Trane Ascend ACR Series Installation, Operation And Maintenance Manual

Page 1
SSAAFFEETTYY WWAARRNNIINNGG
Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.
March 2019
AACC--SSVVXX000011AA--EENN
With AdaptiSpeed™ Technology Quiet operation enabled by InvisiSound™ Technology 150 to 300 Nominal Tons
Installation, Operation, and Maintenance
Page 2
©2019 Ingersoll Rand
AC-SVX001A-EN
Introduction
Read this manual thoroughly before operating or servicing this unit.
Warnings, Cautions, and Notices
Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.
The three types of advisories are defined as follows:
WARNING
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
CAU
TION
Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.
NOTICE
Indicates a situation that could result in equipment or property-damage only accidents.
Important Environmental Concerns
Scientific research has shown that certain man-made chemicals can affect the earth’s naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs and HCFCs such as saturated or unsaturated HFCs and HCFCs.
Important Responsible Refrigerant Practices
Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified according to local rules. For the USA, the Federal Clean Air Act (Section
608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.
WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
WWAARRNNIINNGG
PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE)) RReeqquuiirreedd!!
FFaaiilluurree ttoo wweeaarr pprrooppeerr PPPPEE ffoorr tthhee jjoobb bbeeiinngg uunnddeerrttaakkeenn ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. TTeecchhnniicciiaannss,, iinn oorrddeerr ttoo pprrootteecctt tthheemmsseellvveess ffrroomm ppootteennttiiaall eelleeccttrriiccaall,, mmeecchhaanniiccaall,, aanndd cchheemmiiccaall hhaazzaarrddss,, MMUUSSTT ffoollllooww pprreeccaauuttiioonnss iinn tthhiiss mmaannuuaall aanndd oonn tthhee ttaaggss,, ssttiicckkeerrss,, aanndd llaabbeellss,, aass wweellll aass tthhee iinnssttrruuccttiioonnss bbeellooww::
•• BBeeffoorree iinnssttaalllliinngg//sseerrvviicciinngg tthhiiss uunniitt,, tteecchhnniicciiaannss MMUUSSTT ppuutt oonn aallll PPPPEE rreeqquuiirreedd ffoorr tthhee wwoorrkk bbeeiinngg uunnddeerrttaakkeenn ((EExxaammpplleess;; ccuutt rreessiissttaanntt gglloovveess//sslleeeevveess,, bbuuttyyll gglloovveess,, ssaaffeettyy ggllaasssseess,, hhaarrdd hhaatt//bbuummpp ccaapp,, ffaallll pprrootteeccttiioonn,, eelleeccttrriiccaall PPPPEE aanndd aarrcc ffllaasshh ccllootthhiinngg)).. AALLWWAAYYSS rreeffeerr ttoo aapppprroopprriiaattee MMaatteerriiaall SSaaffeettyy DDaattaa SShheeeettss ((MMSSDDSS))//SSaaffeettyy DDaattaa SShheeeettss ((SSDDSS)) aanndd OOSSHHAA gguuiiddeelliinneess ffoorr pprrooppeerr PPPPEE..
•• WWhheenn wwoorrkkiinngg wwiitthh oorr aarroouunndd hhaazzaarrddoouuss cchheemmiiccaallss,, AALLWWAAYYSS rreeffeerr ttoo tthhee aapppprroopprriiaattee MMSSDDSS//SSDDSS aanndd OOSSHHAA//GGHHSS ((GGlloobbaall HHaarrmmoonniizzeedd SSyysstteemm ooff CCllaassssiiffiiccaattiioonn aanndd LLaabbeelllliinngg ooff CChheemmiiccaallss)) gguuiiddeelliinneess ffoorr iinnffoorrmmaattiioonn oonn aalllloowwaabbllee ppeerrssoonnaall eexxppoossuurree lleevveellss,, pprrooppeerr rreessppiirraattoorryy pprrootteeccttiioonn aanndd hhaannddlliinngg iinnssttrruuccttiioonnss..
•• IIff tthheerree iiss aa rriisskk ooff eenneerrggiizzeedd eelleeccttrriiccaall ccoonnttaacctt,, aarrcc,, oorr ffllaasshh,, tteecchhnniicciiaannss MMUUSSTT ppuutt oonn aallll PPPPEE iinn aaccccoorrddaannccee wwiitthh OOSSHHAA,, NNFFPPAA 7700EE,, oorr ootthheerr ccoouunnttrryy--ssppeecciiffiicc rreeqquuiirreemmeennttss ffoorr aarrcc ffllaasshh pprrootteeccttiioonn,, PPRRIIOORR ttoo sseerrvviicciinngg tthhee uunniitt.. NNEEVVEERR PPEERRFFOORRMM AANNYY SSWWIITTCCHHIINNGG,, DDIISSCCOONNNNEECCTTIINNGG,, OORR VVOOLLTTAAGGEE TTEESSTTIINNGG WWIITTHHOOUUTT PPRROOPPEERR EELLEECCTTRRIICCAALL PPPPEE AANNDD AARRCC FFLLAASSHH CCLLOOTTHHIINNGG.. EENNSSUURREE EELLEECCTTRRIICCAALL MMEETTEERRSS AANNDD EEQQUUIIPPMMEENNTT AARREE PPRROOPPEERRLLYY RRAATTEEDD FFOORR IINNTTEENNDDEEDD VVOOLLTTAAGGEE..
Page 3
AC-SVX001A-EN
3
WWAARRNNIINNGG
FFoollllooww EEHHSS PPoolliicciieess!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy..
•• AAllll IInnggeerrssoollll RRaanndd ppeerrssoonnnneell mmuusstt ffoollllooww IInnggeerrssoollll RRaanndd EEnnvviirroonnmmeennttaall,, HHeeaalltthh aanndd SSaaffeettyy ((EEHHSS)) ppoolliicciieess wwhheenn ppeerrffoorrmmiinngg wwoorrkk ssuucchh aass hhoott wwoorrkk,, eelleeccttrriiccaall,, ffaallll pprrootteeccttiioonn,, lloocckkoouutt//ttaaggoouutt,, rreeffrriiggeerraanntt hhaannddlliinngg,, eettcc.. AAllll ppoolliicciieess ccaann bbee ffoouunndd oonn tthhee BBOOSS ssiittee.. WWhheerree llooccaall rreegguullaattiioonnss aarree mmoorree ssttrriinnggeenntt tthhaann tthheessee ppoolliicciieess,, tthhoossee rreegguullaattiioonnss ssuuppeerrsseeddee tthheessee ppoolliicciieess..
•• NNoonn--IInnggeerrssoollll RRaanndd ppeerrssoonnnneell sshhoouulldd aallwwaayyss ffoollllooww llooccaall rreegguullaattiioonnss..
WWAARRNNIINNGG
RReeffrriiggeerraanntt uunnddeerr HHiigghh PPrreessssuurree!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn aann eexxpplloossiioonn wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. SSyysstteemm ccoonnttaaiinnss rreeffrriiggeerraanntt uunnddeerr hhiigghh pprreessssuurree.. RReeccoovveerr rreeffrriiggeerraanntt ttoo rreelliieevvee pprreessssuurree bbeeffoorree ooppeenniinngg tthhee ssyysstteemm.. SSeeee uunniitt nnaammeeppllaattee ffoorr rreeffrriiggeerraanntt ttyyppee.. DDoo nnoott uussee nnoonn--aapppprroovveedd rreeffrriiggeerraannttss,, rreeffrriiggeerraanntt ssuubbssttiittuutteess,, oorr rreeffrriiggeerraanntt aaddddiittiivveess..
Factory Warranty Information
Compliance with the following is required to preserve the factory warranty:
AAllll UUnniitt IInnssttaallllaattiioonnss
Startup MUST be performed by Trane, or an authorized agent of Trane, to VALIDATE this WARRANTY. Contractor must provide a two-week startup notification to Trane (or an agent
Copyright
This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.
Trademarks
All trademarks referenced in this document are the trademarks of their respective owners.
Factory Training
Factory training is available through Trane University to help you learn more about the operation and maintenance of your equipment. To learn about available training opportunities contact Trane University.
Online: www.trane.com/traneuniversity
Phone: 855-803-3563
Email: traneuniversity@trane.com
IInnttrroodduuccttiioonn
Page 4
4
AC-SVX001A-EN
Model Number Information . . . . . . . . . . . .. . . . 7
Nameplates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Unit Nameplate . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Model Number Coding System. . . . . . . . . 7
Compressor Nameplate . . . . . . . . . . . . . . . . . . . 7
Model Number Descriptions. . . . . . . . . .. . . . . . 8
Unit Model Number. . . . . . . . . . . . . . . . . . . . . . . 8
Compressor Information . . . . . . . . . . . . . . . . . 10
Model Number . . . . . . . . . . . . . . . . . . . . . . 10
Serial Number . . . . . . . . . . . . . . . . . . . . . . . 10
General Information . .. . . . . . . . . .. . . . . . . . . . . 11
Unit Description . . . . . . . . . . . . . . . . . . . . . . . . . 11
Unit Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Accessory/Option Information . . . . . . . . . . . . 11
General Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Drive Cooling Fluid . . . . . . . . . . . . . . . . . . . . . . 14
Pre-Installation . . . . . . . . . . .. . . . . . . . . .. . . . . . . 15
Unit Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Exterior Inspection . . . . . . . . . . . . . . . . . . . 15
Inspection for Concealed
Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Repair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Storage Requirements . . . . . . . . . . . . . . . . . . . 15
Installation Requirements . . . . . . . . . . . . . . . . 16
Dimensions and Weights . . . . . . . . . . . . .. . . . . 17
Weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Service Clearance . . . . . . . . . . . . . . . . . . . . . . . 18
Unit Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . 19
Installation Mechanical . . . . . . . . . .. . . . . . . . . . 23
Location Requirements . . . . . . . . . . . . . . . . . . 23
Sound Considerations. . . . . . . . . . . . . . . . 23
Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Clearances . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Lifting and Moving Instructions . . . . . . . . . . . 23
Center of Gravity . . . . . . . . . . . . . . . . . . . . . . . . 26
Isolation and Sound Emission . . . . . . . . . . . . 26
Unit Isolation and Leveling. . . . . . . . . . . . 26
Elastomeric Isolators . . . . . . . . . . . . . . . . . 26
Mounting Locations, Weights,
Isolators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Compressor Mounting Bolt
Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Drainage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Refrigerant Pressure Relief Valves . . . . . . . . 31
Evaporator Piping . . . . . . . . . . . . . . . . . . . . . . . 31
Evaporator Piping Components . . . . . . . 32
Evaporator Waterside Pressure Drop
Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Freeze Protection . . . . . . . . . . . . . . . . . . . . . . . . 35
Low Evaporator Refrigerant Cutout,
Glycol Requirements . . . . . . . . . . . . . . . . . . . . 37
Installation Electrical . .. . . . . . . . . .. . . . . . . . . . 38
General Recommendations. . . . . . . . . . . . . . . 38
Adaptive FrequencyDrive
Capacitor Discharge. . . . . . . . . . . . . . . . . . 39
Units with Nitrogen Charge
Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Installer-Supplied Components . . . . . . . . . . . 39
Power Supply Wiring. . . . . . . . . . . . . . . . . 40
Control Power Supply . . . . . . . . . . . . . . . . 41
Service Power Connection . . . . . . . . . . . . 41
Heater Power Supply. . . . . . . . . . . . . . . . . 42
Chilled Water Pump Control . . . . . . . . . . . . . . 42
Programmable Relays . . . . . . . . . . . . . . . . . . . 43
Relay Assignments Using Tracer TU . . . . . . 43
Low Voltage Wiring. . . . . . . . . . . . . . . . . . . . . . 44
Emergency Stop . . . . . . . . . . . . . . . . . . . . . 44
External Auto/Stop . . . . . . . . . . . . . . . . . . . 44
External Circuit Lockout – Circuit #1
and #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Ice Building Option . . . . . . . . . . . . . . . . . . 44
External Chilled Water Setpoint
(ECWS) Option . . . . . . . . . . . . . . . . . . . . . . 45
External Demand Limit Setpoint
(EDLS) Option . . . . . . . . . . . . . . . . . . . . . . . 45
EDLS and ECWS Analog Input Signal
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chilled Water Reset (CWR) . . . . . . . . . . . 46
Transformer Power Rating . . . . . . . . . . . . . . . 47
Communications Interface . . . . . . . . . . . . . . . 47
Table of Contents
Page 5
AC-SVX001A-EN
5
LonTalk Interface (LCI-C) . . . . . . . . . . . . . 47
BACnet Interface (BCI-C). . . . . . . . . . . . . . 47
Modbus Remote Terminal Unit
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Operating Principles. . . . . . . . .. . . . . . . . . . . . . . 48
Refrigeration Circuits . . . . . . . . . . . . . . . . . . . . 48
Refrigeration Cycle . . . . . . . . . . . . . . . . . . . . . . 48
Refrigerant R-134a . . . . . . . . . . . . . . . . . . . . . . . 48
Compressor and Oil System . . . . . . . . . . . . . . 48
Condenser and Fans . . . . . . . . . . . . . . . . . . . . . 48
Evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Drive Cooling System . . . . . . . . . . . . . . . . . . . . 49
Controls . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 50
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
UC800 Specifications . . . . . . . . . . . . . . . . . . . . 50
Wiring and Port Descriptions. . . . . . . . . . 50
Communication Interfaces . . . . . . . . . . . . 51
Rotary Switches . . . . . . . . . . . . . . . . . . . . . 51
LED Description and Operation. . . . . . . . 51
Tracer AdaptiView TD7 Display . . . . . . . . . . . 53
Operator Interface. . . . . . . . . . . . . . . . . . . . 53
Home Screen . . . . . . . . . . . . . . . . . . . . . . . 53
Viewing Chiller Operating
Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Equipment Settings . . . . . . . . . . . . . . . . . . 59
Display Settings . . . . . . . . . . . . . . . . . . . . . 61
Security Settings. . . . . . . . . . . . . . . . . . . . . 62
InvisiSound Ultimate — Noise
Reduction Mode . . . . . . . . . . . . . . . . . . . . . 63
Tracer TU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Pre-Start. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 65
Start-up and Shutdown. . . . . . . . . . . . . . . . . .. . 66
Unit Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Temporary Shutdown And Restart . . . . . . . . 66
Extended Shutdown Procedure . . . . . . . . . . 66
Seasonal Unit Start-up Procedure . . . . . . . . 67
System Restart After Extended
Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Sequence of Operation. . . . . . . . . . . . . . . . . . . 67
Software Operation Overview. . . . . . . . . 67
Power Up Diagram . . . . . . . . . . . . . . . . . . 69
Power Up to Starting . . . . . . . . . . . . . . . . . 70
Stopped to Starting . . . . . . . . . . . . . . . . . . 71
Running (Lead Compressor/Circuit
Start and Run) . . . . . . . . . . . . . . . . . . . . . . . 72
Running (Lag Compressor/Circuit
Start and Run) . . . . . . . . . . . . . . . . . . . . . . . 73
Satisfied Setpoint . . . . . . . . . . . . . . . . . . . . 74
Normal Shutdown to Stopped or
Run Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Immediate Shutdown to Stopped or
Run Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Ice Making (Running to Ice Making to
Running) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Ice Making (Auto to Ice Making to Ice
Making Complete) . . . . . . . . . . . . . . . . . . . 78
Maintenance . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . 79
Recommended Maintenance . . . . . . . . . . . . . 79
Weekly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Monthly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Annual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Refrigerant and Oil Charge
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Lubrication System . . . . . . . . . . . . . . . . . . . . . . 80
Oil Sump Level Check . . . . . . . . . . . . . . . . 80
Drive Cooling System . . . . . . . . . . . . . . . . . . . . 81
Service Intervals . . . . . . . . . . . . . . . . . . . . . 81
Unit Diagnostics . . . . . . . . . . . . . . . . . . . . . 81
pH Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Pressure Relief Cap . . . . . . . . . . . . . . . . . . 82
Drive Cooling Expansion Tank . . . . . . . . 82
Condenser Coil Corrosion Protection
Inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Condenser Coil Cleaning . . . . . . . . . . . . . . . . . 82
Coil Cleaning Interval . . . . . . . . . . . . . . . . 82
Cleaning Air Side of Coils . . . . . . . . . . . . 83
Cleaning Coated Coils . . . . . . . . . . . . . . . . 83
Reinstallation of Compressor Mounting
Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Servicing Chiller Roof . . . . . . . . . . . . . . . . . . . 83
Diagnostics. . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . 84
TTaabbllee ooff CCoonntteennttss
Page 6
6
AC-SVX001A-EN
General Diagnostics Information. . . . . . . . . . 84
AFD Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 84
Main Processor Diagnostics . . . . . . . . . . . . . . 87
Communication Diagnostics. . . . . . . . . . . . . . 99
Unit Wiring . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 104
Log and Check Sheets . . . . . . . . . . . . . . . . . . . . 105
AscendModel ACR Installation Completion Check Sheet and Request for
Trane Service . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Operator Log . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
TTaabbllee ooff CCoonntteennttss
Page 7
AC-SVX001A-EN
7

Model Number Information

Nameplates

Unit nameplates are applied to the exterior of the control panel. A compressor nameplate is located on each compressor. When the unit arrives, compare all nameplate data with ordering, submittal, and shipping information.

Unit Nameplate

See figure below for a typical unit nameplate. The outdoor unit nameplate provides the following information:
Unit model and size description.
Unit serial number.
Unit electrical requirements.
Operating charges of R-134a and refrigerant oil (Trane OIL00311).
Unit test pressures.
Installation, operation and maintenance and service data literature.
Drawing numbers for unit wiring diagrams

Model Number Coding System

Model numbers are composed of numbers and letters that represent features of the equipment. Shown below is a sample of typical unit model number.
ACRA 200F UA01 AA1F N1X1 A2D0 0CB1 X03X AA01 000
Each position, or group of positions, in the model number is used to represent a feature. Unit model number digits are selected and assigned in accordance with the definitions as listed in Model Number Descriptions chapter. For example, position 08 of the unit model number above contains the letter “F” which indicates the unit voltage is 460/60/3.

Compressor Nameplate

The compressor nameplate provides the following information:
Compressor model number.
Compressor serial number.
Compressor electrical characteristics
Utilization range.
Recommended refrigerant
See Model Number Descriptions chapter for compressor model and serial number descriptions.
Page 8
8
AC-SVX001A-EN

Model Number Descriptions

Unit Model Number

Digit 1, 2, 3, 4 — Unit Model
ACRA = Air-Cooled Screw Chiller
Digit 5, 6, 7 — Nominal Tonnage
150 = 150 Tons 165 = 165 Tons 180 = 180 Tons 200 = 200 Tons 225 = 225 Tons 250 = 250 Tons 275 = 275 Tons 300 = 300 Tons
Digit 8 — Unit Voltage
A = 200/60/3 B = 230/50/3 C = 380/50/3 D = 380/60/3 E = 400/50/3 F = 460/60/3 G = 575/60/3 H = 400/60/3
Digit 9 — Manufacturing Location
U = Trane Commercial Systems, Pueblo, CO
USA
Digits 10, 11 — Design Sequence
** = Factory assigned
Digit 12 — Unit Sound Package
1 = InvisiSoundStandard Unit 2 = InvisiSoundSuperior (Line Wraps,
Reduced Fan Speed) 3 = InvisiSoundUltimate (Compressor
Sound Attenuation, Line Wraps, Reduced Fan Speed)
Digit 13 — Agency Listing
0 = No Agency Listing A = UL/cUL Listing
Digit 14 — Pressure Vessel Code
A = ASME Pressure Vessel Code C = CRN or Canadian Equivalent Pressure
Vessel Code
D = Australia Pressure Vessel Code
Digit 15 — Factory Charge
1 = Refrigerant Charge R-134a 2 = Nitrogen Charge
Digit 16 — Evaporator Application
F = Standard Cooling (40 to 65°F/5.5 to 18°
C) G = Low Temp Process Cooling (below 40°F/
5.5°C) C = Ice Making (20 to 6°F/7 to 18°C) with
Hardwired Interface
Digit 17 — Evaporator Configuration
N = 2-pass Evaporator P = 3-pass Evaporator
Digit 18 — Evaporator Fluid Type
1 = Water 2 = Calcium Chloride 3 = Ethylene Glycol 4 = Propylene Glycol 5 = Methanol
Digit 19 — Water Connection
X = Grooved Pipe F = Grooved Pipe + Flange
Digit 20 — Flow Switch
1 = Factory Installed - Other Fluid (15 cm/s) 2 = Factory Installed - Water 2 (35 cm/s) 3 = Factory Installed - Water 3 (45 cm/s)
Digit 21 — Insulation
A = Factory Insulation — All Cold Parts 0.75” B = Evaporator-only Insulation for High
Humidity/Low Evap Temp 1.25”
Digit 22 — Unit Application
1 = Standard Ambient (32 to 105°F/0 to
40.6°C) 2 = Low Ambient (0 to 105°F/-17.7 to 40.6°
C) 3 = Extreme Low Ambient (–20 to 105°F/
-28.9 to 40.6°C)
4 = High Ambient (32 to 125°F/0 to 52°C) 5 = Wide Ambient (0 to 125°F/-17.7 to 52°C)
Digit 23 — Condenser Fin Options
A = Aluminum Fins with Slits D = CompleteCoatEpoxy Coated Fins
Digit 24, 25 — Not Used
00 = Reserved for future use
Digit 26 — Power Line Connection Type
A = Terminal Block C = Circuit Breaker D = Circuit Breaker with High Fault Rated
Control Panel
Digit 27 — Short Circuit Current Rating
A = Default A Short Circuit Rating B = High A Short Circuit Rating
Digit 28 — Transformer
0 = No Transformer 1 = Factory Installed Transformer
Digit 29 — Line Voltage Harmonic Mitigation
X = DC Reactors (~30% TDD) 1 = Filter circuit (IEEE519 Compliant)
Digit 30 — Electrical Accessories
0 = No Convenience Outlet C = 15A 115V Convenience Outlet (Type B)
Digit 31 — Remote Communication Option
0 = None 1 = LonTalk® Interface (LCI-C) 2 = BACnet® MS/TP Interface 3 = ModbusInterface
Digit 32 — Hard Wire Communication
X = None A = Hard Wired Bundle - All B = Remote Leaving Water Temp Setpoint C = Remote Leaving Temp and Demand Limit
Setpoints
D = Programmable Relay E = Programmable Relay and Leaving Water
and Demand Limit Setpoint
F = Percent Capacity G = Percent Capacity and Leaving Water and
Demand Limit Setpoint H = Percent Capacity and Programmable
Relay
Page 9
AC-SVX001A-EN
9
Digit 33 — Not Used
A = Reserved for future use
Digit 34 — Structural Options
A = Standard Unit Structure
Digit 35 — Appearance Accessories
0 = No Appearance Options A = Architectural Louvered Panels
Digit 36 — Unit Isolation
0 = None 1 = Elastomeric Isolators
Digit 37, 38 — Not Used
00 = Reserved for future use
Digit 39 — Special
0 = None S = Special F = Ship to Final Finisher
MMooddeell NNuummbbeerr DDeessccrriippttiioonnss
Page 10
10
AC-SVX001A-EN

Compressor Information

Model Number

Digit 1, 2, 3, 4 — Compressor Type
CHHS = Positive displacment, helical rotary (twin screw) hermetic
compressor
Digit 5 — Frame Size
R = R Frame: 70 - 100 tons S = S Frame: 112 - 165 tons
Digit 6 — Motor Length
B = 145 mm C = 170 mm E = 165 mm F = 190 mm
Digit 7— Motor Winding Characteristics
* = Factory assigned
Digit 8 — Volume Ratio
E = Variable Volume Ratio
Digit 9— Refrigerant
1 = R-134a
Digits 10, 11 — Design Sequence
** = Factory assigned

Serial Number

Digit 1, 2 — Year
YY = Last two digits of year of manufacture
Digit 3, 4 — Week
WW = Week of build, from 00 to 52
Digit 5 — Day
1 = Monday 2 = Tuesday 3 = Wednesday 4 = Thursday 5 = Friday 6 = Saturday 7 = Sunday
Digit 6, 7, 8 — Coded Time Stamp
TTT = Used to ensure uniqueness of serial number
Digit 9 — Assembly Line
Assembly line compressor was built on. Varies with facility.
Digit 10 — Build Location
A = Monterrey
MMooddeell NNuummbbeerr DDeessccrriippttiioonnss
Page 11
AC-SVX001A-EN
11

General Information

Unit Description

The AscendACR units are helical-rotary type, air­cooled chillers designed for outdoor installation. The refrigerant circuits are factory-piped, leak tested and dehydrated. Every unit is electrically tested for proper control operation before shipment.
Chilled water inlet and outlet openings are covered for shipment. The chiller features Trane’s exclusive Adaptive Controllogic, which monitors the control variables that govern the operation of the chiller unit. Adaptive Control logic can adjust capacity variables to avoid chiller shutdown when necessary, and keep producing chilled water. The units feature two independent refrigerant circuits. Each circuit utilizes at least one compressor driven by an Adaptive Frequency Drive. Each refrigerant circuit is provided with filter, sight glass, electronic expansion valve, and charging valves. The shell-and-tube evaporator is manufactured in accordance with the ASME standards or other international codes. Each evaporator is fully insulated and equipped with water drain and vent connections.
Units are shipped with full oil charge and can be ordered with either a factory refrigerant charge, or optional nitrogen charge.

Unit Length

Units are EXTENDED length if either of the following are selected:
Transformer: Model number digit 28 = 1
Harmonic Filtration Option: Model number digit 29 = 1
Units without Harmonic Filtration Option or Transformer (digits 28, 29 = 0X) are STANDARD length.

Accessory/Option Information

Check all the accessories and loose parts which are shipped with the unit against the shipping list. Included in these items will be water vessel drain plugs, electrical diagrams, and service literature, which are placed inside the control panel for shipment.
If optional elastomeric isolators are ordered with unit (model number digit 36 = 1), they are shipped mounted
on diagonal supports on the end of the unit opposite control panel. See figures below.
Figure 1. Elastomeric isolator shipping location
Elastomeric Isolator
Shipping Locations
(not all isolators shown ­quantity varies with unit configuration)
Figure 2. Elastomeric isolators attached for shipping
Page 12
12
AC-SVX001A-EN

General Data

Table 1. General data table
Unit Size (tons)
150 165 180 200 225 250 275 300
Compressor Model
CHHSR CHHSR CHHSR CHHSR CHHSS CHHSS CHHSS CHHSS
Quantity
# 2 2 2 2 2 2 2 2
Evaporator
Water Storage
(gal)
17.5 18.7 21.9 23.9 26.6 28.7 33.0 36.0
(L)
66.1 70.9 82.8 90.5 100.6 108.8 125.0 136.1
2 Pass arrangement
Water Connection Size
(in)
5 5 6 6 6 6 8 8
(mm)
125 125 150 150 150 150 200 200
Minimum Flow
(gpm)
171 187 202 228 261 288 318 354
(l/s)
10.8 11.8 12.7 14.4 16.5 18.2 20.1 22.3
Maximum Flow
(gpm)
626 684 742 835 957 1055 1165 1299
(l/s)
39.5 43.1 46.8 52.7 60.4 66.5 73.5 81.9
3 Pass arrangement
Water Connection Size
(in)
4 4 5 5 5 5 6 6
(mm)
100 100 125 125 125 125 150 150
Minimum Flow
(gpm)
114 124 135 152 174 192 212 236
(l/s)
7.2 7.8 8.5 9.6 11.0 12.1 13.4 14.9
Maximum Flow
(gpm)
417 456 495 557 638 703 777 866
(l/s)
26.3 28.8 31.2 35.1 40.2 44.3 49.0 54.6
Condenser
Qty of Coils
8 10 10 12 12 12 14 16
Coil Length
(in)
78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74
(mm)
2000 2000 2000 2000 2000 2000 2000 2000
Coil Height
(in)
50 50 50 50 50 50 50 50
(mm)
1270 1270 1270 1270 1270 1270 1270 1270
Fins/Ft
192 192 192 192 192 192 192 192
Rows 3 3 3 3 3 3 3 3
Condenser Fans
Quantity
# 8 10 10 12 12 12 14 16
Diameter
(in)
37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5
(mm)
953 953 953 953 953 953 953 953
Total Airflow
(cfm) 107,392 134,240 134,240 161,088 161,088 161,088 187,936 214,784
(m3/
hr)
182,460 228,075 228,075 273,690 273,690 273,690 319,305 364,920
Tip Speed
(ft/
min)
8700 8700 8700 8700 8700 8700 8700 8700
(M/S)
44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2
GGeenneerraall IInnffoorrmmaattiioonn
Page 13
AC-SVX001A-EN
13
Table 1. General data table (continued)
Unit Size (tons)
150 165 180 200 225 250 275 300
Ambient Temperature Range
Standard Ambient
°F (°C) 32 to 105 (0 to 40.6)
Low Ambient
°F (°C) 0 to 105 (-17.7 to 40.6)
Extreme Low Ambient
°F (°C) -20 to 105 (-28.9 to 40.6)
High Ambient °F (°C) 32 to 125 (0 to 52)
Wide Ambient
°F (°C) 0 to 125 (-17.7 to 52)
General Unit
Refrigerant
HFC-134a
Refrigerant Ckts
# 2
Minimum Load % 20 18 17 15 20 18 16 15
Refrigerant Charge/ckt
(lbs)
172 181 210 218 265 261 318 325
(kg)
78 82 95 99 120 118 144 148
Oil Trane OIL00311
Oil Charge/ckt
(gal)
3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0
(L)
11.4 11.4 11.4 11.4 15.1 15.1 15.1 15.1
GGeenneerraall IInnffoorrmmaattiioonn
Page 14
14
AC-SVX001A-EN

Drive Cooling Fluid

NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
UUssee ooff uunnaapppprroovveedd fflluuiiddss,, oorr ddiilluuttiioonn ooff aapppprroovveedd fflluuiidd,, ccoouulldd rreessuulltt iinn ccaattaassttrroopphhiicc eeqquuiippmmeenntt ddaammaaggee.. UUssee oonnllyy TTrraannee HHeeaatt TTrraannssffeerr FFlluuiidd PP//NN CCHHMM0011002233.. TThhiiss fflluuiidd iiss aa ddiirreecctt uussee ccoonncceennttrraattiioonn aanndd iiss nnoott ttoo bbee ddiilluutteedd.. DDoo nnoott ttoopp ooffff wwiitthh wwaatteerr oorr aannyy ootthheerr fflluuiidd..
NNoottee:: The use of incorrect compounds in the drive
cooling system may result in scaling, erosion, corrosion or freezing. The Trane Company warranty specifically excludes liability for corrosion, erosion, freezing or deterioration of Trane equipment.
Proper fluid level is important to the operation of the unit. See Drive Cooling Expansion Tank section in Maintenance chapter for fluid level check instructions. The circuit capacities are shown in table below.
If the level is below the recommended minimum levels, contact your local Trane office.
NNoottee:: Drive cooling fluid service life is 5 years. See
maintenance chapter for more drive cooling system information.
Table 2. Drive Cooling
Unit Size
(tons)
Fluid Volume (gal) Fluid Volume (l)
Voltage
Ambient
(a)
Ckt1 Ckt2 Ckt 1 Ckt2
Standard Length
150 to 200 All All 1.4 2.0 5.5 7.7
225 to 250
200/60, 230/50,
460/60, 575/60
Std, Low, Extra Low
1.4 2.0 5.5 7.7
High, Wide
1.5 2.1 5.8 8.1
380/60, 380/50, 400/50
All 1.5 2.1 5.8 8.1
275 to 300 All All 1.5 2.1 5.8 8.1
Extended Length
150 to 200 All All 1.7 2.2 6.2 8.5
225 to 250
200/60, 230/50,
460/60, 575/60
Std, Low, Extra Low
1.7 2.2 6.2 8.5
High, Wide
1.7 2.3 6.6 8.8
380/60, 380/50, 400/50
All 1.7 2.3 6.6 8.8
275 to 300 All All 1.7 2.3 6.6 8.8
(a)
See model number description section, digit 22, for ambient information.
(a)
See model number description section, digit 22, for ambient information.
GGeenneerraall IInnffoorrmmaattiioonn
Page 15
AC-SVX001A-EN
15

Pre-Installation

Unit Inspection

To protect against loss due to damage incurred in transit, perform inspection immediately upon receipt of the unit.

Exterior Inspection

If the job site inspection reveals damage or material shortages, file a claim with the carrier immediately. Specify the type and extent of the damage on the bill of lading before signing. Notify the appropriate sales representative.
IImmppoorrttaanntt:: Do not proceed with installation of a
damaged unit without sales representative’s approval.
Visually inspect the complete exterior for signs of shipping damages to unit or packing material.
Verify that the nameplate data matches the sales order and bill of lading.
Verify that the unit is properly equipped and there are no material shortages.
NNoottee:: Corrosion due to dirt, road grim, road salt, and
other contaminates picked up during shipping is not the responsibility of the carrier.

Inspection for Concealed Damage

Visually inspect the components for concealed damage as soon as possible after delivery and before it is stored.
If concealed damage is discovered:
Notify the carrier’s terminal of the damage immediately by phone and by mail.
Concealed damage must be reported within 15 days.
Request an immediate, joint inspection of the damage with the carrier and consignee.
Stop unpacking the unit.
Do not remove damaged material from receiving location.
Take photos of the damage, if possible.
The owner must provide reasonable evidence that the damage did not occur after delivery.

Repair

Notify the appropriate sales representative before arranging unit installation or repair.
IImmppoorrttaanntt:: Do not repair unit until the damage has
been inspected by the carrier’s representative.

Storage Requirements

Extended storage of outdoor unit prior to installation requires these precautionary measures:
Store the outdoor unit in a secure area.
For units that have been charged with refrigerant, verify the following valves are closed on each circuit:
Suction service valve (butterfly valve)
Liquid line angle valve or EXV (EXV is driven
closed whenever circuit is powered)
– Oil line shutoff valves to brazed plate heat
exchangers
NNoottee:: Units with factory refrigerant charge (model
number digit 15 = 1) are shipped with suction, liquid and oil line shutoff valves closed, isolating most of refrigerant charge in the evaporator. If unit goes directly into long term storage, it is recommended that these valve positions be confirmed.
For units with nitrogen charge option (model number digit 15 = 2), units are shipped with valves open. If unit goes directly into storage prior to refrigerant charge, confirm all service valves are open.
At least every three months (quarterly), check the pressure in the refrigerant circuits to verify that the refrigerant charge is intact. If it is not, contact a qualified service organization and the appropriate Trane sales office.
Page 16
16
AC-SVX001A-EN

Installation Requirements

Type
Trane Supplied Trane Installed
Trane Supplied Field Installed
Field Supplied Field Installed
Foundation
• Meet foundation requirements
Rigging
• Safety chains
• Clevis connectors
• Lifting beam
• Spreader bar
Disassembly/Reassembly (as required)
Trane, or an agent of Trane specifically authorized to perform start-up of Trane® products (contact your local Trane office for pricing)
Isolation
Elastomeric isolators (optional)
• Elastomeric isolators (optional)
Electrical
• Circuit breakers (optional)
• Unit Mounted Starter
• Circuit breakers (optional)
• Electrical connections to unit mounted starter
• Wiring sizes per submittal and NEC
• Terminal lugs
• Ground connection(s)
• BAS wiring (optional)
• Control voltage wiring
• Chilled water pump contactor and wiring
• Option relays and wiring
Water piping
Flow switch
• Taps for thermometers and gauges
• Thermometers
• Water flow pressure gauges
• Isolation and balancing valves in water piping
• Vents and drain
• Waterside pressure relief valves
• Water strainer
Insulation Insulation Insulation
Water Piping Connection Components
Grooved pipe Flange kit (optional)
Other Materials
• R-134a refrigerant
• Dry nitrogen (optional)
Ascend™ Model ACR Installation Completion Check Sheet and Request for Trane Service (AC-ADF001*-EN) See Log and Check Sheet chapter
Chiller Start-up Commissioning
Trane, or an agent of Trane specifically authorized to perform start-up of Trane® products
Trane specifically authorized to perform start-up of Trane® products
PPrree--IInnssttaallllaattiioonn
Page 17
AC-SVX001A-EN
17

Dimensions and Weights

Weights

Table 3. Unit weights
Standard Length Extended Length
Shipping Operating Shipping Operating
Unit Size
(tons)
lb
kg
lb
kg
lb
kg
lb
kg
InvisiSound™ Standard or Superior
150 11333 5141 11479 5207 13492 6120 13638 6186
165 12377 5614 12533 5685 14532 6592 14688 6662
180 12698 5760 12881 5843 14853 6737 15036 6820
200 13808 6263 14008 6354 15991 7254 16191 7344
225 15244 6915 15466 7015 17427 7905 17649 8006
250 15622 7086 15862 7195 17805 8076 18045 8185
275 16820 7630 17095 7754 18975 8607 19250 8732
300 17965 8149 18265 8285 20121 9127 20421 9263
InvisiSound™ Ultimate
150 12133 5504 12279 5570 14292 6483 14438 6549
165 13177 5977 13333 6048 15332 6955 15488 7025
180 13498 6123 13681 6206 15653 7100 15836 7183
200 14608 6626 14808 6717 16791 7616 16991 7707
225 16044 7278 16266 7378 18227 8268 18449 8368
250 16422 7449 16662 7558 18605 8439 18845 8548
275 17620 7992 17895 8117 19775 8970 20050 9095
300 18765 8512 19040 8636 20921 9490 21196 9614
Notes:
1. Weights include factory charge of refrigerant and oil, as well as architectural louvered panels. See Unit Length section of General Data chapter to determine unit length.
2. Model number digit 12 = 1 or 2
3. Model number digit 12 = 3
Page 18
18
AC-SVX001A-EN

Service Clearance

Figure 3. Unit service clearance requirements
36” (914.4mm)
40”
(1016
mm)
24” (600.1mm)
Control
Panel
NO OBSTRUCTIONS ABOVE UNIT
TOP VIEW
See
note 1
85” (2160mm)
See note 2
NNootteess::
1. A full 40” clearance is required in front of the control panel. Must be measured from front of panel, not end of unit base.
2. Clearance of 85” on the side of the unit is required for coil replacement. Preferred side for coil replacement is shown (left side of the unit, as facing control panel), however either side is acceptable.
DDiimmeennssiioonnss aanndd WWeeiigghhttss
Page 19
AC-SVX001A-EN
19

Unit Dimensions

Figure 4. Unit dimensions, standard length
DDiimmeennssiioonnss aanndd WWeeiigghhttss
Page 20
20
AC-SVX001A-EN
Table 4. Unit dimensions, standard length
Unit Size
150 165 180 200
225, 250
275 300
Dim in
mm
in
mm
in
mm
in
mm
in
mm
in
mm
in
mm
A 158.6 4027.0 211.4 5368.8 212.5 5397.4 265.3 6739.5 265.3 6739.5 318.1 8080.5 370.9 9422.5
B 52.4 1330.0 105.2 2671.9 103.5 2629.4 156.4 3971.5 156.4 3971.5 209.0 5308.5 261.8 6650.5
C 11.8 300.0 11.8 300.0 11.8 300.0 11.8 300.0 11.8 300.0 11.8 300.0 11.8 300.0
D 51.2 1300.0 51.2 1300.0 51.2 1300.0 51.2 1300.0 51.2 1300.0 51.2 1300.0 51.2 1300.0
E 78.8 2000.0 74.8 1900.0 74.8 1900.0 74.8 1900.0 74.8 1900.0 61.4 1560.0 74.8 1900.0
F 63.0 1600.0 118.1 3000.0 118.1 3000.0 100.8 2560.0 100.8 2560.0 72.4 1840.0 100.8 2560.0
G 76.4 1940.0 76.4 1940.0 137.8 3500.0 174.8 4440.0
H 25.0 635.0 25.0 635.0 25.0 635.0 25.0 635.0 25.0 635.0 25.0 635.0 25.0 635.0
I 128.1 3255.0 145.6 3699.0 145.6 3699.0 65.9 1674.0 65.9 1674.0 65.9 1674.0 65.9 1674.0
J 120.5 3061.0 120.5 3061.0 158.5 4026.0 79.7 2024.0
K 184.5 4686.0
L 223.0 5663.5 275.8 7005.5 275.8 7005.5 328.6 8347.5 328.6 8347.5 381.5 9689.5 434.3 11031.5
M 228.9 5813.0 281.7 7155.0 281.7 7155.0 334.5 8497.0 334.5 8497.0 387.4 9839.0 440.2 11181.0
N 20.4 519.5 20.4 519.5 19.6 497.5 19.6 497.5 21.8 553.6 20.6 522.5 20.6 522.5
O 17.7 449.5 17.7 449.5 15.4 390.5 15.4 390.5 17.6 446.6 16.1 407.7 16.1 407.7
P 49.3 1252.5 49.3 1252.5 49.9 1268.0 49.9 1268.0 49.9 1268.0 51.3 1303.3 51.3 1303.3
Q
38.5 977.5 38.5 977.5 37.9 962.0 37.9 962.0 37.9 962.0 36.5 927.3 36.5 927.3
R 19.3 489.5 19.3 489.5 17.6 447.5 17.6 447.5 19.8 503.6 18.2 462.5 18.2 462.5
S 19.7 499.5 19.7 499.5 18.2 462.5 18.2 462.5 20.4 518.6 18.9 480.5 18.9 480.5
T 15.8 400.0 15.8 400.0 15.8 400.0 15.8 400.0 15.8 400.0 15.8 400.0 15.8 400.0
U 66.9 1700.0 66.9 1700.0 66.9 1700.0 66.9 1700.0 66.9 1700.0 66.9 1700.0 66.9 1700.0
V 59.1 1500.0 55.1 1400.0 55.1 1400.0 55.1 1400.0 55.1 1400.0 41.8 1060.0 55.1 1400.0
W 63.0 1600.0 118.1 3000.0 118.1 3000.0 100.8 2560.0 100.8 2560.0 72.4 1840.0 100.8 2560.0
X 76.4 1940.0 76.4 1940.0 137.8 3500.0 155.1 3940.0
Y 53.6 1362.5 106.5 2704.4 105.5 2679.4 158.3 4021.5 158.3 4021.5 210.3 5340.0 263.1 6682.0
DDiimmeennssiioonnss aanndd WWeeiigghhttss
Page 21
AC-SVX001A-EN
21
Figure 5. Unit dimensions, extended length
DDiimmeennssiioonnss aanndd WWeeiigghhttss
Page 22
22
AC-SVX001A-EN
Table 5. Unit dimensions, extended length
Unit Size
150 165 180 200
225, 250
275 300
Dim in
mm
in
mm
in
mm
in
mm
in
mm
in
mm
in
mm
A 158.6 4027.0 211.4 5368.8 212.5 5397.4 265.3 6739.5 265.3 6739.5 318.1 8080.5 370.9 9422.5
B 52.4 1330.0 105.2 2671.9 103.5 2629.4 156.4 3971.5 156.4 3971.5 209.0 5308.5 261.8 6650.5
C 27.6 700.0 27.6 700.0 27.6 700.0 51.2 1300.0 51.2 1300.0 51.2 1300.0 51.2 1300.0
D 86.6 2200.0 86.6 2200.0 86.6 2200.0 63.0 1600.0 63.0 1600.0 63.0 1600.0 63.0 1600.0
E 80.4 2042.0 76.4 1942.0 76.4 1942.0 76.4 1942.0 76.4 1942.0 63.1 1602.0 76.4 1942.0
F 63.0 1600.0 118.1 3000.0 118.1 3000.0 59.1 1500.0 59.1 1500.0 72.4 1840.0 100.8 2560.0
G 118.1 3000.0 118.1 3000.0 137.8 3500.0 174.8 4440.0
H 55.1 1400.0 55.1 1400.0 55.1 1400.0 58.3 1482.0 58.3 1482.0 58.3 1482.0 58.3 1482.0
I 150.9 3832.0 168.4 4276.0 168.4 4276.0 85.4 2169.0 85.4 2169.0 85.4 2169.0 85.4 2169.0
J 120.5 3061.0 120.5 3061.0 158.5 4026.0 79.7 2024.0
K 184.5 4686.0
L 275.8 7005.5 328.6 8347.5 328.6 8347.5 381.5 9689.5 381.5 9689.5 434.3 11031.5 487.1 12373.5
M 281.7 7155.0 334.5 8497.0 334.5 8497.0 387.4 9839.0 387.4 9839.0 440.2 11181.0 493.0 12523.0
N 20.4 519.5 20.4 519.5 19.6 497.5 19.6 497.5 21.8 553.6 20.6 522.5 20.6 522.5
O 17.7 449.5 17.7 449.5 15.4 390.5 15.4 390.5 17.6 446.6 16.1 407.7 16.1 407.7
P 49.3 1252.5 49.3 1252.5 49.9 1268.0 49.9 1268.0 49.9 1268.0 51.3 1303.3 51.3 1303.3
Q
38.5 977.5 38.5 977.5 37.9 962.0 37.9 962.0 37.9 962.0 36.5 927.3 36.5 927.3
R 19.3 489.5 19.3 489.5 17.6 447.5 17.6 447.5 19.8 503.6 18.2 462.5 18.2 462.5
S 19.7 499.5 19.7 499.5 18.2 462.5 18.2 462.5 20.4 518.6 18.9 480.5 18.9 480.5
T 27.6 700.0 27.6 700.0 27.6 700.0 51.2 1300.0 51.2 1300.0 51.2 1300.0 51.2 1300.0
U 86.6 2200.0 86.6 2200.0 86.6 2200.0 63.0 1600.0 63.0 1600.0 63.0 1600.0 63.0 1600.0
V 80.4 2042.0 76.4 1942.0 76.4 1942.0 76.4 1942.0 76.4 1942.0 63.1 1602.0 76.4 1942.0
W 63.0 1600.0 118.1 3000.0 118.1 3000.0 59.1 1500.0 59.1 1500.0 72.4 1840.0 63.0 1600.0
X 118.1 3000.0 118.1 3000.0 137.8 3500.0 155.1 3940.0
Y 53.6 1362.5 106.5 2704.4 105.5 2679.4 158.3 4021.5 158.3 4021.5 210.3 5340.0 263.1 6682.0
DDiimmeennssiioonnss aanndd WWeeiigghhttss
Page 23
AC-SVX001A-EN
23

Installation Mechanical

Location Requirements

Sound Considerations

Locate the unit away from sound-sensitive areas.
Install the optional elastomeric isolators under the unit. See Isolation and Sound Emission section.
Chilled water piping should not be supported by chiller frame.
Install rubber vibration isolators in all water piping.
Use flexible electrical conduit.
Seal all wall penetrations.
NNoottee:: Consult an acoustical engineer for critical
applications.

Foundation

Provide rigid, non-warping mounting pads or a concrete foundation of sufficient strength and mass to support the applicable operating weight (i.e., including completed piping, and full operating charges of refrigerant, oil and water). See Dimensions and Weights chapter for unit operating weights. Once in place, the unit must be level within 1/4” (6.4 mm) across the length and width of the unit. The Trane Company is not responsible for equipment problems resulting from an improperly designed or constructed foundation.

Clearances

Provide enough space around the unit to allow the installation and maintenance personnel unrestricted access to all service points. See submittal drawings for the unit dimensions, to provide sufficient clearance for the opening of control panel doors and unit service. See Dimensions and Weights chapter for minimum clearances. In all cases, local codes which require additional clearances will take precedence over these recommendations.
For close spacing information, see RLC-PRB037*-EN.

Lifting and Moving Instructions

WWAARRNNIINNGG
HHeeaavvyy OObbjjeecctt!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn uunniitt ddrrooppppiinngg wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy,, aanndd eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. EEnnssuurree tthhaatt aallll tthhee lliiffttiinngg eeqquuiippmmeenntt uusseedd iiss pprrooppeerrllyy rraatteedd ffoorr tthhee wweeiigghhtt ooff tthhee uunniitt bbeeiinngg lliifftteedd.. EEaacchh ooff tthhee ccaabblleess ((cchhaaiinnss oorr sslliinnggss)),, hhooookkss,, aanndd sshhaacckklleess uusseedd ttoo lliifftt tthhee uunniitt mmuusstt bbee ccaappaabbllee ooff ssuuppppoorrttiinngg tthhee eennttiirree wweeiigghhtt ooff tthhee uunniitt.. LLiiffttiinngg ccaabblleess ((cchhaaiinnss oorr sslliinnggss)) mmaayy nnoott bbee ooff tthhee ssaammee lleennggtthh.. AAddjjuusstt aass nneecceessssaarryy ffoorr eevveenn uunniitt lliifftt..
WWAARRNNIINNGG
IImmpprrooppeerr UUnniitt LLiifftt!!
FFaaiilluurree ttoo pprrooppeerrllyy lliifftt uunniitt iinn aa LLEEVVEELL ppoossiittiioonn ccoouulldd rreessuulltt iinn uunniitt ddrrooppppiinngg aanndd ppoossssiibbllyy ccrruusshhiinngg ooppeerraattoorr//tteecchhnniicciiaann wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy,, aanndd eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. TTeesstt lliifftt uunniitt aapppprrooxxiimmaatteellyy 2244 iinncchheess ((6611 ccmm)) ttoo vveerriiffyy pprrooppeerr cceenntteerr ooff ggrraavviittyy lliifftt ppooiinntt.. TToo aavvooiidd ddrrooppppiinngg ooff uunniitt,, rreeppoossiittiioonn lliiffttiinngg ppooiinntt iiff uunniitt iiss nnoott lleevveell..
WWAARRNNIINNGG
PPrrooppeerr LLiiffttiinngg CCoonnffiigguurraattiioonn RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd ccaauussee tthhee uunniitt ttoo ddrroopp wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh,, sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. UUssee OONNLLYY lliiffttiinngg llooccaattiioonnss ddeessiiggnnaatteedd wwiitthh llaabbeell sshhoowwnn bbeellooww.. DDOO NNOOTT uussee llooccaattiioonnss mmaarrkkeedd wwiitthh ddoo--nnoott--lliifftt llaabbeell.. SSeeee ffoolllloowwiinngg ffiigguurreess ffoorr aacccceeppttaabbllee lliiffttiinngg ccoonnffiigguurraattiioonn,, aanndd rreeffeerr ttoo llaabbeellss oonn tthhee uunniitt..
Figure 6. Lift/Do Not Lift labels
Lift Do Not Lift
Page 24
24
AC-SVX001A-EN
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
MMoovviinngg tthhee cchhiilllleerr uussiinngg aa ffoorrkk lliifftt ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. DDoo nnoott uussee aa ffoorrkk lliifftt ttoo mmoovvee tthhee cchhiilllleerr!!
IImmppoorrttaanntt::
See unit nameplate and/or unit submittal for total shipping weight.
See following figures for unit lifting configuration.
See Dimensions and Weights chapter, or unit submittal, for lifting point locations.
See Center of Gravity section for more information.
Figure 7. 4–point lift configuration — 150, 160, 180 ton units
96” (2438mm) Spreader Bar
Lifting Location 3 (Lifting location 4 located on other side of unit)
Lifting Location 1 (Lifting location 2 located on other side of unit)
Control Panel
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 25
AC-SVX001A-EN
25
Figure 8. 6–point lift configuration — 200, 225, 250, 275 ton units
96” (2438mm) Spreader Bar
96”
(2438mm)
Spreader Bar
Lifting Location 1 (Lifting location 2 located on other side of unit)
Lifting Location 3 (Lifting location 4 located on other side of unit)
Lifting Location 5 (Lifting location 6 located on other side of unit)
Control Panel
Figure 9. 8–point lift configuration — 300 ton units
96” (2438mm) Spreader Bar
Qty 2
Lifting Location 1 (Lifting location 2 located on other side of unit)
Lifting Location 3 (Lifting location 4 located on other side of unit)
Lifting Location 5 (Lifting location 6 located on other side of unit)
Lifting Location 7 (Lifting location 8 located on other side of unit)
Control Panel
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 26
26
AC-SVX001A-EN

Center of Gravity

Figure 10. Center of gravity
END VIEW
(Non-Control Panel End)
Z
Y
CG
SIDE VIEW
X
CG
Control Panel
Table 6. Center of gravity dimensions
Unit Size
CGx
CGy
CGz CGx
CGy
CGz
in
mm
in
mm
in
mm
in
mm
in
mm
in
mm
Standard Length Unit Extended Length Unit
150 93.9 2384 44.2 1122 44.2 1124 128.2 3255 44.0 1118 43.3 1100
165 105.8 2686 44.2 1122 45.9 1166 139.1 3532 44.2 1124 44.9 1142
180 106.0 2691 44.5 1131 45.6 1159 139.6 3545 44.5 1129 44.7 1135
200 114.1 2898 44.1 1121 47.2 1199 147.2 3738 44.2 1124 46.3 1175
225 115.8 2941 44.1 1120 45.2 1148 148.8 3780 44.2 1122 44.4 1129
250 115.1 2924 44.1 1120 45.6 1158 149.0 3785 44.1 1121 44.8 1139
275 127.7 3242 44.0 1117 46.1 1172 162.3 4122 44.2 1122 45.4 1153
300 139.5 3544 44.0 1116 47.1 1197 174.3 4427 43.8 1113 46.4 1178

Isolation and Sound Emission

The most effective form of isolation is to locate the unit away from any sound sensitive area. Structurally transmitted sound can be reduced by elastomeric vibration eliminators. Spring isolators are not recommended. Consult an acoustical engineer in critical sound applications.
For maximum isolation effect, isolate water lines and electrical conduit. Wall sleeves and rubber isolated piping hangers can be used to reduce the sound transmitted through water piping. To reduce the sound transmitted through electrical conduit, use flexible electrical conduit.
State and local codes on sound emissions should always be considered. Since the environment in which a sound source is located affects sound pressure, unit placement must be carefully evaluated. Sound power levels for Stealth chillers are available on request.

Unit Isolation and Leveling

For additional reduction of sound and vibration, install the optional elastomeric isolators.
Construct an isolated concrete pad for the unit or provide concrete footings at the unit mounting points.
Mount the unit directly to the concrete pads or footings.
Level the unit using the base rail as a reference. The unit must be level within 1/4” (6.4 mm) over the entire length and width. Use shims as necessary to level the unit.

Elastomeric Isolators

NNoottee:: See unit submittal, or tables in this section, for
point weights, isolator locations and isolator selections.
1. Secure the isolators to the mounting surface using the mounting slots in the isolator base plate. Do not fully tighten the isolator mounting bolts at this time.
2. Align the mounting holes in the base of the unit with the threaded positioning pins on the top of the isolators.
3. Lower the unit onto the isolators and secure the isolator to the unit with a nut.
4. Level the unit carefully. Fully tighten the isolator mounting bolts.
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 27
AC-SVX001A-EN
27
Figure 11. Elastomeric isolator
0.50 in
1.60±0.25
Mounting molded in neoprene
3.0
2.75
0.38
1/2 - 13NC - 2B
0.56 in
F
E
G
D
A
B
C
Isolator
Max Load
(lb)
Max Deflection
(in)
A B C D E F G
Type
Black-60 1100 0.5 2.5 2.88 0.25 1.13 5.50 4.12 3.38 RDP-3
Brown-61 1500 0.5 3.0 2.75 0.38 1.60 6.25 5.00 4.63 RDP-4
Red-62 2250 0.5 3.0 2.75 0.38 1.60 6.25 5.00 4.63 RDP-4
Green-63 3000 0.5 3.0 2.75 0.38 1.60 6.25 5.00 4.63 RDP-4
Black-64 4000 0.5 3.0 2.75 0.38 1.60 6.25 5.00 4.63 RDP-4

Mounting Locations, Weights, Isolators

See figure below for mounting point location designations.
Figure 12. Mounting point locations (top view)
1 3 5 7
Control panel
9
2 4 6 8 10
NNoottee:: Quantity of isolators varies with unit. See
submittal for actual number required for specific unit.
Point Weights
Table 7. Point weights, units with InvisiSound standard or superior option - I-P (lb)
Unit Size
Point Weights (lb)
1 2 3 4 5 6 7 8 9 10
Standard Length Units
150 1818 1609 1661 1478 1516 1586 731 932
165 1752 1710 1709 1652 1744 1768 941 1099
180 1774 1757 1741 1723 1781 1844 952 1124
200 1777 1823 1744 1651 1714 1698 1501 1636 126 136
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 28
28
AC-SVX001A-EN
Table 7. Point weights, units with InvisiSound standard or superior option - I-P (lb) (continued)
Unit Size
Point Weights (lb)
1 2 3 4 5 6 7 8 9 10
225 1966 1882 2000 1896 1911 1928 1595 1816 113 135
250 2014 1939 2069 1964 1972 1981 1609 1827 111 133
275 1942 1845 1913 1790 1839 1812 1832 2023 870 954
300 1991 1934 2137 2038 2151 2104 1951 2053 741 862
Extended Length Units
150 2268 2021 2036 1850 1687 1881 739 1008
165 2181 1966 2115 2006 2139 2390 768 965
180 2147 1936 2181 2041 2224 2574 771 977
200 2583 2375 2157 2083 1843 2047 736 861 610 693
225 2806 2479 2418 2266 2040 2311 785 969 610 741
250 2844 2519 2497 2342 2112 2384 801 982 597 723
275 2699 2394 2417 2282 2297 2538 994 1204 1013 1133
300 2888 2488 2575 2374 2093 2281 1820 2090 708 802
Table 8. Point weights, units with InvisiSound standard or superior option - SI (kg)
Unit Size
Point Weight (kg)
1 2 3 4 5 6 7 8 9 10
Standard Length Units
150 824 730 753 670 688 719 332 423
165 794 775 775 749 791 802 427 499
180 804 797 790 781 808 836 432 510
200 806 827 791 749 777 770 681 742 57 62
225 892 854 907 860 867 874 723 824 51 61
250 913 879 938 891 894 898 730 828 51 60
275 881 837 868 812 834 822 831 917 395 433
300 903 877 969 924 976 954 885 931 336 391
Extended Length Units
150 1029 916 923 839 765 853 335 457
165 989 892 959 910 970 1084 348 437
180 974 878 989 926 1009 1167 350 443
200 1172 1077 978 945 836 928 334 390 277 314
225 1272 1124 1097 1028 925 1048 356 439 277 336
250 1290 1142 1132 1062 958 1081 363 445 271 328
275 1224 1086 1096 1035 1042 1151 451 546 459 514
300 1310 1128 1168 1077 949 1034 825 948 321 364
Table 9. Point weights, units with InvisiSound ultimate option - I-P (lb)
Unit Size
Point Weights (lb)
1 2 3 4 5 6 7 8 9 10
Standard Length Units
150 1818 1609 1861 1678 1716 1786 731 932
165 1752 1710 1909 1852 1944 1968 941 1099
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 29
AC-SVX001A-EN
29
Table 9. Point weights, units with InvisiSound ultimate option - I-P (lb) (continued)
Unit Size
Point Weights (lb)
1 2 3 4 5 6 7 8 9 10
180 1774 1757 1941 1923 1981 2044 952 1124
200 1777 1823 1944 1851 1914 1898 1501 1636 126 136
225 1966 1882 2200 2096 2111 2128 1595 1816 113 135
250 2014 1939 2269 2164 2172 2181 1609 1827 111 133
275 1942 1845 2113 1990 2039 2012 1832 2023 870 954
300 1991 1934 2337 2238 2351 2304 1951 2053 741 862
Extended Length Units
150 2268 2021 2236 2050 1887 2081 739 1008
165 2181 1966 2315 2206 2339 2590 768 965
180 2147 1936 2381 2241 2424 2774 771 977
200 2583 2375 2357 2283 2043 2247 736 861 610 693
225 2806 2479 2618 2466 2240 2511 785 969 610 741
250 2844 2519 2697 2542 2312 2584 801 982 597 723
275 2699 2394 2617 2482 2497 2738 994 1204 1013 1133
300 2888 2488 2775 2574 2293 2481 1820 2090 708 802
Table 10. Point weights, units with InvisiSound ultimate option - SI (kg)
Unit Size
Point Weight (kg)
1 2 3 4 5 6 7 8 9 10
Standard Length Units
150 824 730 844 761 778 810 332 423
165 794 775 866 840 882 892 427 499
180 804 797 880 872 899 927 432 510
200 806 827 881 839 868 861 681 742 57 62
225 892 854 998 950 957 965 723 824 51 61
250 913 879 1029 981 985 989 730 828 51 60
275 881 837 958 903 925 912 831 917 395 433
300 903 877 1060 1015 1066 1045 885 931 336 391
Extended Length Units
150 1029 916 1014 930 856 944 335 457
165 989 892 1050 1000 1061 1175 348 437
180 974 878 1080 1016 1099 1258 350 443
200 1172 1077 1069 1035 926 1019 334 390 277 314
225 1272 1124 1187 1118 1016 1139 356 439 277 336
250 1290 1142 1223 1153 1049 1172 363 445 271 328
275 1224 1086 1187 1126 1133 1242 451 546 459 514
300 1310 1128 1259 1167 1040 1125 825 948 321 364
Isolator Selections
See Dimensions and Weights chapter for isolator mounting position dimensions.
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 30
30
AC-SVX001A-EN
Table 11. Elastomeric isolator selections
Unit Size
Isolator Position
1 2 3 4 5 6 7 8 9 10
Standard Length Units
150 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Brown 61 Brown 61 - -
165 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Red 62 Red 62 - -
180 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Red 62 Red 62 - -
200 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Black 60 Black 60
225 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Black 60 Black 60
250 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Black 60 Black 60
275 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Brown 61 Brown 61
300 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Brown 61 Brown 61
Extended Length Units
150 Green 63 Green 63 Green 63 Green 63 Green 63 Green 63 Brown 61 Brown 61 - -
165 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Brown 61 Brown 61 - -
180 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Brown 61 Brown 61 - -
200 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Brown 61 Brown 61 Brown 61 Brown 61
225 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Brown 61 Brown 61 Brown 61 Brown 61
250 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Brown 61 Brown 61 Brown 61 Brown 61
275 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Brown 61 Brown 61 Brown 61 Brown 61
300 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Black 64 Brown 61 Brown 61

Compressor Mounting Bolt Removal

UUnniittss wwiitthh IInnvviissiiSSoouunndd™™ UUllttiimmaattee OOppttiioonn ((MMooddeell NNuummbbeerr DDiiggiitt 1122 == 33))
For chillers built with InvisiSound Ultimate option, compressor mounting bolts must be removed to assure minimum noise during operation. Use a 24mm socket to remove the (3) M15 x 75mm mounting bolts for each compressor. They are located under compressor mounting feet. See figure below.
IImmppoorrttaanntt::
DO NOT DISCARD MOUNTING BOLTS. Store bolts in the control panel for future use.
All mounting bolts MUST be reinstalled prior to compressor removal or unit move.
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo rreeiinnssttaallll bboollttss ccoouulldd ccaauussee sshhiiffttiinngg ooff ppaarrttss aanndd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. DDoo nnoott rreemmoovvee ccoommpprreessssoorr oorr mmoovvee uunniitt wwiitthhoouutt rreeaattttaacchhiinngg ccoommpprreessssoorr mmoouunnttiinngg bboollttss..
Figure 13. Compressor mounting bolt removal
Compressor
Mounting Bolt
Compressor
Mounting
Foot
Isolator

Drainage

Locate the unit near a large capacity drain for water vessel drain-down during shutdown or repair. Evaporators are provided with drain connections. A vent on top of evaporator waterbox prevents vacuum by allowing air into evaporator for complete drainage. All local and national codes apply.
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 31
AC-SVX001A-EN
31

Refrigerant Pressure Relief Valves

Qty
Relief Valve
Setting
(psig)
Rated
Capacity
(lba/min)
Connection Size (in)
Field
(Pipe)
Factory
(Shell)
Evaporator
2 200 17.3
5/8 7/8–14
Qty
Relief Valve
Setting
(psig)
Rated
Capacity
(lba/min)
Connection Size (in)
Field
(Pipe)
Factory
(Shell)
Oil Separator
2 350 6.3
5/8 1/4–18

Evaporator Piping

Units are available with two or three pass configurations.
Figure 14. Evaporator pass configurations
2-Pass Evaporators
Control Panel End
Control Panel End
3-Pass Evaporators
Top View
(Condenser removed for clarity)
End View
(Non-control panel end)
Outlet Waterbox
Inlet Waterbox
Top View
(Condenser removed for clarity)
End View
(Non-control panel end)
Inlet Waterbox (Outlet waterbox opposite end)
Outlet Water Connection
Inlet Water Connection
Outlet
Inlet
NNOOTTIICCEE
PPrrooppeerr WWaatteerr TTrreeaattmmeenntt RReeqquuiirreedd!!
TThhee uussee ooff uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr ccoouulldd rreessuulltt iinn ssccaalliinngg,, eerroossiioonn,, ccoorrrroossiioonn,, aallggaaee oorr sslliimmee.. UUssee tthhee sseerrvviicceess ooff aa qquuaalliiffiieedd wwaatteerr ttrreeaattmmeenntt ssppeecciiaalliisstt ttoo ddeetteerrmmiinnee wwhhaatt wwaatteerr ttrreeaattmmeenntt,, iiff aannyy,, iiss rreeqquuiirreedd.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr eeqquuiippmmeenntt ffaaiilluurreess wwhhiicchh rreessuulltt ffrroomm uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr,, oorr ssaalliinnee oorr bbrraacckkiisshh wwaatteerr..
NNOOTTIICCEE
EEvvaappoorraattoorr DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd ccaauussee ddaammaaggee ttoo tthhee eevvaappoorraattoorr.. TThhee cchhiilllleedd wwaatteerr ccoonnnneeccttiioonnss ttoo tthhee eevvaappoorraattoorr aarree ttoo bbee ““vviiccttaauulliicc”” ttyyppee ccoonnnneeccttiioonnss.. DDoo nnoott aatttteemmpptt ttoo wweelldd tthheessee ccoonnnneeccttiioonnss,, aass tthhee hheeaatt ggeenneerraatteedd ffrroomm wweellddiinngg ccaann ccaauussee mmiiccrroossccooppiicc aanndd mmaaccrroossccooppiicc ffrraaccttuurreess oonn tthhee ccaasstt iirroonn wwaatteerrbbooxxeess tthhaatt ccaann lleeaadd ttoo pprreemmaattuurree ffaaiilluurree ooff tthhee wwaatteerrbbooxx.. TToo pprreevveenntt ddaammaaggee ttoo cchhiilllleedd wwaatteerr ccoommppoonneennttss,, ddoo nnoott aallllooww eevvaappoorraattoorr pprreessssuurree ((mmaaxxiimmuumm wwoorrkkiinngg pprreessssuurree)) ttoo eexxcceeeedd 115500 ppssiigg ((1100..55 bbaarr))..
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 32
32
AC-SVX001A-EN
Evaporator water connections are grooved.
Thoroughly flush all water piping to the unit before making the final piping connections to the unit.
Components and layout will vary slightly, depending on the location of connections and the water source.
A vent is provided on the top of the evaporator at the chilled water inlet. Be sure to provide additional vents at high points in the piping to bleed air from the chilled water system. Install necessary pressure gauges to monitor the entering and leaving chilled water pressures.
Provide shutoff valves in lines to the gauges to isolate them from the system when they are not in use. Use rubber vibration eliminators to prevent vibration transmission through the water lines.
If desired, install thermometers in the lines to monitor entering and leaving water temperatures.
Install a balancing valve in the leaving water line to control water flow balance.
Install shutoff valves on both the entering and leaving water lines so that the evaporator can be isolated for service.

Evaporator Piping Components

Piping components include all devices and controls used to provide proper water system operation and unit operating safety. These components and their general locations are given below.
Figure 15. Typical water piping components
A
2
1
2
3
3
7
8
6
4
5
2
2
A
A
B
8
C
Item
Description
Item
Description
1
Bypass Valve
Pi
Pressure Gauge
2 Isolation Valve FT Water Flow Switch
3 Vibration Eliminator T1
Evap Water Inlet Temp Sensor
4
Evaporator - End View (2-pass)
T2
Evap Water Outlet Temp Sensor
5
Evaporator Waterbox (2-pass)
NOTES
6 Vent A
Isolate unit for initial water loop cleaning
7 Strainer B
Vent must be installed at the high point of the line
8 Drain C
Drain must be installed at the low point of the line
Entering Chilled Water Piping
Air vents (to bleed air from system).
Water pressure gauges with shutoff valves.
Vibration eliminators.
Shutoff (isolation) valves.
Thermometers (if desired).
Clean-out tees.
Pipe strainer.
Leaving Chilled water Piping
Air vents (to bleed air from system).
Water pressure gauges with shutoff valves.
Vibration eliminators.
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 33
AC-SVX001A-EN
33
Shutoff (isolation) valves.
Thermometers.
Clean-out tees.
Balancing valve.
Drains
A 1/2” drain connection is located under outlet end of evaporator waterbox for drainage during unit servicing. A shutoff valve must be installed on drain line.
Pressure Gauges
Install field-supplied pressure components as shown in figure above. Locate pressure gauges or taps in a straight run of pipe; avoid placement near elbows, etc. Be sure to install the gauges at the same elevation on each shell if the shells have opposite-end water connections.
To read manifolded pressure gauges, open one valve and close the other (depending upon the reading desired). This eliminates errors resulting from differently calibrated gauges installed at unmatched elevations.
Pressure Relief Valves
NNOOTTIICCEE
EEvvaappoorraattoorr DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd ccaauussee ddaammaaggee ttoo tthhee eevvaappoorraattoorr.. TToo pprreevveenntt eevvaappoorraattoorr ddaammaaggee,, iinnssttaallll pprreessssuurree rreelliieeff vvaallvveess iinn tthhee eevvaappoorraattoorr wwaatteerr ssyysstteemm..
Install a water pressure relief valve in the evaporator inlet piping between the evaporator and the inlet shutoff valve, as shown in figure above. Water vessels with close-coupled shutoff valves have a high potential for hydrostatic pressure buildup on a water temperature increase. Refer to applicable codes for relief valve installation guidelines.
Evaporator Flow Switch
NNOOTTIICCEE
FFllooww SSwwiittcchh DDaammaaggee!!
IInnccoorrrreecctt vvoollttaaggee aapppplliiccaattiioonn ccoouulldd ccaauussee ddaammaaggee ttoo tthhee ffllooww sswwiittcchh.. FFllooww sswwiittcchh iiss oonn aa 2244VV cciirrccuuiitt.. DDoo NNOOTT aappppllyy 112200VV ttoo tthhee ffllooww sswwiittcchh..
The flow switch is factory-installed and programmed based on the operating conditions submitted with the order. The leaving evaporator temperature, fluid type and fluid concentration affect the selected flow switch. If the operating conditions on the job site change, the
flow switch may need to be replaced. Contact your local Trane Sales office for more information.
The sensor head includes 3 LEDs, two yellow and one green. Wait 15 seconds after power is applied to the sensor before evaluating LEDs for flow status. When wired correctly and flow is established, only the green LED should be lit. Following are the LED indicators:
Green ON, both yellow OFF — Flow
Green and outside yellow ON — No Flow
Center yellow ON continuously — Miswire
Factory installed jumper wire W11 must be removed if using auxiliary contacts and/or additional proof of flow. See schematics in AC-SVE001*-EN for more details.
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
IInnccoorrrreecctt wwiirriinngg ooff aauuxxiilliiaarryy ccoonnttaaccttss ccoouulldd ccaauussee eeqquuiippmmeenntt ddaammaaggee.. SSeeee sscchheemmaattiiccss ffoorr pprrooppeerr wwiirriinngg..
If using auxiliary flow sensing, both yellow LEDs come on initially when flow is stopped. The center yellow LED will turn off after approximately 7 seconds. The LED indicators are otherwise the same as indicated above.
Indexing Flow Switch
To properly index the flow switch, the following requirements must be met:
The dot must be at a position no greater than 90° off Index.
The torque must be between 22 ft-lb minimum and 74 ft-lb maximum.
A minimum distance of 5x pipe diameter must be maintained between flow switch and any bends, valves, changes in cross sections, etc.
Figure 16. Proper flow switch indexing
Flow
Top View
Index
The flow switch must have the dot in the shaded area to the left of this line for proper indexing (±90° off Index).
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 34
34
AC-SVX001A-EN

Evaporator Waterside Pressure Drop Curves

Figure 17. Evaporator waterside pressure drop curve — 2–pass
0
2.5
5
7.5
10
12.5
15
17.5
20
22.5
25
27.5
30
32.5
35
37.5
40
42.5
45
47.5
50
0 200 400 600 800 1000 1200 1400
Pressure Drop (ft. H2O)
Water Flow (GPM)
300T
275T
250T
225T
200T
185T
165T
150T
Figure 18. Evaporator waterside pressure drop curve — 3–pass
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
0 100 200 300 400 500 600 700 800 900 1000
Pressure Drop (ft. H2O)
Water Flow (GPM)
300T
275T
250T
225T
200T
185T
165T
150T
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 35
AC-SVX001A-EN
35

Freeze Protection

One or more of the ambient freeze avoidance methods in the table below must be used to protect the chiller
from ambient freeze damage. See RF-PRB002*-EN for more information.
Method
Protects to ambient temperature
Notes
Water Pump Control AND Heaters
Down to -20°F
Heaters alone will provide low ambient protection down to -20°F (-29°C), but will NOT
protect the evaporator from freezing as a result of charge migration. Therefore, it is required that water pump control be used in conjunction with heaters.
Heaters are factory-installed on the evaporator and water piping and will protect them from freezing
Install heat tape on all water piping, pumps, and other components that may be damaged if exposed to freezing temperatures. Heat tape must be designed for low ambient temperature applications. Heat tape selection should be based on the lowest expected ambient temperature.
Tracer® UC800 controller can start the pump when freezing conditions are detected. For this option the pump must to be controlled by the Stealth unit and this function must be validated.
Water circuit valves need to stay open at all times.
Water pump control and heater combination will protect the evaporator down to any
ambient temperature provided power is available to the pump and the controller. This option will NOT protect the evaporator in the event of a power failure to the chiller unless backup power is supplied to the necessary components.
When no chiller operation is possible and the pump is already off, UC800 pump control for freeze protection will command the pump to turn:
ON if average of the evaporator entering water temperature, the evaporator leaving water
temperature, and the evaporator refrigerant pool temperature is less than Low Evaporator Refrigerant Temperature Cutout (LERTC) + 4°F for a period of time.
OFF again if the evaporator refrigerant pool temperature rises above the LERTC + 6°F for a period
of time.
Note: Time period referenced for ON and Off conditions above is dependent on past running
conditions and present temperatures measured.
ON if entering OR leaving water temperature< LWTC for 30°F-sec (17°C-sec)
OFF again if water temperature > LWTC for 30 min
Freeze Inhibitor
Varies. See Low Evaporator Refrigerant Cutout, Glycol Requirements.
Freeze protection can be accomplished by adding sufficient glycol to protect against freezing below the lowest ambient expected.
Use of glycol type antifreeze reduces the cooling capacity of the unit and must be
considered in the design of the system specifications.
Drain Water Circuit
Below -20°F
Shut off the power supply to the unit and to all heaters.
Purge the water circuit.
Blow out the evaporator to ensure no liquid is left in the evaporator.
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 36
36
AC-SVX001A-EN
NNOOTTIICCEE
EEvvaappoorraattoorr DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddaammaaggee ttoo tthhee eevvaappoorraattoorr.. IIff iinnssuuffffiicciieenntt ccoonncceennttrraattiioonn oorr nnoo ffrreeeezzee iinnhhiibbiittoorr iiss uusseedd,, tthhee eevvaappoorraattoorr wwaatteerr ffllooww mmuusstt bbee ccoonnttrroolllleedd bbyy tthhee UUCC880000 AANNDD hheeaatteerrss mmuusstt bbee uusseedd ttoo aavvooiidd ccaattaassttrroopphhiicc ddaammaaggee ttoo tthhee eevvaappoorraattoorr dduuee ttoo ffrreeeezziinngg.. IItt iiss tthhee rreessppoonnssiibbiilliittyy ooff tthhee iinnssttaalllliinngg ccoonnttrraaccttoorr aanndd//oorr tthhee ccuussttoommeerr ttoo eennssuurree tthhaatt aa ppuummpp wwiillll ssttaarrtt wwhheenn ccaalllleedd uuppoonn bbyy tthhee cchhiilllleerr ccoonnttrroollss.. EEvveenn wwiitthh wwaatteerr ppuummpp ccoonnttrrooll,, aa ppoowweerr lloossss ooff aass lliittttllee aass 1155 mmiinnuutteess uunnddeerr ffrreeeezziinngg ccoonnddiittiioonnss ccaann ddaammaaggee tthhee eevvaappoorraattoorr.. OOnnllyy tthhee pprrooppeerr aaddddiittiioonn ooff ffrreeeezzee iinnhhiibbiittoorr oorr ccoommpplleettee ddrraaiinnaaggee ooff tthhee wwaatteerr cciirrccuuiitt ccaann eennssuurree nnoo eevvaappoorraattoorr ddaammaaggee iinn tthhee eevveenntt ooff aa ppoowweerr ffaaiilluurree..
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 37
AC-SVX001A-EN
37

Low Evaporator Refrigerant Cutout, Glycol Requirements

The table below shows the low evaporator temperature cutout for different glycol levels. Additional glycol beyond the recommendations will adversely effect unit performance. The unit efficiency will be reduced and the saturated evaporator temperature will be reduced. For some operating conditions this effect can be significant.
additional glycol is used, then use the actual percent glycol to establish the low refrigerant cutout setpoint.
NNoottee:: Table below is not a substitute for full unit
simulation for proper prediction of unit performance for specific operating conditions. For information on specific conditions, contact Trane product support.
Table 12. Low evaporator refrigerant temperature cutout (LERTC) and low water temperature cutout (LWTC)
Ethylene Glycol Propylene Glycol
Glycol
Percentage
(%)
Solution
Freeze Point
(°F)
Minimum
Recommended
LERTC (°F)
Minimum
Recommended
LWTC (°F)
Glycol
Percentage
(%)
Solution
Freeze Point
(°F)
Minimum
Recommended
LERTC (°F)
Minimum
Recommended
LWTC (°F)
0 32 28.6 35 0 32 28.6 35
2 31 27.6 34 2 31 27.6 34
4 29.7 26.3 32.7 4 29.9 26.5 32.9
5 29 25.6 32 5 29.3 25.9 32.3
6 28.3 24.9 31.3 6 28.7 25.3 31.7
8 26.9 23.5 29.9 8 27.6 24.2 30.6
10 25.5 22.1 28.5 10 26.4 23 29.4
12 23.9 20.5 26.9 12 25.1 21.7 28.1
14 22.3 18.9 25.3 14 23.8 20.4 26.8
15 21.5 18.1 24.5 15 23.1 19.7 26.1
16 20.6 17.2 23.6 16 22.4 19 25.4
18 18.7 15.3 21.7 18 20.9 17.5 23.9
20 16.8 13.4 19.8 20 19.3 15.9 22.3
22 14.7 11.3 17.7 22 17.6 14.2 20.6
24 12.5 9.1 15.5 24 15.7 12.3 18.7
25 11.4 8 14.4 25 14.8 11.4 17.8
26 10.2 6.8 13.2 26 13.8 10.4 16.8
28 7.7 4.3 10.7 28 11.6 8.2 14.6
30 5.1 1.7 8.1 30 9.3 5.9 12.3
32 2.3 -1.1 5.3 32 6.8 3.4 9.8
34 -0.7 -4.1 5 34 4.1 0.7 7.1
35 -2.3 -5 5 35 2.7 -0.7 5.7
36 -3.9 -5 5 36 1.3 -2.1 5
38 -7.3 -5 5 38 -1.8 -5 5
40 -10.8 -5 5 40 -5.2 -5 5
42 -14.6 -5 5 42 -8.8 -5 5
44 -18.6 -5 5 44 -12.6 -5 5
45 -20.7 -5 5 45 -14.6 -5 5
46 -22.9 -5 5 46 -16.7 -5 5
48 -27.3 -5 5 48 -21.1 -5 5
50 -32.1 -5 5 50 -25.8 -5 5
IInnssttaallllaattiioonn MMeecchhaanniiccaall
Page 38
38
AC-SVX001A-EN

Installation Electrical

General Recommendations

As you review this manual, keep in mind that:
All field-installed wiring must conform to National Electric Code (NEC) guidelines, and any applicable state and local codes. Be sure to satisfy proper equipment grounding requirements per NEC.
Compressor motor and unit electrical data (including motor kW, voltage utilization range, rated load amps) is listed on the chiller nameplate.
All field-installed wiring must be checked for proper terminations, and for possible shorts or grounds.
All electrical enclosures on CE marked chillers (unit model number digit 13 = C) have an environmental rating of IP53.
NNoottee:: Always refer to wiring diagrams shipped with
chiller or unit submittal for specific electrical schematic and connection information.
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn aanndd AAFFDD ((AAddaappttiivvee FFrreeqquueennccyy™™ DDrriivvee)) ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd..
•• FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aann aapppprroopprriiaattee vvoollttmmeetteerr tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
•• DDCC bbuuss ccaappaacciittoorrss rreettaaiinn hhaazzaarrddoouuss vvoollttaaggeess aafftteerr iinnppuutt ppoowweerr hhaass bbeeeenn ddiissccoonnnneecctteedd.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. AAfftteerr ddiissccoonnnneeccttiinngg iinnppuutt ppoowweerr,, wwaaiitt ffiivvee ((55)) mmiinnuutteess ffoorr tthhee DDCC ccaappaacciittoorrss ttoo ddiisscchhaarrggee,, tthheenn cchheecckk tthhee vvoollttaaggee wwiitthh aa vvoollttmmeetteerr.. MMaakkee ssuurree DDCC bbuuss ccaappaacciittoorrss aarree ddiisscchhaarrggeedd ((00 VVDDCC)) bbeeffoorree ttoouucchhiinngg aannyy iinntteerrnnaall ccoommppoonneennttss..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee AAddaappttiivvee FFrreeqquueennccyy
™™
DDrriivvee CCaappaacciittyy DDiisscchhaarrggee sseeccttiioonn,, aanndd PPRROODD-­SSVVBB0066**--EENN..
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee -- PPrreessssuurriizzeedd FFllaammmmaabbllee FFlluuiidd!!
FFaaiilluurree ttoo ffoollllooww aallll eelleeccttrriiccaall ssaaffeettyy pprreeccaauuttiioonnss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDoo nnoott ooppeerraattee ccoommpprreessssoorr wwiitthhoouutt tteerrmmiinnaall bbooxx ccoovveerr iinn ppllaaccee..
TThhee mmoottoorrss iinn tthhee ccoommpprreessssoorrss hhaavvee ssttrroonngg ppeerrmmaanneenntt mmaaggnneett mmoottoorrss aanndd hhaavvee tthhee ccaappaabbiilliittyy ttoo ggeenneerraattee vvoollttaaggee dduurriinngg ssiittuuaattiioonnss wwhheenn tthhee rreeffrriiggeerraanntt cchhaarrggee iiss bbeeiinngg mmiiggrraatteedd.. TThhiiss ppootteennttiiaall wwiillll bbee pprreesseenntt aatt tthhee mmoottoorr tteerrmmiinnaallss aanndd aatt tthhee oouuttppuutt ooff tthhee vvaarriiaabbllee ssppeeeedd ddrriivveess iinn tthhee ppoowweerr ppaanneell..
BBeeffoorree rreemmoovviinngg ccoommpprreessssoorr tteerrmmiinnaall bbooxx ccoovveerr ffoorr sseerrvviicciinngg,, oorr sseerrvviicciinngg ppoowweerr ssiiddee ooff ccoonnttrrooll ppaanneell,, CCLLOOSSEE CCOOMMPPRREESSSSOORR DDIISSCCHHAARRGGEE SSEERRVVIICCEE VVAALLVVEE aanndd ddiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss.. DDiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn ccaappaacciittoorrss.. FFoollllooww lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. VVeerriiffyy wwiitthh aann aapppprroopprriiaattee vvoollttmmeetteerr tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
TThhee ccoommpprreessssoorr ccoonnttaaiinnss hhoott,, pprreessssuurriizzeedd rreeffrriiggeerraanntt.. MMoottoorr tteerrmmiinnaallss aacctt aass aa sseeaall aaggaaiinnsstt tthhiiss rreeffrriiggeerraanntt.. CCaarree sshhoouulldd bbee ttaakkeenn wwhheenn sseerrvviicciinngg NNOOTT ttoo ddaammaaggee oorr lloooosseenn mmoottoorr tteerrmmiinnaallss..
WWAARRNNIINNGG
PPrreessssuurriizzeedd BBuurrnniinngg FFlluuiidd!!
FFaaiilluurree ttoo ffoollllooww tthhee iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDoo nnoott ooppeerraattee ccoommpprreessssoorr wwiitthhoouutt tteerrmmiinnaall bbooxx ccoovveerr iinn ppllaaccee..
TThhee ccoommpprreessssoorr ccoonnttaaiinnss hhoott,, pprreessssuurriizzeedd rreeffrriiggeerraanntt.. MMoottoorr tteerrmmiinnaallss aacctt aass aa sseeaall aaggaaiinnsstt tthhiiss rreeffrriiggeerraanntt.. CCaarree sshhoouulldd bbee ttaakkeenn wwhheenn sseerrvviicciinngg NNOOTT ttoo ddaammaaggee oorr lloooosseenn mmoottoorr tteerrmmiinnaallss..
Page 39
AC-SVX001A-EN
39
WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
NNOOTTIICCEE
UUssee CCooppppeerr CCoonndduuccttoorrss OOnnllyy!!
FFaaiilluurree ttoo uussee ccooppppeerr ccoonndduuccttoorrss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee aass tthhee eeqquuiippmmeenntt wwaass nnoott ddeessiiggnneedd oorr qquuaalliiffiieedd ttoo aacccceepptt ootthheerr ttyyppeess ooff ccoonndduuccttoorrss..
IImmppoorrttaanntt::
To prevent control malfunctions, do not run low voltage wiring (<30 V) in conduit with conductors carrying more than 30 volts.
Adaptive Frequency™ Drive Capacitor Discharge
After disconnecting input power, wait five (5) minutes for the DC capacitors to discharge.
Using voltmeter, measure voltage on bus at bus access points. See figures below for location of bus access points, and details. Capacitors are fully discharged when voltage across these plus (+) and minus (-) points measures 0 VDC.
Figure 19. AFD dc bus measurement location
Bus Measurement Points
Figure 20. Bus measurement nodes detail
Positive (+) Node
Negative (-) Node

Units with Nitrogen Charge Option

For units with nitrogen charge option (model number digit 15 = 2), the unit must NOT have shore power, or unit power applied until the unit has been charged. Applying power will drive EXV valves closed, and will inhibit sufficient vac for unit charging.

Installer-Supplied Components

Customer wiring interface connections are shown in the electrical schematics and connection diagrams that are shipped with the unit. The installer must provide the following components if not ordered with the unit:
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 40
40
AC-SVX001A-EN
Power supply wiring (in conduit) for all field-wired connections.
All control (interconnecting) wiring (in conduit) for field supplied devices.
Fused-disconnect switches or circuit breakers.

Power Supply Wiring

WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn aanndd AAFFDD ((AAddaappttiivvee FFrreeqquueennccyy™™ DDrriivvee)) ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd..
•• FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aann aapppprroopprriiaattee vvoollttmmeetteerr tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
•• DDCC bbuuss ccaappaacciittoorrss rreettaaiinn hhaazzaarrddoouuss vvoollttaaggeess aafftteerr iinnppuutt ppoowweerr hhaass bbeeeenn ddiissccoonnnneecctteedd.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. AAfftteerr ddiissccoonnnneeccttiinngg iinnppuutt ppoowweerr,, wwaaiitt ffiivvee ((55)) mmiinnuutteess ffoorr tthhee DDCC ccaappaacciittoorrss ttoo ddiisscchhaarrggee,, tthheenn cchheecckk tthhee vvoollttaaggee wwiitthh aa vvoollttmmeetteerr.. MMaakkee ssuurree DDCC bbuuss ccaappaacciittoorrss aarree ddiisscchhaarrggeedd ((00 VVDDCC)) bbeeffoorree ttoouucchhiinngg aannyy iinntteerrnnaall ccoommppoonneennttss..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee AAddaappttiivvee FFrreeqquueennccyy
™™
DDrriivvee CCaappaacciittyy DDiisscchhaarrggee sseeccttiioonn,, aanndd PPRROODD-­SSVVBB0066**--EENN..
WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
All power supply wiring must be sized and selected accordingly by the project engineer in accordance with NEC Table 310-16.
All wiring must comply with local codes and the National Electrical Code. The installing (or electrical) contractor must provide and install the system interconnecting wiring, as well as the power supply wiring. It must be properly sized and equipped with the appropriate fused disconnect switches.
The type and installation location(s) of the fused disconnects must comply with all applicable codes.
NNOOTTIICCEE
UUssee CCooppppeerr CCoonndduuccttoorrss OOnnllyy!!
FFaaiilluurree ttoo uussee ccooppppeerr ccoonndduuccttoorrss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee aass tthhee eeqquuiippmmeenntt wwaass nnoott ddeessiiggnneedd oorr qquuaalliiffiieedd ttoo aacccceepptt ootthheerr ttyyppeess ooff ccoonndduuccttoorrss..
Incoming customer power location varies with unit configurations. See figures below.
Control Panel
– Standard length units (model number digits 28,
29 = 0X)
– Units with optional harmonic filtration (model
number digit 29 = 1)
Transformer: 200, 230 or 575 V units with transformer (model number digit 28 = 1)
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 41
AC-SVX001A-EN
41
Figure 21. Incoming customer power — control panel (right side view)
Control Panel
Incoming Customer Power Location
Standard Length Units
(model number digits 28, 29 = 0X)
Unit with optional Harmonic Mitigation
(model number digit 29 = 1)
Incoming
Customer
Power
Location
Incoming
Customer
Power
Location
Pulse Auto Transformer (harmonic mitigation)
Control Panel
Figure 22. Incoming customer power — transformer
200V, 230V and 575V units (Includes optional Transformer model number digit 28 = 1)
Incoming Customer Power Location
On Transformer
End of Unit
(non-control panel end)
Right side of unit
Incoming Customer
Power Location
(located on transformer)
Incoming Customer Power Location (located on transformer)
Transformer
Main Unit
Control
Panel
60 7/8”
(1546mm)
Cut holes into the location shown above for the appropriately-sized power wiring conduits. The wiring is passed through these conduits and connected to the terminal blocks, optional unit-mounted disconnects, or HACR type breakers.
The high voltage field-provided connections are made through patch plate on the right side of the main control panel or on the right side of the voltage autotransformer panel.
The low voltage connections are made through knockouts provided on the left side of the control panel. Additional grounds may be required for each 115 volt power supply to the unit. Green lugs are provided for 115V customer wiring.

Control Power Supply

The unit is equipped with a control power transformer. It is not necessary to provide additional control power voltage to the unit. No other loads should be connected to the control power transformer.
All units are factory-connected for appropriate labeled voltages.

Service Power Connection

The service power connection is a touch safe procedure to allow for binding the control system and
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 42
42
AC-SVX001A-EN
LLIDs. Service power connection allows for a NEMA 5­15 style extension cord to power on Class 2 devices (i.e. UC800, LLIDs, EXVs, and TD7 display) with an external power source, without the need of line voltage applied to the unit. This connection is to be made at 1XJ50. The extension cord power source is required to have upstream current protection rated at no more than 10A. The required voltage for the service power connection is 115V at 60Hz and 110V at 50Hz.

Heater Power Supply

The evaporator shell is insulated from ambient air and protected from freezing temperatures by thermostatically-controlled immersion heaters. See table below for evaporator heater summary. Whenever the water temperature drops to approximately 37°F (2.8°C), the thermostat energizes the heaters. The heaters will provide protection from ambient temperatures down to -20°F (-29°C).
NNOOTTIICCEE
EEvvaappoorraattoorr DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn eevvaappoorraattoorr ddaammaaggee.. AA qquuaalliiffiieedd tteecchhnniicciiaann mmuusstt ccoonnffiirrmm ooppeerraattiioonn ooff tthhee tthheerrmmoossttaatt.. CCoonnttrrooll ppaanneell mmaaiinn pprroocceessssoorr ddooeess nnoott vveerriiffyy tthheerrmmoossttaatt ooppeerraattiioonn..
Table 13. Evaporator heater summary
Unit Size (tons)
Waterboxes
Supply
Return
2-pass Evaporator
150 to 165 400W 400W
180 to 200
400W (Qty 2)
400W
225 to 300 600W 600W
3-pass Evaporator
All sizes
400W (Qty 2)
400W

Chilled Water Pump Control

NNOOTTIICCEE
EEvvaappoorraattoorr DDaammaaggee!!
IIff tthhee mmiiccrroopprroocceessssoorr ccaallllss ffoorr aa ppuummpp ttoo ssttaarrtt aanndd wwaatteerr ddooeess nnoott ffllooww,, tthhee eevvaappoorraattoorr mmaayy bbee ddaammaaggeedd ccaattaassttrroopphhiiccaallllyy.. IItt iiss tthhee rreessppoonnssiibbiilliittyy ooff tthhee iinnssttaalllliinngg ccoonnttrraaccttoorr aanndd//oorr tthhee ccuussttoommeerr ttoo eennssuurree tthhaatt aa ppuummpp wwiillll aallwwaayyss bbee rruunnnniinngg wwhheenn ccaalllleedd uuppoonn bbyy tthhee cchhiilllleerr ccoonnttrroollss..
An evaporator water pump output relay’s normally­open contact closes to start the evaporator water pump when the chiller is given a signal to go into the Auto
mode of operation from any source. The contact is opened to turn off the pump in the event of most machine level diagnostics to prevent the build up of pump heat.
The relay output is required to operate the Evaporator Water Pump (EWP) contactor. The relay’s contacts are compatible with 115/240 VAC control circuits. See Programmable Relays section for rating details. Normally, the EWP relay follows the AUTO mode of the chiller. Whenever the chiller has no diagnostics and is in the AUTO mode, regardless of where the auto command is coming from, the relay is energized and the normally-open contact is closed. When the chiller exits the AUTO mode, the relay’s normally-open contact is timed to open in an adjustable (using Tracer® TU service tool) 0 to 30 minutes. The non­AUTO modes in which the pump is stopped, include Reset, Stop, External Stop, Remote Display Stop, Stopped by Tracer, Start Inhibited by Low Ambient Temp, and Ice Building complete.
Table 14. Pump relay operation
Chiller Mode
Relay Operation
Auto Instant Close
Ice Building
Instant Close
Tracer Override Close
Stop Timed Open
Ice Complete Instant Open
Diagnostics Instant Operation
(a)
Chiller Shutdown
Diagnostics
(except freeze protection)
Instant Open
Freeze Protection related
chiller shutdown diagnostics
Initially: Remain Closed
Then: Delayed/Dependent Open
Chiller Off Cycle Freeze
Diagnostics
Instant Close – Dependent Open
(a)
Operation can be instant open or instant close, depending on diagnostic.
When going from Stop to Auto, the EWP relay is energized immediately. If evaporator water flow is not established in 20 minutes (for normal transition) or 4 minutes, 15 seconds (for pump commanded ON due to an override safety), the UC800 de-energizes the EWP relay and generates a non-latching diagnostic. If flow returns (e.g. someone else is controlling the pump), the diagnostic is cleared, the EWP is re-energized, and normal control resumed.
If evaporator water flow is lost once it had been established, the EWP relay remains energized and a non-latching diagnostic is generated. If flow returns, the diagnostic is cleared and the chiller returns to normal operation.
In general, when there is either a non-latching or latching diagnostic, the EWP relay is turned off as
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 43
AC-SVX001A-EN
43
though there was a zero time delay. Exceptions whereby the relay continues to be energized occur with:
LLooww CChhiilllleedd WWaatteerr TTeemmppeerraattuurree ddiiaaggnnoossttiicc (non­latching unless also accompanied by an Evap Leaving Water Temperature Sensor Diagnostic)
OR
IInntteerrrruupptt FFaaiilluurree ——AAFFDDxxAA ddiiaaggnnoossttiicc where x is either 1 or 2 to indicate which drive is affected), in which a compressor continues to draw current even after commanded to have shutdown.
OR
LLoossss ooff EEvvaappoorraattoorr WWaatteerr FFllooww ddiiaaggnnoossttiicc (non­latching) and the unit is in the AUTO mode, after initially having proven evaporator water flow.

Programmable Relays

A programmable relay concept provides for enunciation or hardwired interlocking of certain events or states of the chiller, selected from a list of likely needs, while only using four physical output relays, as shown in the field wiring diagram. The four relays are provided (generally with a Quad Relay Output LLID) as part of the Programmable Relay Option. The relay’s contacts are isolated Form C (SPDT), suitable for use with 120 VAC circuits drawing up to 2.8 amps inductive,
7.2 amps resistive, or 1/3 HP and for 240 VAC circuits
drawing up to 0.5 amp resistive.
The list of events/states that can be assigned to the programmable relays can be found in the following table. The relay will be energized when the event/state occurs.
Table 15. Alarm and status relay output
configurations
Description
Alarm (Latching)
This output is true whenever there is any active latching shutdown diagnostic that targets the Unit, Circuit, or any of the Compressors on a circuit.
Alarm (Non-Latching)
This output is true whenever there is any active non-latching shutdown diagnostic that targets the Unit, Circuit, or any of the Compressors on a circuit.
Alarm
This output is true whenever there is any active latching or non-latching shutdown diagnostic that targets the Unit, Circuit, or any of the Compressors on a circuit.
Alarm Ckt 1
This output is true whenever there is any active latching or non-latching shutdown diagnostic that targets Circuit 1, or any of the Compressors on Circuit
Alarm Ckt 2
This output is true whenever there is any active latching or non-latching shutdown diagnostic that targets Circuit 2, or any of the Compressors on Circuit 2.
Table 15. Alarm and status relay output configurations (continued)
Description
Unit Limit Mode
This output is true whenever a circuit on the unit has been running in one of the limit modes continuously for the Limit Relay debounce time. A given limit or overlapping of different limits must be in effect continuously for the debounce time prior to the output becoming true. It will become false if no limits are present for the debounce time.
Compressor Running
The output is true whenever any compressor is running.
Circuit 1 Running
The output is true whenever any compressor of Circuit 1 is running.
Circuit 2 Running
The output is true whenever any compressor of Circuit 2 is running.
Maximum Capacity
The output is true whenever the unit has reached maximum capacity continuously for the Max Capacity Relay debounce time. The output is false when the unit is not at maximum capacity continuously for the filter debounce time.
Head Pressure Relief Request
This relay output is energized anytime the chiller or a single circuit on the chiller is running in one of the following modes; Ice Making Mode, or Condenser Pressure Limit continuously for the duration specified by the Chiller Head Relief Relay Filter Time. The Chiller Head Relief Relay Filter Time is a service setpoint. The relay output is de­energized anytime the chiller exits all above modes continuously for the duration specified by the same Chiller Head Relief Relay Filter Time

Relay Assignments Using Tracer TU

Tracer®TU Service Tool is used to install the Programmable Relay Option package and assign any of the above list of events or status to each of the four relays provided with the option. (See Tracer® TU section of Controls chapter for more information on this service tool.) The relays to be programmed are referred to by the relay’s terminal numbers on the LLID board 1K13.
The default assignments for the four available relays of the Programmable Relay option are show in the table below.
Table 16. Default assignments
Relay Assignment
Relay 1 Terminals J2-1,2,3:
Unit Limit Mode
Relay 2 Terminals J2-4,5,6: Maximum Capacity
Relay 3 Terminals J2 - 7,8,9: Compressor Running
Relay 4 Terminals J2 -10,11,12:
Alarm
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 44
44
AC-SVX001A-EN
If any of the Alarm/Status relays are used, provide electrical power, 115 VAC with fused-disconnect to the panel and wire through the appropriate relays (terminals on 1K13). Provide wiring (switched hot, neutral, and ground connections) to the remote annunciation devices. Do not use power from the chiller’s control panel transformer to power these remote devices. See the field wiring diagrams which are shipped with the unit.

Low Voltage Wiring

The remote devices described below require low voltage wiring. All wiring between these remote input devices and the control panel must be made with shielded, twisted pair conductors. Ground the shielding only at the panel.
IImmppoorrttaanntt:: The remote devices described below
require low voltage wiring. All wiring to and from these remote input devices to the Control Panel must be made with shielded, twisted pair conductors. Be sure to ground the shielding only at the panel.

Emergency Stop

UC800 provides auxiliary control for a customer specified/installed latching trip out. When this customer-furnished remote contact 5K35 is provided, the chiller will run normally when the contact is closed. When the contact opens, the unit will trip on a latching diagnostic. This latched condition requires either a manual reset at the front of the control panel or a power cycle of the UC800 to clear.
Connect low voltage leads to terminal strip locations on 1K2. Refer to the field diagrams that are shipped with the unit.
Silver or gold-plated contacts are recommended. These customer-furnished contacts must be compatible with 24 VDC, 12 mA resistive load.

External Auto/Stop

If the unit requires the external Auto/Stop function, the installer must provide leads from the remote contacts 5K34 to the proper terminals of the LLID 1K2 on the control panel.
The chiller will run normally when the contacts are closed. When either contact opens, the compressor(s), if operating, will go to the RUN:UNLOAD operating mode and cycle off. Unit operation will be inhibited. Closure of the contacts will permit the unit to return to normal operation.
Field-supplied contacts for all low voltage connections must be compatible with dry circuit 24 VDC for a 12 mA resistive load. Refer to the field diagrams that are shipped with the unit.

External Circuit Lockout – Circuit #1 and #2

UC800 provides for an auxiliary input of a customer specified or installed contact closure, for individual inhibition of the operation of either or both circuits. If the contact (5K32 for Ckt1, or 5K33 for Ckt2) is closed, the respective refrigerant circuit will not operate.
Upon contact opening, the respective refrigerant circuit will run normally. This feature is used to restrict total chiller operation, e.g. during emergency generator operations.
Connections to 1K3 inputs are shown in the field diagrams that are shipped with the unit.
These customer-supplied contact closures must be compatible with 24 VDC, 12 mA resistive load. Silver or gold plated contacts are recommended

Ice Building Option

UC800 provides auxiliary control for a customer specified/installed contact closure for ice building if so configured and enabled. This output is known as the Ice Building Status Relay. The normally open contact will be closed when ice building is in progress and open when ice building has been normally terminated either through Ice Termination setpoint being reached or removal of the Ice Building command. This output is for use with the ice storage system equipment or controls (provided by others) to signal the system changes required as the chiller mode changes from “ice building” to “ice complete”. When contact 5K36 is provided, the chiller will run normally when the contact is open.
UC800 will accept either an isolated contact closure (External Ice Building command) or a Remote Communicated input (Tracer) to initiate and command the Ice Building mode.
UC800 also provides a “Front Panel Ice Termination Setpoint”, settable through Tracer® TU, and adjustable from 20 to 31°F (-6.7 to -0.5°C) in at least 1°F (1°C) increments.
NNoottee:: When in the ice building mode, and the
evaporator entering water temperature drops below the ice termination setpoint, the chiller terminates the ice building mode and changes to the ice building complete mode.
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddaammaaggee ttoo ssyysstteemm ccoommppoonneennttss.. FFrreeeezzee iinnhhiibbiittoorr mmuusstt bbee aaddeeqquuaattee ffoorr tthhee lleeaavviinngg wwaatteerr tteemmppeerraattuurree..
Tracer® TU must also be used to enable or disable Ice Machine Control. This setting does not prevent the Tracer from commanding Ice Building mode.
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 45
AC-SVX001A-EN
45
Upon contact closure, the UC800 will initiate an ice building mode, in which the unit runs fully loaded at all times. Ice building shall be terminated either by opening the contact or based on the entering evaporator water temperature. UC800 will not permit the ice building mode to be reentered until the unit has been switched out of ice building mode (open 5K36 contacts) and then switched back into ice building mode (close 5K36 contacts.)
In ice building, all limits (freeze avoidance, evaporator, condenser, current) will be ignored. All safeties will be enforced.
If, while in ice building mode, the unit gets down to the freeze stat setting (water or refrigerant), the unit will shut down on a manually resettable diagnostic, just as in normal operation.
Connect leads from 5K36 to the proper terminals of 1K8. Refer to the field diagrams which are shipped with the unit.
Silver or gold-plated contacts are recommended. These customer furnished contacts must be compatible with 24 VDC, 12 mA resistive load.

External Chilled Water Setpoint (ECWS) Option

The UC800 provides inputs that accept either 4-20 mA or 2-10 VDC signals to set the external chilled water setpoint (ECWS). This is not a reset function. The input defines the setpoint. This input is primarily used with generic building automation systems (BAS). The chilled water setpoint set via the Tracer AdaptiView TD7 or through digital communication with Tracer (Comm3). The arbitration of the various chilled water setpoint sources is described in the flow charts at the end of the section.
The chilled water setpoint may be changed from a remote location by sending either a 2-10 VDC or 4-20 mA signal to the 1K14, terminals 5 and 6 LLID. 2-10 VDC and 4-20 mA each correspond to a 10 to 65°F (-12 to 18° C) external chilled water setpoint.
The following equations apply:
Voltage Signal
As generated from external source
VDC=0.1455*(ECWS) + 0.5454
As processed by UC800 ECWS=6.875*(VDC) - 3.75
Current Signal
As generated from external source
mA=0.2909(ECWS) + 1.0909
As processed by UC800 ECWS=3.4375(mA) - 3.75
If the ECWS input develops an open or short, the LLID will report either a very high or very low value back to the main processor. This will generate an informational
diagnostic and the unit will default to using the ront Panel (TD7) Chilled Water Setpoint.
Tracer TU Service Tool is used to set the input signal type from the factory default of 2-10 VDC to that of 4-20 mA. Tracer TU is also used to install or remove the External Chilled Water Setpoint option as well as a means to enable and disable ECWS.

External Demand Limit Setpoint (EDLS) Option

Similar to the above, the UC800 also provides for an optional External Demand Limit Setpoint that will accept either a 210 VDC (default) or a 420 mA signal. The Demand Limit Setting can also be set via the Tracer AdaptiView™ TD7 or through digital communication with Tracer (Comm 3). The arbitration of the various sources of demand limit is described in the flow charts at the end of this section. The External Demand Limit Setpoint may be changed from a remote location by hooking up the analog input signal to the 1K14 LLID terminals 2 and 3. Refer to the following paragraph on Analog Input Signal Wiring Details. The following equations apply for EDLS:
Voltage Signal
As generated from external source
VDC+0.133*(%)-6.0
As processed by UC800 %=7.5*(VDC)+45.0
Current Signal
As generated from external source
mA=0.266*(%)-12.0
As processed by UC800 %=3.75*(mA)+45.0
If the EDLS input develops an open or short, the LLID will report either a very high or very low value back to the man processor. This will generate an informational diagnostic and the unit will default to using the Front Panel (Tracer AdaptiViewTD7) Current Limit Setpoint.
The Tracer® TU Service Tool must be used to set the input signal type from the factory default of 2-10 VDC to that of 420 mA current. Tracer TU must also be used to install or remove the External Demand Limit Setpoint Option for field installation, or can be used to enable or disable the feature (if installed).

EDLS and ECWS Analog Input Signal Wiring

Both the ECWS and EDLS can be connected and setup as either a 210 VDC (factory default), 4-20 mA, or resistance input (also a form of 42OmA) as indicated below. Depending on the type to be used, the Tracer TU Service Tool must be used to configure the LLID and the MP for the proper input type that is being used. This is accomplished by a setting change on the
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 46
46
AC-SVX001A-EN
Custom Tab of the Configuration View within Tracer TU.
IImmppoorrttaanntt:: For proper unit operation, BOTH the EDLS
and ECWS settings MUST be the same (2­10 VDC or 4-20mA), even if only one input is to be used.
The J23 and J26 terminal is chassis grounded and terminal J2 1 and J24 can be used to source 12 VDC. The ECLS uses terminals J22 and J23. ECWS uses terminals J25 and J26. Both inputs are only compatible with highside current sources.
Figure 23. Wiring examples for EDLS and ECWS
J2-1 & 4 Dual J2-2 & 5 Analog J2-3 & 6 I/O LLID
J2-1 & 4 Dual J2-2 & 5 Analog J2-3 & 6 I/O LLID
J2-1 & 4 Dual J2-2 & 5 Analog J2-3 & 6 I/O LLID
Resistor
2-10 VDC, 4-20mA
I = 20/(R + 200)
I

Chilled Water Reset (CWR)

UC800 resets the chilled water temperature set point based on either return water temperature, or outdoor air temperature. Return Reset is standard, Outdoor Reset is optional.
The following shall be selectable:
One of three Reset types:None, Return Water Temperature Reset, Outdoor Air Temperature
Reset, or Constant Return Water Temperature Reset.
Reset Ratio setpoints: For outdoor air temperature reset there shall be both positive and negative reset ratios.
Start Reset Setpoints.
Maximum Reset setpints.
The equations for each type of reset are as follows:
RReettuurrnn
CWS' = CWS + RATIO (START RESET - (TWE - TWL))
and CWS' > or = CWS
and CWS' - CWS < or = Maximum Reset
OOuuttddoooorr
CWS' = CWS + RATIO * (START RESET - TOD)
and CWS' > or = CWS
and CWS' - CWS < or = Maximum Reset
wwhheerree
CWS' is the new chilled water set point or the "reset CWS"
CWS is the active chilled water set point before any reset has occurred, e.g. normally Front Panel, Tracer, or ECWS
RESET RATIO is a user adjustable gain
START RESET is a user adjustable reference
TOD is the outdoor temperature
TWE is entering evap. water temperature
TWL is leaving evap. water temperature
MAXIMUM RESET is a user adjustable limit providing the maximum amount of reset. For all types of reset, CWS' - CWS < or = Maximum Reset.
Reset Type Range Reset Ratio
Start Reset Max Reset Increment
Factory Default
Return 10 to 120%
4 to 30°F
(2.2 to 16.7 °C)
0 to 20°F
(0.0 to 11.1°C)
1% 50%
Outdoor 80 to -80%
50 to 130°F
(10 to 54.4°C)
0 to 20°F
0.0 to 11.1°C)
1% 10%
In addition to Return and Outdoor Reset, the MP provides a menu item for the operator to select a Constant Return Reset. Constant Return Reset will reset the leaving water temperature set point so as to provide a constant entering water temperature. The Constant Return Reset equation is the same as the Return Reset equation except on selection of Constant Return Reset, the MP will automatically set Ratio, Start Reset, and Maximum Reset to the following:
RATIO = 100%
START RESET = Design Delta Temp.
MAXIMUM RESET = Design Delta Temp.
The equation for Constant Return is then as follows:
CWS' = CWS + 100% (Design Delta Temp. - (TWE ­TWL)) and CWS' > or = CWS
and CWS' - CWS < or = Maximum Reset
When any type of CWR is enabled, the MP will step the Active CWS toward the desired CWS' (based on the above equations and setup parameters) at a rate of 1 degree F every 5 minutes until the Active CWS equals
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 47
AC-SVX001A-EN
47
the desired CWS'. This applies when the chiller is running.
When the chiller is not running, CWS is reset immediately (within one minute) for Return Reset and at a rate of 1 degree F every 5 minutes for Outdoor Reset. The chiller will start at the Differential to Start value above a fully reset CWS or CWS' for both Return and Outdoor Reset.

Transformer Power Rating

See table below for power rating of optional transformer (unit model number digit 28 = 1).
Unit Size
Power Rating
150 to 200 tons 340 kVA
225 to 300 tons 470 kVA

Communications Interface

LonTalk Interface (LCI-C)

UC800 provides an optional LonTalk® Communication Interface (LCI-C) between the chiller and a building automation system (BAS). An LCI-C LLID shall be used
to provide "gateway" functionality between a LonTalk® compatible device and the chiller. The inputs/outputs include both mandatory and optional network variables as established by the L
ONMARK® Functional Chiller
Profile 8040.
NNoottee:: For more information see ACC-SVN100*-EN.

BACnet Interface (BCI-C)

Optional BACnet® Communication Interface for Chillers (BCI-C) is comprised of a Tracer® UC800 controller with interface software. It is a non­programmable communications module that allows units to communicate on a BACnet® communications network.
NNoottee:: For more information, see BAS-SVP01*-EN.

Modbus Remote Terminal Unit Interface

Modicon Communication Bus (Modbus) enables the chiller controller to communicate as a slave device on a Modbusnetwork. Chiller setpoints, operating modes, alarms and status can be monitored and controlled by a Modbusmaster device.
NNoottee:: For more information, see BAS-SVP01*-EN.
IInnssttaallllaattiioonn EElleeccttrriiccaall
Page 48
48
AC-SVX001A-EN

Operating Principles

This section contains an overview of the operation and maintenance of units equipped with UC800 control systems. It describes the overall operating principles of the AscendACRA design.

Refrigeration Circuits

Each unit has two refrigerant circuits, with one rotary screw compressor per circuit. Each refrigerant circuit includes a compressor suction and discharge service valve, liquid line shutoff valve, removable core filter, liquid line sight glass with moisture indicator, charging port and an electronic expansion valve. Fully modulating compressors and electronic expansion valves provide variable capacity modulation over the entire operating range. Lower condensing temperatures and higher suction temperatures along with more efficient compressors and fans result in the premium efficiency level.

Refrigeration Cycle

The refrigeration cycle of the chiller is represented in the pressure enthalpy diagram shown in figure below. Key state points are indicated on the figure. The cycle for the full load AHRI design point is represented in the plot.
Figure 24. Pressure-enthalpy (P-h) diagram
R-134a
h (btu/lb)
P (psia)
1
1b
2
2b
3
3b
4
120 140100806040200
30
50
100
200
500
600
The chiller uses a shell and tube evaporator design with refrigerant evaporating on the shell side and water flowing inside tubes having enhanced surfaces (states 4 to 1). The suction lines are designed to minimize pressure drop.(states 1 to 1b). The compressor is a twin-rotor helical rotary compressor designed similarly to the compressors offered in other Trane Screw Compressor Based Chillers (states 1b to 2). The discharge lines include a highly efficient oil separation system that removes 99.8% of the oil from the refrigerant stream going to the heat exchangers (states 2 to 2b). De-superheating, condensing and sub-cooling
is accomplished in a fin and tube air cooled heat exchanger where refrigerant is condensed in the tube (states 2b to 3b). Refrigerant flow through the system is balanced by an electronic expansion valve (states 3b to
4).

Refrigerant R-134a

The AscendACRA chiller uses environmentally friendly R-134a. Trane believes responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified. The Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.
Refrigerant R-134a is a medium pressure refrigerant. It may not be used in any condition that would cause the chiller to operate in a vacuum without a purge system. AscendACRA is not equipped with a purge system. Therefore, the chiller may not be operated in a condition that would result in a saturated condition in the chiller of –15°F (-26°C) or lower.
Refrigerant R-134a requires the use of specific POE oils as designated on the unit nameplate.
IImmppoorrttaanntt:: Use only R-134a and Trane Oil 00311 (bulk)/
00315 (1gal)/00317 (5gal) .

Compressor and Oil System

The rotary screw compressor is variable Vi (variable pressure ratio) semi-hermetic, direct drive with capacity control via a variable speed drive, rolling element bearings, differential refrigerant pressure oil pump and oil heater. To maximize efficiency, the variable Vi compressor is controlled to one of two possible states depending on the chiller system operating point and to provide ease of starting. The motor is a suction gas cooled, hermetically sealed, permanent magnet motor. An oil separator is provided separately from the compressor. Oil filtration is provided internal to the compressor. Check valves in the compressor discharge and lube oil system are also provided.

Condenser and Fans

Air-cooled condenser coils have aluminum fins mechanically bonded to internally finned seamless aluminum tubing. The tubing is a long life alloy designed to deliver corrosion performance that meets or exceeds microchannel coils. The condenser coil has
Page 49
AC-SVX001A-EN
49
an integral subcooling circuit. Condensers are factory proof tested and leak tested with helium in a mass spectrometer chamber. All tube connections are mechanical except the brazed copper to aluminum inlet and outlet connections. Condenser fans are direct-drive vertical discharge. The condenser fan motors are permanent magnet motors with an integrated drive to provide variable speed fan control for all fans and are designed with permanently lubricated ball bearings, internal temperature and current overload protection, and fault feedback as a standard product offering. The fan impeller is a nine bladed-shrouded fan made from heavy-duty molded plastic. Standard units will start and operate between 32 to 105°F (0 to 40°C) ambient.
The UC800 controls calculate optimum fan speed for maximum efficiency based on compressor load and outdoor air, resulting in high IPLV values

Evaporator

The evaporator is a tube-in-shell heat exchanger design constructed from carbon steel shells and tubesheets. Internally and externally finned seamless copper tubes are mechanically expanded into the tube sheets. The evaporator is designed, tested and marked in accordance with the ASME Boiler and Pressure Vessel Code for a refrigerant side working pressure of 200
psig. The evaporator is designed for a water side working pressure of 150 psig. Standard water connections are grooved for Victaulic style pipe couplings, with flange style connections optionally available. Waterboxes are available in 2 and 3 pass configurations and include a vent, a drain and fittings for temperature control sensors. Evaporators are insulated with 3/4 inch closed cell insulation. Evaporator water heaters with thermostat are provided to help protect the evaporator from freezing at ambient temperatures down to -20°F (-29°C). A factory installed flow switch is installed on the supply water box in the evaporator inlet connection.

Drive Cooling System

Each refrigeration circuit has a compressor drive cooling circuit. Each drive cooling circuit is a closed system, and includes a wet rotor pump that circulates a secondary heat transfer fluid between the adaptive frequency drive components, the heat sinks of the adaptive frequency drive, and a brazed plate heat exchanger. The pump is fed from a thermal expansion tank with a vented-pressure cap, which is also used as the circuit pressure relief. The circuit also includes a particulate strainer and a drain valve for servicing.
OOppeerraattiinngg PPrriinncciipplleess
Page 50
50
AC-SVX001A-EN

Controls

Overview

AscendACR units utilize the following control/ interface components:
Tracer® UC800 Controller
Tracer AdaptiViewTD7 Operator Interface

UC800 Specifications

Wiring and Port Descriptions

The following figure illustrates the UC800 controller ports, LEDs, rotary switches, and wiring terminals. The numbered list following the figure corresponds to the numbered callouts in the illustration.
Page 51
AC-SVX001A-EN
51
Figure 25. UC800 wiring locations and connection ports
LINK
+ +
+
24
VDC
+
MBUS
1
2 3 4 5
6
7 8
9
0
-
6
0
-
Front View
Bottom View
1. Rotary Switches for setting BACnet® MAC address or MODBUS® ID.
2. LINK for BACnet® MS/TP, or MODBUS® Slave (two terminals, ±). Field wired if used.
3. LINK for BACnet® MS/TP, or MODBUS® Slave (two terminals, ±). Field wired if used.
4. Machine bus for existing machine LLIDs (IPC3 Tracer bus). IPC3 Bus: used for LonTalk
®
using LCI-
C.
5. Power (210 mA at 24 Vdc) and ground terminations (same bus as Item 4). Factory wired.
6. Internal Modbus connection to AFDs (not a customer connection).
7. Marquee LED power and UC800 Status indicator (refer to the table in “LED Description and
Operation,” p. 51).
8. Status LEDs for the BAS link, MBus link, and IMC link.
9. USB device Type B connection for the service tool (Tracer® TU).
10. The Ethernet connection can only be used with the Tracer® AdaptiViewdisplay.
11. USB Host (not used).

Communication Interfaces

There are four connections on the UC800 that support the communication interfaces listed. Refer to the figure in “Wiring and Port Descriptions,” p. 50 for the locations of each of these ports.
BACnet® MS/TP
MODBUS® Slave
LonTalk® using LCI-C (from the IPC3 bus)

Rotary Switches

There are three rotary switches on the front of the UC800 controller. Use these switches to define a three­digit address when the UC800 is installed in a BACnet® or MODBUS® system (e.g., 107, 127, etc.).
NNoottee:: Valid addresses are 001 to 127 for BACnet
®
and
001 to 247 for MODBUS
®
.

LED Description and Operation

There are ten LEDs on the front of the UC800. The following figure shows the locations of each LED and the following table describes their behavior in specific instances.
CCoonnttrroollss
Page 52
52
AC-SVX001A-EN
Figure 26. LED locations
LINK
LINK MBUS IMC
TX RX
ACT
SERVICE
Marquee LED
Table 17. LED behavior
LED UC800 Status
Marquee LED
Powered. If the Marquee LED is green solid, the UC800 is powered and no problems exist. Low power or malfunction. If the Marquee LED is red solid, the UC800 is powered but there are problems present. Alarm. The Marquee LED blinks red when an alarm exists.
LINK, MBUS,
IMC
The TX LED blinks green at the data transfer rate when the UC800 transfers data to other devices on the link. The RX LED blinks yellow at the data transfer rate when the UC800 receives data from other devices on the link.
Ethernet Link
The LINK LED is solid green if the Ethernet link is connected and communicating. The ACT LED blinks yellow at the data transfer rate when data flow is active on the link.
Service
The Service LED is solid green when pressed. For qualified service technicians only. Do NOT use.
IImmppoorrttaanntt:: Maintain at least 6 in. (16 cm) between low-
voltage (less than 30V) and high voltage circuits.
CCoonnttrroollss
Page 53
AC-SVX001A-EN
53

Tracer AdaptiView TD7 Display

Operator Interface

Information is tailored to operators, service technicians, and owners. When operating a chiller, specific information is neededon a day-to-day basis—
setpoints, limits, diagnostic information, and reports. This inoformation is provided through the Tracer® AdaptiViewTD7 display. Logically organized groups of information— chiller modes of operation, active diagnostics, settings and reports put information conveniently at your fingertips.
Figure 27. TD7 screens
Operator Display Boot Screen Display Loading Data Home Screen, Auto Mode

Home Screen

The home screen (see following figure) provides the most frequently needed chiller status information on “touch targets” (the entire white rectangular areas) for each chiller component. Touching any touch target displays a screen containing more chiller status information related to each component.
Figure 28. Home screen
Table 18. Home screen items
Description
Resolution Units
Top Level Mode Ckt1
Top Level Mode Ckt2
Outdoor Air Temperature
XX.X
°F /°C
Percent Air Flow Ckt1/Ckt 2 X.X/X.X
%
Active Chiller Water Setpoint
XX.X
°F /°C
Table 18. Home screen items (continued)
Description
Resolution Units
Percent Speed 1A/2A
22.2 %
Evaporator Water flow Status
Flow/No Flow
Evap Entering/Leaving Water Temp
XX.X/XX.X °F /°C

Viewing Chiller Operating Modes

On the Reports screen, click Chiller Operating Modes to view the current operating status of the chiller in terms of the top-level operating mode and submodes.
NNoottee:: Chiller Operating Modes screen can also be
accessed from the chiller status button in the upper left corner of the screen.
Figure 29. Chiller operating modes
CCoonnttrroollss
Page 54
54
AC-SVX001A-EN
Table 19. Operating modes — chiller
Chiller Modes
Description
MP Resetting
Stopped
The chiller is not running either circuit, and cannot run without intervention, for instance to place chiller into the “Auto Mode” or to clear a manual reset chiller level diagnostic.
Local Stop Chiller is stopped by the AdaptiView Stop button command– cannot be remotely overridden.
Immediate Stop
Chiller is stopped by the AdaptiView Immediate Stop (by pressing the Stop then Immediate Stop buttons in succession) – previous shutdown was manually commanded to shutdown immediately.
No Circuits Available
The entire chiller is stopped by circuit diagnostics or lockouts.
Diagnostic Shutdown - Manual Reset The chiller is stopped by a Chiller Level diagnostic that requires manual intervention to reset.
Power Up Delay Inhibit: min:sec On Power up, the chiller will wait for the Power Up Delay Timer to expire.
Run Inhibit
The chiller is currently being inhibited from starting (and running), but may be allowed to start if the chiller inhibit or the Chiller or Circuit level (effecting both circuits) diagnostic conditions are manually or automatically cleared.
No Circuits Available
The entire chiller is stopped by circuit diagnostics or lockouts that may automatically clear.
Software Service Lock
TU service tool invoked chiller lockout to prevent operation of the chiller during certain procedures, such as configuration or binding
Ice Building Is Complete
The chiller is inhibited from running as the Ice Building process has been normally terminated on the evaporator entering temperature. The chiller will not start unless the ice building command (hardwired input or Building Automation System command) is removed or cycled.
Ice to Normal Transition
The chiller is inhibited from running for a brief period of time if it is commanded from active ice building mode into normal cooling mode via the ice building hardwired input or Tracer. This allows time for the external system load to “switchover” from an ice bank to the chilled water loop, and provides for a controlled pull down of the loop’s warmer temperature. This mode is not seen if the ice making is automatically terminated on return brine temperature per the mode below.
Start(ing is) Inhibited by BAS (Building Automation System)*
Chiller is stopped by Tracer or other BAS system per BAS communicated commands or (depending on configuration and settings) by lack of communication with the BAS system.
Start(ing is) Inhibited by External Source The chiller is inhibited from starting or running by the “external stop” hardwired input.
Diagnostic Shutdown - Auto Reset
The entire chiller is stopped by a diagnostic that may automatically clear. The chiller is stopped by a Chiller Level diagnostic that may be reset automatically depending on conditions and the specific diagnostic’s reset criteria.
Start(ing is) Inhibited by Low Ambient Temp (erature)
The chiller is inhibited based on the outdoor air temperature.
Power Up Delay Inhibit: min:sec On Power up, the chiller will wait for the Power Up Delay Timer to expire.
Maximum Capacity
Because the chiller is unable to run, when the chiller is in a Top Level Run Inhibit mode, the maximum capacity submode simply echoes that there is no additional capacity available at this time, unless the cause of the inhibit is removed.
Auto
The chiller is not currently running but can be expected to start at any moment given that the proper conditions and interlocks are satisfied.
Waiting For Evap(orator) Water Flow
The unit will wait up to 20 minutes in this mode for water flow to be established per the flow switch hardwired input.
Waiting For A Need To Cool
The chiller will wait indefinitely in this mode, for a leaving water temperature higher than the Chilled Water Setpoint plus some control dead-band.
Waiting to Start
The chiller is not currently running and there is a call for cooling but the lead circuit start is delayed by certain interlocks or proofs. Further information is provided by the sub-mode:
CCoonnttrroollss
Page 55
AC-SVX001A-EN
55
Table 19. Operating modes — chiller (continued)
Chiller Modes
Description
Cold Ambient Start Inhibit – Waiting for Warmer Water
During startups with Outdoor Ambient temperatures less than 18°F, it may be necessary to require warmer entering water to avoid a freeze danger at startup. The occurrence of this mode suggests that startup is being inhibited pending warmer water temperatures than otherwise would be required by the Differential to Start and Active Chilled Water Temperature settings.
Running At least one circuit on the chiller is currently running.
Chilled Water Control
Chiller is running to provide a chilled water temperature per the active chilled water setpoint (may be as arbitrated from various sources). (For cooling only units, this mode may be suppressed.)
Maximum Capacity The chiller is operating at its maximum capacity.
Capacity Control Softloading The control is limiting the chiller loading due to capacity based softloading setpoints.
Demand Limit Softloading
The chiller is running, and loading of individual compressors may be limited by a gradual filter of the chiller’s softloading Demand Limit setpoint. The starting Demandlimit and the settling time of this filter is user adjustable as part of the Demand control softload feature. The mode will be displayed as long as the Demand Control Softloading limit is ramping or “settling”.
Shutting Down
The chiller is still running but shutdown is imminent. The chiller is going through a compressor run-unload or extended operational pumpdown of the lag circuit/compressor (or all circuits simultaneously)
Evaporator Water Pump Off Delay: MIN:SEC
The Evaporator water pump is continuing to run past the shutdown of the compressors, executing the pump off delay timer.
Various
These submodes may be displayed in most of the top level chiller modes.
Manual Evap(orator) (Water) Pump Override The Evaporator water pump relay is on due to a manual command.
Diagnostic Evap (Water) Pump Override The Evaporator water pump relay is on due to a diagnostic.
Waiting for BAS Communications
The chiller has not detected communication with the BAS. This mode is only supported by LonTalk systems. Depending on configurations and Setpoint source setting, lack of communication may cause the chiller to shut down and or become inhibited from starting, but if so, the “Starting is Inhibited by BAS” mode will also occur.
Manual Compressor Control Signal Chiller capacity control is being controlled by AdaptiView or TU.
Noise Reduction
The Chiller’s Noise Reduction Mode has been activated. The condenser fans may be limited to a lower speed than design, to reduce fan noise.
Chilled Water Control
These modes are mutually exclusive and they indicate that the chiller is controlling to the active hot water setpoint, the active chilled water setpoint, or the active ice termination setpoint respectively.
Ice Building
Note: Mode strings may or may not include the characters in parentheses.
Table 20. Operating modes — circuit
Circuit Modes
Description
Stopped The circuit is not running, and cannot run without intervention.
Diagnostic Shutdown – Manual Reset The circuit has been shutdown on a latching diagnostic.
Front Panel Circuit Lockout
The circuit is manually locked out by the circuit lockout setting – the nonvolatile lockout setting is accessible through either the AdaptiView or TU.
External Circuit Lockout
The respective circuit is locked out by the external circuit lockout binary input.
Service Pumpdown The circuit is currently performing a service pumpdown.
CCoonnttrroollss
Page 56
56
AC-SVX001A-EN
Table 20. Operating modes — circuit (continued)
Circuit Modes
Description
Run Inhibit
The given circuit is currently being inhibited from starting (and running), but may be allowed to start if the inhibiting or diagnostic condition is cleared.
Diagnostic Shutdown – Auto Reset The circuit has been shutdown on a diagnostic that may clear automatically.
Low Oil Flow Cool Down Time mn:sec
See oil flow protection spec
Restart Inhibit min:sec
The compressor (and therefore, its circuit) is currently unable to start due to its restart inhibit timer. A given compressor is not allowed to start until 5 minutes (adj) has expired since its last start, once a number of “free starts” have been used up.
Low Evap Rfgt Temp (Inh-bit)*
A start of the circuit had been requested, but the circuit is inhibited from starting due to a high value of the Low Evaporator Refrigerant Temperature Integral from the last cycle. If the alternate circuit is available, it will be substituted. Delaying a start in this situation, avoids a latching diagnostic of the running Low Evaporator Refrigerant Temperature Cutout protection.
Auto
The circuit is not currently running but can be expected to start at any moment given that the proper conditions are satisfied.
Calibrating EXV
This submode is displayed when the EXV is performing a calibration. A calibration is only performed when the chiller is not running and never more frequently than once every 24 hours.
Waiting to Start The circuit is going through the necessary steps to allow the lead circuit to start.
Start Inhibited Waiting For Oil
The compressor (and thus its circuit) will wait up to 2 minutes in this mode for oil level to appear in the oil tank.
Running The compressor on the given circuit is currently running.
Establishing Min(imum) Cap(acity) – Low Diff (erential) Pressure
The circuit is experiencing low system differential pressure and its compressor is being force loaded, irrespective of the Chilled Water Temperature Control, to develop pressure sooner.
Establishing Min Cap – High Disch Temp
The circuit is running with high discharge temperatures and its compressor is being forced loaded to its step load point, without regard to the leaving water temperature control, to prevent tripping on high compressor discharge temperature.
Establishing Min Cap – Low Vi Min Speed
The compressor is being forced to a higher speed than desired for capacity control, in order to maintain compressor bearing reliability while in the low Vi state.
Maximum Capacity
The individual circuit is running at the maximum speed possible – no more capacity is available from this circuit.
Running - Limit
The circuit, and compressor are currently running, but the operation of the chiller/ compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes
(High) Condenser Pressure Limit
The circuit is experiencing condenser pressures at or near the condenser limit setting. Compressors on the circuit will be unloaded to prevent exceeding the limits.*
(Low) Evaporator (Rfgt) Temperature Limit
The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping. *
EXV Capacity Limit
The EXV is near or beyond 95% wide open, or is predicted to get to that position if the compressor was to run at full speed, and the capacity of the circuit (compressor speed) is being held or reduced in order to prevent loss of oil return or insufficient drive cooling.
Noise Reduction (Fan Limit)
The condenser fans of the circuit are potentially being limited by an active chiller-level Noise Reduction Request to a lower maximum possible speed in order to limit the noise levels.
Flooded or Hot Start Capacity Limit
This mode will occur at circuit start, if the evaporator is sensed to be full of liquid, or if the evaporator entering water temperature is greater than 65F while the outdoor air temperature is greater than 70F. This transient starting mode implies the compressor has begun operation at a speed below the configured “normal” minimum compressor speed, in order to avoid carryover.
Demand Limit
The compressor is running and is being capacity limited by a high demand power draw in excess of the compressor’s share of the active Demand Limit Setting for the entire chiller.
Shutting Down The circuit is preparing to de-energize the compressor.
CCoonnttrroollss
Page 57
AC-SVX001A-EN
57
Table 20. Operating modes — circuit (continued)
Circuit Modes
Description
Operational Pumpdown
The circuit is in the process shutting down by performing an operational pumpdown just prior to stopping the circuit’s compressor. The EXV is commanded closed. Pumpdown will terminate when the evaporator pressure reaches the termination pressure (below a specific criteria) or after a specific time has expired.
Note: Mode strings may or may not include the characters in parentheses.

Alarms

Alarms can be viewed and reset using the TD7 display. Alarms are communicated to the display immediately upon detection.
Viewing the Alarms Screen
Click the Alarms button in the main menu area to view the Alarm screen.
The Alarm screen will display a table of active alarms, listed chronologically, with the most recent first. See the following figure for an example of default view. The alarm list can be sorted by other columns.
Figure 30. Alarm screen

Reports

The TD7 provides the a variety of reports and allows the creation and editing of custom reports. All reports contain live data that refreshes every 2–5 seconds.
Viewing the Reports Screen
Click the Reports button in the main menu area to view the Reports screen. The Reports screen contains the following buttons to access the selected report:
Custom Report1
Custom Report2
Custom Report3
Evaporator
Condenser
Compressor
Motor
About
Operating Modes
Log Sheet
ASHRAE Chiller Log
Figure 31. Report screen
Editing a Custom Report
A custom report can be edited by adding, removing, or re-ordering data. Click EEddiitt to access the Edit Custom Report screen.:
AAdddd IItteemmss:: Select item to be added. Selected item will change to blue. Use arrows to scroll to additional items, and select all items to be added. Click AAdddd to move the selected item to the box on the right side of the screen.
RReemmoovvee IItteemmss:: Select item to be removed. Selected item will change to blue.Use arrows to scroll to additional items, and select all items to be removed. Click RReemmoovvee to move the selected item to the box on the left side of the screen.
RRee--oorrddeerr IItteemmss:: Select item to be moved. Selected item will change to blue. Use arrows to change the order of the item.
Touch SSaavvee to save and view the edited custom report.
CCoonnttrroollss
Page 58
58
AC-SVX001A-EN
Figure 32. Edit custom report screen
Figure 33. Report — evaporator screen
Table 21. Report — evaporator screen items
Description
Resolution Units
Active Chilled Water Setpoint
X.X
°F / °C
Evaporator Entering Water Temperature
X.X
°F / °C
Evaporator Leaving Water Temperature
X.X
°F / °C
Evaporator Water Flow Status
Flow, No Flow
Text
Evaporator Water Pump Override
Auto, On
Text
Evaporator Approach Temperature
X.X
°F / °C
EXV Position Percent X.X %
Evaporator Refrigerant Pressure XXX.X
PSIA/kPa
Evaporator Saturated Rfgt Temp
X.X
°F / °C
Evaporator Refrigerant Liquid Level
X.XX
in/mm
Figure 34. Report — condenser screen
Table 22. Report — condenser screen items
Description
Resolution Units
Condenser Entering Water Temperature
X.X
F / C
Condenser Leaving Water Temperature
X.X
F / C
Condenser Water Flow Status
Flow, No Flow
Text
Condenser Water Pump Override
Auto, On
Text
Condenser Approach Temperature
X.X
F / C
EXV Position Percent X.X %
Condenser Refrigerant Pressure XXX.X
PSIA/kPa
Condenser Saturated Rfgt Temp
X.X
F / C
Differential Refrigerant Pressure XXX.X
PSIA/kPa
Outdoor Air Temperature
X.X
F / C
Figure 35. Report — compressor screen
CCoonnttrroollss
Page 59
AC-SVX001A-EN
59
Table 23. Report — compressor screen items
Description
Resolution Units
Compressor Running Status
On,Off
Text
Average Motor Current % RLA XX.X% %RLA
Compressor Starts
XX Text
Compressor Running Time XX:XX Hr:Min
Oil Loss Level Sensor
Wet, Dry
Text
Discharge Temperature
X.X
°F / °C
Discharge Temperature
X.X
°F / °C
Compressor Oil Pressure
XXX.X
PSIA/kPaA
Evaporator Refrigerant Pressure XXX.X
PSIA/kPaA
Condenser Refrigerant Pressure XXX.X
PSIA/kPaA
Differential Refrigerant Pressure XXX.X
PSIA/kPaA
Frequency Command
XX.X Hz
Figure 36. Report — motor screen
Description
Resolution Units
Active Current Limit Setpoint
X.X %RLA
Average Motor Current % RLA X.X %RLA
Starter Motor Current L1 %RLA X.X %RLA
Starter Motor Current L2 %RLA X.X %RLA
Starter Motor Current L3 %RLA X.X %RLA
Starter Motor Current L1 X.X A
Starter Motor Current L1 X.X A
Starter Motor Current L1 X.X A
Description
Resolution Units
Starter Input Voltage AB
XXX.X V
Starter Input Voltage BC
XXX.X V
Starter Input Voltage CA
XXX.X V
Average Motor Current
X.X A
Average Phase Voltage
XXX.X V
Frequency Command
XX.X Hz

Equipment Settings

You can use the TD7 display to monitor and change a variety of equipment settings.
Accessing Equipment Settings
Equipment Settings are found on the left column of the Settings screen as shown in figure below. Included are the following:
Chiller Settings
Feature Settings
Chilled Water Reset
Manual Control Settings
Each selection will provide access to the detailed settings submenus.
Figure 37. Settings screen
Viewing and Changing Equipment Settings
Each button in the Equipment Settings column on the Settings screen takes you to a submenu which displays the name of a setting and its current value. See figure below. Click any button to select and change the value.
NNoottee:: A page number appears in the lower right corner
of the screen. If a screen contains more than one page, up/down arrows also appear for viewing the other pages, as in figure below.
CCoonnttrroollss
Page 60
60
AC-SVX001A-EN
Figure 38. Equipment settings screen — chiller settings
To change an equipment setting, click desired setting from Equipment Settings column on the Settings screen. Click the setting to be changed. The screen to input new data will be one of two types:
BBuuttttoonn sseelleeccttiioonnss:: When clicked to select, the button becomes shaded, and a Save button appears at the bottom of the screen, as show below.
Figure 39. Chilled water reset screen
NNuummeerriicc kkeeyyppaadd ssccrreeeenn:: For settings screen with numeric keypads (see example in figure below), enter the current value using the keypad. The new value will appear above the keypad. Keypad features:
When a new number is entered, the value in the
New Value field is deleted and replaced with the new entry.
The backspace (arrow) key deletes the
characters previously entered.
If the keypad is used to enter a setpoint that is
out of range, an error dialog will appear when the SSaavvee button is selected.
Keypads that allow negative numbers have
positive and negative number (+/-) keys.
Figure 40. Changed chilled water setpoint screen
Click SSaavvee to complete the change. The current value is updated in the upper left side of the screen, demonstrating that the change has been communicated to the Tracer® UC800 controller.
Table 24. Settings screen items
Description
Resolution Units
Chiller Settings
Active Chilled Water Setpoint
± XXX.X
°F / °C
Active Current Limit Setpoint
XXX % %RLA
Active Panel Base Load Cmd
On/Auto
Text
Active Base Loading Setpoint
XXX %
Active Base Loading Command
On/Auto
Text
Differential to Start XXX.X
°F / °C
Differential to Stop
XXX.X
°F / °C
Setpoint Source
(BAS/Ext/FP, Ext/Front Panel, Front Panel)
BAS/Ext/FP
Text
Evaporator Water Pump Off Delay
XX Min
Condenser Pump Prestart Time XX Min
High Evap Water Temp Cutout XXX.X
°F / °C
Evaporator Leaving Water Temp Cutout
XX.X
°F / °C
Low Refrigerant Temperature Cutout
XX.X
°F / °C
Current Limit Softload Start Point XXX.X %
Current Limit Control Softload Time XXXX Sec
CCoonnttrroollss
Page 61
AC-SVX001A-EN
61
Table 24. Settings screen items (continued)
Description
Resolution Units
Capacity Control Softload Time XXXX Sec
Local Atmospheric Pressure XXX.X
psi/kPa
Power Up Start Delay
XXX Min
Feature Settings
External Chilled/Hot Water Setpoint (Enable/ Disable)
Text
External Current Limit Setpoint (Enable/Disable)
Text
LCI-C Diagnostic Encoding (Enable/ Disable)
Text
Chilled Water Reset (Constant, Outdoor, Return, Disable)
Disable Text
Return Reset Ratio XXX %
Return Start Reset XXX.X
°F / °C
Return Maximum Reset XXX.X
°F / °C
Outdoor Reset Ratio XXX %
Outdoor Start Reset XXX.X
°F / °C
Outdoor Maximum Reset XXX.X
°F / °C
Mode Overrides
Evap Water Pump (Auto, On)
Auto Text
Cond Water Pump (Auto, On)
Auto Text

Display Settings

Display settings can be customized. The display also includes a function to clean the touch screen.
Viewing the Settings Screen
Display Settings are found on the right column of the Settings screen as shown in [Missing cross reference
text]. Included are the following:
Display Preferences
Language
Date and Time
Clean Display
Viewing and Changing Display Preferences
On the Settings screen, click DDiissppllaayy PPrreeffeerreenncceess which includes the following:
Date Format
Date Separator
Time Format
Unit System
Pressure Units
Number Format
Figure 41. Display preference screen
Each of the buttons shows the current value for each selection. Click any of these buttons to change. Select the option to be changed, which will be shaded.. Example in figure below shows a selection of MMDDYYY for the date format.
Figure 42. Date format preference selection
Click SSaavvee to confirm your selection and return to Display Preferences screen.
Following are the preference options available:
DDaattee FFoorrmmaatt
MMDDYYYY (default)YYYYMMDDDDMMYYYY
DDaattee SSeeppaarraattoorr
NoneSlash (default)Hyphen
TTiimmee FFoorrmmaatt
12 hour (default)24 hour
UUnniittss SSyysstteemm – SI
CCoonnttrroollss
Page 62
62
AC-SVX001A-EN
I-P (default)
PPrreessssuurree UUnniittss
kPaA (default if “SI” is chosen for display units) kPaG PSIA (default if “I-P” is chosen for display units) PSIG
NNuummbbeerr FFoorrmmaatt
1000000.0 1000000,0
Viewing and Changing Language
On the Settings screen, click LLaanngguuaaggee. The current setting will be shaded, as shown in figure below. To change the language, click the preferred language to select. Click SSaavvee to confirm selection.
Figure 43. Language settings
Viewing and Changing Date and Time
On the Settings screen, click DDaattee aanndd TTiimmee. The current date and time appear at the bottom of the screen. The following options are available to change on the main screen:
Month
Day
Year
Hour
Minute
AM/PM
To change any settings, click the corresponding button to highligh, then use up/down arrow keys to set desired value. Repeat for any other items to be changed. When complete, click SSaavvee to confirm selection and return to Settings screen.
NNoottee:: To edit field using keypad entry, click the
highlighted button a second time to access the keypad.
Figure 44. Date and time settings screen
Cleaning the Display
On the Settings screen, click CClleeaann DDiissppllaayy. The TD7 is disabled for 5 seconds to allow screen cleaning without response to touch. During this time, the screen is black with a number in the center that counts down the seconds. After 5 seconds, the display will return to the Settings screen.
Figure 45. Cleaning the display — countdown screen

Security Settings

Security settings are available to prevent unauthorized changes to the system. To access security, click SSeeccuurriittyy button on the Settings screen.
Logging In
All data can be viewed without logging in. However, if security if enabled, the Tracer® AdaptiViewrequires a four-digit security PIN log-in to make changes to any settings protected by security. This feature prevents unauthorized personnel from making changes to the system.Two levels of security are provided.
SSeeccuurriittyy LLeevveell 11:: Allows users to change a limited group of secure settings. The default security PIN is
1111.
SSeeccuurriittyy LLeevveell 22: Allows users to change all secure settings. The default security PIN is 7123.
CCoonnttrroollss
Page 63
AC-SVX001A-EN
63
Tracer® TU service tool is used to set an alternate PIN, or to recall a forgotten pin. When defining a PIN in Tracer® TU, enter a 4-digit PIN to correspond with the desired level of security.
To log in, click LLoogg IInn button, and use the keypad to enter your pin. See figure below.
PIN is a four-digit number, which was configured for your system with the Tracer® TU service tool.
For security, the PIN is hidden by asterisks during entry.
NNoottee:: If an invalid PIN is entered, an error message will
appear.
Click SSaavvee. User will be returned to previous screen.
NNoottee:: User will be logged out after 30 minutes of
inactivity. To manually log out, see section later
Figure 46. Log in screen
Disabling/Enabling Security
The security feature that allows a user to log in or out can be disabled or enabled.
To ddiissaabbllee security, user must be logged in:
On Settings screen, click SSeeccuurriittyy button.
NNoottee:: Log in prompt will appear if user is not
already logged in.
Click DDiissaabbllee button, then click SSaavvee.
Figure 47. Security screen — disable
To eennaabbllee security:
On Settings screen, click SSeeccuurriittyy button. The Settings screen will now appear with onlyo the Security button. It will not have a Log In/Log Out buttons
Click EEnnaabbllee button, then click SSaavvee. The Settings screen will now appear with Log In/Log Out button, in addition to the Security button.
Logging Out
To log out, click LLoogg OOuutt button. A confirmation screen appears as shown below. Click YYeess to confirm.
Figure 48. Log out confirmation screen

InvisiSound Ultimate — Noise Reduction Mode

When the InvisiSoundUltimate option is selected (model number digit 12=3), noise reduction mode can be enabled to adjust fan speed and lower maximum sound levels. Reduced acoustic noise levels can be set for certain times, or on a schedule. The noise reduction feature can be requested by local time of day scheduling, external input or building automation system.
To enable this function at the external display, access the Settings screen on the Tracer® AdaptiView. See figure below.
Figure 49. Noise reduction mode settings
CCoonnttrroollss
Page 64
64
AC-SVX001A-EN
Set the Front Panel Noise Reduction Request to ON.
Adjust the Noise Reduction Condenser Fan Speed Clamp to desired value.
Setting for fan speed: Percentage of 920 rpm
maximum fan speed (Example: For fan speed of 700 rpm, enter a value of 76%)
Acceptable inputs are 60% (552 rpm) to 100%
(920 rpm) in 1% increments

Tracer TU

The AdaptiViewTD7 operator interface allows for daily operational tasks and setpoint changes. However, to adequately service chillers, Tracer® TU service tool is required. (Non-Trane personnel, contact your local Trane office for software purchase information.) Tracer® TU adds a level of sophistication that improves service technician effectiveness and minimizes chiller downtime. This portable PC-based service-tool software supports service and maintenance tasks, and is required for software upgrades, configuration changes and major service tasks.
Tracer® TU serves as a common interface to all Trane® chillers, and will customize itself based on the properties of the chiller with which it is communicating. Thus, the service technician learns only one service interface.
The panel bus is easy to troubleshoot using LED sensor verification. Only the defective device is replaced. Tracer® TU can communicate with individual devices or groups of devices.
All chiller status, machine configuration settings, customizable limits, and up to 100 active or historic diagnostics are displayed through the service-tool software interface.
LEDs and their respective Tracer® TU indicators visually confirm the availability of each connected sensor, relay, and actuator.
Tracer® TU is designed to run on a customer’s laptop, connected to the Tracer® AdaptiViewcontrol panel with a USB cable. Your laptop must meet the following hardware and software requirements:
1 GB RAM (minimum)
1024 x 768 screen resolution
CD-ROM drive
Ethernet 10/100 LAN card
An available USB 2.0 port
Windows 7 Enterprise or Professional operating system (32-bit or 64-bit)
NNoottee:: Tracer
®
TU versions 8.6 and earlier will also
support Microsoft
®
Windows®XP Professional operation system with Service Pack 3 (SP3) .
Microsoft .NET Framework 4.0 or later
NNootteess::
Tracer
®
TU is designed and validated for this minimum laptop configuration. Any variation from this configuration may have different results. Therefore, support for Tracer TU is limited to only those laptops with the configuration previously specified.
For more information, see TTU-SVN01*-EN Tracer
®
TU Getting Started Guide
Figure 50. Tracer TU
CCoonnttrroollss
Page 65
AC-SVX001A-EN
65

Pre-Start

Upon completion of installation, complete the Installation Completion Check Sheet and Request for Trane Service checklist in Log and Check Sheet chapter.
IImmppoorrttaanntt:: Start-up must be performed by Trane or an
agent of Trane specifically authorized to perform start-up and warranty of Trane products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up.
Page 66
66
AC-SVX001A-EN

Start-up and Shutdown

IImmppoorrttaanntt:: Initial unit commissioning start-up must be
performed by Trane or an agent of Trane specifically authorized to perform start-up and warranty of Trane products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up.

Unit Start-up

NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. EEnnssuurree tthhaatt tthhee ccoommpprreessssoorr aanndd ooiill ssuummpp hheeaatteerrss hhaavvee bbeeeenn ooppeerraattiinngg pprrooppeerrllyy ffoorr aa mmiinniimmuumm ooff 2244 hhoouurrss bbeeffoorree ssttaarrttiinngg..
If required, once the system has been operating for approximately 30 minutes and has become stabilized, complete the remaining start-up procedures, as follows:
1. Check the evaporator refrigerant pressure and the condenser refrigerant pressure under Refrigerant Report on the AdaptiViewTD7. The pressures are referenced to sea level (14.6960 psia).
2. Check the EXV sight glasses after sufficient time has elapsed to stabilize the chiller. The refrigerant flow past the sight glasses should be clear. Bubbles in the refrigerant indicate either low refrigerant charge or excessive pressure drop in the liquid line or a stuck open expansion valve. A restriction in the line can sometimes be identified by a noticeable temperature differential between the two sides of the restriction. Frost will often form on the line at this point. Proper refrigerant charges are shown in the General Information Section.
IImmppoorrttaanntt:: A clear sight glass alone does not mean
that the system is properly charged. Also check system subcooling, liquid level control and unit operating pressures.
If chiller is limited by any limiting conditions, contact local Trane service organization for more information.

Temporary Shutdown And Restart

To shut the unit down for a short time, use the following procedure:
1. Press the STOP key on the Adaptiview TD7. The compressors will continue to operate and an operational pumpdown cycle will be initiated.
2. UC800 pump control will turn off the pump (after a minimum 1 min. delay) when the STOP key is pressed and automatically restart the pump when the unit starts normally.
3. The unit will start normally, provided the following conditions exist:
a. The UC800 receives a call for cooling and the
differential-to-start is above the setpoint.
b. All system operating interlocks and safety
circuits are satisfied.

Extended Shutdown Procedure

The following procedure is to be followed if the system is to be taken out of service for an extended period of time, e.g. seasonal shutdown:
1. Test the unit for refrigerant leaks and repair as necessary.
2. Open the electrical disconnect for the chilled water pump. Lock the switches in the "OPEN" position.
NNOOTTIICCEE
PPuummpp DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ppuummpp ddaammaaggee.. LLoocckk tthhee cchhiilllleedd wwaatteerr ppuummpp ddiissccoonnnneeccttss ooppeenn aanndd vveerriiffyy ppuummpp iiss ooffff bbeeffoorree ddrraaiinniinngg wwaatteerr..
3. Close all chilled water supply valves. Drain the water from the evaporator.
4. With the water drained from evaporator, disconnect 115 power from evaporator heaters at terminals 1X4-1 and 1X4-2.
NNOOTTIICCEE
HHeeaatteerr DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn hheeaatteerr ddaammaaggee.. DDoo nnoott aappppllyy ppoowweerr ttoo tthhee eevvaappoorraattoorr hheeaatteerrss wwhheenn nnoo wwaatteerr iiss pprreesseenntt..
5. Open the main electrical disconnect and lock in the "OPEN" position.
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. LLoocckk tthhee ddiissccoonnnneecctt iinn tthhee ""OOPPEENN"" ppoossiittiioonn ttoo pprreevveenntt aacccciiddeennttaall ssttaarrtt--uupp aanndd ddaammaaggee ttoo tthhee ssyysstteemm wwhheenn iitt hhaass bbeeeenn sshhuutt ddoowwnn ffoorr eexxtteennddeedd ppeerriiooddss..
Page 67
AC-SVX001A-EN
67
6. At least every three months (quarterly), check the refrigerant pressure in the unit to verify that the refrigerant charge is intact.

Seasonal Unit Start-up Procedure

1. PRIOR to water being pumped into system, use gauges to verify positive pressure in the evaporator and condenser. Lack of pressure could indicate a system leak. When charging in the factory, approximately 95% of the refrigerant charge is isolated in the evaporator, and the other 5% is contained in the condenser and compressor. In the event that no pressure is present, contact local Trane service.
2. Close all drain valves and re-install the drain plugs in the evaporator.
3. Service the auxiliary equipment according to the start-up/maintenance instructions provided by the respective equipment manufacturers.
4. Close the vents in the evaporator chilled water circuits.
5. Open all the valves in the evaporator chilled water circuits.
6. Open all refrigerant valves to verify they are in the open condition.
7. If the evaporator was previously drained, vent and fill the evaporator and chilled water circuit. When all air is removed from the system (including each pass), install the vent plugs in the evaporator water boxes.
8. Check the adjustment and operation of each safety and operating control.
9. Refer to the sequence for daily unit startup for the remainder of the seasonal startup.

System Restart After Extended Shutdown

NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. EEnnssuurree tthhaatt tthhee ccoommpprreessssoorr aanndd ooiill ssuummpp hheeaatteerrss hhaavvee bbeeeenn ooppeerraattiinngg pprrooppeerrllyy ffoorr aa mmiinniimmuumm ooff 2244 hhoouurrss bbeeffoorree ssttaarrttiinngg..
Follow the procedures below to restart the unit after extended shutdown:
1. Check refrigerant pressure as noted in Seasonal Unit Start-Up procedure.
2. Verify that the liquid line service valves, oil line, compressor discharge service valves and suction service valves are open (backseated).
NNOOTTIICCEE
CCoommpprreessssoorr DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd ccaauussee ccaattaassttrroopphhiicc ddaammaaggee ttoo tthhee ccoommpprreessssoorr.. DDoo nnoott lleeaavvee ooiill lliinnee sshhuutt ooffff vvaallvvee oorr tthhee iissoollaattiioonn vvaallvveess cclloosseedd oonn uunniitt ssttaarrtt--uupp..
3. Check the oil sump level. See instructions in Maintenance chapter.
4. Fill the evaporator water circuit. Vent the system while it is being filled. Open the vent on the top of the evaporator and condenser while filling and close when filling is completed.
NNOOTTIICCEE
PPrrooppeerr WWaatteerr TTrreeaattmmeenntt RReeqquuiirreedd!!
TThhee uussee ooff uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr ccoouulldd rreessuulltt iinn ssccaalliinngg,, eerroossiioonn,, ccoorrrroossiioonn,, aallggaaee oorr sslliimmee.. UUssee tthhee sseerrvviicceess ooff aa qquuaalliiffiieedd wwaatteerr ttrreeaattmmeenntt ssppeecciiaalliisstt ttoo ddeetteerrmmiinnee wwhhaatt wwaatteerr ttrreeaattmmeenntt,, iiff aannyy,, iiss rreeqquuiirreedd.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr eeqquuiippmmeenntt ffaaiilluurreess wwhhiicchh rreessuulltt ffrroomm uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr,, oorr ssaalliinnee oorr bbrraacckkiisshh wwaatteerr..
5. Close the fused-disconnect switches that provides power to the chilled water pump.
6. Start the evaporator water pump and, while water is circulating, inspect all piping for leakage. Make any necessary repairs before starting the unit.
7. While the water is circulating, adjust the water flows and check the water pressure drops through the evaporator. See Evaporator Waterside Pressure Drop Curves in Installation Mechanical chapter, and water flow rates in General Data tables..
8. Verify proper operation of flow switch on the evaporator waterbox.
9. Stop the water pump. The unit is now ready for start-up as described previously

Sequence of Operation

This section provides basic information on chiller operation for common events. Adaptive control algorithms are used on these chillers. This section illustrates common control sequences.

Software Operation Overview

The following figure is a diagram of the five possible software states. This diagram can be thought of as a state chart, with the arrows and arrow text, depicting the transitions between states:
The text in the circles is the internal software designations for each state.
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 68
68
AC-SVX001A-EN
The shading of each software state circle corresponds to the shading on the time lines that show the chiller’s state.
There are five generic states that the software can be in:
Power Up
Stopped
Starting
Running
Stopping
Shutting Down
Running
or
Running Limit
Stopped
or
Run Inhibit
Au to
Co mm an d
Co nfirme d S tart
Stop C om m
a
n
d
Di
a
gn os
t
ic
Co nfirme d
Sh utd ow n
Boot and Self Test
Stop C om ma nd or Diagnos tic
Auto
or
Waiting to Start
Check for
Differential
to Start
Check for
Differential
to Stop
Re lea se
of Inhibit
Po wer Up
In the following diagrams:
The time line indicates the upper level operating mode, as it would be viewed in the Tracer® AdaptiView.
The shading color of the cylinder indicates the software state.
Text in parentheses indicates sub-mode text as viewed in the Tracer® AdaptiView.
Text above the time line cylinder is used to illustrate inputs to the UC800. This may include user input to the Tracer® AdaptiViewtouch screen, control inputs from sensors, or control inputs from a generic BAS.
Boxes indicate control actions such as turning on relays, or pulsing compressor load or unload solenoids.
Smaller cylinders under the main cylinder indicate diagnostic checks.
Text outside a box or cylinder indicates time-based functions.
Solid double arrows indicate fixed timers.
Dashed double arrows indicate variable timers.
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 69
AC-SVX001A-EN
69

Power Up Diagram

The following diagram shows the respective TD7 AdaptiViewscreens during a power up of the UC800 and display. This process takes 25 seconds for the UC800 and 90 seconds for the display. On all power
ups, the software model always will transition through the 'Stopped' Software state independent of the last mode. If the last mode before power down was 'Auto', the transition from 'Stopped' to 'Starting' occurs, but it is not apparent to the user.
Figure 51. Sequence of operation: power up diagram
R T A E S e q u e n c e o f O pera tio n : O p e rator D ispla y P o w er U p
*D is pl ay will s ho w
eith er A ut o o r S to p
but to n a s “a ct iv e”
(d ep ress ed ) o nc e
it is r ea dy
E xt er na l
P ow er
A pp lie d
U C80 0 F ully O pe ra tio na l
B oo tin g U C 80 0
(2 5 S ec on ds )
O perat or Disp lay a nd UC 80 0
S ta rt B oo tin g
Las t M od e
A ut o*
Las t M od e
S to p*
IP C B us C om m Beg ins
R em ain in
“Stop ” inde fin ite ly
unt il “A ut o”
com m an d- S ee
“Stop pe d To Starting”
IF
(3 9 S ec on ds )
MinimumTime Until 1st C ompressor Could Restart
(if “Power Up Delay Inhibit” set to 0;Default is 105 sec)
C on tin ue Along St ar t
S eq ue nc e
S ee “P ow er U p
to Sta rting”
10 Sec
First Trane Logo
Grey Screen
Second Trane Logo - Loading
User Interface Tem plate...
Black Screen
Loading Data….
Display Ready
18 Seconds 27 Seconds
15 Seconds
Ope rator Displa y Boot Up and Load - 90 sec Total to Display Ready
15 Sec
5 Sec
/
7
6
/
6
0
e
soees
c
p
t
o
/
1
6
/
6
0
e
s
t
o
e
e
p
t
p
o
6
/
U
6
6/4
ppp
0
666
/
/6/
4
0
e
s
t
o
eeesc
e
p
ttt
o
o
o
/2/
1
0
e
sss
s
s
c
c
c
c
t
o
p
eoesc
p
t
o
6
/
6
3
0
/
0
0
9
0
sec
odo
S
p
o
oyd
d
a
d
y
990
eec
/
444
d
s
t
o
s
p
y
e
a
d
y
1
2/1
1
/
/20
1
2
666
/
/
/
6
6666666 1122/
/
/
2200011221122
/
/
/
2
2222222 999
/
/
/
9
9999999 220001122
S to ppe d
L
LL/a
s
7
ooo
6
l
a
a
/
-
a
y
y
6
aaa
0
e
e
aad
d
e
s
t
o
ees
c
p
t
p
o
6
/
s
1
6
/
a
201
2
g
ure
1[A
d
apt
v
o
e
woB
ootScre
e
n
]
/
/
/
/66666666 1122/
/
/
/22222222 220001122--1122
/
/
/
/1111
/
/
/
/22
0001122
U C80 0 B oot U p
/2/
1
0
e
s
t
o
ees
c
p
t
o
Black Screen
/
/
/
6
66666 14/
/
/
4
44444 2
001212/
/
/
1
00/
/
/
0
00000 2
001
2
S ta rting S eq ue nc e
S ee “P ow er U p to
S ta rting” Seq ue nce D iagram
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 70
70
AC-SVX001A-EN

Power Up to Starting

The following diagram shows the timing from a power up event to energizing the first compressor. The shortest allowable time would be under the following conditions:
No motor restart inhibit time left from subsequent starts
Evaporator Water flow occurs quickly with pump on command
Power up Start Delay set to 0 minutes
Need to cool (differential to start) already exists
Oil level is detected immediately
The above conditions would allow for a minimum power up to starting the first compressor time of about 45 seconds (variations may exist due to options installed). Note that it is not advisable to start a chiller “cold”, the oil heaters should be in operation for a sufficient length of time prior to first start.
Figure 52. Sequence of events: power up to starting
6
/
1
2/20121
2/1
1/201
2
Confirm Presence
of Oil With in
90 Seconds
6
/
1
5555
5/220
C
0
0
111112222
2
o
Pow er
Applied
666//
/
1
1
111
2222///
222
000
111
222--
777
///
333
////
222222
Power
Up
6
/13
/20
1
2
UC800
Boot T im e
(25 Sec)
Auto Mode commanded by Front Panel or B AS
EXVs self-
close on
po wer u p
Confirm Evapo rator W ater F low (6 Second Filte r)
Enfo rce Restart Inhibit Timer (0 to 1 m in ute)
Power U p Delay In hibit Tim er
(User Adjustab le 0 to 30 m in utes)
77//22//22001122-
99//33//2200112
2
Auto
Energize Evaporator
Water Pum p Rela y
6
/
1
2/20121
2/1
1/201
2
Confirm Evapo rator W ater
Flow W ithin 20 minutes
(6 Second Filte r)
Oil Heaters Always E nergized when Com pressor
is De-ene rgized
6
/
114
4/202
7
/3/20
1
2
asd
E
f
E
n
n
EXV remain s closed
Wait for N ee d
To C ool
(Diff to Start)
99//////22//22001122-
1100//22//2200112
2
Auto
9/3/0
0
(
(
asd
Call for Coo ling (Differential to Start is m et)
1100000//11//22001122-
1100//3311//22001111
1
Waiting
To Start
0//
0
asd
Confirm
Presen ce of Oil
(0 to 90 seco nds)
1100//3300//22001122-
1122//1111//2200112
2
Waiting To Start
0/3/0
asd
1
2/1
1/201
2
asd
f
EXV moving to
Prep osition
0 to 25 Seconds
Send Start C ommand
to Lead Com pres so r*
Transition to Running
Start C ontrol o f
Condenser Fan F low
Pre-Position EXV of
Le ad C ircuit
66666
/////
111133333
/////
222200000
11112222--11112222/////
111100000
/////
222200000
1111222
2
Check E vap P re ss ure for
Lo w Pres su re Cutout
/
1
4
/
/
2
P0r12
P
* Lead compressor (and its lead circuit) is determined by staging algorithm - “Fixed Staging” or “Balanced Wear” selection - also influenced by lockouts, restart inhibit, or diagnostics present.
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 71
AC-SVX001A-EN
71

Stopped to Starting

The following diagram shows the timing from a stopped mode to energizing the first compressor. The shortest allowable time would be under the following conditions:
No motor restart inhibit time left from subsequent starts
Evaporator Water flow occurs quickly with pump on command
Need to cool (differential to start) already exists
The above conditions would allow a compressor to start in about 20 seconds.
Figure 53. Sequence of events: stopped to starting
6//0//0
Confirm Presence
of Oil With in
90 Seconds
6
/55
5
/
/
/
2220
C
0
0
111111
222222
o
Stopped
Or Run
Inhibit
666/1222//2
00127
//33//2
Stop
6/3/0
Auto Mode commanded by Front Panel or B AS
Confirm Evapo rator W ater F low (6 Second Filte r)
Enfo rce Restart Inhibit Timer
(0 to 1 m in ute)
7
7///2
2///2
20001122 -
999///333///2
20001122
Auto
Energize Evaporator
Water Pum p Rela y
6//0//0
Confirm Evapo rator W ater
Flow W ithin 20 minutes
(6 Second Filte r)
Oil Heaters
Always E nergized when
Com presso r is De-energized
6//
0
7
/3/20
1
2
asd
EXV remain s closed
Wait for N ee d
To C ool
(Diff to Start)
999///////2
///2
00012-1000///2
///2
0001
2
Auto
9/3/0
0
((
asd
Call for Coo ling (Differential to Start is m et)
1
00000//1
//2
0012--
- 1
00//331
//2
001111
Waiting
To Start
0//
0
asd
Confirm
Presen ce of Oil
(0 to 90 seco nds)
1
00//3300//2
0012--
- 12//11//2
001
2
Waiting
To Start
0/3/0
asd
1
2/1
1/201
2
asd
f
EXV moving to
Prep osition
0 to 25 Seconds
Send Start C ommand
to Lead Com pres so r*
Transition to Running
Start C ontrol o f
Condenser Fan F low
Pre-Position EXV of
Le ad C ircuit
6666////111
3333////222
0000111
222--
111
222
////111
0000////222
0000111
222
Check E vap P re ss ure for
Lo w Pres su re Cutout
///
0
* Lead compressor (and its lead circuit) is determined by staging algorithm - “Fixed Staging” or “Balanced Wear” selection - also influenced by lockouts, restart inhibit, or diagnostics present.
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 72
72
AC-SVX001A-EN

Running (Lead Compressor/Circuit Start and Run)

The following diagram shows a typical start and run sequence for the lead compressor and its circuit.
Figure 54. Sequence of operation: running (lead compressor/circuit start and run)
*N ote: The decision to stage on or off another compressor is determined by
the Average Running Com pressor L oad Command, W ater Tem perature Error, and Tim e Since Last Stage
H old E XV P re- po siti on
(1 0 S ec on ds )
Lea d
C om p re ss or
R un ni ng
C hi lle r a nd L ea d C ircu it M od e is “R un nin g” - L ag C irc ui t M ode is “A uto”
H old E XV of L ead
C irc uit a t p re-
po si tio n f or 1 0 s ec
D e-e ne rgi ze O il H ea ter s
O f L ead C irc ui t
C on tro l Lea d C irc uit C on den se r F an s f or
O pti mu m D iff ere nt ial
P res su re,
ƒ( Cp rsr S pd , O A T em p)
6
/
1
2/20121
2/1
1/201
2
E nf or ce A ll R unn ing Mod e D ia gn os tic s f or C hi lle r, L ea d C ompres so r a nd its C irc ui t
M od ula te E XV fo r
Li qu id L ev el &
P res su re C on tro l
M od ula te
C om pr ess or
S pee d fo r
Li mi t C on tro l
M od ula te C om p res so r
S pee d fo r
C apacity C on trol
M od ula te C om p res so r
S pee d fo r
C apacity C on trol
66//1122//22001122-
77//2244//2200112
2
R unn ing
6
/13
/20
1
277
//2222233//22001122-
88//1144//2200
0
R unn ing
7/2
4/201
2
88/
/
1
4
/
/
2
0
0
1
2
99/
/
1
1
/
/
2
0
0
1
2
R unn ing
Lea d C ircu it:
R un ni ng Lim it
8
/15
/20
1
2
6
/
111
3
3
3////
22
2
2
00
0
0
0
11112222
e
sto
nneeDeeee
eeesscc
riip
p
p
tttii
oon
99//1100//22001122-
1100//2299//2200112
2
R unn ing
9//
1
1/201
2
E xit Lim it M o de
E nt er Lim it M o de
S tage O n S etpo int M et *
1
00/
/
2
88/
/
2
0
0
121
2
/
/
1
1
/
/
2
0
0
1
2
R unn ing
Lag C ircu it:
W ait ing to S tar t
1
000
/29
/20
1
2
P rep are t o S tart
La g C om pr es so r,
C heck f or O il,
C heck f or L PC
E XV m o vin g t o p re po sit ion
0 t o 2 5 S ec on ds
S tar t C on tro l o f
C on den se r F an F low
on L ag C irc uit
S end S tart C om m an d
to L ag C om p res so r
C on tin ue
R un ni ng
P re- Po siti on E X V o f
La g C irc uit
1
2/1
1/201
2
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 73
AC-SVX001A-EN
73

Running (Lag Compressor/Circuit Start and Run)

The following diagram shows a typical start and run sequence for the lag compressor and its circuit.
Figure 55. Sequence of operation: running (lag compressor/circuit start and run)
*N ote: The decision to stage on or off another compressor is determined by
the Average Running Com pressor L oad Command, W ater Tem perature Error, and Tim e Since Last Stage
H old E XV P re- po siti on
(1 0 S ec on ds )
B ot h
C om p re ss ors
R un ni ng
C hi lle r a nd B ot h C ircu it M od es are “R unn ing ”
H old E XV of L ag
C irc uit a t p re-
po si tio n f or 1 0 s ec
D e-e ne rgi ze
O il H ea ter s
O f L ag C irc ui t
C on tro l B oth C irc uit
C on den se r F an s f or
O pti mu m D iff ere nt ial
P res su re,
ƒ( Cp rsr S pd , O A T em p)
6
/
1
2/20121
2/1
1/201
2
E nf or ce A ll R unn ing Mod e D ia gn os tic s f or C hi lle r, L ea d C ompres so r a nd its C irc ui t
M od ula te E XV fo r
Li qu id L ev el &
P res su re C on tro l
M od ula te
C om pr ess or
S pee d fo r
Li mi t C on tro l
M od ula te C om p res so r
S pee d fo r
C apacity C on trol
M od ula te C om p res so r
S pee d fo r
C apacity C on trol
666///111222///222000111222 -
777///222444///222000111222
R unn ing
6
/13
/20
1
277
7///
22222
22333///222000111222 -
888///111444///222
R unn ing
7/2
4/201
2
6
/
1133///220
0
0
0
111222
e
sto
n
eeeDee
eeesscc
riip
p
p
tttii
oon
E xit Lim it M o de
E nt er Lim it M o de
111000///222888///222000111222 -
111222///111111///222000111222
R unn ing
E ner giz e M ax im um
C apacity R el ay a fte r t he
A dju sta bl e F ilte r T im e
(0 to 6 00 S ec on ds )
C on tin ue
R un ni ng
(B ot h
C om p rs rs
& M ax
C ap ac ity
M ax imu m C ap ac ity
S ubmo de
///111111///222000111222 -
111000///333000///222000111222
R unn ing
8//
1
33/
/
2
0
0
1
2
99/
/
1
1
/
/
2
0
0
1
2
R unn ing
Lag C ircu it:
R un ni ng Lim it
9
/
1
1/201
2
8
/13
/20
1
2
1
0//30
/20
1
2
B ot h C om p re ss ors R un ni ng A t o r N ea r M ax S pe ed (U na ble t o A ch ieve C W SP )
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 74
74
AC-SVX001A-EN

Satisfied Setpoint

The following diagram shows the normal transition from Running to shutting down due to the Evap
Leaving water temp falling below the differential to stop setpoint.
Figure 56. Sequence of events: satisfied setpoint
* Note: Operational P umpdown is required if the O utdoor Air Temp erature is less than 50F.
**
Note: Operational P umpdown is Term inated N orm ally when the Evaporator Refrigerant Pressure is at or below 20 PSIA. The M aximum Allowed Tim e for O perational Pum pdow n is 2 Minutes.
8
/10
/20
121
0
/13
/20
1
2
S hut ting D own
La st C ir cui t M od e: S hu tti ng D ow n
S ubMo de : O pe rat ion al P um p do wn
*
66////0088//00//0
0
R unn ing
Las t C irc uit M ode :
R un ni ng
00//33//00////0
0
A uto
B ot h C irc ui t M ode s:
W ait ing fo r N ee d t o C oo l
8
/
1
1/201
2
6
/13
/20
1
2
R un ni ng
Las t
C om p re ss or
A t M in S pe ed
1
0
/
1
4/201
2
D iff ere nt ial to S to p i s M et
O pe rat ion al P um pd ow n
(0 S eco nd s to 2 M inu te s)
Fu lly C los e E XV
P erf orm O pe ra tio na l
P um pd ow n f or L as t C irc uit i f R eq uir ed
*
S end S to p C om m an d
To C om p res so r
IF *
No P um p do wn R eq uir ed
Pu m pd ow n
Re qu ire d
Tu rn O ff L as t C irc uit ’s
C on den se r F an s
N or ma l P um pdo wn Te rm ina tio n
**
C rit eri a is M et f or L as t C irc uit
6666////11112222////2222000011112222----11112222////11111111////222200001111222
2
E nfo rce A ll N on R un nin g
M od e D iagn os tics
6
/
1
555
////22
2
2
00
0
0
11122
1
2/1
1/201
2
A ut o
C los e E XV
(0 to 2 5 S ec on ds )
6
/
1
2/20121
2/1
1/201
2
C heck f or
N orm al P um pd ow n
Te rm in ati on C rit eri a M et
**
6
/
1
1
55//222
0
0
0
112
21122
//1111//2
2
2
000
0
112
11n22
//
/
n
111111
///22
2
2
000
0
1
2
E ner giz e L ast C irc uit
O il H ea ter s
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 75
AC-SVX001A-EN
75

Normal Shutdown to Stopped or Run Inhibit

The following diagram shows the Transition from Running through a Normal (friendly) Shutdown. The
dashed lines on the top attempt to show the final mode if stop is selected via various inputs.
Figure 57. Sequence of events: normal shutdown to stopped or run inhibit
* Note: Operational P umpdown is required if the O utdoor Air Temp erature is less than 50F. **
Note: Operational P umpdown is Term inated N orm ally when the Evaporator Refrigerant Pressure is at or below 20 PSIA. The M aximum Allowed Tim e for O perational Pum pdow n is 2 Minutes.
6
/
1
2/201
2
8
/15
/20
1
2
S hut ting D own
R un nin g C ir cui t M od es : S hu ttin g D ow n
S ubMo de : O pe rat ion al P um p do wn
*
8
/15
/20
121
2/1
1/201
2
6
/13
/20
1
2
O pe rat ion al P um pd ow n
(0 S eco nd s to 2 M inu te s)
Fu lly C los e E XV
P erf orm O pe ra tio na l
P um pd ow n f or A ll
R un nin g C ir cui ts if
R equir ed
*
IF *
C los e E XV
(0 to 2 5 S ec on ds )
0
0
1
2
6
/
1
2/20121
2/1
1/201
2
C heck f or
N orm al P um pd ow n
Te rm in ati on C rit eri a M et
**
6
/
1
5
5
5
/
/
/
222
0
0
0
112
2
No P um p do wn R eq uir ed
Pu m pd ow n
Re qu ire d
E vap or ato r P um p O ff D el ay (A dj ust ab le 1 t o 3 0 M in ut es)
S end S to p C om m an d t o
A ll
R un nin g C om p res so rs
E ner giz e A ll H ea ters
Fu lly C los e B oth E XV s
Tu rn O ff A ll R un ni ng
C irc uits C on de ns er F an s
D e-E ne rg ize E va po ra tor
W ate r P um p R el ay
S to pp ed
or
R un Inhibit
O ne o r
M ore
C irc ui ts
R un ni ng
N or ma l P um pdo wn Te rm ina tio n** C rit eri a is M et f or A ll C ircu its
Loca l S to p C hiller Le ve l D iag no stic – N orm al S hu tdow n L atch ed C hiller Le ve l D iag no stic – N orm al S hu tdow n N on latc hed B uild ing A utomat io n Sy stem S top E xtern al A ut o-S to p
81520
01/
0
2
S hut ting D own
C irc ui t M ode s:
A ut o
1
0
/16
/20
121
2/1
1/201
2
S to pp ed o r R un In hibit
C irc ui t M ode s:
S to pp ed o r A uto
1
0
/
1
7/20122
*Note: Operational Pumpdown is required if the
Outdoor Air Temperature is less than 50°F. ** Note: Operational Pumpdown is terminated
normally when the Evaporator Refrigerant Pressure is at or below 20 psia.
The Maximum Allowed time for Operational Pumpdown is 2 minutes.
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 76
76
AC-SVX001A-EN

Immediate Shutdown to Stopped or Run Inhibit

The following diagram shows the Transition from Running through an Immediate Shutdown. The dashed
lines on the top attempt to show the final mode if stop is selected via various inputs.
Figure 58. Sequence of events: immediate shutdown to stopped or run inhibit
C hiller Le ve l D iag no stic – Im m ed ia te S hu tdown N on -L atch ing C hiller Le ve l D iag no stic – Im m ed ia te S hu tdown L atching Fro nt P an el Im m ed ia te Shu td own
R un Inh ibit
or
S to pp ed
C om pr ess or D eceler ati on T im e
D e-E ne rgize E vap or ato r
W ate r P um p R el ay
///22
999///22
00011221122///1111///22
00011
22
S to pp ed
66//12//2
001299//2
99//2
001
2
S hut ting D own
//0
asddd
6/3/0
asd
9/9/0
asd
O ne o r M or e
R unn ing
C om pre ss or s
S end S to p C om m an d t o
A ll R un nin g C om pres so rs
E ner giz e A ll H ea ters
Fu lly C los e B oth E XV s
Tu rn O ff A ll
R un nin g C ir cui ts
C on den se r F an s
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 77
AC-SVX001A-EN
77

Ice Making (Running to Ice Making to Running)

The following diagram shows the transition from normal cooling to Ice making, back to normal cooling.
Figure 59. Sequence of events: ice making (running to ice making to running)
R un ni ng
Ic e M aking C om m an d:
1. T ra ce r
2. E xternal
3. F ro nt Pa ne l
R un ni ng
(U ni t is B ui ld in g I ce )
Ic e M aking C om m an d W ith draw n ( prio r t o ic e c om plete )
R un ni ng
S tag e a nd m od ula te a ll co m pre ss or s in se qu en ce t o f ull l oa d (if n ot a lre ady )
S tar t C om pr ess or s a nd C irc uits p er n or ma l st ag ing – S ee o the r se qu en ce d ia gra m s
R un Inhibit
(Ice t o N orm al T ra ns ition )
Ic e T o N orm a l T ran sit ion T im er
(f ixe d 2 m ins)
R un U nl oa d, C lo se E X Vs a nd P erf orm O pe ra tio na l Pum pd ow n (i f re gd ) th en S hu tof f C om pr ess or s, E ner giz e H ea ter s
Ig no re S of tloa di ng a nd S et C LS = 1 00%
E ner giz e Ic e B uild ing R ela y
E nfo rce A ll L im its a nd R un nin g M o de D ia gnos tics
H ead R elie f R eq ue st
R ela y D el ay (1 t o 6 0
m ins a dj )
E vap Lea vin g W ater Te mp R ises A bov e th e D iffe re n tial T o S tart
M ax imu m 1 :1 0 t o full y
lo ad ed
D e-e ne rgi ze H ea ter s, a nd C on tro l E XV s p er n or ma l st ag ing - S ee ot he r se qu en ce d ia gra m s
D e-e ne rgi ze H ea ter s, a nd C on tro l E XV s p er n or ma l st ag ing - S ee ot he r se qu en ce d ia gra m s
R un ni ng
A ut o
E nfo rce A ll L im its a nd R un nin g M o de D ia gn ost ics
C on tro l C irc uit ’s C on den se r F an s f or D iff P res su re
C on tro l C irc uit ’s C on den se r F an s f or D iff P res su re
Tu rn of f b oth C irc uit s’ C on den se r F an s
C on firm N o
C om pr ess or C u rre nts
C los e E XV s o r le av e c los ed fo r C irc uit s’ Off C ycl e
P re- posit ion E XV , P res ta rt C on den se r F an s
D e-E ne rgize H ead R elie f R eq ue st a nd Ic e B uildin g R ela y
E ner giz e H ea d R elief R eque st R el ay
C on tinue t o R un E va p W ate r P um p T hr ou gh ou t
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 78
78
AC-SVX001A-EN

Ice Making (Auto to Ice Making to Ice Making Complete)

The following diagram shows the transition from Auto to Ice making, to Ice Making Complete.
Figure 60. Sequence of events: ice making (auto to ice making to ice making complete)
C on firm N o
C om pr ess or C u rre nts
A ut o
E vap Ent erin g W at er Tem p Fa lls Below the Ic e T er m in ation S etpo in t
R un Inh ibit –
S ubm ode : Ice
B uild ing C om plete
R unn ing
(U ni t is B uild ing Ice )
Ic e M aking C om m an d:
1. F ro nt Pa ne l
2. T ra ce r
3. E xternal Inpu t
A uto
S hut ting D own
M ax imu m 1 :1 0 t o full y
lo ad ed
R un U nl oa d, C lo se E X Vs a nd P erf orm O pe ra tio na l Pum pd ow n (if re gd ) t hen S hu tof f C om pr ess or s, E ne rgi ze H ea ter s
E nfo rce A ll N on - R un nin g M od e D iagn os tics
w ill r etu rn to “A ut o” an d n or ma l c oo lin g
m od e w ith re mo va l o f Ic e C om ma nd
S tag e a nd m od ula te a ll co m pre ss or s in se qu en ce t o f ull l oa d (if n ot a lre ady )
Ig no re S of tloa di ng a nd S et C LS = 1 00%
E ner giz e Ic e B uild ing R ela y
E nfo rce A ll L im its a nd R un nin g M o de D ia gnos tics
E ner giz e H ea d R elief R eque st R el ay
H ead R elief R eq ue st R el ay
D ela y ( 1 to 6 0 m in s a dj)
D e-e ne rgi ze H ea ter s, a nd C on tro l E XV s p er n or ma l st ag ing - S ee ot he r se qu en ce d ia gra m s
C on tro l C irc uit ’s C on den se r F an s f or D iff P res su re
Tu rn of f b oth C irc uit s’ C on den se r F an s
Le av e E XVs C lo se d o r C los e E XV fo r C ir cui ts’ O ff C yc le
D e-E ne rgize H ead R elie f R eq ue st R el ay
D e-E ne rgize E vap or ato r W ate r P um p R el ay ( no de la y tim e a pp lied)
D e-E ne rgize Ic e B uildin g R ela y
SSttaarrtt--uupp aanndd SShhuuttddoowwnn
Page 79
AC-SVX001A-EN
79

Maintenance

WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee -- PPrreessssuurriizzeedd FFllaammmmaabbllee FFlluuiidd!!
FFaaiilluurree ttoo ffoollllooww aallll eelleeccttrriiccaall ssaaffeettyy pprreeccaauuttiioonnss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDoo nnoott ooppeerraattee ccoommpprreessssoorr wwiitthhoouutt tteerrmmiinnaall bbooxx ccoovveerr iinn ppllaaccee..
TThhee mmoottoorrss iinn tthhee ccoommpprreessssoorrss hhaavvee ssttrroonngg ppeerrmmaanneenntt mmaaggnneett mmoottoorrss aanndd hhaavvee tthhee ccaappaabbiilliittyy ttoo ggeenneerraattee vvoollttaaggee dduurriinngg ssiittuuaattiioonnss wwhheenn tthhee rreeffrriiggeerraanntt cchhaarrggee iiss bbeeiinngg mmiiggrraatteedd.. TThhiiss ppootteennttiiaall wwiillll bbee pprreesseenntt aatt tthhee mmoottoorr tteerrmmiinnaallss aanndd aatt tthhee oouuttppuutt ooff tthhee vvaarriiaabbllee ssppeeeedd ddrriivveess iinn tthhee ppoowweerr ppaanneell..
BBeeffoorree rreemmoovviinngg ccoommpprreessssoorr tteerrmmiinnaall bbooxx ccoovveerr ffoorr sseerrvviicciinngg,, oorr sseerrvviicciinngg ppoowweerr ssiiddee ooff ccoonnttrrooll ppaanneell,, CCLLOOSSEE CCOOMMPPRREESSSSOORR DDIISSCCHHAARRGGEE SSEERRVVIICCEE VVAALLVVEE aanndd ddiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss.. DDiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn ccaappaacciittoorrss.. FFoollllooww lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. VVeerriiffyy wwiitthh aann aapppprroopprriiaattee vvoollttmmeetteerr tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
TThhee ccoommpprreessssoorr ccoonnttaaiinnss hhoott,, pprreessssuurriizzeedd rreeffrriiggeerraanntt.. MMoottoorr tteerrmmiinnaallss aacctt aass aa sseeaall aaggaaiinnsstt tthhiiss rreeffrriiggeerraanntt.. CCaarree sshhoouulldd bbee ttaakkeenn wwhheenn sseerrvviicciinngg NNOOTT ttoo ddaammaaggee oorr lloooosseenn mmoottoorr tteerrmmiinnaallss..
WWAARRNNIINNGG
PPrreessssuurriizzeedd BBuurrnniinngg FFlluuiidd!!
FFaaiilluurree ttoo ffoollllooww tthhee iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDoo nnoott ooppeerraattee ccoommpprreessssoorr wwiitthhoouutt tteerrmmiinnaall bbooxx ccoovveerr iinn ppllaaccee..
TThhee ccoommpprreessssoorr ccoonnttaaiinnss hhoott,, pprreessssuurriizzeedd rreeffrriiggeerraanntt.. MMoottoorr tteerrmmiinnaallss aacctt aass aa sseeaall aaggaaiinnsstt tthhiiss rreeffrriiggeerraanntt.. CCaarree sshhoouulldd bbee ttaakkeenn wwhheenn sseerrvviicciinngg NNOOTT ttoo ddaammaaggee oorr lloooosseenn mmoottoorr tteerrmmiinnaallss..
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn aanndd AAFFDD ((AAddaappttiivvee FFrreeqquueennccyy™™ DDrriivvee)) ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd..
•• FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aann aapppprroopprriiaattee vvoollttmmeetteerr tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
•• DDCC bbuuss ccaappaacciittoorrss rreettaaiinn hhaazzaarrddoouuss vvoollttaaggeess aafftteerr iinnppuutt ppoowweerr hhaass bbeeeenn ddiissccoonnnneecctteedd.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. AAfftteerr ddiissccoonnnneeccttiinngg iinnppuutt ppoowweerr,, wwaaiitt ffiivvee ((55)) mmiinnuutteess ffoorr tthhee DDCC ccaappaacciittoorrss ttoo ddiisscchhaarrggee,, tthheenn cchheecckk tthhee vvoollttaaggee wwiitthh aa vvoollttmmeetteerr.. MMaakkee ssuurree DDCC bbuuss ccaappaacciittoorrss aarree ddiisscchhaarrggeedd ((00 VVDDCC)) bbeeffoorree ttoouucchhiinngg aannyy iinntteerrnnaall ccoommppoonneennttss..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee AAddaappttiivvee FFrreeqquueennccyy
™™
DDrriivvee CCaappaacciittyy DDiisscchhaarrggee sseeccttiioonn,, aanndd PPRROODD-­SSVVBB0066**--EENN..
This section describes the basic chiller preventive maintenance procedures, and recommends the intervals at which these procedures should be performed. Use of a periodic maintenance program is important to ensure the best possible performance and efficiency.
Use an Operator Log (see Log and Check Sheet chapter) to record an operating history for unit. The log serves as a valuable diagnostic tool for service personnel. By observing trends in operating conditions, an operator can anticipate and prevent problem situations before they occur.
If unit does not operate properly during inspections, see Diagnostics chapter.

Recommended Maintenance

Weekly

While unit is running in stable conditions.
1. At AdaptiView™ TD7 or Tracer® TU service tool, check pressure for evaporator, condenser and
Page 80
80
AC-SVX001A-EN
intermediate oil.
2. Observe liquid line sight glass on EXV. If liquid line sight glass has bubbles measure the subcooling entering the EXV. Subcooling should always be greater than 10°F.
3. Inspect the entire system for unusual operation.
4. Inspect the condenser coils for dirt and debris. If the coils are dirty, see Condenser Coil Corrosion Protection Inspection section of Maintenance chapter.
NNOOTTIICCEE
CCooiill DDaammaaggee!!
UUssee ooff ddeetteerrggeennttss ccoouulldd ccaauussee ddaammaaggee ttoo ccooiillss.. DDoo nnoott uussee ddeetteerrggeennttss ttoo cclleeaann ccooiillss.. UUssee cclleeaann wwaatteerr oonnllyy..

Monthly

1. Perform all weekly maintenance procedures.
2. Record the system subcooling.

Annual

1. Perform all weekly and monthly procedures
2. Check oil sump oil level while unit is off. See Oil Sump Level Check section of Maintenance chapter.
3. Perform pH test of drive cooling fluid. See pH Test section of Maintenance chapter.
4. Have a qualified laboratory perform a compressor oil analysis to determine system moisture content and acid level.
5. Contact a Trane service organization to leak test the chiller, to check operating and safety controls, and to inspect electrical components for deficiencies.
6. Clean and repaint any areas that show signs of corrosion.
7. Clean the condenser coils. See Condenser Coil Corrosion Protection Inspection section of Maintenance chapter.
NNOOTTIICCEE
CCooiill DDaammaaggee!!
UUssee ooff ddeetteerrggeennttss ccoouulldd ccaauussee ddaammaaggee ttoo ccooiillss.. DDoo nnoott uussee ddeetteerrggeennttss ttoo cclleeaann ccooiillss.. UUssee cclleeaann
wwaatteerr oonnllyy..

Refrigerant and Oil Charge Management

Proper oil and refrigerant charge is essential for proper unit operation, unit performance, and environmental protection. Only trained and licensed service personnel should service the chiller.
The following table lists baseline measurements for chillers running at AHRI standard operating conditions. If chiller measurements vary significantly from values listed below, problems may exist with refrigerant and oil charge levels. Contact your local Trane office.
NNoottee:: Low temperature applications units will have
values that vary from the following table. Contact your local Trane office for more information.
Table 25. Typical baselines (AHRI conditions)
Measurement Baseline
Evaporator Pressure 51 psia
Evaporator Approach
3.4°F
EXV Position (150 to 200T units) 45-50% open
EXV Position (225 to 300T units) 61-64% open
Evaporator ΔT - entering
54°F
Evaporator ΔT - leaving
44°F
Discharge Superheat
16.5°F
Condenser Pressure
212 psia
Subcooling
10 to 20°F

Lubrication System

The lubrication system has been designed to keep most of the oil lines filled with oil as long as there is a proper oil level in the oil sump.

Oil Sump Level Check

The oil level in the sump can be measured to give an indication of the system oil charge. Follow the procedures below to measure the level.
1. Run the unit as near to full load as possible for a minimum of 30 minutes. For an accurate reading, 40 or more minutes at full load with normal/steady discharge superheat readings and no limits/ warnings is recommended. Assessing oil charge after running at minimum or low loads may lead to an inaccurate reading.
2. Cycle the compressor off line.
3. Let the chiller sit (powered, but off line) to allow the oil separator heater to boil off the refrigerant that may be in the oil separator. An initial assessment of the oil separator level may be made after 30 minutes of heater ON dwell time, but oil charge adjustments should not be made without allowing the oil heaters to run for a minimum of 4 hours.
MMaaiinntteennaannccee
Page 81
AC-SVX001A-EN
81
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
OOppeerraattiinngg ccoommpprreessssoorrss wwiitthh sseerrvviiccee vvaallvveess ooppeenn wwiillll rreessuulltt iinn sseevveerree ooiill lloossss aanndd eeqquuiippmmeenntt ddaammaaggee.. NNeevveerr ooppeerraattee tthhee ccoommpprreessssoorr wwiitthh tthhee ssiigghhtt ggllaassss sseerrvviiccee vvaallvveess ooppeenneedd.. CClloossee tthhee vvaallvveess aafftteerr cchheecckkiinngg tthhee ooiill lleevveell..
4. Attach a 3/8” or 1/2” hose with a sightglass in the middle to the oil sump service valve (1/4” flare) and the oil separator service valve (1/4” flare). See the following figure for valve locations.
NNoottee:: High pressure rated clear hose with
appropriate fittings can help speed up the process. Hose must be rated to withstand system pressures as found on unit nameplate.
Figure 61. Oil service valves
To Oil Separator Service Valve
Oil Service Valve
5. After the unit is off line for 30 minutes, move the sightglass along the side of the oil sump.
6. The nominal oil level from the bottom of the oil separator should be as shown in the following table and figure. Depending on running conditions and oil heater dwell time, some deviation from nominal levels is expected.
IImmppoorrttaanntt:: If level is less than 4 inches from the
bottom of the oil separator, contact your local Trane office.
Unit Size
(tons)
Oil Separator
Size
(in)
Nominal Oil
Charge Height
(in)
150 to 200 10 9.0
225 to 300 12 8.5
Figure 62. Nominal oil level
Nominal oil level: 10 in oil sep: 9.0 in 12 in oil sep: 8.5 in
To Oil Separator
Service Valve

Drive Cooling System

NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
UUssee ooff uunnaapppprroovveedd fflluuiiddss,, oorr ddiilluuttiioonn ooff aapppprroovveedd fflluuiidd ccoouulldd rreessuulltt iinn ccaattaassttrroopphhiicc eeqquuiippmmeenntt ddaammaaggee.. UUssee oonnllyy TTrraannee HHeeaatt TTrraannssffeerr FFlluuiidd PP//NN CCHHMM0011002233.. TThhiiss fflluuiidd iiss aa ddiirreecctt uussee ccoonncceennttrraattiioonn aanndd iiss nnoott ttoo bbee ddiilluutteedd.. DDoo nnoott ttoopp ooffff wwiitthh wwaatteerr oorr aannyy ootthheerr fflluuiidd..

Service Intervals

NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. DDrriivvee ccoooolliinngg fflluuiidd aanndd ssttrraaiinneerr mmuusstt bbee sseerrvviicceedd eevveerryy ffiivvee ((55)) yyeeaarrss..
Every (5) years, contact your local Trane office to service drive fluid and strainer.
On a yearly basis, a fluid pH test should be performed.

Unit Diagnostics

An improperly filled drive cooling system (either low fluid level or entrapped air in the circuit) can result in the AFD drive overheating. This condition may result in the following diagnostic(s):
MMaaiinntteennaannccee
Page 82
82
AC-SVX001A-EN
AFD xA Over Temperature
A front panel warning of Low Oil Return or AFD Cooling – CktX does not indicate an issue with the drive cooling fluid system, but represents a low refrigerant level reported by the liquid level sensor for a given length of time.
If chiller diagnostics indicated drive cooling system problem, contact your local Trane office.

pH Test

Obtain a sample of fluid from the drive cooling loop via the loop drain located near the oil return heat exchanger. Test for pH level using litmus paper with a
0.5 resolution.
pH < 8 indicates fluid to be changed
pH < 7 indicates potential component damage

Pressure Relief Cap

The pressure relief cap is an automotive style pressure­vent radiator cap. See figure below. The setting for the relief spring is 16 lbs. The function of the relief cap can be verified with a standard automotive radiator cap tester.
Figure 63. Pressure relief cap
Pressure Relief Cap
Drive Cooling
Fluid
Expansion
Tank

Drive Cooling Expansion Tank

Proper fluid level is important to the operation of the unit. To verify proper level, inspect the liquid level in each of the fluid reservoirs (located behind the chiller control panel). See figure below for fluid levels under various temperature conditions. If levels levels are low, contact your local Trane office.
Figure 64. Drive cooling expansion tank fill
A
B
C
Max Fill 70°F (21°C) Design Fill 125°F (51.7°C)
Max Fill
-20°F (-28.9°C) Design Fill 70°F (21°C)
Min Fill 70°F (21°C) Design Fill
-20°F (-28.9°C)
NNoottee:: Fill lines are NOT marked on tank. The A level is
just below upper fitting. C level is above lower fitting. B is in the middle of the fittings.

Condenser Coil Corrosion Protection Inspection

Perform coil inspection each time coils are cleaned.
Inspect corrosion protection at each coil refrigerant connection where the copper tube joins the aluminum manifold. If damaged or missing, wrap new Prestite Insulated tar tape (STR01506) on joint to cover area from the aluminum header body to at least 2 inches of the copper tube. Seal insulation using hand pressure. Rubber gloves are suggested when handling insulation.
NNoottee:: Prestite insulated tar tape is required for all units
at each copper/aluminum connection. This requirement is NOT associated with the coated coil option.

Condenser Coil Cleaning

Coil Cleaning Interval

Clean condenser coils at least once a year or more frequently if it is in a "dirty" environment. A clean condenser coil will help maintain chiller operating efficiency.
MMaaiinntteennaannccee
Page 83
AC-SVX001A-EN
83

Cleaning Air Side of Coils

NNOOTTIICCEE
CCooiill DDaammaaggee!!
UUssee ooff ccooiill cclleeaanniinngg aaggeennttss oonn uunnccooaatteedd ccooiillss ccoouulldd ccaauussee ddaammaaggee ttoo ccooiillss.. DDoo nnoott uussee ccooiill cclleeaanniinngg aaggeennttss ttoo uunnccooaatteedd cclleeaann ccooiillss.. UUssee cclleeaann wwaatteerr oonnllyy..
Do not use detergents to clean the air side of coils. Use clean water only. Clean from inside out by removing end panels.

Cleaning Coated Coils

WWAARRNNIINNGG
HHaazzaarrddoouuss CChheemmiiccaallss!!
CCooiill cclleeaanniinngg aaggeennttss ccaann bbee eeiitthheerr aacciiddiicc oorr hhiigghhllyy aallkkaalliinnee aanndd ccaann bbuurrnn sseevveerreellyy iiff ccoonnttaacctt wwiitthh sskkiinn oorr eeyyeess ooccccuurrss.. HHaannddllee cchheemmiiccaall ccaarreeffuullllyy aanndd aavvooiidd ccoonnttaacctt wwiitthh sskkiinn.. AALLWWAAYYSS wweeaarr PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE)) iinncclluuddiinngg ggoogggglleess oorr ffaaccee sshhiieelldd,, cchheemmiiccaall rreessiissttaanntt gglloovveess,, bboooottss,, aapprroonn oorr ssuuiitt aass rreeqquuiirreedd.. FFoorr ppeerrssoonnaall ssaaffeettyy rreeffeerr ttoo tthhee cclleeaanniinngg aaggeenntt mmaannuuffaaccttuurreerr’’ss MMaatteerriiaallss SSaaffeettyy DDaattaa SShheeeett aanndd ffoollllooww aallll rreeccoommmmeennddeedd ssaaffee hhaannddlliinngg pprraaccttiicceess..
Coated coils may be cleaned using traditional detergents.

Reinstallation of Compressor Mounting Bolts

UUnniittss wwiitthh IInnvviissiiSSoouunndd™™ UUllttiimmaattee OOnnllyy ((MMooddeell NNuummbbeerr DDiiggiitt 1122 == 33))
If compressor removal or unit move is required on a unit with InvisiSoundUltimate option, reinstall compressor mounting bolts which were removed per installation or maintenance instructions.

Servicing Chiller Roof

WWAARRNNIINNGG
DDoo NNoott CClliimmbb oonn TToopp ooff UUnniitt!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn tteecchhnniicciiaann ffaalllliinngg ooffff tthhee eeqquuiippmmeenntt wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDoo nnoott cclliimmbb oonn rrooooff ttoo sseerrvviiccee uunniitt.. UUssee sseerrvviiccee ttoooollss ddeessiiggnneedd ttoo aacccceessss ttoopp ooff cchhiilllleerr..
Service tools are available to access top of chiller. Entry on chiller roof is not required.
MMaaiinntteennaannccee
Page 84
84
AC-SVX001A-EN

Diagnostics

General Diagnostics Information

DDiiaaggnnoossttiicc NNaammee aanndd SSoouurrccee:: Name of Diagnostic and its source. The variable “x” in the AFD diagnostic name string denotes a circuit designator (either 1 or 2). With that exception, this is the exact text used in the User Interface and/or Service Tool displays.
AAffffeeccttss TTaarrggeett:: Defines the "target" or what is affected by the diagnostic. Usually either the entire Chiller, or a particular Circuit or Compressor is affected by the diagnostic (the same one as the source), but in special cases functions are modified or disabled by the diagnostic. "None" implies that there is no direct affect to the chiller, sub components or functional operation.
DDeessiiggnn NNoottee:: Functions that are affected by a diagnostic are simply reported as "chiller or circuit x" targets in Tracer TU and on the Alarms page of the AdaptiView™ display, even though only a specific function and not the entire circuit or chiller would be effected.
SSeevveerriittyy:: Defines the severity of the above effect. Immediate means immediate shutdown of the affected portion, Normal means normal or friendly shutdown of the affected portion, Special Action means a special action or mode of operation (limp along) is invoked, but without shutdown, and Info means an Informational Note or Warning is generated. Design Note: Tracer TU does not support display of "Special Action", on its Diagnostics pages, so that if a diagnostic has a special action defined in the table below, it will be displayed only as "Informational Warning" as long as
no circuit or chiller shutdown results. If there is a shutdown and special action defined in the table, then the Tracer® TU Diagnostics Page display will indicate the shutdown type only.
PPeerrssiisstteennccee:: Defines whether or not the diagnostic and its effects are to be manually reset (Latched), or can be either manually or automatically reset when and if the condition returns to normal (Nonlatched).
AAccttiivvee MMooddeess [[IInnaaccttiivvee MMooddeess]]:: States the modes or periods of operation that the diagnostic is active in and, as necessary, those modes or periods that it is specifically "not active" in as an exception to the active modes. The inactive modes are enclosed in brackets, [ ]. Note that the modes used in this column are internal and not generally annunciated to any of the formal mode displays.
CCrriitteerriiaa:: Quantitatively defines the criteria used in generating the diagnostic and, if nonlatching, the criteria for auto reset.
RReesseett LLeevveell:: Defines the lowest level of manual diagnostic reset command which can clear the diagnostic. The manual diagnostic reset levels in order of priority are: Local or Remote. For example, a diagnostic that has a reset level of Remote, can be reset by either a remote diagnostic reset command or by a local diagnostic reset command.

AFD Diagnostics

Table 26. Diagnostics — AFD
Diagnostic
Name and
Source
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
AFD 1A Input
Phase Loss
Circuit Immediate Latch
All compressor
starting and
running modes
The respective AFD has detected high ripple on the
DC bus indicative of an input phase loss. Suspect
open phase, check input voltage and current
capability on all legs.
Local
AFD 2A Input
Phase Loss
Circuit Immediate Latch
All compressor
starting and
running modes
The respective AFD has detected high ripple on the
DC bus indicative of an input phase loss. Suspect
open phase, check input voltage and current
capability on all legs.
Local
AFD 1A Bus
Under Voltage
Circuit
Immediate
(decel)
NonLatch All
The bus voltage dropped below the Under Voltage
Level and there is not enough voltage to reliably operate the load, or input voltage was lost on all
phases (Power Loss). The drive shall automatically
clear this diagnostic if the undervoltage is corrected
within 15s, or if a power loss event, when power is
restored at any later time.
Local
Page 85
AC-SVX001A-EN
85
Table 26. Diagnostics — AFD (continued)
Diagnostic
Name and
Source
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
AFD 2A Bus
Under Voltage
Circuit
Immediate
(decel)
NonLatch All
The bus voltage dropped below the Under Voltage
Level and there is not enough voltage to reliably operate the load, or input voltage was lost on all
phases (Power Loss). The drive shall automatically
clear this diagnostic if the undervoltage is corrected
within 15s, or if a power loss event, when power is
restored at any later time.
Local
AFD 1A Bus
Over Voltage
Circuit Immediate NonLatch
Holding, Running
Bus overvoltage indicated the high bus voltage cut
out has been exceeded while the AFD is in a non-
stopped mode. The drive shall automatically clear
this diagnostic if the dc bus voltage returns to normal
range within 15s.
Local
AFD 2A Bus
Over Voltage
Circuit Immediate NonLatch
Holding,
Running
Bus overvoltage indicated the high bus voltage cut
out has been exceeded while the AFD is in a non-
stopped mode. The drive shall automatically clear
this diagnostic if the dc bus voltage returns to normal
range within 15s.
Local
AFD 1A Loss Of Motor Control
Circuit Immediate NonLatch All
AFD generated faults that can occur due to external
power anomalies or abnormal motor loading that
require ability to auto reset. This diagnostic maps to
the occurrence of AFD generated faults of: Hardware
Over Current, Over Speed Limit, IPM Over Current,
Drive Powerup, IPM and Speed Estimate Error.
Local
AFD 2A Loss Of Motor Control
Circuit Immediate NonLatch All
AFD generated faults that can occur due to external
power anomalies or abnormal motor loading that
could be a transient or temporary condition. This diagnostic maps to the occurrence of AFD generated faults of: Hardware Over Current, Over Speed Limit,
IPM Over Current, Drive Powerup, IPM and Speed
Estimate Error.
Local
AFD 1A Motor
Fault
Circuit Immediate Latch All
AFD generated faults that imply internal failures.
This diagnostic maps to the occurrence of AFD
generated faults of: Motor Overload, Load Loss, and
Output Phase Loss. Check output wiring and motor
health.
Local
AFD 2A Motor
Fault
Circuit Immediate Latch All
AFD generated faults that imply internal failures.
This diagnostic maps to the occurrence of AFD
generated faults of: Motor Overload, Load Loss, and
Output Phase Loss. Check output wiring and motor
health.
Local
AFD 1A Over Temperature
Circuit Immediate Latch All
Heatsink Over Temperature (185°F/85°C),
Transistor Over Temperature (320°F/160°C) or
Control Board Over Temperature. Check drive liquid
or air cooling.
Local
AFD 2A Over Temperature
Circuit Immediate Latch All
Heatsink Over Temperature (185°F/85°C),
Transistor Over Temperature (320°F/160°C) or
Control Board Over Temperature. Check drive liquid
or air cooling.
Local
AFD 1A Motor
Current
Overload
Circuit
Immediate
(decel)
Latch
Running
Software Filtered Overcurrent has been detected.
Can be loss of control of motor, or hardware failure.
Local
AFD 2A Motor
Current
Overload
Circuit
Immediate
(decel)
Latch
Running
Software Filtered Overcurrent has been detected.
Can be loss of control of motor, or hardware failure.
Local
DDiiaaggnnoossttiiccss
Page 86
86
AC-SVX001A-EN
Table 26. Diagnostics — AFD (continued)
Diagnostic
Name and
Source
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
AFD 1A
Customized
Protection
Fault
Circuit Immediate
Latch
(a)
All
One of drive custom protections has occurred (Pump-Out Failed, Low Rotor Flux Feedback, or Bump Failure) OR drive custom protections not
enabled or programmed. Contact Trane Service.
(a)
Local
AFD 2A
Customized
Protection
Fault
Circuit Immediate
Latch
(a)
All
One of drive custom protections has occurred (Pump-Out Failed, Low Rotor Flux Feedback, or Bump Failure) OR drive custom protections not
enabled or programmed. Contact Trane Service.
(a)
Local
AFD 1A Ground
Fault
Circuit Immediate Latch All
Measured ground current exceeds ground current sensitivity. Read drive fault value over Tracer® TU
and refer to drive programming manual to determine
which output leg and transistors are indicated.
Local
AFD 2A Ground
Fault
Circuit Immediate Latch All
Measured ground current exceeds ground current sensitivity. Read drive fault value over Tracer® TU
and refer to drive programming manual to determine
which output leg and transistors are indicated.
Local
AFD 1A Motor
Shorted
Circuit Immediate Latch All
Motor or power stage is shorted line-to-line. Read
drive fault value over Tracer® TU and refer to drive
programming manual to determine which phases are
indicated.
Local
AFD 2A Motor
Shorted
Circuit Immediate Latch All
Motor or power stage is shorted line-to-line. Read
drive fault value over Tracer® TU and refer to drive
programming manual to determine which phases are
indicated.
Local
AFD 1A Comm
Loss: Main
Processor
Circuit
Immediate
(decel)
Latch All
The AFD detected a continual loss of communication
with the main processor for greater than 10s.
Local
AFD 1A Comm
Loss: Main
Processor
Circuit
Immediate
(decel)
Latch All
The AFD detected a continual loss of communication
with the main processor for greater than 10s.
Local
AFD 1A
Precharge Fault
Circuit Immediate Latch All
The drives internal precharge was commanded to
open while the drive was running. This can occur if
the DC bus drops to a low level.
Local
AFD 2A
Precharge Fault
Circuit Immediate Latch All
The drives internal precharge was commanded to
open while the drive was running. This can occur if
the DC bus drops to a low level.
Local
AFD 1A
General Failure
Circuit
Immediate
(decel)
Latch All
Drive fault other than those supported in this list. Read drive fault value over Tracer TU and refer to
drive programming manual.
Local
AFD 2A
General Failure
Circuit
Immediate
(decel)
Latch All
Drive fault other than those supported in this list. Read drive fault value over Tracer TU and refer to
drive programming manual.
Local
AFD 1A Gate
Kill Active
Circuit Immediate NonLatch All
The respective drive’s gate-kill circuitry was
activated (open circuit). The respective compressor’s
High Pressure Cutout Switch is wired into this circuit,
and will cause an immediate shutdown of the drive
and compressor in the event of an HPC trip. A 2nd
separate HPC diagnostic will occur in conjunction
with this diagnostic – see details of the Main
Processor Diagnostic “High Pressure Cutout” below
(that is latching).
Local
DDiiaaggnnoossttiiccss
Page 87
AC-SVX001A-EN
87
Table 26. Diagnostics — AFD (continued)
Diagnostic
Name and
Source
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
AFD 2A Gate
Kill Active
Circuit Immediate NonLatch All
The respective drive’s gate-kill circuitry was
activated (open circuit). The respective compressor’s
High Pressure Cutout Switch is wired into this circuit,
and will cause an immediate shutdown of the drive
and compressor in the event of an HPC trip. A 2nd
separate HPC diagnostic will occur in conjunction
with this diagnostic – see details of the Main
Processor Diagnostic “High Pressure Cutout” below
(that is latching).
Local
AFD 1A Input
Transformer or
Filter High
Temp
Circuit
Immediate
Shutdown
Latch All
The AFD is tripped by Input Transformer or Filter
High Temperature Cutout.
Local
AFD 2A Input
Transformer or
Filter High
Temp
Circuit
Immediate
Shutdown
Latch All
The AFD is tripped by Input Transformer or Filter
High Temperature Cutout.
Local
AFD 1A Low
Rotor Flux
Feedback
Circuit
Immediate
(decel)
Latch
Running
The estimated rotor flux dropped below the minimum
threshold. Suspect motor demagnetization.
Local
AFD 2A Low
Rotor Flux
Feedback
Circuit
Immediate
(decel)
Latch
Running
The estimated rotor flux dropped below the minimum
threshold. Suspect motor demagnetization.
Local

Main Processor Diagnostics

Table 27. Diagnostics — main processor
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Drive Cooling
Temp Sensor –
Ckt2
Circuit Normal Latch All Bad Sensor or LLID. Remote
BAS
Communica-
tion Lost
None
Special Action
NonLatch All
The BAS was setup as "installed" at the MP and the
Lontalk LCIC lost communications with the BAS for 15 contiguous minutes after it had been established. Refer to Section on Setpoint Arbitration to determine
how setpoints and operating modes may be affected
by the comm loss. The chiller follows the value of the
Tracer Default Run Command which can be
previously written by Tracer and stored nonvolatilely
by the MP (either use local or shutdown). Note that
this diagnostic is never operational for BacNet
Communication interface (BCIC) and only operational with a LonTalk Communication interface (LCIC) if so configured by the BAS or Tracer system.
Remote
BAS Failed to
Establish
Communica-
tion
None
Special Action
NonLatch
At power-up
The BAS was setup as "installed" and the BAS did not
communicate with the Lontalk LCIC within 15
minutes after chiller controls power-up. Refer to
Section on Setpoint Arbitration to determine how
setpoints and operating modes may be effected. Note that this diagnostic is never operational for
BacNet Communication interface (BCIC) and only operational with a LonTalk Communication interface (LCIC) if so configured by the BAS or Tracer system.
Remote
DDiiaaggnnoossttiiccss
Page 88
88
AC-SVX001A-EN
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Check Clock Chiller Info Latch All
The real time clock had detected loss of its oscillator
at some time in the past. Check / replace battery This
diagnostic can be effectively cleared only by writing a
new value to the chiller’s time clock using the TU's
“set chiller time” functions.
Remote
Condenser Fan Inverter Fault -
Ckt1
None Info NonLatch All
A fault signal has been detected from at least one of
the Variable Speed Inverter Drive Condenser Fans of
Circuit 1 (including the right hand fan of the Shared
Fan Module if present). No action is taken.
Remote
Condenser Fan Inverter Fault -
Ckt2
None Info NonLatch All
A fault signal has been detected from at least one of
the Variable Speed Inverter Drive Condenser Fans of
Circuit 2 (including the left hand fan of the Shared
Fan Module if present). No action is taken
Remote
Condenser Rfgt
Pressure
Transducer -
Ckt1
Circuit Immediate Latch All Bad Sensor or LLID Remote
Condenser Rfgt
Pressure
Transducer -
Ckt2
Circuit Immediate Latch All Bad Sensor or LLID Remote
Discharge Rfgt Temp Sensor –
Cprsr1A
Circuit Immediate Latch All Bad Sensor or LLID Remote
Discharge Rfgt Temp Sensor –
Cprsr2A
Circuit Immediate Latch All Bad Sensor or LLID Remote
Drive Cooling
Supply Temp
Sensor – Ckt1
Circuit Normal Latch All Bad Sensor or LLID. Remote
Emergency
Stop
Chiller Immediate Latch All
EMERGENCY STOP input is open. An external
interlock has tripped. Time to trip from input opening
to unit stop shall be 0.1 to 1.0 seconds
Local
Evap Rfgt Pool
Temp Sensor –
Ckt1
Circuit and
Chiller
Special Action
and Info
NonLatch All
Bad Sensor or LLID. Note: The Evap Pool Temp
Sensors are used for evaporator freeze protection
(running and non-running)
Remote
Evap Rfgt Pool
Temp Sensor –
Ckt2
Circuit and
Chiller
Special Action
and Info
NonLatch All
Bad Sensor or LLID. Note: The Evap Pool Temp
Sensors are used for evaporator freeze protection
(running and non-running)
Remote
Evap Rfgt Pool
Temp Sensor
Error – Ckt1
Circuit
Info and
Special Action
Latch
Ckt Energized
[Ckt Not
Energized
The evaporator refrigerant pool temperature sensor
is indicating a temperature significantly warmer than the evaporator entering water temperature (by more
than 7.2°F for 5 continuous min excluding ckt
nonoperation and a 2 min ignore time relative to ckt
startup). While this diagnostic is active, it will invalidate the evaporator pool temperature sensor. Freeze protection functions (i.e. freeze diagnostics
and Evap Pump Override) will default to the
respective evaporator pressure transducer and its
calculated saturation temperature
Local
DDiiaaggnnoossttiiccss
Page 89
AC-SVX001A-EN
89
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Evap Rfgt Pool
Temp Sensor
Error – Ckt2
Circuit
Info and
Special Action
Latch
Ckt Energized
[Ckt Not
Energized
The evaporator refrigerant pool temperature sensor is indicating a temperature significantly warmer than the evaporator entering water temperature (by more
than 7.2°F for 5 continuous min excluding ckt
nonoperation and a 2 min ignore time relative to ckt
startup). While this diagnostic is active, it will invalidate the evaporator pool temperature sensor. Freeze protection functions (i.e. freeze diagnostics
and Evap Pump Override) will default to the
respective evaporator pressure transducer and its
calculated saturation temperature
Local
Evap Spillover
Liquid Level
Sensor – Ckt1
Circuit Normal Latch All Bad Sensor or LLID Remote
Evap Spillover
Liquid Level
Sensor – Ckt2
Circuit Normal Latch All Bad Sensor or LLID Remote
Evap Water
Flow (Entering
Water Temp)
None Info NonLatch
Any Ckt
Energized [ No
Ckts
Energized]
The entering evaporator water temp fell below the
leaving evaporator water temp by more than 2°F for
180 °F-sec, minimum trip time 30 seconds. It can
warn of improper flow direction through the
evaporator, misbound water temperature sensors,
improper sensor installation, partially failed sensors,
or other system problems. Note that either entering
or leaving water temp sensor or the water system
could be at fault
Remote
Evaporator
Approach Error
– Ckt1
Circuit Immediate Latch
Respective
circuit running
The Evaporator approach temperature for the
respective circuit (ELWT – Evap Sat Temp Ckt 1) is
negative by more than 10°F for 1 minute
continuously while the circuit / compressor is
operating. Either the Evap Leaving Water Temp
sensor, or Evap Suction Rfgt Pressure Transducer Ckt
1 is in error
Remote
Evaporator
Approach Error
– Ckt2
Circuit Immediate Latch
Respective
circuit running
The Evaporator approach temperature for the
respective circuit (ELWT – Evap Sat Temp Ckt 2) is
negative by more than 10°F for 1 minute
continuously while the circuit / compressor is
operating. Either the Evap Leaving Water Temp
sensor, or Evap Suction Rfgt Pressure Transducer Ckt
2 is in error
Remote
Evaporator
Entering Water
Temp Sensor
Chiller Normal Latch All
Bad Sensor or LLID. Note: Entering Water Temp Sensor is used in EXV pressure control as well as ice making so it must cause a unit shutdown even if ice
or CHW reset is not installed
Remote
Evaporator
Leaving Water
Temp Sensor
Chiller Normal Latch All Bad Sensor or LLID Remote
Evaporator Water Flow
Lost
Chiller Immediate NonLatch
[All Stop
modes]
a. The Evaporator water flow switch input was open
for more than 6 contiguous seconds (or 15 seconds
for thermal dispersion type flow switch). b. This
diagnostic does not de-energize the evap pump
output. c. 6 seconds of contiguous flow shall clear
this diagnostic
Remote
DDiiaaggnnoossttiiccss
Page 90
90
AC-SVX001A-EN
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Evaporator Water Flow
Overdue
Chiller Normal NonLatch
Estab. Evap.
Water Flow on
going from
STOP to AUTO
or Evap Pump
Override.
Evaporator water flow was not proven within 20
minutes of the Evaporator water pump relay being
energized in normal “Stop” to “Auto” transition. If the
pump is overridden to “On” for certain diagnostics,
the delay on diagnostic callout shall be only 255
seconds. The pump command status will not be
affected by this diagnostic in either case
Remote
Excessive
Condenser
Pressure –
Ckt1
Circuit Immediate Latch All
The condenser pressure transducer of this circuit has
detected a condensing pressure in excess of the
design high side pressure as limited by the particular
compressor type
Remote
Excessive
Condenser
Pressure –
Ckt2
Circuit Immediate Latch All
The condenser pressure transducer of this circuit has
detected a condensing pressure in excess of the
design high side pressure as limited by the particular
compressor type
Remote
External
Chilled/Hot
Water Setpoint
None Info Latch All
a. Function Not "Enabled": no diagnostics. b.
"Enabled ": Out-Of-Range Low or Hi or bad LLID, set
diagnostic, default CWS to next level of priority (e.g.
Front Panel SetPoint)
Remote
External
Demand Limit
Setpoint
None Info Latch All
a. Not "Enabled": no diagnostics. b. "Enabled ": Out-
Of-Range Low or Hi or bad LLID, set diagnostic,
default CLS to next level of priority (e.g. Front Panel
SetPoint
Remote
Failure to Arm
or Hold - AFD
1A
Circuit Info Nonlatch All
AFD 1A (controlling Compressor 1A) failed to
respond in an appropriate time with its status of
Armed to Hold or Hold within the allotted time of 1
minute of the sent command. (Arm to Hold command
sent; armed to Hold status received; Hold command
sent; Hold status received)
Local
Failure to Arm
or Hold - AFD
2A
Circuit Info Nonlatch All
AFD 2A (controlling Compressor 2A) failed to
respond in an appropriate time with its status of
Armed to Hold or Hold within the allotted time of 1
minute of the sent command. (Arm to Hold command
sent; armed to Hold status received; Hold command
sent; Hold status received)
Local
Failure to Arm
or Start - AFD
1A
Circuit Immediate Latch All
AFD 1A (controlling Compressor 1A) failed to arm or
start within the allotted time of 1 minute. (Arm to
Start command sent; armed to Start status received;
Start command sent; Started status received)
Local
Failure to Arm
or Start - AFD
2A
Circuit Immediate Latch All
AFD 2A (controlling Compressor 2A) failed to arm or
start within the allotted time of 1 minute. (Arm to
Start command sent; armed to Start status received;
Start command sent; Started status received)
Local
High
Differential
Rfgt Pressure -
Ckt1
Circuit Normal Latch
Cprsr
Energized [Service/Op Pumpdown]
The differential pressure for the respective circuit
was above 275 Psid (1890 kPa) for 2 consecutive
samples 5 seconds apart
Remote
High
Differential
Rfgt Pressure -
Ckt2
Circuit Normal Latch
Cprsr
Energized [Service/Op Pumpdown]
The differential pressure for the respective circuit
was above 275 Psid (1890 kPa) for 2 consecutive
samples 5 seconds apart
Remote
DDiiaaggnnoossttiiccss
Page 91
AC-SVX001A-EN
91
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
High Discharge Temperature –
Cprsr1A
Circuit Immediate Latch
All
[compressor
run unload or
compressor not
running]
The compressor discharge temperature exceeded
200°F (without oil cooler) or 230ºF (with oil cooler).
This diagnostic will be suppressed during Stopping
mode or after the compressor has stopped. Note: As
part of the Compressor High Temperature Limit Mode
(aka Minimum Capacity Limit), the compressor shall
be forced loaded as the filtered discharge
temperature reaches 190ºF (without oil coolers), or
220ºF (with oil coolers)
Remote
High Discharge Temperature –
Cprsr2A
Circuit Immediate Latch
All
[compressor
run unload or
compressor not
running]
The compressor discharge temperature exceeded
200°F (without oil cooler) or 230ºF (with oil cooler).
This diagnostic will be suppressed during Stopping
Mode or after the compressor has stopped. Note: As
part of the Compressor High Temperature Limit Mode
(aka Minimum Capacity Limit), the compressor shall
be forced loaded as the filtered discharge
temperature reaches 190ºF (without oil coolers), or
220ºF (with oil coolers)
Remote
High Evaporator Refrigerant
Pressure
Chiller Immediate NonLatch All
The evaporator refrigerant pressure of either circuit
has risen above 190 psig. The evaporator water
pump relay will be de-energized to stop the pump
regardless of why the pump is running. The
diagnostic will auto reset and the pump will return to
normal control when all of the evaporator pressures
fall below 185 psig. The primary purpose is to stop
the evaporator water pump and its associated pump
heat from causing refrigerant side pressures, close to
the evaporator relief valve setting, when the chiller is
not running, such as could occur with Evap Water
Flow Overdue or Evaporator Water Flow Loss
Diagnostics
Remote
High Evaporator
Water
Temperature
Chiller
Info and
Special Action
NonLatch
Only effective if
either 1)Evap
Wtr Flow
Overdue, 2) Evap Wtr Flow Loss, or 3)Low
Evap Rfgt
Temp,-Unit Off,
diagnostic is
active.
Either the leaving or the entering water temperature exceeded the high evap water temp limit (TV service
menu settable –default 105F) for 15 continuous
seconds. The evaporator water pump relay will be
de-energized to stop the pump but only if it is
running due one of the diagnostics listed on the left .
The diagnostic will auto reset and the pump will
return to normal control when both the entering and
leaving temperatures fall 5F below the trip setting.
The primary purpose is to stop the evaporator water
pump and its associated pump heat from causing excessive waterside temperatures and waterside
pressures when the chiller is not running but the
evap pump is on due to either Evap Water Flow Overdue, Evaporator Water Flow Loss , or Low Evap Temp – Unit Off Diagnostics. This diagnostic will not
auto clear solely due to the clearing of the enabling
diagnostic
Remote
High Motor
Winding
Temperature -
Cprsr1A
Circuit Immediate Latch All
Any of the compressor’s motor winding temperature
sensors is seen to be beyond the windings rated
temperature of 265°F (129.4°C)
Local
High Motor
Winding
Temperature -
Cprsr2A
Circuit Immediate Latch All
Any of the respective compressor’s motor winding
temperature sensors is seen to be beyond the
windings rated temperature of 265°F (129.4°C)
Local
High Pressure
Cutout ­Cprsr1A
Circuit Immediate Latch All
A high pressure cutout was detected by AFD 1A Gate
Kill Input ; trip at 315 ± 5 PSIG
Local
DDiiaaggnnoossttiiccss
Page 92
92
AC-SVX001A-EN
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
High Pressure
Cutout ­Cprsr2A
Circuit Immediate Latch All
A high pressure cutout was detected by AFD 2A Gate
Kill Input ; trip at 315 ± 5 PSIG
Local
High
Refrigerant
Pressure Ratio
– Ckt1
Circuit Immediate Latch
Cprsr
Energized
The pressure ratio for the respective circuit exceeded
12.3 for 1 contiguous minute while running in any
mode. The pressure ratio is defined as Pcond (abs)/
Pevap(abs)
Remote
High
Refrigerant
Pressure Ratio
– Ckt2
Circuit Immediate Latch
Cprsr
Energized
The pressure ratio for the respective circuit exceeded
12.3 for 1 contiguous minute while running in any
mode. The pressure ratio is defined as Pcond (abs)/
Pevap(abs)
Remote
Interrupt
Failure –
AFD1A
Circuit
Immediate Shutdown and Special Action
Latch
AFD intended
to be OFF
Respective AFD is reporting that it is still running the
compressor when the MP has commanded the drive/
compressor to be Off. Detection time shall be 10
seconds minimum and 15 seconds maximum. With build rev 2.13 and later: 22 sec min, 27sec max. On detection and until the controller is manually reset:
this diagnostic shall be active and the alarm relay
shall be energized, the Evap Pump Output will be
energized, the effected compressor will be
continually commanded off, and be unloaded. For as
long as compressor operation continues, the MP shall
continue liquid level, oil return, and fan control on
the circuit effected.
Local
Interrupt
Failure –
AFD2A
Circuit
Immediate Shutdown and Special Action
Latch
AFD intended
to be OFF
Respective AFD is reporting that it is still running the
compressor when the MP has commanded the drive/
compressor to be Off. Detection time shall be 10
seconds minimum and 15 seconds maximum. With build rev 2.13 and later: 22 sec min, 27sec max. On detection and until the controller is manually reset:
this diagnostic shall be active and the alarm relay
shall be energized, the Evap Pump Output will be
energized, the effected compressor will be
continually commanded off, and be unloaded. For as
long as compressor operation continues, the MP shall
continue liquid level, oil return, and fan control on
the circuit effected.
Local
LCI-C Software
Mismatch: Use
BAS Tool
Chiller Info Nonlatch All
The neuron software in the LCI-C module does not
match the chiller type. Download the proper software
into the LCI-C neuron. To do this, use the Rover
service tool, or a LonTalk® tool capable of downloading software to a Neuron 3150®
Remote
Loss of Oil
(Running) -
Cprsr1A
Circuit Immediate Latch
Starter Contactor Energized
In running modes , Oil Loss Level Sensor detects lack
of oil in the oil sump feeding the compressor
(distinguishing a liquid flow from a vapor flow)
Local
Loss of Oil
(Running) -
Cprsr2A
Circuit Immediate Latch
Starter Contactor Energized
In running modes , Oil Loss Level Sensor detects lack
of oil in the oil sump feeding the compressor
(distinguishing a liquid flow from a vapor flow)
Local
Loss of Oil
(Stopped) –
Cprsr1A
Circuit
Immediate
Shutdown and
Special Action
Latch
Compressor
Pre-start [all
other modes]
Oil Loss Level Sensor detects a lack of oil in the oil
sump feeding the compressor for 90 seconds after
EXV preposition is completed on an attempted circuit
start. Note: Compressor start is delayed pending oil
detection during that time, but not allowed once the
diagnostic occurs
Local
Loss of Oil
(Stopped) –
Cprsr2A
Circuit
Immediate
Shutdown and
Special Action
Latch
Compressor
Pre-start [all
other modes]
Oil Loss Level Sensor detects a lack of oil in the oil
sump feeding the compressor for 90 seconds after
EXV preposition is completed on an attempted circuit
start. Note: Compressor start is delayed pending oil
detection during that time, but not allowed once the
diagnostic occurs
Local
DDiiaaggnnoossttiiccss
Page 93
AC-SVX001A-EN
93
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Low
Differential
Rfgt Pressure -
Ckt1
Circuit Immediate Latch
Cprsr
Energized
The system differential pressure (Pc-Pe) for the
respective circuit was below 15 psid (240.5 kPa) or the pressure ratio (Pc/Pe) was less than 1.1 while the compressor is running for a period of time dependent
on the deficit (15 sec ignore time from circuit start)
Refer to the Oil Flow Protection specification for the
time to trip function.
Remote
Low
Differential
Rfgt Pressure -
Ckt2
Circuit Immediate Latch
Cprsr
Energized
The system differential pressure (Pc-Pe) for the
respective circuit was below 15psid (240.5 kPa) or the pressure ratio (Pc/Pe) was less than 1.1 while the compressor is running for a period of time dependent
on the deficit (15 sec ignore time from circuit start) Refer to the Oil Flow Protection specification for the
time to trip function.
Remote
Low Discharge
Superheat –
Ckt1
Circuit Normal Latch
Any Running
Mode
While Running Normally, the Discharge Superheat
was less than 9 degrees F for more than 4878 degree
F seconds. At circuit startup, the Discharge
Superheat will be ignored for 5 minutes
Remote
Low Discharge
Superheat –
Ckt2
Circuit Normal Latch
Any Running
Mode
While Running Normally, the Discharge Superheat
was less than 9 degrees F for more than 4878 degree
F seconds. At circuit startup, the Discharge
Superheat will be ignored for 5 minutes
Remote
Low Drive
Cooling Supply
Temp – Ckt1
Circuit Info NonLatch
All Ckt Running
Modes
The Drive Cooling Supply temperature for the
respective circuit is seen to be more than 5F cooler
than its setpoint for more than 30 minutes. Auto-
reset if temperatures return to Undesirable
condensation is possible on the cooled surfaces
inside the control panel. Inspect the Drive Cooling
System components for misoperation or failure
Low Drive
Cooling Supply
Temp – Ckt2
Circuit Info NonLatch
All Ckt Running
Modes
The Drive Cooling Supply Temperature for the
respective circuit is seen to be more than 5F cooler
than its setpoint for more than 30 minutes. Undesirable condensation is possible on the cooled surfaces inside the control panel. Inspect the Drive
Cooling System components for misoperation or
failure
Low
Evaporator
Rfgt Pressure -
Ckt1
Circuit Immediate Latch
Cprsr Prestart
and Cprsr Energized
a. The Evap Refrig Pressure dropped below 10 Psia
just prior to compressor start (after EXV
preposition). b. During Early Startup Period: the
Evap Refrig Pressure fell below a pressure equal to
Condenser Pressure ÷ 8 but as limited to not less
than 6 or greater than 10 psia. c. After Early Startup
Period expires: The Evap Refrig Pressure fell below
16 Psia for 30 seconds or below 10 psia for 5 seconds. (Note: the Early Startup Period for RTAE it is between 1 and 5 min as an inverse function of the
Cond Temp measured at time of circuit startup)
Local
DDiiaaggnnoossttiiccss
Page 94
94
AC-SVX001A-EN
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Low
Evaporator
Rfgt Pressure -
Ckt2
Circuit Immediate Latch
Cprsr Prestart
and Cprsr Energized
a. The Evap Refrig Pressure dropped below 10 Psia
just prior to compressor start (after EXV
preposition). b. During Early Startup Period: the
Evap Refrig Pressure fell below a pressure equal to
Condenser Pressure ÷ 8 but as limited to not less
than 6 or greater than 10 psia. c. After Early Startup
Period expires: The Evap Refrig Pressure fell below
16 Psia for 30 seconds or below 10 psia for 5 seconds. (Note: the Early Startup Period for RTAE it is between 1 and 5 min as an inverse function of the
Cond Temp measured at time of circuit startup)
Local
Low
Evaporator
Rfgt
Temperature -
Ckt1
Circuit Immediate Latch
All Ckt Running Modes [Service
Pumpdown]
The warmer of either the Evaporator Refrigerant Pool
Temperature or the Evaporator Saturated Temperature for the respective circuit, dropped below the Low Refrigerant Temperature Cutout
Setpoint for 2250F-sec (12F-sec/sec max rate
for early circuit startup period) while the circuit was
running. The minimum LERTC setpoint is -5F the
point at which oil separates from the refrigerant. The
integral is held nonvolatily though power down, is
continuously calculated, and can decay or build
during the circuit’s off cycle as conditions warrant
Remote
Low
Evaporator
Rfgt
Temperature -
Ckt2
Circuit Immediate Latch
All Ckt Running Modes [Service
Pumpdown]
The warmer of either the Evaporator Refrigerant Pool
Temperature or the Evaporator Saturated Temperature for the respective circuit, dropped below the Low Refrigerant Temperature Cutout
Setpoint for 2250F-sec (12F-sec/sec max rate
for early circuit startup period) while the circuit was
running. The minimum LERTC setpoint is -5F the
point at which oil separates from the refrigerant. The
integral is held nonvolatily though power down, is
continuously calculated, and can decay or build
during the circuit’s off cycle as conditions warrant.
Remote
Low
Evaporator
Temp (Unit Off)
– Ckt1
Evap Pump
Info and
Special Action
NonLatch
Unit in Stop
Mode, or in
Auto Mode and
No Ckt's
Energzd [Any
Ckt Energzd]
The respective circuit’s “Chiller Off Cycle Freeze
Protection Integral” was seen to be higher than ½ of
its trip value while the chiller is in the Stop mode, or
in Auto mode with no compressors running, for one minute and more. The COCFP integral is increased if the Average of the Evap Water Temperature and the Evap Refrigerant Pool Temp is below the value of the
Low Evap Rfgt Temp Cutout + 4°F. Energize Evap
Water Pump and Off-Cycle Freeze Avoidance Request
Relay until diagnostic auto resets, then return to
normal evap pump control and de-energize the
Freeze Avoidance Request. Automatic reset occurs
when the respective Evap Rfgt Pool Temp rises 2F
(1.1C) above the LERTC cutout setting and the
COCFP Integral is less than 1/3 of its trip value. This
diagnostic even while active, does not prevent
operation of either circuit. (At each circuit shutdown,
the COCFP integral is initialized to the LERTC
integral)
Remote
DDiiaaggnnoossttiiccss
Page 95
AC-SVX001A-EN
95
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Low
Evaporator
Temp (Unit Off)
– Ckt2
Evap Pump Special Action
NonLatch
Unit in Stop
Mode, or in
Auto Mode and
No Ckt's
Energzd [Any
Ckt Energzd]
The respective circuit’s “Chiller Off Cycle Freeze
Protection Integral” was seen to be higher than ½ of
its trip value while the chiller is in the Stop mode, or
in Auto mode with no compressors running, for one minute and more. The COCFP integral is increased if
the Average of the Evap Water Temperatures and the
Evap Refrigerant Pool Temp is below the value of the
Low Evap Rfgt Temp Cutout + 4°F. Energize Evap
Water Pump and Off-Cycle Freeze Avoidance Request
Relay until diagnostic auto resets, then return to
normal evap pump control and de-energize the Freeze Avoidance Request. Automatic reset occurs when the respective Evap Rfgt Pool Temp rises 2°F
(1.1°C) above the LERTC cutout setting AND the
COCFP Integral is less than 1/3 of its trip value. This
diagnostic even while active, does not prevent
operation of either circuit. (At each circuit shutdown,
the COCFP integral is initialized to the LERTC
integral)
Remote
Low
Evaporator
Water Temp
(Unit Off )
Evap Pump and
Freeze
Avoidance
Request Relay
Info and
Special Action
NonLatch
Unit in Stop
Mode, or in
Auto Mode and
No Ckt(s)
Energzd [Any
Ckt Energzd]
Either the entering or leaving evaporator water temp
fell below the leaving water temp cutout setting for
30 °F-seconds while the Chiller is in the Stop mode,
or in Auto mode with no compressors running. Energize Freeze Avoidance Request Relay and Evap Water Pump Relay until diagnostic auto resets, then
de-energize the Freeze Avoidance Request Relay and return to normal evap pump control. Automatic reset occurs when both temps rise 2F (1.1C) above the
cutout setting for 5 minutes, or either circuit starts.
This diagnostic even while active, does not prevent
operation of either circuit
Remote
Low
Evaporator
Water Temp:
Unit On
Chiller
Immediate Shutdown and Special Action
NonLatch
Any Ckt[s]
Energzd [No
Ckt(s)
Energzd]
The evaporator entering or leaving water temp fell
below the cutout setpoint for 30° F-seconds while the
compressor was running. Automatic reset occurs
when both of the temperature rises 2 F (1.1C)
above the cutout setting for 2 minutes. This
diagnostic shall not de-energize the Evaporator
Water Pump Output
Remote
Low Oil Flow -
Cprsr 1A
Circuit Immediate Latch
Cprsr
Energized and
Delta P above
15 Psid
The oil pressure transducer for this compressor was indicating an unacceptable oil pressure drop as a % of the available oil pressure to move oil, suggesting
significantly reduced oil flow to the compressor. Possible root causes include oil line service valve closed or restricted, dirty or restricted oil filter, or
compressor oil line kepner valve malfunction
Local
Low Oil Flow -
Cprsr2A
Circuit Immediate Latch
Cprsr
Energized and
Delta P above
15 Psid
The oil pressure transducer for this compressor was indicating an unacceptable oil pressure drop as a % of the available oil pressure to move oil, suggesting
significantly reduced oil flow to the compressor. Possible root causes include oil line service valve closed or restricted, dirty or restricted oil filter, or
compressor oil line kepner valve malfunction
Local
DDiiaaggnnoossttiiccss
Page 96
96
AC-SVX001A-EN
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Low Oil Return
or AFD Cooling
– Ckt1
Circuit Info NonLatch
All Ckt Running
Modes
The evaporator’s spillover tank refrigerant liquid
level, which feeds the oil return and drive cooling
heat exchanger, is seen to be less than 90% of its min level for 20 continuous minutes – reset when
level gets to 88% of min level. The occurrence of this
warning in conjunction with the “Loss of Oil (Running)” or any of the” AFD Over Temp” shutdown diagnostics, suggests either EXV problems or loss of
charge is a contributing factor
Low Oil Return
or AFD Cooling
– Ckt2
Circuit Info NonLatch
All Ckt Running
Modes
The evaporator’s spillover tank refrigerant liquid
level, which feeds the oil return and drive cooling heat exchanger, is seen to be less than 90% of its min level for 20 continuous minutes – reset when
level gets to 88% of min level. The occurrence of this
warning in conjunction with the “Loss of Oil
(Running)” or any of the” AFD Over Temperature”
shutdown diagnostics, suggests either EXV problems
or loss of charge is a contributing factor
Motor Winding Temp Sensor -
Cprsr1A
Circuit Info or None Latch All
Both of the motor winding temperature sensors are
seen to be out of their normal range. (Severity is
adjustable via TU Service Tool – default is Info)
Local
Motor Winding
Temp Sensor-
Cprsr2A
Circuit Info or None Latch All
Both of the motor winding temperature sensors are
seen to be out of their normal range. (Severity is
adjustable via TU Service Tool – default is Info)
Local
MP Application
Memory CRC
Error
Chiller Immediate Latch All Modes
Memory error criteria TBD
Remote
MP: Could not
Store Starts
and Hours
None Info Latch All
MP has determined there was an error with the
previous power down store. Starts and Hours may
have been lost for the last 24 hours
Remote
MP: Invalid
Configuration
None Immediate Latch All
MP has an invalid configuration based on the current
software installed
Remote
MP: Non-
Volatile
Memory
Reformat
None Info Latch All
MP has determined there was an error in a sector of
the Non-Volatile memory and it was reformatted.
Check settings
Remote
MP: Reset Has
Occurred
None Info NonLatch All
The main processor has successfully come out of a
reset and built its application. A reset may have been
due to a power up, or a power loss of a minimum or
longer duration to cause an MP power down reset, or
when installing new software or defining a new
configuration. This diagnostic is immediately and
automatically cleared and thus can only be seen in
the Historic Diagnostic List in TU
Remote
No Differential
Rfgt Pressure –
Ckt1
Circuit Immediate Latch
Compressor
running on
Circuit
The system differential pressure was below 7.7 Psid
(53 kPa) for 6 seconds after the 11 seconds ignore
time relative to cprsr/circuit startup had expired
Remote
No Differential
Rfgt Pressure –
Ckt2
Circuit Immediate Latch
Compressor
running on
Circuit
The system differential pressure was below 7.7 Psid
(53 kPa) for 6 seconds after the 11 seconds ignore
time relative to cprsr/circuit startup had expired
Remote
DDiiaaggnnoossttiiccss
Page 97
AC-SVX001A-EN
97
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Oil Analysis
Recommended
– Ckt1
Circuit Info Latch
“Service
Messages”
enabled
Diagnostic occurs when accumulated circuit
operating hours since last initialized exceeds 2000
hours. Diagnostic can be manually cleared but will
reoccur every month (720 hours on real time clock)
as long as accumulator is not re-initialized
Remote
Oil Analysis
Recommended
– Ckt2
Circuit Info Latch
“Service
Messages”
enabled
Diagnostic occurs when accumulated circuit
operating hours since last initialized exceeds 2000
hours. Diagnostic can be manually cleared but will
reoccur every month (720 hours on real time clock)
as long as accumulator is not re-initialized
Remote
Oil Filter
Change
Recommended
– Cprsr1A
Circuit Info Latch
“Service
Messages”
enabled
Diagnostic occurs only when “service messages” are
enabled and when average oil pressure drop exceeds
18%. Diagnostic can be manually cleared but will
reoccur every month (720 hours on real time clock)
as long as average pressure drop does not fall below
16%
Remote
Oil Filter
Change
Recommended
– Cprsr2A
Circuit Info Latch
“Service
Messages”
enabled
Diagnostic occurs only when “service messages” are
enabled and when average oil pressure drop exceeds
18%. Diagnostic can be manually cleared but will
reoccur every month (720 hours on real time clock)
as long as average pressure drop does not fall below
16%
Remote
Oil Flow
Protection
Fault – Ck 1
Circuit Immediate Latch
Starter
Contactor
Energized [all
Stop modes]
The Intermediate Oil Pressure Transducer for this
cprsr is reading a pressure either above its respective
circuit’s Condenser Pressure by 15 Psia or more, or
below its respective Suction Pressure 10 Psia or more
for 30 seconds continuously
Local
Oil Flow
Protection
Fault – Ckt2
Circuit Immediate Latch
Starter
Contactor
Energized [all
Stop modes]
The Intermediate Oil Pressure Transducer for this
cprsr is reading a pressure either above its respective
circuit’s Condenser Pressure by 15 Psia or more, or
below its respective Suction Pressure 10 Psia or more
for 30 seconds continuously
Local
Oil Pressure
Transducer –
Cprsr1A
Circuit Immediate Latch All Bad Sensor or LLID Remote
Oil Pressure
Transducer –
Cprsr2A
Circuit Immediate Latch All Bad Sensor or LLID Remote
Outdoor Air
Temperature
Sensor
Chiller
Normal
Shutdown;
Latch All
Bad Sensor or LLID. If this diagnostic occurs,
operational pumpdown will be performed regardless
of the last valid temperature
Remote
Pumpdown
Terminated -
Ckt1
Circuit Info NonLatch
Service
Pumpdown
Service Pumpdown cycle for this circuit was
terminated abnormally due to excessive time.(RTAE
max Service Pumpdown = 4 min)
Local
Pumpdown
Terminated -
Ckt2
Circuit Info NonLatch
Service
Pumpdown
Service Pumpdown cycle for this circuit was
terminated abnormally due to excessive. (RTAE max
Service Pumpdown = 4 min)
Local
Software Error
1001: Call
Trane Service
All functions Immediate Latch All
A high level software watchdog has detected a
condition in which there was a continuous 1 minute
period of compressor operation, with neither
Evaporator water flow nor a” contactor interrupt
failure” diagnostic active. The presence of this
software error message suggests an internal
software problem has been detected. The events
that led up to this failure, if known, should be
recorded and transmitted to Trane Controls
Engineering
Local
DDiiaaggnnoossttiiccss
Page 98
98
AC-SVX001A-EN
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Software Error
1002: Call
Trane Service
All functions Immediate Latch All
Reported if state chart misalignment in stopped or
inactive state occurred while a compressor was seen
to be operating and this condition lasted for at least 1
minute (cmprsr operation due to Service Pumpdown
or with Contactor Interrupt Failure diagnostic is
excluded). The presence of this software error message suggests an internal software problem has been detected. The events that led up to this failure,
if known, should be recorded and transmitted to
Trane Controls Engineering
Local
Software Error
1003: Call
Trane Service
All functions Immediate Latch All
Reported if state chart misalignment occurred
inferred from either Capacity Control, Circuit, or
Compressor State Machines remaining in the Stopping state for more than 3 minutes. The
presence of this software error message suggests an
internal software problem has been detected. The
events that led up to this failure, if known, should be
recorded and transmitted to Trane Controls
Engineering
Local
Starts or Hours
Modified –
Cprsr1A
None Info NonLatch All
The current value for the cumulative starts and or
hours for the given compressor have been modified
by a write override from TU
NA
Starts or Hours
Modified –
Cprsr2A
None Info NonLatch All
The current value for the cumulative starts and or
hours for the given compressor have been modified
by a write override from TU
NA
Suction Rfgt
Pressure
Transducer –
Cprsr1A
Circuit Immediate Latch All Bad Sensor or LLID Remote
Suction Rfgt
Pressure
Transducer –
Cprsr2A
Circuit Immediate Latch All Bad Sensor or LLID Remote
Unexpected Shutdown –
AFD1A
Circuit Normal Nonlatch
All Cprsr
Running
modes,
Starting,
Running and
Preparing to
Shutdown
The respective AFD status reported back that it is
stopped when the MP thinks it should be running and
no AFD shutdown diagnostic exists. This diagnostic
will be logged in the active buffer and then
automatically cleared. This diagnostic could be
caused by intermittent communication problems
from the AFD to the MP, or due to misbinding
Remote
Unexpected Shutdown –
AFD2A
Circuit Normal Nonlatch
All Cprsr
Running
modes,
Starting,
Running and
Preparing to
Shutdown
The respective AFD status reported back that it is
stopped when the MP thinks it should be running and
no AFD shutdown diagnostic exists. This diagnostic
will be logged in the active buffer and then
automatically cleared. This diagnostic could be
caused by intermittent communication problems
from the AFD to the MP, or due to misbinding
Remote
DDiiaaggnnoossttiiccss
Page 99
AC-SVX001A-EN
99
Table 27. Diagnostics — main processor (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Very Low
Evaporator
Rfgt Pressure –
Ckt1
Chiller Immediate Latch All
The respective circuit’s evaporator pressure dropped
below 80% of the current Low Evap Refrig Press
Cutout setting (see above) or 8 psia, whichever is
less, regardless of the running state of the circuit’s
compressor. Note: Unlike previous products, even if
the circuit associated with the suction pressure
transducer is locked out, it will not defeat the
protection afforded by this diagnostic
Local
Very Low
Evaporator
Rfgt Pressure –
Ckt2
Chiller Immediate Latch All
The respective circuit’s evaporator pressure dropped
below 80% of the current Low Evap Refrig Press
Cutout setting (see above) or 8 psia, whichever is
less, regardless of the running state of the circuit’s
compressor. Note: Unlike previous products, even if
the circuit associated with the suction pressure
transducer is locked out, it will not defeat the
protection afforded by this diagnostic
Local

Communication Diagnostics

NNootteess::
1. The following communication loss diagnostics will not occur unless that input or output is required to be present by the particular configuration and installed options for the chiller.
2. Communication diagnostics (with the exception of “Excessive Loss of Comm” ) are named by the Functional Name of the input or output that is no longer being heard from by the Main Processor. Many LLIDs, such as the Quad Relay LLID, have more than one functional output associated with it. A comm loss with such a multiple function board, will generate multiple diagnostics. Refer to the chiller's wiring diagrams to relate the occurrence of multiple communication diagnostics back to the physical LLID boards that they have been assigned to (bound).
Table 28. Diagnostics — communication
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Comm Loss:
AFD 1A
Circuit Immediate NonLatch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
AFD 2A
Circuit Immediate NonLatch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Chiller %
Capacity
Output
None Info Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
DDiiaaggnnoossttiiccss
Page 100
100
AC-SVX001A-EN
Table 28. Diagnostics — communication (continued)
Diagnostic
Name
Affects
Target
Severity
Persistence
Active
Modes
[Inactive
Modes]
Criteria
Reset
Level
Comm Loss:
Cond Fan
Enable Shared
Ckt1&2
None Info Latch All
Continual loss of communication between the MP and
the Functional ID has occurred for a 30 second period. This is an info warning, as it is conceivable that the circuit may run without the center shared
fan deck working if there are many other coils/fans
on the circuits
Remote
Comm Loss:
Cond Rfgt
Pressure Ckt1
Circuit Immediate Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Cond Rfgt
Pressure Ckt2
Circuit Immediate Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Condenser Fan
Enable Ckt1
Circuit Normal Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Condenser Fan
Enable Ckt2
Circuit Normal Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Discharge
Temperature
Ckt1
Circuit Normal Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Discharge
Temperature
Ckt2
Circuit Normal Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Drive Cooling
BP Valve Ckt1
Circuit Normal Latch All
Continual loss of communication between the MP and
the Functional ID has occurred for a 30 second
period. Note: The same diagnostic is used for comm
loss with the stepper motor driven bypass valve in
the Drive Cooling Temp Control = DCTC or DCTW
configurations as for comm loss with the “Drive
Cooling 3-Way Valve Command Outputs Ckt1 &2”
dual analog I/O llid in the TWAV configuration
Remote
Comm Loss:
Drive Cooling
BP Valve Ckt2
Circuit Normal Latch All
Continual loss of communication between the MP and
the Functional ID has occurred for a 30 second
period. Note: The same diagnostic is used for comm
loss with the stepper motor driven bypass valve in
the Drive Cooling Temp Control = DCTC or DCTW
configurations as for comm loss with the “Drive
Cooling 3-Way Valve Command Outputs Ckt1 &2”
dual analog I/O llid in the TWAV configuration
Remote
Comm Loss:
Drive Cooling
IL Valve Ckt1
Circuit Normal Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Drive Cooling
IL Valve Ckt2
Circuit Normal Latch All
Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period
Remote
Comm Loss:
Drive Cooling
Sply Temp Ckt1
Circuit Norma Latch All
Continual loss of communication between the MP and
the Functional ID has occurred for a 30 second
period. While this diagnostic is active, the associated
Drive Cooling ByPass Valve shall be commanded fully
closed
Remote
DDiiaaggnnoossttiiccss
Loading...