TSA = 8ºC)
Water Leaving
120
150
120,4
Temperature =
Temp. de entrada ar condensador (ºC)
Capacity(Tons)
30
(kW) Flow (m³/h) Capacity(Tons)
35
(kW) Flow (m³/h) Capacity(Tons)
40
(kW) Flow (m³/h) Capacity(Tons)
45
(kW) Flow (m³/h)
8ºC
020
025
19,5 24,8 28,7 39,4 49,7 56,9 71,6 17,3 22,4 26,7 36,0 44,2 53,4 65,9 10,6 13,5 15,6 21,5 27,1 31,0 39,0 18,7 23,8 27,5 37,9 47,6 54,6 68,7 19,3 24,8 29,3 40,1 48,8 58,7 72,7 10,2 13,0 15,0 20,6 26,0 29,8 37,4 17,9 22,7 26,3 36,2 45,5 52,1 65,6 21,4 27,4 32,2 44,6 54,0 64,6 80,3
9,7 17,0 21,6 25,0 34,4 43,3 49,4 62,3 23,9 30,3 35,4 49,6 59,7 71,1 88,7
9,3
030
12,4 14,3 19,7 24,8 28,4 35,7
11,7 13,6 18,7 23,6 27,0 34,0
040
050
060
070
080
090
100
120
81,9
89,5
103,2 126,7 155,8
74,6
82,6 99,7
44,6
48,8 56,0 69,0 85,0
78,5
85,8 98,9
81,8
90,6
108,0 137,3 158,7
42,8
46,7 54,0 66,0 82,0
75,0
81,9 94,6
89,9
99,6
117,4 149,9 171,8
40,9
44,6 52,0 63,0 78,0
71,2
77,8 89,6
98,8
109,3 129,2 165,5 188,3
38,8
42,4 49,0 60,0 74,0
150
126,1 147,2
121,4 149,5
115,7 143,2
109,1 135,9
Tab. 03f -Performance Data - R- 22 (TSA = 9ºC)
Water Leaving
120
150
124,0
68,0
182,6
Temperature =
30
35
40
Condenser entering Air Temperature (ºC)
45
9ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
020
025
030
040
050
060
070
080
090
100
20,0 25,6 29,5 40,5 51,1 58,5 73,6 84,3 92,0
17,4 22,6 26,9 36,2 44,5 53,8 66,5 75,3 83,4
10,9 13,9 16,1 22,1 27,8 31,9 40,1 45,9 50,2 58,0 69,0 88,0
19,2 24,5 28,3 38,9 49,0 56,1 70,6 80,8 88,2
19,4 25,0 29,5 40,3 49,2 59,2 73,4 82,6 91,5
10,5 13,4 15,4 21,2 26,7 30,6 38,5 44,1 48,1 56,0 66,0 84,0
18,4 23,4 27,1 37,2 46,9 53,6 67,5 77,2 84,3 97,2
21,6 27,6 32,5 44,9 54,4 65,1 81,0 90,7
10,0 12,7 14,7 20,3 25,6 29,2 36,8 42,1 45,9 53,0 63,0 80,0
17,5 22,2 25,7 35,4 44,6 50,9 64,1 73,4 80,0 92,3
24,0 30,5 35,7 49,9 60,2 71,6 89,4 99,6
9,5
12,1 14,0 19,3 24,3 27,7 35,0 40,0 43,6 50,0 60,0 76,0
100,4
110,3
106,2 100,8
101,9 109,2
118,7
130,6
120
126,7 160,4 126,1 148,8
121,4 154,1 137,3 160,4
115,7 147,5 149,9 173,6
109,1 139,9 165,5 190,3
150
Tab. 03c -Performance Data - R- 22 (TSA = 6ºC)
Water Leaving
Temperature =
30
35
40
Condenser entering Air Temperature (ºC)
45
6ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
18,5 17,1 10,1 17,7 19,0
9,7 16,9 21,2
9,2 16,1 23,6
8,7
020
23,4 22,1 12,8 22,5 24,4 12,2 21,4 27,0 11,7 20,3 29,8 11,1
025
030
040
27,1 37,3 46,8 26,2 35,4 43,5 14,8 20,4 25,5 26,0 35,8 44,9 28,8 39,5 48,1 14,1 19,5 24,5 24,8 34,2 42,9 31,7 44,0 53,3 13,5 18,6 23,4 23,5 32,4 40,8 34,9 49,0 58,9 12,8 17,7 22,2
050
060
070
53,8 52,5 29,3 51,5 57,8 28,1 49,1 63,6 26,8 46,6 70,0 25,4
080
67,6 77,2 84,4 97,2 67,7 73,2 81,1 97,5 36,8 42,1 46,0 53,0 65,0 80,0 64,8 74,0 80,9 93,3 71,5 80,4 89,0 35,3 40,3 44,1 51,0 62,0 77,0 61,8 70,6 77,2 89,0 79,0 88,4 97,9 33,7 38,5 42,1 49,0 59,0 74,0 58,7 67,1 73,3 84,3 87,3 97,2 32,0 36,5 40,0 46,0 56,0 70,0
090
105,7 134,4 155,4
115,0 146,8 168,3
107,6 126,4 162,3 184,5
Tab. 03d -Performance Data - R- 22 (TSA = 7ºC)
Water Leaving
Condenser entering Air Temperature (ºC)
12
Temperature =
30
35
40
45
7ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
19,0
17,2
10,4
18,2
19,1
17,4
21,3
16,5
23,7
9,9
9,5
9,0
020
025
24,1
27,9 38,4 48,2
22,2
26,4 35,7 43,8
13,2
15,2 20,9 26,3
23,1
26,7 36,8 46,3
24,6
29,1 39,8 48,5
12,6
14,6 20,1 25,2
22,1
25,5 35,2 44,2
27,2
32,0 44,3 53,6
12,0
13,9 19,2 24,1
20,9
24,3 33,4 42,0
30,1
35,2 49,3 59,3
11,4
13,2 18,2 22,9
030
040
050
060
070
080
55,3
69,6 79,5 86,9
53,0
65,3 73,9 81,9 98,6
30,2
37,9 43,3 47,4 55,0 67,0 83,0
53,0
66,7 76,2 83,3 95,9
58,2
72,1 81,1 89,8
28,9
36,4 41,6 45,4 52,0 64,0 79,0
50,6
63,7 72,8 79,5 91,6
64,1
79,7 89,1 98,7
27,6
34,7 39,7 43,3 50,0 61,0 76,0
48,0
60,5 69,1 75,5 87,0
70,6
88,0 98,0
26,2
33,0 37,7 41,2 47,0 58,0 72,0
090
100,2 123,0 151,5
106,9 135,8 157,1
116,2 148,3 170,1
108,5 127,8 163,9 186,4
100
119,7 146,8 123,3 144,0
114,4 140,9
108,8 134,9
102,8 128,0
100
124,7 145,6
117,7 145,2
112,4 138,9
105,8 131,9
Tab. 03g -Performance Data - R- 22 (TSA = 10ºC)
Water Leaving
120
150
120
150
Temperature =
Condenser entering Air Temperature (ºC)
Notes: (1) The values shown are in accordance with the operating conditions for the ARI-590-92. (2) The Consumption (KW) column is the nominal consumption of the compressors in that condition.
Capacity(Tons)
30
(kW) Flow (m³/h) Capacity(Tons)
35
(kW) Flow (m³/h) Capacity(Tons)
40
(kW) Flow (m³/h) Capacity(Tons)
45
(kW) Flow (m³/h)
10ºC
020
025
030
040
050
060
070
20,5 26,3 30,4 40,7 52,5 60,2 75,7 86,7 94,6 17,5 22,8 27,1 36,5 44,8 54,3 67,1 76,0 84,2 11,2 14,3 16,6 22,7 28,6 32,8 41,3 47,3 51,6 60,0 73,0 90,0 19,7 25,2 29,1 40,0 50,4 57,7 72,7 83,2 90,8 19,5 25,2 29,8 40,6 49,6 59,7 74,0 83,4 92,3 10,8 13,7 15,9 21,8 27,5 31,5 39,6 45,4 49,7 57,0 70,0 86,0 18,9 24,0 27,8 38,2 48,2 55,1 69,4 79,5 86,7 21,7 27,8 32,7 45,2 54,8 65,6 81,7 91,5 10,3 13,1 15,2 20,8 26,3 30,0 37,8 43,3 47,2 55,0 67,0 83,0 17,9 22,8 26,5 36,3 45,9 52,3 66,0 75,5 82,4 94,9 24,1 30,7 36,0 50,3 60,6 72,2 90,1
9,8
12,4 14,4 19,8 25,0 28,5 36,0 41,2 44,9 52,0 63,0 79,0
080
101,3
100,5 111,2
090
100
120
134,3 165,0 129,0 150,4
128,6 158,4 140,3 162,1
122,7 151,8 153,1 175,4
116,1 144,2 168,9 192,2
150
109,1 101,9
104,5 110,4
100,2 120,0
132,0
CG-PRC002A-EN
Performance Data
Tab. 04a - Performance Data - R- 407C (TSA = 4ºC)
Water Leaving
Temperature =
30
35
40
Condenser entering Air Temperature (ºC)
45
4ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
16,9 17,4
16,2 19,5
16,5 21,6
14,6 24,1
9,5
9,1
8,7
8,2
020
025
21,3
24,6 34,0 42,6
22,5
26,7 36,1 44,4
12,0
13,9 19,2 24,1
20,4
23,6 32,6 40,8
24,8
29,3 40,3 49,1
11,5
13,3 18,4 23,1
20,9
24,1 33,4 41,8
27,5
32,3 44,9 54,3
11,0
12,7 17,6 22,0
18,5
21,4 29,5 37,0
30,4
35,5 50,1 60,1
10,4
12,1 16,7 20,9
030
040
050
060
070
080
090
100
48,9
61,4 70,1 76,7 88,3
53,5
65,7 74,3 82,5 93,2
27,6
34,7 39,6 43,4 48,0 60,0 73,0
46,9
58,9 67,1 73,5 83,7
58,8
72,7 81,7 90,6
26,5
33,3 37,9 41,5 46,0 57,0 69,0
47,9
60,2 68,7 75,2 78,7 97,6
64,8
80,4 89,8 99,6
25,2
31,7 36,2 39,6 43,0 53,0 65,0
42,4
53,3 60,8 66,5 72,8 90,3
71,4
88,9 98,9
23,9
109,5 125,1 161,2 182,5
30,1 34,3 37,6 40,0 49,0 60,0
120
109,5 133,6 116,1 137,4
103,5 126,7
102,4 128,5 150,2
112,6 142,9 164,6
Tab. 04b - Performance Data - R- 407C (TSA = 5ºC)
Water Leaving
Temperature =
30
35
40
Condenser entering Air Temperature (ºC)
45
5ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
17,3 17,5
16,6 19,6
17,0 21,8
15,1 24,3
9,8
9,4
9,0
8,5
020
025
22,0
25,4 35,0 43,9
22,7
26,9 36,4 44,7
12,4
14,3 19,8 24,8
21,0
24,3 33,6 42,1
25,0
29,6 40,6 49,5
11,9
13,7 19,0 23,8
21,5
24,9 34,4 43,1
27,7
32,5 45,2 54,8
11,3
13,1 18,1 22,7
19,0
22,0 30,4 38,2
30,6
35,8 50,4 60,5
10,7
12,4 17,2 21,6
030
040
050
060
070
080
090
100
50,4
63,3 72,3 79,1 91,3
53,9
66,3 75,0 83,2 94,4
28,5
35,8 40,8 44,7 50,0 62,0 75,0
48,3
60,7 69,2 75,8 86,3
59,3
73,4 82,4 91,4
27,3
34,3 39,1 42,8 47,0 58,0 71,0
49,4
62,1 70,9 77,5 81,4
65,3
81,0 90,7 26,0 43,7 71,9 24,7
100,4 113,8 144,4 166,3 32,7 37,3 40,8 44,0 55,0 67,0 55,0 62,7 68,6 75,1 93,3 89,6 99,8
110,4 126,2 162,7 184,1 31,0 35,5 38,7 41,0 51,0 63,0
120
112,8 137,9 117,5 138,9
106,8 131,0
103,6 130,0 151,9
100,5 123,3
119,4
110,8
114,4
Tab. 04e - Performance Data - R- 407C (TSA = 8ºC)
150
Water Leaving
Temperature =
Capacity(Tons)
30
(kW) Flow (m³/h) Capacity(Tons)
35
(kW) Flow (m³/h) Capacity(Tons)
40
(kW) Flow (m³/h) Capacity(Tons)
Condenser entering Air Temperature (ºC)
45
(kW) Flow (m³/h)
8ºC
020
025
030
040
050
060
070
18,8 24,0 27,7 38,0 47,9 54,9 69,1 79,0 86,3 17,9 23,2 27,6 37,3 45,7 55,3 68,2 77,2 85,5 97,9 10,6 13,5 15,6 21,5 27,1 31,0 39,0 44,6 48,8 55,0 68,0 83,0 18,1 23,0 26,6 36,5 46,0 52,7 66,3 75,8 82,8 94,9 20,0 25,7 30,3 41,5 50,5 60,8 75,2 84,7 93,8 10,2 13,0 15,0 20,6 26,0 29,8 37,4 42,8 46,7 52,0 64,0 79,0 18,5 23,5 27,2 37,5 47,1 53,9 67,9 77,6 84,7 89,3 22,1 28,4 33,3 46,2 55,9 66,9 83,1 93,0
9,7
12,4 14,3 19,7 24,8 28,4 35,7 40,9 44,6 49,0 60,0 74,0 16,4 20,8 24,1 33,2 41,8 47,7 60,1 68,7 75,0 82,7 24,7 31,4 36,6 51,3 61,8 73,6 91,8
9,3
11,7 13,6 18,7 23,6 27,0 34,0 38,8 42,4 45,0 56,0 69,0
080
103,1
102,3 113,1
090
100
120
123,7 151,5 121,8 144,0
117,4 143,8 134,6 157,1
110,8 135,9 149,2 171,6
102,8 126,3 167,5 189,2
150
100,2
107,2
117,5
129,8
Tab. 04f - Performance Data - R- 407C (TSA = 9ºC)
Water Leaving
150
Temperature =
Condenser entering Air Temperature (ºC)
Capacity(Tons)
30
(kW) Flow (m³/h) Capacity(Tons)
35
(kW) Flow (m³/h) Capacity(Tons)
40
(kW) Flow (m³/h) Capacity(Tons)
45
(kW) Flow (m³/h)
9ºC
020
025
030
040
050
060
070
19,3 24,7 28,5 39,1 49,3 56,5 71,1 81,3 88,8 18,0 23,4 27,8 37,5 46,1 55,7 68,8 77,9 86,3 97,9 10,9 13,9 16,1 22,1 27,8 31,9 40,1 45,9 50,2 55,0 70,0 85,0 18,6 23,6 27,3 37,5 47,3 54,2 68,2 78,0 85,2 94,9 20,1 25,9 30,5 41,7 50,9 61,3 76,0 85,5 94,7 10,5 13,4 15,4 21,2 26,7 30,6 38,5 44,1 48,1 52,0 66,0 81,0 19,0 24,2 28,0 38,5 48,5 55,5 69,8 79,9 87,2 89,3 22,4 28,6 33,6 46,5 56,3 67,4 83,8 93,9 10,0 12,7 14,7 20,3 25,6 29,2 36,8 42,1 45,9 49,0 62,0 76,0 16,9 21,4 24,8 34,1 43,0 49,1 61,9 70,8 77,2 82,7 24,8 31,6 36,9 51,6 62,3 74,1 92,5
9,5
12,1 14,0 19,3 24,3 27,7 35,0 40,0 43,6 45,0 58,0 71,0
080
103,9
103,1 114,2
090
100
120
127,6 156,4 123,3 145,8
121,0 148,5 136,2 158,9
114,1 140,2 150,9 173,4
106,2 130,3 169,2 191,0
150
100,2
107,2
117,5
129,8
Tab. 04c - Performance Data - R- 407C (TSA = 6ºC)
Water Leaving
Temperature =
30
35
40
Condenser entering Air Temperature (ºC)
45
6ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
17,8 17,7 10,1 17,1 19,7
17,5 21,9
15,5 24,4
9,7
9,2
8,7
020
025
22,6
26,2 36,0 45,2
22,9
27,1 36,6 45,0
12,8
14,8 20,4 25,5
21,7
25,1 34,6 43,4
25,3
29,8 40,9 49,8
12,2
14,1 19,5 24,5
22,2
25,7 35,4 44,4
27,9
32,8 45,5 55,2
11,7
13,5 18,6 23,4
19,6
22,7 31,3 39,4
30,8
36,1 50,7 61,0
11,1
12,8 17,7 22,2
030
040
050
060
070
080
090
51,9
65,2 74,5 81,5 94,2
54,3
70,1 75,8 83,9 95,5
29,3
36,8 42,1 46,0 51,0 64,0 78,0
49,7
62,5 71,4 78,1 89,0
59,8
74,0 83,2 92,1
28,1
35,3 40,3 44,1 49,0 60,0 74,0
50,9
64,0 73,1 79,9 84,0
65,8
81,8 91,5
26,8
33,7 38,5 42,1 46,0 57,0 70,0
45,0
56,6 64,7 70,7 77,7 96,6
72,5
90,4
100,6 111,4 127,4 164,3 185,8
25,4
32,0 36,5 40,0 42,0 53,0 65,0
100
116,4 142,5 118,8 140,6
110,4 135,3
104,8 131,5 153,6
103,8 127,3
101,3 115,0 146,0 168,0
Tab. 04d - Performance Data - R- 407C (TSA = 7ºC)
Water Leaving
Temperature =
30
35
40
Condenser entering Air Temperature (ºC)
45
CG-PRC002A-EN
7ºC
Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h) Capacity(Tons) (kW) Flow (m³/h)
18,3 17,8 10,4 17,6 19,8
18,0 22,0
15,9 24,5
9,9
9,5
9,0
020
025
23,3
26,9 37,0 46,6
23,0
27,3 36,9 45,3
13,2
15,2 20,9 26,3
22,3
25,8 35,6 44,7
25,5
30,1 41,2 50,2
12,6
14,6 20,1 25,2
22,8
26,4 36,4 45,8
28,2
33,1 45,9 55,5
12,0
13,9 19,2 24,1
20,2
23,4 32,2 40,6
31,2
36,4 51,0 61,4
11,4
13,2 18,2 22,9
030
040
050
060
070
080
090
100
53,4
67,1 76,7 83,9 97,2
54,9
67,6 76,5 84,8 96,7
30,2
37,9 43,3 47,4 53,0 66,0 80,0
51,2
64,4 73,6 80,4 91,9
60,2
74,6 83,9 92,9
28,9
36,4 41,6 45,4 50,0 62,0 76,0
52,4
65,9 75,3 82,3 86,6
66,3
82,5 92,2 27,6 46,4 73,1 26,2
102,2 116,2 147,6 169,8 34,7 39,7 43,3 47,0 59,0 72,0 58,4 66,7 72,9 80,0 99,5 91,1
101,4 112,3 128,6 165,9 187,5
33,0 37,7 41,2 44,0 54,0 67,0
120
120,0 147,2 120,3 142,3
113,8 139,6
106,0 133,0 155,3
107,7 131,6
Tab. 04g - Performance Data - R- 407C (TSA = 10ºC)
Water Leaving
120
150
118,4
Temperature =
Condenser entering Air Temperature (ºC)
150
Notes:
122,4
(1) These values comply with operation conditions from ARI-590-92. (2) The column Consumption (kW) represents the nominal compressor consumption in that condition.
Capacity(Tons)
30
(kW) Flow (m³/h) Capacity(Tons)
35
(kW) Flow (m³/h) Capacity(Tons)
40
(kW) Flow (m³/h) Capacity(Tons)
45
(kW) Flow (m³/h)
10ºC
020
025
030
040
050
060
070
19,8 25,4 29,3 39,3 50,7 58,1 73,1 83,7 91,3 18,1 23,6 28,0 37,8 46,4 56,2 69,4 78,7 87,1 11,2 14,3 16,6 22,7 28,6 32,8 41,3 47,3 51,6 58,0 72,0 88,0 19,1 24,3 28,1 38,6 48,7 55,7 70,1 80,3 87,6 20,2 26,1 30,8 42,0 51,3 61,8 76,6 86,3 95,5 10,8 13,7 15,9 21,8 27,5 31,5 39,6 45,4 49,7 55,0 68,0 83,0 19,5 24,9 28,8 39,6 49,9 57,0 71,8 82,3 89,7 94,9 22,5 28,8 33,8 46,8 56,7 67,9 84,6 94,7 10,3 13,1 15,2 20,8 26,3 30,0 37,8 43,3 47,2 52,0 64,0 79,0 17,3 22,0 25,5 35,1 44,3 50,5 63,7 72,9 79,5 88,0 24,9 31,8 37,3 52,1 62,7 74,7 93,3
9,8
12,4 14,4 19,8 25,0 28,5 36,0 41,2 44,9 48,0 60,0 73,0
080
104,0 115,1
104,8
090
100
120
131,3 161,0 124,9 147,6
124,7 152,8 137,9 160,8
117,4 144,5 152,6 175,3
109,5 134,6 170,9 192,8
150
106,2 100,3
100,5 109,8
120,0
132,3
13
Tab. 05 - Electrical Data - 60 Hz
Nominal
Modelos
CGAD020
CGAD025
CGAD030
CGAD040
CGAD050
CGAD060
CGAD070
CGAD080
CGAD090
CGAD100
CGAD120
CGAD150
Components
Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total
Consumption
(kW) 18,9 63,60 36,7 31,80
1,5 9,00 306,0 5,2 177,0 4,50 153,0 20,4 72,60 41,9 36,30 24,4 75,80 43,7 37,90
2,3 13,50 350,0 7,8 202,0 6,80 175,0 26,7 89,30 51,5 44,70 28,7 92,20 53,2 46,10
2,3 13,50 440,0 7,8 254,0 6,80 220,0 31,0 105,70 61,0 52,90 39,3 130,80 75,5 65,40
3,0 18,00 382,0 10,4 220,0 9,00 191,0 42,3 148,80 85,9 74,40 48,1 150,00 86,6 75,00
4,5 27,00 438,0 15,6 253,0 13,50 219,0 52,6 177,00 102,2 88,50 57,7 184,80 106,6 92,40
4,5 27,00 547,0 15,6 316,0 13,50 274,0 62,2 211,80 122,2 105,90 71,3 224,20 129,4 112,10
4,5 27,00 485,0 15,6 280,0 13,50 243,0 75,8 251,20 145,0 125,60 80,3 250,40 144,5 125,20
6,0 36,00 540,0 20,8 312,0 18,00 270,0 86,3 286,40 165,3 143,20 88,8 283,20 163,4 141,60
6,0 36,00 645,0 20,8 372,0 18,00 323,0 94,8 319,20 184,2 159,60
102,8 238,08 144,3 119,04
6,6 39,00 718,0 21,0 434,0 16,80 356,0
109,4 277,08 165,3 135,84 130,2 325,44 177,6 149,28
8,8 52,00 828,0 28,0 456,0 22,40 372,0
139,0 377,44 205,6 171,68 154,2 357,12 216,5 178,56
11,0 65,00 863,0 35,0 520,0 28,00 427,0
165,2 422,12 251,5 206,56
Electrical Data
220V 380V 440V
Rated
Current (A)
Start
Current (A)
60 Hz
Rated
Current (A)
Start
Current (A)
Rated
Current (A) Current (A)
Start
Notes:
(1) These values comply with operation conditions from ARI-590-92. (2) When dimensioning feeding cables and components, consider a 30%-increment in these nominal values. (3) Starting current values represent the sum of the starting current from the last compressor to enter operation and the nominal currents of other compressors and fans.
14
CG-PRC002A-EN
Tab. 06 - Electrical Data - 50 Hz
Modelos
CGAD020
CGAD025
CGAD030
CGAD040
CGAD050
CGAD060
CGAD070
CGAD080
CGAD090
CGAD100
CGAD120
CGAD150
Components
Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total Compressors Fans Total
Nominal
Consumption
(kW)
15,7
1,2 16,9 20,2
1,9 22,1 23,8
1,9 25,7 32,6
2,5 35,1 39,9
3,7 43,6 47,9
3,7 51,6 59,2
3,7 62,9 66,6
5,0 71,6 73,7
5,0 78,7 82,0
6,6 88,6
108,0
8,8
116,8 123,0
11,0
134,0
Electrical Data
50 Hz
380 V
Rated
Current (A) Current (A)
37,40
5,30 42,70 44,50
7,90 52,40 54,20
7,90 62,10 76,80 10,50 222,2 87,30 88,10 15,80 255,0
103,90 108,50
15,80 319,0
124,30 131,70
15,80 283,0
147,50 147,10
21,00 315,0
168,10 166,30
21,00 376,0
187,30
82,00
6,60 88,60
108,00
8,80
116,80 123,00
11,00 419,0
197,00
Start
179,0
204,0
256,0
351,0
368,0
Notes:
(1) These values comply with operation conditions from ARI-590-92. (2) When dimensioning feeding cables and components, consider a 30%-increment in these nominal values. (3) Starting current values represent the sum of the starting current from the last compressor to enter operation and the nominal currents of other compressors and fans.
CG-PRC002A-EN
15
Independent
Control Module
Trane do Brasil makes the latest microprocessor control technology available to its clients. The CH530 controller with the DynaView control module. The DynaView has a touch sensitive liquid crystal display which gives the user access to all information about configuration, operating mode, temperatures, electrical data, pressures and diagnostics.
Safety Controls
The controller also provides a high level of protection for the equipment, by constantly monitoring the evaporator and condenser pressure, current, voltage and temperature variables. When one of these variables approaches a limit which could cause the unit to switch off, the controller starts a number of actions, such as stepping the compressors and fans, in order to keep the equipment working before taking the final decision to take it out of service. In normal operation, the controller will always optimize the unit's operation by stepping the compressors and fans so as to ensure the best energy efficiency level for the equipment operating conditions.
External Controls
The controller provides a number of different controls using external signals, thus making equipment operation more flexible.
Controls
Remote On/ Off -
on or off remotely by means of an NC (normally closed) contact or switch..
Water Pump Interlock -The equipment will be notified if there is water flow in the evaporator by means of an auxiliary contact in the water pump contactor and a flow switch.
Water Pump Control -
an output to activate the evaporator water pump contactor; an external control is therefore not required to activate it.
Hot Gas Bypass Valve Control-
Hot Gas Bypass valve option is requested, the controller has an output for operating the valve based on the operational information which the user sets in the DynaView controller.
The unit can be switched
The controller has
When the
Controls
Emergency Stop - An NC contact or external switch can be used to switch the
unit off in emergencies. The unit must then be restarted manually using the DynaView. This facility allows the unit to be switched off by a fire alarm system, for example.
Optional Controls
Trane also offers an extremely wide range of controls which are intended for applications specific to individual installations.
Remote Adjustment of the Chilled Water Setpoint
The chilled water setpoint can be controlled remotely by means of an analog input, using a 0-10VDC or 4-20mA signal.
Signalling Relays
A set of 4 programmable relays can be used for remote signaling of the unit's operational status, such as maximum capacity, operation at the limit, compressors in operation and alarm signaling.
Ice Making and Demand Control
The equipment can be put into ice making mode externally by means of an NO (normally open) contact. Unit demand control can be carried out by means of an NC (normally closed) contact in another of this module inputs.
COMM3 Interface- This interface will enable the equipment to be interconnected to the Trane Tracer Summit control and management system.
16
CG-PRC002A-EN
Protections and
Operational Protection Measures and Functions
protection measures and functions available are described below:
Compressor Internal Thermostats -
Trane compressors have internal thermostats to protect the motor windings, which are constantly monitored by the controller.
Inversion and No Phase
The controller monitors the phase sequence and the presence of current in each phase by means of current sensors installed in each of the supply phases.
Overload Relay
The supply for each compressor is via an overload relay, which is constantly monitored by the controller, which turns the compressor off when an overload is detected.
Balancing Starts / Operating Hours
The controller optimizes the start sequence for the compressors by balancing the number of starts and the number of hours for each compressor, and does not allow one compressor to have a greater operating regime than the others.
Evaporator Water Flow
A suitable flow switch must be installed and electrically connected to the controller in order to report water flow in the evaporator. This ensures that the equipment either does not go into operation or is shut down if there is no water flow.
- The main operational
Controls
Low Pressure Limit
The controller will restrict the operation of the compressors, by switching them off or not allowing other compressors to start, when the suction pressure approaches the set cutout pressure.
External Temperature Cutout -
of the equipment can be controlled by the temperature of the outdoor air, i.e. the equipment will only go into operation when the outdoor air temperature is above the temperature set in the controller. If the equipment is working, it will be switched off when the outdoor air temperature reaches the set temperature.
Automatic Adjustment of the Chilled Water Setpoint -
provide automatic adjustment of the chilled water temperature setpoint based on the outdoor air temperature or on the return temperature of the water. This kind of adjustment offers better ambient temperature comfort control, as well as providing energy savings and allowing the customer to find the best system control point.
Capacity Limiting during Starting
the equipment goes into operation and the leaving water temperature is above 19ºC, the controller will not allow the second compressor to go into operation until the leaving water temperature drops below 19ºC. This prevents the equipment from being switched off due to high discharge pressure because of compressor overload.
The controller can
Operation
- When
Operational Functions
Starting in Cold Areas
When the equipment is installed in a location where the ambient or outdoor temperature is low, there is a possibility that the equipment will be switched off because of low pressure before there is enough condensing pressure to send the refrigerant back to the evaporator. Therefore, cutout due to low pressure will be ignored for a period; this period will vary according to the outdoor temperature at the location.
Operational Recovery and Service Recovery
In equipment with reciprocating compressors, recovery ensures that, when started again, the liquid left in the evaporator is not sucked in by the com­pressor, thus damaging it. Unlike reciprocating ones, scroll compressors tolerate flood back. However, when required, operational recovery of the refrigerant after the equipment or circuit in operation has stopped can be undertaken. In order to be able to use this function the equipment must be equipped with solenoid valves in the liquid line. The purpose of service recovery is to recover the refrigerant into the condenser so that maintenance work can be carried out. This recovery can only be done manually from the controller. Optional valves in the compressors suction and discharge can be requested.
Anti-freeze Protection
The controller monitors the leaving water temperature and will disable the compressors when the water temperature reaches the set cutout temperature.
High Pressure Protection
The controller constantly monitors the pressure regulator installed in the equipment discharge line and shuts the circuit down when pressure greater than the set maximum is detected.
.
CG-PRC002A-EN
17
Integrated Comfort
Modem
Workstation
VariTrane
Variable Air Volume
Room Temperature
Sensor
VariTrane
Variable Air Volume
Terminal
Remote
PC
®
®
Building
Control Unit
Diffuser
Workstation
PC
Exhaust Fan
Controls
Workstation
(Notebook)
Air Handler Unit
LAN
Building
Control Unit
System
The owner of an establishment or building can monitor the chiller fully from the Tracer system, as all the monitoring information shown on the unit controller can be read from the Tracer system display. Furthermore, all the diagnostic information can be read in the tracer system. Best of all, these powerful features are achieved with only one twisted pair of wires. The chillers can interface to a range of external control systems, from simple independent units to ice making systems. A single twisted pair of wires connected directly between the chiller and a Tracer Summit system provides control, monitoring and diagnostic capabilities. Control functions include switch on/ switch off, adjustment of the leaving water temperature setpoint, blocking compres­sor operation for demand limiting and control of ice making mode. The Tracer system reads the monitoring information, such as entering and leaving evaporator water temperatures and outdoor temperature. The Tracer system can read a large number of individual diagnostics on equipment being controlled/ monitored. In addition to this, it can provide sequencing control for up to 25 units on the same system.
Room Temperatura
Sensor
Diffuser
Tracer Summit - Trane Integrated Comfort System (ICS) The Tracer Summit Building
Management System with Chiller Control provides building automation and energy management functions using independent control. The Chiller Control is able to monitor and control the complete installed chiller system. Available applications: . Time programmer; . Demand limiter . Chiller sequencing . Process control language. . Boolean processing. . Ambient controllers . Reports and logs . Personalized messages
18
Liquid Chiller CGAD Trane
. Operating and maintenance time . Trend log . PID control loop
Of course, Trane Chiller Control can also be used independently or in conjunction with a complete building automation system. When one or more chillers are used with a Tracer Summit system from Trane, the units can be monitored and controlled from a remote location. The chillers can fit into a global building automation strategy by using scheduling, programmed changes, demand limiting and chiller sequencing.
Required Options
COMM3 Communications Interface
Required Devices
Building Control Unit (BCU) and Tracer Summit management software.
CG-PRC002A-EN
Integrated Comfort
Ice Making System Controls
The ice making option can be requested with the chiller. The unit will have two operating modes, ice making and normal chilling. In ice making mode the chiller will operate at total compressor capacity until the return solution temperature matches the setpoint for ice making. The chiller needs two input signals. The first is an on/ off signal for scheduling and the second is required to switch the unit between ice making mode and normal operation. The signals are supplied by a remote building automation device, such as, for example, a timer or a manual switch. The signals can also be supplied by the Tracer System.
Additional Options which Can Also Be Used
- Signalling Relays
Further Tracer Summit Characteristics-
Trane Chiller Systems Automation Trane's experience in chillers and controls makes us the preferred choice for chiller automation. The Tracer Summit building automation system from Trane has chiller control capabilities which are unparalleled in the industry. Our chiller automation software is fully developed and tested by Trane.
Energy Efficiency
Trane chiller automation manages chiller starts so as to optimize the total energy efficiency of the equipment. Sophisticated software automatically determines which chiller should be operating in response to the current conditions. The software also switches automatically between individual chillers in order to ensure equal operating time and wear between chillers. Trane chiller automation allows unique strategies for energy saving. An example is the control of pumps and chillers based on a view of the total energy consumption of the system. The software intelligently evaluates and selects the option with least energy consumption.
Controls
Keeping Operators Informed
It is vital for efficient chiller operation to ensure that operational personnel have instant information on what is happening in the equipment. By clearly describing the chiller system, drawings with schematic layouts of chillers, tubing, pumps and towers allow building operational staff to monitor all the conditions efficiently. Status screens show the current conditions and control actions which have to be taken in order to increase or decrease chiller capacity. Chillers can be monitored and controlled from a remote location. The Tracer Summit provides standardized report templates which list key operational data for problem solving and performance checking. The reports for each type of chiller and for chiller sequencing systems are also standardized. Detailed reports with chiller operating times help in planning preventive maintenance.
Rapid Response in Emergencies
We appreciate the importance of maintaining chilled water production and at the same time protecting your chillers from expensive damage. If water flow into a chiller's tubing is not detected, the start sequence is interrupted in order to protect the chiller and the next chiller within the sequence is immediately started up to maintain chilling. Should a problem occur, the operator receives an alarm warning and a diagnostic message to help solve the problem quickly and accurately. An instant report showing the system status immediately before it was switched off helps operators identify the cause. If the emergency conditions warrant an immediate manual shutdown the operator can ignore the automatic control.
System
Documentation
The comprehensive documentation covering chiller management practices is now a fact of life. Trane chiller system automation generates the reports defined in the ASHRAE Guidelines.
ICS or Integrated Comfort System Capabilities
When it is integrated with a tracer Summit management system, Trane chiller automation manages the coordination with the Tracer Summit applications in order to optimize global building operation. With this system option, a large part of Trane's HVAC* and control experience is used to provide solutions for different parts of the installation. If your project requires an interface to other systems the Tracer Summit system can share data using BACNet, the ASHRAE open systems protocol, MODBUS and other protocols (subject to confirmation).
HVAC = Heating, Ventilation and Air Conditioning
CG-PRC002A-EN
19
Dimensional
COMPRESSORS
Fig. 07 - Unit Dimensions - CGAD 020C
Data
CGAD020C
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (4 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT.
20
Fig. 08 - Top View of Fans
CG-PRC002A-EN
Dimensional Data
Fig.09 - Unit Dimensions - CGAD 025C / 030C
CGAD025C / 030C
CG-PRC002A-EN
Fig. 10 - Top View of Fans
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (4 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT. 3 - UNITS NOT SPECIFIED: mm
21
Dimensional
Fig. 11 - Unit Dimensions - CGAD 040C
COMPRESSORS
Data
CGAD 040C
COMPRESSORS
22
Fig. 12 - Top View of Fans
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (4 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT. 3 - UNITS NOT SPECIFIED: mm
CG-PRC002A-EN
Dimensional Data CGAD 050C / 060C
Fig. 13 - Unit Dimensions - CGAD 050B / 060C
CG-PRC002A-EN
Fig. 14 - Top View of Fans
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (4 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT. 3 - UNITS NOT SPECIFIED: mm
23
Fig. 15 - Unit Dimensions - CGAD 070C
CONDENSING
COL
Dimensional Data CGAD 070C
CONDENSING
COL
24
Fig. 16 - Top View of Fans
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (6 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT. 3 - UNITS NOT SPECIFIED: mm
CG-PRC002A-EN
Dimensional
COMPRESSORS
Data
Fig. 17 - Unit Dimensions - CGAD 080C / 090C
COMPRESSORS
CGAD 080C / 090C
CONDENSING
COL
CG-PRC002A-EN
Fig. 18 - Top View of Fans
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (6 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT. 3 - UNITS NOT SPECIFIED: mm
25
Dimensional
Fig. 19 - Unit Dimensions - CGAD 100C
Data
CGAD 100C
26
Fig. 20 - Top View of Fans
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (6 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT. 3 - UNITS NOT SPECIFIED: mm
CG-PRC002A-EN
Dimensional
Fig. 21 - Unit Dimensions - CGAD 120C
Data
CGAD 120C
CG-PRC002A-EN
Fig. 22 - Top View of Fans
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (6 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT. 3 - UNITS NOT SPECIFIED: mm
27
Dimensional
Fig. 23 - Unit Dimensions - CGAD 150C
Data
CGAD 150C
28
Fig. 24 - Top View of Fans
NOTES: 1 - FIXING POINTS FOR VIBRATION INSULATORS (6 X.11,5-mm DIAM HOLES) 2 - VIBRATION INSULATORS ARE NOT SUPPLIED WITH THE EQUIPMENT. 3 - UNITS NOT SPECIFIED: mm
CG-PRC002A-EN
Maintenance and Air Circulation Clearances
Fig. 25 - Maintenance and Air Circulation Clearances - CGAD 020 to 150.
Fig. 26 - Maintenance and Air Circulation Clearances - CGAD 020 to 150
CG-PRC002A-EN
NOTE: Units: mm
29
Mechanical Especifications
Evaporators
Shell & Tube evaporators are designed according to the ASME standard for pres­sure vessels, without internal combustion, and are factory tested with 225 psig at refrigerant side (tubes) and 150 psig at water side (casing). The evaporator casing is made of carbon steel and the covers are made of cast iron.
Plastic Baffle Plates
Carbon Steel
Mirror
Fig. 27 - Shell & Tube Evaporator
The copper tubes are internally-rifled, seamless tubes, mounted and mechanically expanded in carbon steel mirrors to avoid refrigerant leaks. In order to avoid tube vibration problems and maintain the crossed drainage of evapora­tor water, traverse baffle plates are mounted along the evaporator. Thermal insulation of the assembly is provided by 16-mm rubber sheets.
Internally-Rifled
Copper Tube
Water Flow
Condensers
Coil-type condensers are built with alumi­num fins model Wavy-3B, 3/8"-OD internally-rifled copper tubes, mechanically expanded in the fins, and galvanized steel structure, and are equipped with an inte­gral sub-cooler. After manufacturing, condensers are tested with a pressure of 30 kgf/cm2 (425 psig).30 kgf/cm2 (425 psig).
Air Flow
Evaporator
Fan
Fig. 22- Condenser Air Flow
Coils
Refrigerating lines
Trane CGAD Air-Cooled Liquid Chillers are equipped with the following refrigerating lines:
Model Suction Discharge Liquid
020 025 030 040 050 060 070 080 090 100 120 150
1 5/8" 1 3/8" 2 1/8" 1 3/8"
2 1/8" 1 3/8" 2 x 1 5/8" 2 x 1 3/8" 2 x 2 5/8" 2 x 1 3/8" 2 x 2 5/8" 2 x 1 3/8" 2 x 2 5/8" 2 x 1 3/8" 2 x 1 1/8" 2 x 2 5/8" 2 x 1 3/8" 2 x 1 1/8" 2 x 2 5/8" 2 x 1 3/8" 2 x 1 1/8"
2 5/8" 2 5/8"
3 1/8"
1 5/8" 1 5/8" 2 1/8"
7/8" 7/8"
7/8" 2 x 7/8" 2 x 7/8" 2 x 7/8"
1 1/8" 1 1/8" 1 1/8"
30
CG-PRC002A-EN
Mechanical Especifications
Cooling Components
Trane 20, 25 and 30Tons CGAD Air­Cooled Liquid Chillers have only one cooling circuit, and the 40, 50, 60, 70 , 80 and 90 Tons units have two independent cooling circuits. Each cooling circuit is supplied with the following components:
- Thermostatic expansion valve;
- Tank valve at condenser outlet, with a pressure intake point of 1/4" SAE;
- Liquid sightglass with humidity indicator;
- Dryer filter;
Fig. 28 - Liquid Sightglass
Compressor Scroll
Compressors Scroll provide more benefits to the air conditioning system user when compared to reciprocating compressors.
- They have a 5 to 10% higher efficiency, in average;
- They do have no valves, being extremely resistant to slugging;
- They have 64% fewer moving parts;
- Extremely smooth and silent operation, comparable to a centrifugal compressor;
- Low torque variation, which provides vibration and noise reduction and increa­ses motor life.
Compression Cycle
Figure 28 shows a Scroll compressor in detail, presenting its main components and the operational principle, according to the items below:
A
. The refrigerant, in gaseous state , is suctioned into its interior though the sucti­on connection.
B
. The refrigerant passes through a cavida­ty between the rotor and the stator, cooling the motor .
C. The refrigerant speed decreases when it leaves the motor cavity and the oil is sepa­rated. The oil returns to the crankcase..
D.
The refrigerant goes into the suction chamber and fills out the compression scroll.
E. After compression, the refrigerant is dischraged in the compressor hood throu­gh a hole in the center of the fixed Scroll. The hood function is to amortize the refri­gerant flow, reducing vibrations. Then the refrigerant leaves the compressor through the discharge connection.
Fig. 29 - Expansion
Valve
CG-PRC002A-EN
Fig. 30 - Comparison Scroll x Reciprocal
Filtering Element
Fig. 31 - Drier Filter
Check Valve
D
C
B
Motor Shaft
FIg. 32 - Compressor Scroll
Fixed Scroll
E Discharge
Moving Scroll
Motor
A Suction
Oil Pump
31
Tab.08 - General dimensional data
Modelo
CGAD020C CGAD025C CGAD030C CGAD040C CGAD050C CGAD060C CGAD070C CGAD080C CGAD090C CGAD100C CGAD120C
CGAD1500C
Height
mm mm mm 1840,5 2195,0 1840,5 2195,0 1840,5 2195,0 2190,5 2389,0 2190,5 2989,0 2190,5 2989,0 2190,5 3695,0 2190,5 3903,0 2190,5 3903,0 2376,0 3425,0 2376,0 4949,0 2376,0 4949,0
Widht
General Dimensions
(1)
Depth
1350,0 1700,0 1700,0 1880,0 1880,0 1880,0 1880,0 1880,0 1880,0 2442,0 2442,0 2442,0
Floor Area
2
m
2,700 3,400 3,400 3,940 5,250 5,250 6,580 6,970 6,970
7,237 10,654 10,654
(2)
Operatio nal Weight
Shipping Weight
kg kg 1340 1300 1420 1380 1480 1420 1910 1860 2210 2130 2500 2360 3000 2850 3240 3100 3220 3100 3775 3653 4135 3962 4653 4376
EL E C T R I C A L PANE L
HEIGHT
)
1
(
T
H
D
I
W
D
E
P
T
H
D
E
P
T
H
Fig. 33 -- Dimensional drawing
Notas: (1) The length measurements take into account the depth of the electrical frame coupled to the equipment. (2) The floor area measurements do not take into account the base of the electrical frame coupled to the equipment.
)
1
(
T
H
D
I
W
HEIGHT
32
CG-PRC002A-EN
Trane Brazil
Av. dos Pinheirais, 565 - Estação
83.705-570 - Araucária, PR - Brazil
www.trane.com.br mkt.brasil@trane.com
An American Standard Company
Literature Order Number.: File Number: Supersedes: Stocking Location:
Since Trane has a policy of continuous product and product data improvement, it reserves the right to change designs and specifications without notice.
CG-PRC002A-EN PL-000-CG-PRC002A-EN 0606 CG-PRC002-EN (04/04) Brazil
Loading...