TQ-Systems TQMLS1028A Preliminary User's Manual

TQMLS1028A Preliminary User's Manual
TQMLS1028A UM 0001
06.05.2019
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page i
ABOUT THIS MANUAL ........................................................................................................................................................................ 1
1.
1.1 Copyright and license expenses ..................................................................................................................................................... 1
1.2 Registered trademarks ....................................................................................................................................................................... 1
1.3 Disclaimer ............................................................................................................................................................................................... 1
1.4 Imprint ..................................................................................................................................................................................................... 1
1.5 Tips on safety ........................................................................................................................................................................................ 2
1.6 Symbols and typographic conventions ........................................................................................................................................ 2
1.7 Handling and ESD tips ........................................................................................................................................................................ 2
1.8 Naming of signals ................................................................................................................................................................................ 3
1.9 Further applicable documents / presumed knowledge .......................................................................................................... 3
2. BRIEF DESCRIPTION ............................................................................................................................................................................. 3
3. OVERVIEW .............................................................................................................................................................................................. 4
3.1 Block diagram ....................................................................................................................................................................................... 4
3.2 System components ........................................................................................................................................................................... 4
4. ELECTRONICS ........................................................................................................................................................................................ 5
4.1 LS1028A CPU ......................................................................................................................................................................................... 5
4.1.1 LS1028A variants, block diagrams .................................................................................................................................................. 5
4.1.2 LS1028A variants, details ................................................................................................................................................................... 7
4.2 Reset Logic and Supervisor ............................................................................................................................................................... 7
4.2.1 Supervisor .............................................................................................................................................................................................. 7
4.2.2 Self-Reset ................................................................................................................................................................................................ 8
4.2.3 JTAG-Reset TRST# ................................................................................................................................................................................ 8
4.3 CPU Configuration ............................................................................................................................................................................... 9
4.3.1 RCW Source ........................................................................................................................................................................................... 9
4.3.2 Configuration signals.......................................................................................................................................................................... 9
4.3.3 Reset Configuration Word .............................................................................................................................................................. 10
4.3.4 Settings via Pre-Boot-Loader PBL ................................................................................................................................................ 10
4.3.5 Error handling during RCW loading. ........................................................................................................................................... 10
4.4 System Controller ............................................................................................................................................................................. 10
4.5 System Clock ...................................................................................................................................................................................... 11
4.6 Flash ...................................................................................................................................................................................................... 11
4.6.1 QSPI NOR Flash .................................................................................................................................................................................. 11
4.6.2 eMMC / SD card ................................................................................................................................................................................. 11
4.7 SDRAM.................................................................................................................................................................................................. 11
4.8 EEPROM ............................................................................................................................................................................................... 12
4.8.1 Data EEPROM 24LC256T ................................................................................................................................................................. 12
4.8.2 Configuration EEPROM SE97B ...................................................................................................................................................... 12
4.9 RTC......................................................................................................................................................................................................... 13
4.10 Temperature monitoring................................................................................................................................................................ 13
4.11 Supply................................................................................................................................................................................................... 13
4.12 Power consumption ......................................................................................................................................................................... 14
4.12.1 Power consumption CPU ............................................................................................................................................................... 14
4.12.2 Power consumption TQMLS1028A ............................................................................................................................................. 14
4.13 Voltage monitoring .......................................................................................................................................................................... 14
4.14 Interfaces to other systems and devices .................................................................................................................................... 15
4.14.1 UART ..................................................................................................................................................................................................... 15
4.14.2 I2C bus ................................................................................................................................................................................................... 15
4.14.3 JTAG ...................................................................................................................................................................................................... 15
4.15 TQMLS1028A interfaces .................................................................................................................................................................. 15
4.15.1 Pin multiplexing ................................................................................................................................................................................ 15
4.15.2 Pinout TQMLS1028A ........................................................................................................................................................................ 16
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page ii
TABLE OF CONTENTS (continued)
5.
MECHANICS ........................................................................................................................................................................................ 18
5.1 Assembly ............................................................................................................................................................................................. 18
5.2 Dimensions ......................................................................................................................................................................................... 19
5.3 Images .................................................................................................................................................................................................. 20
5.4 Connectors .......................................................................................................................................................................................... 21
5.5 Adaptation to the environment ................................................................................................................................................... 22
5.6 Protection against external effects.............................................................................................................................................. 22
5.7 Thermal management ..................................................................................................................................................................... 22
5.8 Structural requirements .................................................................................................................................................................. 22
5.9 Notes of treatment ........................................................................................................................................................................... 22
6. SOFTWARE .......................................................................................................................................................................................... 22
7. SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS.................................................................................................. 23
7.1 EMC ....................................................................................................................................................................................................... 23
7.2 ESD ........................................................................................................................................................................................................ 23
7.3 Operational safety and personal security .................................................................................................................................. 23
7.4 Climatic and operational conditions .......................................................................................................................................... 23
7.5 Reliability and service life ............................................................................................................................................................... 23
8. ENVIRONMENT PROTECTION ........................................................................................................................................................ 24
8.1 RoHS ................................................................................................................................................................................................ ...... 24
8.2 WEEE® ................................................................................................................................................................................................... 24
8.3 REACH® ................................................................................................................................................................................................ 24
8.4 EuP ......................................................................................................................................................................................................... 24
8.5 Battery .................................................................................................................................................................................................. 24
8.6 Packaging ............................................................................................................................................................................................ 24
8.7 Other entries ...................................................................................................................................................................................... 24
9. APPENDIX ............................................................................................................................................................................................ 25
9.1 Acronyms and definitions .............................................................................................................................................................. 25
9.2 References ........................................................................................................................................................................................... 27
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page iii
top view through TQMLS1028A
TABLE DIRECTORY
Terms and Conventions ............................................................................................................................................................. 2
Table 1:
Table 2: LS1028A variants .......................................................................................................................................................................... 7
Table 3: Reset- and Status signals on the TQMLS1028A ................................................................................................................... 7
Table 4: RCW_SRC_SEL ............................................................................................................................................................................... 9
Table 5: Reset Configuration Signals ...................................................................................................................................................... 9
Table 6: Reset Configuration Source ...................................................................................................................................................... 9
Table 7: Power estimation CPU ............................................................................................................................................................. 14
Table 8: Power consumption TQMLS1028A ...................................................................................................................................... 14
Table 9: I2C1 device addresses .............................................................................................................................................................. 15
Table 10: Pinout connector X1 ................................................................................................................................................................. 16
Table 11: Pinout connector X2 ................................................................................................................................................................. 17
Table 12: Labels on TQMLS1028A ........................................................................................................................................................... 18
Table 13: Connector assembled on TQMLS1028A ............................................................................................................................. 21
Table 14: Carrier board mating connectors ......................................................................................................................................... 21
Table 15: Climate and operational conditions .................................................................................................................................... 23
Table 16: Acronyms ..................................................................................................................................................................................... 25
Table 17: Further applicable documents .............................................................................................................................................. 27
ILLUSTRATION DIRECTORY
Illustration 1:
Illustration 2: Block diagram LS1028A .............................................................................................................................................................. 5
Illustration 3: Block diagram LS1018A .............................................................................................................................................................. 5
Illustration 4: Block diagram LS1027A .............................................................................................................................................................. 6
Illustration 5: Block diagram LS1017A .............................................................................................................................................................. 6
Illustration 6: Feedback HRESET_REQ# ............................................................................................................................................................ 8
Illustration 7: Wiring TRST# .................................................................................................................................................................................. 8
Illustration 8: Block diagram eMMC interface ............................................................................................................................................. 11
Illustration 9: Memory Map SE97BTP EEPROM ........................................................................................................................................... 12
Illustration 10: Block diagram RTC buffering ................................................................................................................................................. 13
Illustration 11: TQMLS1028A assembly, top .................................................................................................................................................. 18
Illustration 12: TQMLS1028A assembly, bottom .......................................................................................................................................... 18
Illustration 13: TQMLS1028A dimensions, side view ................................................................................................................................... 19
Illustration 14: TQMLS1028A dimensions,
Illustration 15: TQMLS1028A, 3D, top view .................................................................................................................................................... 20
Illustration 16: TQMLS1028A, 3D, bottom view ............................................................................................................................................ 20
Block diagram TQMLS1028A (simplified) .............................................................................................................................. 4
.................................................................................... 19
REVISION HISTORY
Rev. Date Name Pos. Modification
0001 06.05.2019 Petz First issue
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 1
1.

ABOUT THIS MANUAL

Important Notice:
D-82229 Seefeld

1.1 Copyright and license expenses

Copyright protected © 2019 by TQ-Systems GmbH. This Preliminary User's Manual may not be copied, reproduced, translated, changed or distributed, completely or partially in
electronic, machine readable, or in any other form without the written consent of TQ-Systems GmbH. The drivers and utilities for the components used as well as the BIOS are subject to the copyrights of the respective
manufacturers. The licence conditions of the respective manufacturer are to be adhered to. Bootloader-licence expenses are paid by TQ-Systems GmbH and are included in the price. Licence expenses for the operating system and applications are not taken into consideration and must be calculated / declared
separately.

1.2 Registered trademarks

TQ-Systems GmbH aims to adhere to copyrights of all graphics and texts used in all publications, and strives to use original or license-free graphics and texts.
All brand names and trademarks mentioned in this Preliminary User's Manual, including those protected by a third party, unless specified otherwise in writing, are subjected to the specifications of the current copyright laws and the proprietary laws of the present registered proprietor without any limitation. One should conclude that brand and trademarks are rightly protected by a third party.

1.3 Disclaimer

TQ-Systems GmbH does not guarantee that the information in this Preliminary User's Manual is up-to-date, correct, complete or of good quality. Nor does TQ-Systems GmbH assume guarantee for further usage of the information. Liability claims against TQ­Systems GmbH, referring to material or non-material related damages caused, due to usage or non-usage of the information given in this Preliminary User's Manual, or due to usage of erroneous or incomplete information, are exempted, as long as there is no proven intentional or negligent fault of TQ-Systems GmbH.
TQ-Systems GmbH explicitly reserves the rights to change or add to the contents of this Preliminary User's Manual or parts of it without special notification.
Before using the Starterkit MBLS1028A or parts of the schematics of the MBLS1028A, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. TQ-Systems GmbH makes no other warranties including, but not limited to, any implied warranty of merchantability or fitness for a particular purpose. Except where prohibited by law, TQ-Systems GmbH will not be liable for any indirect, special, incidental or consequential loss or damage arising from the usage of the Starterkit MBLS1028A or schematics used, regardless of the legal theory asserted.

1.4 Imprint

TQ-Systems GmbH Gut Delling, Mühlstraße 2
Tel: +49 8153 9308–0 Fax: +49 8153 9308–4223 E-Mail: Info@TQ-Group Web: TQ-Group
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 2
Command

1.5 Tips on safety

Improper or incorrect handling of the product can substantially reduce its life span.

1.6 Symbols and typographic conventions

Table 1: Terms and Conventions
Symbol Meaning
This symbol represents the handling of electrostatic-sensitive modules and / or components. These components are often damaged / destroyed by the transmission of a voltage higher than about 50 V. A human body usually only experiences electrostatic discharges above approximately 3,000 V.
This symbol indicates the possible use of voltages higher than 24 V. Please note the relevant statutory regulations in this regard. Non-compliance with these regulations can lead to serious damage to your health and also cause
damage / destruction of the component.
This symbol indicates a possible source of danger. Acting against the procedure described can lead to possible damage to your health and / or cause damage / destruction of the material used.
This symbol represents important details or aspects for working with TQ-products.
A font with fixed-width is used to denote commands, contents, file names, or menu items.

1.7 Handling and ESD tips

General handling of your TQ-products
The TQ-product may only be used and serviced by certified personnel who have taken note of the information, the safety regulations in this document and all related rules and regulations.
A general rule is: do not touch the TQ-product during operation. This is especially important when switching on, changing jumper settings or connecting other devices without ensuring beforehand that the power supply of the system has been switched off.
Violation of this guideline may result in damage / destruction of the TQMLS1028A and be dangerous to your health.
Improper handling of your TQ-product would render the guarantee invalid.
Proper ESD handling
The electronic components of your TQ-product are sensitive to electrostatic discharge (ESD). Always wear antistatic clothing, use ESD-safe tools, packing materials etc., and operate your TQ-
product in an ESD-safe environment. Especially when you switch modules on, change jumper settings, or connect other devices.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 3
Specifications and manual of the modules used:
Specifications of the components used:
Chip errata:
Software behaviour:
General expertise:
2.

BRIEF DESCRIPTION

1.8 Naming of signals

A hash mark (#) at the end of the signal name indicates a low-active signal. Example: RESET# If a signal can switch between two functions and if this is noted in the name of the signal, the low-active function is marked with
a hash mark and shown at the end. Example: C / D# If a signal has multiple functions, the individual functions are separated by slashes when they are important for the wiring. The identification of the individual functions follows the above conventions. Example: WE2# / OE#

1.9 Further applicable documents / presumed knowledge

These documents describe the service, functionality and special characteristics of the module used (incl. BIOS).
The manufacturer's specifications of the components used, for example CompactFlash cards, are to be taken note of. They contain, if applicable, additional information that must be taken note of for safe and reliable operation. These documents are stored at TQ-Systems GmbH.
It is the user's responsibility to make sure all errata published by the manufacturer of each component are taken note of. The manufacturer’s advice should be followed.
No warranty can be given, nor responsibility taken for any unexpected software behaviour due to deficient components.
Expertise in electrical engineering / computer engineering is required for the installation and the use of the device.
The following documents are required to fully comprehend the following contents:
MBLS1028A circuit diagram
MBLS1028A Preliminary User's Manual
LS1028A Data Sheet
U-Boot documentation: www.denx.de/wiki/U-Boot/Documentation
PTXdist documentation: www.ptxdist.de
TQ-Support Wiki: support.tq-group.com/doku.php?id=en:arm:tqmls1028a
This Preliminary User's Manual describes the TQMLS1028A, and refers to some software settings. A certain TQMLS1028A derivative does not necessarily provide all features described in this Preliminary User's Manual. This Preliminary User's Manual does also not replace the NXP CPU Reference Manuals. The information provided in this Preliminary User's Manual is only valid in connection with the tailored boot loader, which is preinstalled on the TQMLS1028A, and the BSP provided by TQ-Systems GmbH. See also chapter 6. The TQMLS1028A is a universal Minimodule based on the NXP Layerscape CPUs LS1028A / LS1018A / LS1027A / LS1017A.
®
These Layerscape CPUs are Single, or Dual Cortex
A72 with QorIQ technology. The TQMLS1028A extends the TQ-Systems GmbH product range and offers an outstanding computing performance. A suitable CPU derivative (LS1028A / LS1018A / LS1027A / LS1017A) can be selected for each requirement. All essential CPU pins are routed to the TQMLS1028A connectors. There are therefore no restrictions for customers using the TQMLS1028A with respect to an integrated customised design. Furthermore all components required for the CPU to function like DDR4 SDRAM, eMMC, power supply and power management
are integrated on the TQMLS1028A. The main TQMLS1028A characteristics are:
CPU derivatives LS1028A / LS1018A / LS1027A / LS1017A
DDR4 SDRAM, ECC as an assembly option
eMMC NAND Flash
QSPI NOR Flash
Single supply voltage 5 V
On-board RTC / EEPROM / temperature sensor
The MBLS1028A also serves as carrier board and reference platform for the TQMLS1028A.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 4
3.

OVERVIEW

3.1 Block diagram

Illustration 1: Block diagram TQMLS1028A (simplified)

3.2 System components

The TQMLS1028A provides the following key functions and characteristics:
Layerscape CPUs LS1028A / LS1018A / LS1027A / LS1017A
Oscillators
Reset structure, Supervisor and Power Management
System Controller for Reset-configuration and Power Management
Power supply, and Power-Sequencing
Voltage supervision
Temperature sensors
RTC
EEPROM
DDR4 SDRAM with ECC
QSPI NOR Flash
eMMC NAND Flash
Two connectors (240 pins)
All essential CPU pins are routed to the TQMLS1028A connectors. There are therefore no restrictions for customers using the TQMLS1028A with respect to an integrated customised design. All TQMLS1028A versions are fully pin-compatible and therefore interchangeable. The functionality of the different TQMLS1028A is mainly determined by the features provided by the respective CPU derivative.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 5
4.

ELECTRONICS

4.1 LS1028A CPU

4.1.1 LS1028A variants, block diagrams

Illustration 2: Block diagram LS1028A (Source: NXP
)
Illustration 3: Block diagram LS1018A (Source: NXP
)
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 6
4.1.1 LS1028A variants, block diagrams (continued)
Illustration 4: Block diagram LS1027A (Source: NXP)
Illustration 5: Block diagram LS1017A (Source: NXP
)
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 7

4.1.2 LS1028A variants, details

The following table shows the features provided by the different variants. Fields with a red background indicate differences; fields with a green background indicate compatibility.
Table 2: LS1028A variants
Feature LS1028A LS1027A LS1018A LS1017A
ARM® core 2 × Cortex®-A72 2 × Cortex®-A72 1 × Cortex®-A72 1 × Cortex®-A72
DDR 32-bit, DDR4 + ECC 32-bit, DDR4 + ECC 32-bit, DDR4 + ECC 32-bit, DDR4 + ECC
GPU 1 × GC7000UltraLite 1 × GC7000UltraLite
Ethernet
PCIe
USB
4 × 2.5 G/1 G switched Eth (TSN enabled)
1 × 2.5 G/1 G Eth (TSN enabled)
1 × 1 G Eth
2 × Gen 3.0 Controllers (RC or RP)
2 × USB 3.0 with PHY (Host or Device)
4 × 2.5 G/1 G switched Eth (TSN enabled)
1 × 2.5 G/1 G Eth (TSN enabled)
1 × 1 G Eth
2 × Gen 3.0 Controllers (RC or RP)
2 × USB 3.0 with PHY (Host or Device)
4 × 2.5 G/1 G switched Eth (TSN enabled)
1 × 2.5 G/1 G Eth (TSN enabled)
1 × 1 G Eth
2 × Gen 3.0 Controllers (RC or RP)
2 × USB 3.0 with PHY (Host or Device)
4 × 2.5 G/1 G switched Eth (TSN enabled)
1 × 2.5 G/1 G Eth (TSN enabled)
1 × 1 G Eth
2 × Gen 3.0 Controllers (RC or RP)
2 × USB 3.0 with PHY (Host or Device)

4.2 Reset Logic and Supervisor

The reset logic contains the following functions:
Monitoring the voltages on the module
External reset input
PGOOD output for power-up of circuits on the carrier board
Reset LED (Function: PORESET# low: LED lights up)
Table 3: Reset- and Status signals on the TQMLS1028A
Signal Source Target Remark
PORESET#
HRESET#
Supervisor, Board, JTAG, System Controller
Supervisor, Board, JTAG, System Controller
CPU
CPU, LED 1.8 V
RESET_REQ# CPU Board
Signal is available externally with
3.3 V level as RESET_OUT#.
Internal feedback to supervisor, signal is available externally with 3.3 V level as RESET_REQ_OUT#.
TRST# JTAG CPU 1.8 V
PGOOD Supervisor System Controller, Board 3.3 V

4.2.1 Supervisor

System controller + serial voltage reference + external comparators
PORESET# is connected to LED (pulse duration given by system controller)
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 8

4.2.2 Self-Reset

The LS1028A CPU can trigger or request a hardware reset via software. The output HRESET_REQ# is driven internally by the CPU and can be set by software in register RSTCR (bit 30). RESET_REQ# is returned to RESIN# within the TQMLS1028A (default). No additional feedback is necessary on the carrier board. When RESET_REQ# is triggered a self-reset is executed. Depending on how the feedback circuit is designed on the carrier board, the feedback circuit can "override" the internal
feedback and thus, if RESET_REQ# is active, it can either
Trigger a reset
Not trigger a reset
Trigger further actions on the carrier board in addition to the reset
RESET_REQ# is routed to the connector for this purpose (see Illustration 6: Feedback ). "Devices" that can trigger a RESET_REQ# see (3), chapter 4.8.3.
Illustration 6: Feedback HRESET_REQ#

4.2.3 JTAG-Reset TRST#

Coupling to PORESET#, optional pull-down to TRST#.
Illustration 7: Wiring TRST#
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 9
0x50 / 1010 000b
0xxx
1000
1001
1010
1011
1100
1101
1110
1111

4.3 CPU Configuration

4.3.1 RCW Source

The RCW source selection is managed by the system controller.
Table 4: RCW_SRC_SEL
Level Reset Configuration Source Required external pull-down (Module pull-up is 10 kΩ to 3.3 V)
80 – 100 % SD card None (open)
60 – 80 % eMMC 24 kΩ
40 – 60 % SPI NOR flash 10 kΩ
20 – 40 % Hard-coded 4.3 kΩ
0 – 20 % I2C EEPROM, Addr.
0 Ω (Pulled to Ground)

4.3.2 Configuration signals

The LS1028A CPU is configured via pins as well as via registers.
Table 5: Reset Configuration Signals
Reset cfg. name Functional Signal Name Default TQMLS1028A Variable 1
cfg_rcw_src[0:3] ASLEEP, CLK_OUT, UART1_SOUT, UART2_SOUT 1111 Several Yes
cfg_svr_src[0:1] XSPI1_A_CS0_B, XSPI1_A_CS1_B 11 ? ?
cfg_dram_type EMI1_MDC 1 1 = ? No
cfg_eng_use0 XSPI1_A_SCK 1 1 = ? ?
cfg_gpinput[0:3] SDHC1_DAT[0:3], I/O voltage EVDD (1.8 or 3.3 V!) 1111 Not driven, internal Pull-Ups
cfg_gpinput[4:7] XSPI1_B_DATA[0:3] 1111 Not driven, internal Pull-Ups
The following table shows the coding of the field cfg_rcw_src:
Table 6: Reset Configuration Source
cfg_rcw_src value (Binary) RCW source
Hard-coded RCW (TBD)
SDHC1 (SD card)
SDHC2 (eMMC)
I2C1 extended addressing 2
Reserved
XSPI1A NAND 2 KB pages
XSPI1A NAND 4 KB pages
Reserved
XSPI1A NOR
Green Standard configuration Yellow Configuration for development and debugging
1: Yes via shift register; No fixed value; 3-fold pad by assembly. 2: Device address 0x50 / 1010 000b = Configuration EEPROM.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 10

4.3.3 Reset Configuration Word

The RCW structure (Reset Configuration Word) can be found in the TQMLS1028A Reference Manual (3). The Reset Configuration Word (RCW) is transferred to the CPU as memory structure. It has the same format as the Pre-Boot Loader (PBL). It has a start identifier and a CRC. The Reset Configuration Word has 1024 bits: 128 bytes user data (memory image) + 4 bytes preamble + 4 bytes address + 8 bytes end command incl. CRC = 144 bytes.
Note: Adaption of RCW
The RCW must be adapted to the actual application. This applies, for example, to SerDes configuration and I/O multiplexing.
To create the RCW, NXP offers a tool with a graphical user interface (QorIQ Configuration and Validation Suite 4.2), which is available free of charge for registered users.

4.3.4 Settings via Pre-Boot-Loader PBL

In addition to the Reset Configuration Word, the PBL offers a further possibility to configure the CPU without any additional software. The PBL uses the same data structure as the RCW or extends it. For details see (3), Table 27-2.

4.3.5 Error handling during RCW loading.

If an error occurs while loading the RCW or in the PBL, the CPU proceeds as follows, see (3), Table 4.6:
Halt the Reset Sequence on RCW Error Detection. If the Service Processor reports an error during its process of loading the RCW data, the following occurs:
The device reset sequence is halted, remaining in this state.
An error code is reported by the SP in RCW_COMPLETION[ERR_CODE].
A request for a reset of the SoC is captured in RSTRQSR1[SP_RR], which generates a reset request if not masked by
RSTRQMR1[SP_MSK].
This state can only be exited with a PORESET_B or Hard Reset."

4.4 System Controller

The TQMLS1028A uses a system controller for housekeeping and initialization functions. This system controller also performs power sequencing and voltage monitoring.
The functions are in detail:
Correctly timed output of the reset configuration signal cfg_rcw_src[0:3]
- Input for selection cfg_rcw_src, analog level to encode five states:
1. SD card
2. eMMC
3. NOR Flash
4. Hard-coded
2
C
5. I
Power Sequencing: Control of power-up sequence of all module-internal supply voltages
Voltage monitoring: Monitoring of all supply voltages (assembly option)
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 11
LS1028A
eMMC
5
.x
SDHC2_CLK
SDHC2_CMD
CLK
CMD
SDHC2_DATA[7:0]
DAT[
7:0
]
SDHC2_RESET_B
RST#
SDHC
2_STROBE
DS
VCC
VCCQ
1.8 V
3
.3 V

4.5 System Clock

The system clock is fixed at 100 MHz. Spread spectrum clocking is not possible.

4.6 Flash

Assembled on TQMLS1028A:
QSPI NOR Flash
eMMC NAND Flash, Configuration as SLC is possible (higher reliability, half capacity)
External removable storage device:
SD card (on MBLS1028A)
All above mentioned options, except NAND flash, are supported (external SD card on carrier board).

4.6.1 QSPI NOR Flash

QSPI flash with 1.8 V I/O voltage, 4 or 8 bidirectional data lines, separate read strobe.
Software support for STR and DTR.
64 to 512 MByte

4.6.2 eMMC / SD card

The LS1028A CPU provides two SDHC interfaces. One is for SD cards (with switchable I/O voltage), the other for eMMC (with fixed I/O voltage).
Illustration 8: Block diagram eMMC interface
The eMMC is connected to SDHC2. The maximum transfer rate corresponds to the HS400 mode (eMMC from 5.0).

4.7 SDRAM

DDR4 SDRAM is used on the TQMLS1028A. Expansion stages with 1, 2, 4 or 8 GB are possible.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 12

4.8 EEPROM

4.8.1 Data EEPROM 24LC256T

The EEPROM is empty on delivery.
256 Kbit or not assembled
3 decoded address lines
Connected to I
2
C controller 1 of the CPU
Device address is 0x57 / 1010 111b

4.8.2 Configuration EEPROM SE97B

The temperature sensor SE97BTP also contains a 2 Kbit (256 × 8 Bit) EEPROM. The EEPROM is divided into two parts. The lower 128 bytes (00h to 7Fh) can be set to Permanent Write Protected (PWP) mode or Reversible Write Protected (RWP)
mode by software. The upper 128 bytes (80h to FFh) cannot be write-protected and can be used for general data storage.
Illustration 9: Memory Map SE97BTP EEPROM
2
The EEPROM can be accessed with the following two I
C addresses.
EEPROM (Normal Mode): 0x50 / 1010 000b
EEPROM (Protected Mode): 0x30 / 0110 000b
The configuration EEPROM contains a standard reset configuration at delivery. The configuration EEPROM is only one of several options for storing the reset configuration.
By means of the standard reset configuration in the EEPROM, a correctly configured system can always be achieved by simply changing the Reset Configuration Source.
If the Reset Configuration Source is selected accordingly, 4 + 4 + 64 + 8 bytes = 80 bytes are required for the reset configuration. It can also be used for the Pre-Boot Loader PBL.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 13

4.9 RTC

The RTC PCF85063ATL is supported by U-Boot and Linux kernel. The RTC is powered via V
, battery buffering is possible (battery on carrier board, see Illustration 10).
IN
The alarm output INTA# is routed to the module connectors. A wake-up is possible via the system controller.
2
The RTC is connected to the I The accuracy of the RTC is primarily determined by the characteristics of the quartz used. The type FC-135 used on the
TQMLS1028A has a standard frequency tolerance of ±20 ppm at +25 °C. (Parabolic coefficient: max. –0.04 × 10
C controller 1, device address is 0x51 / 1010 001b.
–6
/ °C2)
This results in an accuracy of approximately 2.6 seconds / day = 16 minutes / year.
Illustration 10: Block diagram RTC buffering

4.10 Temperature monitoring

Due to the high power dissipation, temperature monitoring is absolutely necessary in order to comply with the specified operating conditions and thus ensure reliable operation of the TQMLS1028A. The temperature critical components are:
CPU
DDR4 SDRAM
The following measuring points exist:
CPU temperature: Measurement via diode integrated in CPU, read out via external channel of SA56004
DDR4 SDRAM: Measurement by combined temperature sensor / EEPROM SE97B
VDD switching regulator: SA56004 (internal channel) for measuring the VDD switching regulator
The open-drain Alarm Outputs (open drain) are connected together and have a pull-up to signal TEMP_OS#. Control via I2C controller 1 of the CPU, device addresses see Table 9. Further details can be found in the SA56004EDP data sheet (5). An additional temperature sensor is integrated in the configuration EEPROM, see 4.8.2.

4.11 Supply

The TQMLS1028A requires a 5 V supply with a maximum tolerance ±5 %.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 14

4.12 Power consumption

4.12.1 Power consumption CPU

Since no values are yet available for the TQMLS1028A, these must be estimated:
Table 7: Power estimation CPU
CPU VDD [V] Clock Core / Platform [MHz] Power consumption [W]
LS1026A (measured) 1.0 1400 / 600 11.8
LS1026A (measured) 0.9 1200 / 400 8.1
LS1028A (estimated) 1.0 1300 / 400 11.0
These maximum values (Worst Case) occur at 100 % load on all cores and DMA at 115% activity factor.

4.12.2 Power consumption TQMLS1028A

The given current consumptions have to be seen as typical values. The power consumption of the TQMLS1028A strongly depends on the application, the mode of operation and the operating system.
The following table shows details of the TQMLS1028A supply and power consumption.
Table 8: Power consumption TQMLS1028A
Module Power dissipation max. Power dissipation typ. (Thermal Design Power)
TQMLS1028A 16 W 12.5 W
TQMLS1018A, TQMLS1027A, TQMLS1017A (lower) (lower)

4.13 Voltage monitoring

The permitted voltage ranges are given by the data sheets of the components and, if applicable, the tolerance range of the voltage monitoring. Voltage monitoring is an assembly option.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 15
0x57 / 1010 111b
0x11 / 0010 001b
0x51 / 1010 001b
0x4C / 1001 101b
0x18 / 0011 000b
0x50 / 1010 000b
0x30 / 0110 000b

4.14 Interfaces to other systems and devices

4.14.1 UART

The UART interfaces are directly connected to the TQMLS1028A connectors.
2
4.14.2 I
C bus
Table 9: I2C1 device addresses
Function Device Address (7 bit) / (8 bit) Remark
Data EEPROM 24LC256
System Controller MKL04Z16
RTC PCF85063A
Temperature Sensor SA560004EDP 3
Temperature
Temperature Sensor / EEPROM SE97BTP
EEPROM, unprotected
EEPROM, protected
2
All six I
C buses of the LS1028A CPU (I2C1 to I2C6) are not terminated and routed to the TQMLS1028A connectors. The I2C1 bus is level shifted to 3.3 V and terminated with 4.7 k pull-ups to 3.3 V on the TQMLS1028A. The I2C devices on the TQMLS1028A are connected to the level-shifted I2C1 bus. More devices can be connected to the bus, but
additional external pull-ups may be necessary on account of the relatively high capacitive load.

4.14.3 JTAG

On the MBLS1082A is a 20-pin pin header with 100 mil pitch where various debuggers can be connected. Alternatively the LS1028A CPU can be addressed via OpenSDA.

4.15 TQMLS1028A interfaces

4.15.1 Pin multiplexing

When using the processor signals the multiple pin configurations by different processor-internal function units must be taken note of. The pins assignment listed in
Table 10, and Table 11 refer to the corresponding standard BSP of TQ-Systems GmbH in combination with the Starterkit MBLS1028A.
Attention: Destruction or malfunction
3: Address is compatible to ADT7461, LM86, MAX6657/8 und ADM1032.
Depending on the configuration many CPU pins can provide several different functions. Please take note of the information concerning the configuration of these pins in (1), before
integration or start-up of your carrier board / Starterkit.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 16
5 V
Power
VIN 3 4
VIN
Power
5 V
5 V
Power
VIN 5 6
VIN
Power
5 V
5 V
Power
VIN 7 8
VIN
Power
5 V
5 V
Power
VIN 9 10
VIN
Power
5 V
5 V
Power
VIN
11
12
VIN
Power
5 V
3.0 V
Power
VBAT
13
14
PGOOD
System
3.3 V
0 V
Power
DGND
15
16
DGND
Power
0 V
3.3 V
System
RESIN#
17
18
PROG_MTR
Factory Test
3.3 V
System
RCW_SRC_SEL
19
20
FA_VL
Factory Test
3.3 V
I2C
IIC1_SCL_3V3
21
22
TA_PROG_SFP
Factory Test
3.3 V
I2C
IIC1_SDA_3V3
23
24
TA_BB_VDD
Power
(VDD)
5 V (OC)
System
RTC_INT_OUT#
25
26
EVDD
Power
1.8 / 3.3 V
VBAT
System
RTC_CLKOUT
27
28
DGND
Power
0 V
0 V
Power
DGND
29
30
USB1_D_P
USB
0 V
Power
DGND
31
32
USB1_D_M
USB
USB
USB2_RX_P
33
34
DGND
Power
0 V – USB
USB2_RX_M
35
36
DGND
Power
0 V
0 V
Power
DGND
37
38
USB1_RX_P
USB
0 V
Power
DGND
39
40
USB1_RX_M
USB
USB
USB2_TX_P
41
42
DGND
Power
0 V
USB
USB2_TX_M
43
44
DGND
Power
0 V
0 V
Power
DGND
45
46
USB1_TX_P
USB
0 V
Power
DGND
47
48
USB1_TX_M
USB
USB
USB2_D_P
49
50
DGND
Power
0 V
USB
USB2_D_M
51
52
DGND
Power
0 V
0 V
Power
DGND
53
54
USB1_VBUS
USB
USB
USB2_VBUS
55
56
USB1_ID
USB
USB
USB2_ID
57
58
USB_PWRFAULT
USB
1.8 V
1.8 V
USB
USB_DRVVBUS
59
60
VCC1V8
Factory Test
1.8 V
2.5 V
Factory Test
VCC2V5
61
62
DGND
Power
0 V
0 V
Power
DGND
63
64
XSPI1_A_DATA1
XSPI
1.8 V
1.8 V
XSPI
XSPI1_A_DATA0
65
66
XSPI1_A_DATA3
XSPI
1.8 V
1.8 V
XSPI
XSPI1_A_DATA2
67
68
XSPI1_A_DATA5
XSPI
1.8 V
1.8 V
XSPI
XSPI1_A_DATA4
69
70
XSPI1_A_DATA7
XSPI
1.8 V
1.8 V
XSPI
XSPI1_A_DATA6
71
72
XSPI1_A_CS0#
XSPI
1.8 V
1.8 V
XSPI
XSPI1_A_CS1#
73
74
XSPI1_A_DQS
XSPI
1.8 V
1.8 V
XSPI
XSPI1_A_SCK
75
76
DGND
Power
0 V
0 V
Power
DGND
77
78
SDHC2_CLK
SDHC
1.8 V
1.8 V
SDHC
SDHC2_CMD
79
80
DGND
Power
0 V
1.8 V
SDHC
SDHC2_DS
81
82
SDHC2_DAT0
SDHC
1.8 V
1.8 V
SDHC
SDHC2_DAT4
83
84
SDHC2_DAT1
SDHC
1.8 V
0 V
Power
DGND
85
86
SDHC2_DAT2
SDHC
1.8 V
1.8 V
SDHC
SDHC2_DAT5
87
88
SDHC2_DAT3
SDHC
1.8 V
1.8 V
SDHC
SDHC2_DAT6
89
90
DGND
Power
0 V
1.8 V
SDHC
SDHC2_DAT7
91
92
VCC1V2
Factory Test
1.8 V
0 V
Power
DGND
93
94
DP_HPD
DP
1.8 V
(DP_SVDD)
DP
DP_REFCLK_P
95
96
DGND
Power
0 V
(DP_SVDD)
DP
DP_REFCLK_N
97
98
DGND
Power
0 V
0 V
Power
DGND
99
100
DP_LANE0_P
DP
(DP_SVDD)
0 V
Power
DGND
101
102
DP_LANE0_N
DP
(DP_SVDD)
(DP_SVDD)
DP
DP_LANE1_P
103
104
DGND
Power
0 V
(DP_SVDD)
DP
DP_LANE1_N
105
106
DGND
Power
0 V
0 V
Power
DGND
107
108
DP_LANE2_P
DP
(DP_SVDD)
0 V
Power
DGND
109
110
DP_LANE2_N
DP
(DP_SVDD)
(DP_SVDD)
DP
DP_LANE3_P
111
112
DGND
Power
0 V
(DP_SVDD)
DP
DP_LANE3_N
113
114
DGND
Power
0 V
0 V
Power
DGND
115
116
DP_AUX_P
DP
(DP_SVDD)
0 V
Power
DGND
117
118
DP_AUX_N
DP
(DP_SVDD)
0.6 V
Factory Test
VCC2V5
119
120
DGND
Power
0 V

4.15.2 Pinout TQMLS1028A

Table 10: Pinout connector X1
Ball Level Group Signal Pin Signal Group Level Ball
5 V Power VIN 1 2 VIN Power 5 V
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 17
3.3 V
System
SWD_CLK/PWM_VREF
3 4 TEMP_CRIT_MOD#
System
3.3 V
0 V
Power
DGND 5 6
VCC3V3S
Factory Test
3.3 V
1.8 V
SDHC
SDHC1_VSEL
7 8 DGND
Power
0 V
1.8 / 3.3 V
SDHC
SDHC1_CLK
9
10
CLK_OUT
Debug
1.8 V
1.8 / 3.3 V
SDHC
SDHC1_CMD
11
12
ASLEEP
Debug
1.8 V
0 V
Power
DGND
13
14
TA_TMP_DETECT#
Trust
1.8 V
1.8 / 3.3 V
SDHC
SDHC1_DAT0
15
16
TA_BB_TMP_DETECT#
Trust
(TA_BB_VDD)
1.8 / 3.3 V
SDHC
SDHC1_DAT1
17
18
DGND
Power
0 V
1.8 / 3.3 V
SDHC
SDHC1_DAT2
19
20
IIC1_SCL
I2C
1.8 V
1.8 / 3.3 V
SDHC
SDHC1_DAT3
21
22
IIC1_SDA
I2C
1.8 V
0 V
Power
DGND
23
24
IIC2_SCL
I2C
1.8 V
1.8 V
UART
UART1_SIN
25
26
IIC2_SDA
I2C
1.8 V
1.8 V
UART
UART1_SOUT
27
28
IIC3_SCL
I2C
1.8 V
1.8 V
UART
UART2_SIN
29
30
IIC3_SDA
I2C
1.8 V
1.8 V
UART
UART2_SOUT
31
32
IIC4_SCL
I2C
1.8 V
0 V
Power
DGND
33
34
IIC4_SDA
I2C
1.8 V
(VDD_1)
Factory Test
VDD_1
35
36
IIC5_SCL
I2C
1.8 V
(VDD)
Factory Test
VDD
37
38
IIC5_SDA
I2C
1.8 V
1.35 V
Factory Test
VCC1V35
39
40
IIC6_SCL
I2C
1.8 V
0 V
Power
DGND
41
42
IIC6_SDA
I2C
1.8 V
(SVDD)
SerDes
SD1_REF_CLK1_P
43
44
DGND
Power
0 V
(SVDD)
SerDes
SD1_REF_CLK1_N
45
46
DGND
Power
0 V
0 V
Power
DGND
47
48
SD1_RX0_P
SerDes
(SVDD)
0 V
Power
DGND
49
50
SD1_RX0_N
SerDes
(SVDD)
(XVDD)
SerDes
SD1_TX0_P
51
52
DGND
Power
0 V
(XVDD)
SerDes
SD1_TX0_N
53
54
DGND
Power
0 V
0 V
Power
DGND
55
56
SD1_RX1_P
SerDes
(SVDD)
0 V
Power
DGND
57
58
SD1_RX1_N
SerDes
(SVDD)
(XVDD)
SerDes
SD1_TX1_P
59
60
DGND
Power
0 V
(XVDD)
SerDes
SD1_TX1_N
61
62
DGND
Power
0 V
0 V
Power
DGND
63
64
SD1_RX2_P
SerDes
(SVDD)
0 V
Power
DGND
65
66
SD1_RX2_N
SerDes
(SVDD)
(XVDD)
SerDes
SD1_TX2_P
67
68
DGND
Power
0 V
(XVDD)
SerDes
SD1_TX2_N
69
70
DGND
Power
0 V
0 V
Power
DGND
71
72
SD1_RX3_P
SerDes
(SVDD)
0 V
Power
DGND
73
74
SD1_RX3_N
SerDes
(SVDD)
(XVDD)
SerDes
SD1_TX3_P
75
76
DGND
Power
0 V
(XVDD)
SerDes
SD1_TX3_N
77
78
DGND
Power
0 V
0 V
Power
DGND
79
80
SD1_REF_CLK2_P
SerDes
(SVDD)
0 V
Power
DGND
81
82
SD1_REF_CLK2_N
SerDes
(SVDD)
1.8 V
SPI
SPI3_SCK
83
84
DGND
Power
0 V
1.8 V
SPI
SPI3_PCS0
85
86
SCAN_MODE#
Factory Test
1.8 V
1.8 V
SPI
SPI3_SIN
87
88
TEST_SEL#
Factory Test
1.8 V
1.8 V
SPI
SPI3_SOUT
89
90
TBSCAN_EN#
JTAG
1.8 V
0 V
Power
DGND
91
92
TDI
JTAG
1.8 V
1.8 V
Reset
PORESET#
93
94
TDO
JTAG
1.8 V
1.8 V
Reset
HRESET#
95
96
TCK
JTAG
1.8 V
1.8 V
Reset
RESET_REQ#
97
98
TMS
JTAG
1.8 V
0 V
Power
DGND
99
100
TRST#
JTAG
1.8 V
1.8 V
Ethernet
EC1_RX_DV
101
102
DGND
Power
0 V
1.8 V
Ethernet
EC1_RXD0
103
104
EC1_TXD0
Ethernet
1.8 V
1.8 V
Ethernet
EC1_RXD1
105
106
EC1_TXD1
Ethernet
1.8 V
1.8 V
Ethernet
EC1_RXD2
107
108
EC1_TXD2
Ethernet
1.8 V
1.8 V
Ethernet
EC1_RXD3
109
110
EC1_TXD3
Ethernet
1.8 V
1.8 V
Ethernet
EC1_RX_CLK
111
112
EC1_TX_EN
Ethernet
1.8 V
0 V
Power
DGND
113
114
DGND
Power
0 V
1.8 V
Ethernet
EC1_GTX_CLK
115
116
EMI1_MDC
Ethernet
1.8V (OVDD)
1.8 V
Ethernet
EC1_GTX_CLK125
117
118
EMI1_MDIO
Ethernet
1.8V (OVDD)
0 V
Power
DGND
119
120
DGND
Power
0 V
4.15.2 Pinout TQMLS1028A (continued)
Table 11: Pinout connector X2
Ball Level Group Signal Pin Signal Group Level Ball
3.3 V System SWD_IO 1 2 TEMP_ALERT# System 3.3 V (OC)
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 18
5.

MECHANICS

AK1
AK2
AK3
AK4

5.1 Assembly

Illustration 11: TQMLS1028A assembly, top
Illustration 12: TQMLS1028A assembly, bottom
The labels on the TQMLS1028A show the following information:
Table 12: Labels on TQMLS1028A
Label Text
AK1 2D serial number
AK2 2D MAC address
AK2 TQMLS1028A version and revision
AK4 Tests performed
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 19
top view through TQMLS1028A

5.2 Dimensions

Illustration 13: TQMLS1028A dimensions, side view
Illustration 14: TQMLS1028A dimensions,
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 20

5.3 Images

Illustration 15: TQMLS1028A, 3D, top view
Illustration 16: TQMLS1028A, 3D, bottom view
A 3D model is available in SolidWorks, STEP and 3D PDF formats. Please contact Support@tq-group.com.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 21

5.4 Connectors

The TQMLS1028A is connected to the carrier board with 240 pins on two connectors.
The following table shows details of the connector assembled on the TQMLS1028A.
Table 13: Connector assembled on TQMLS1028A
Manufacturer Part number Remark
0.8 mm pitch
TE connectivity 120-pin: 5177985-5
Plating: Gold 0.2 µm
–40 °C to +125 °C
The TQMLS1028A is held in the mating connectors with a retention force of approximately 24 N. To avoid damaging the TQMLS1028A connectors as well as the carrier board connectors while removing the TQMLS1028A
the use of the extraction tool MOZI8XX is strongly recommended. See chapter 5.9 for further information.
Attention: Component placement on the carrier board
2.5 mm should be kept free on the carrier board, on both long sides of the TQMLS1028A for the extraction tool MOZI8XX.
The following table shows some suitable mating connectors for the carrier board.
Table 14: Carrier board mating connectors
Manufacturer Pin count / part number Remark Stack height (X)
120-pin: 5177986-5 On MBLS1028A 5 mm
120-pin: 1-5177986-5 6 mm
TE connectivity
120-pin: 2-5177986-5 7 mm
120-pin: 3-5177986-5 8 mm
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 22
6.

SOFTWARE

5.5 Adaptation to the environment

The TQMLS1028A overall dimensions (length × width) are 80 × 60 mm
2
. The CPU on the TQMLS1028A has a maximum height of approximately 8.6 mm above the MBLS1028A. The TQMLS1028A weighs approximately 33 grams.

5.6 Protection against external effects

As an embedded module, the TQMLS1028A is not protected against dust, external impact and contact (IP00). Adequate protection has to be guaranteed by the surrounding system.

5.7 Thermal management

To cool the TQMLS1028A, a theoretical maximum of approximately 18 W have to be dissipated. The power dissipation originates primarily in the CPU and the DDR4 SDRAM. The power dissipation also depends on the software used and can vary according to the application.
Attention: Destruction or malfunction
The TQMLS1028A belongs to a performance category in which a cooling system is essential in most applications. It is the user’s sole responsibility to define a suitable heat sink (weight and mounting position) depending on the specific mode of operation (e.g., dependence on clock frequency, stack height, airflow, and software). Particularly the tolerance chain (PCB thickness, board warpage, BGA balls, BGA package, thermal pad, heatsink) as well as the maximum pressure on the LS1028A must be taken into consideration when connecting the heat sink, see (2).
The LS1028A is not necessarily the highest component. Inadequate cooling connections can lead to overheating of the TQMLS1028A and thus malfunction, deterioration or destruction.

5.8 Structural requirements

The TQMLS1028A is held in the mating connectors by the retention force of the pins (240). If high requirements are set for vibration and shock resistance, additional fastening may be necessary.

5.9 Notes of treatment

To avoid damage caused by mechanical stress, the TQMLS1028A may only be extracted from the carrier board by using the extraction tool MOZI8XX that can also be obtained separately.
Attention: Component placement on the carrier board
2.5 mm should be kept free on the carrier board, on both long sides of the TQMLS1028A for the extraction tool MOZI8XX.
The TQMLS1028A is delivered with a preinstalled boot loader and a BSP, which is configured for the Starterkit MBLS1028A. The boot loader provides TQMLS1028A-specific as well as board-specific settings, e.g.:
CPU configuration
PMIC configuration
DDR4 SDRAM configuration and timing
eMMC configuration
Multiplexing
Clocks
Pin configuration
Driver strengths
More information can be found in the Support Wiki for the TQMLS1028A
.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 23
7.

SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS

7.1 EMC

The TQMLS1028A was developed according to the requirements of electromagnetic compatibility (EMC). Depending on the target system, anti-interference measures may still be necessary to guarantee the adherence to the limits for the overall system.
The following measures are recommended:
Robust ground planes (adequate ground planes) on the printed circuit board.
A sufficient number of blocking capacitors in all supply voltages.
Fast or permanently clocked lines (e.g., clock) should be kept short;
avoid interference of other signals by distance and / or shielding besides, take note of not only the frequency, but also the signal rise times.
Filtering of all signals, which can be connected externally (also "slow signals" and DC can radiate RF indirectly).
Since the TQMLS1028A is plugged on an application-specific carrier board, EMC or ESD tests only make sense for the whole device.

7.2 ESD

In order to avoid interspersion on the signal path from the input to the protection circuit in the system, the protection against electrostatic discharge should be arranged directly at the inputs of a system. As these measures always have to be implemented on the carrier board, no special preventive measures were planned on the TQMLS1028A.
The following measures are recommended for a carrier board:
Generally applicable: Shielding of inputs (shielding connected well to ground / housing on both ends)
Supply voltages: Protection by suppressor diode(s)
Slow signals: RC filtering / Zener diode(s)
Fast signals: Integrated protective devices (e.g., suppressor diode arrays)

7.3 Operational safety and personal security

Due to the occurring voltages (≤5 V DC), tests with respect to the operational and personal safety have not been carried out.

7.4 Climatic and operational conditions

The possible temperature range strongly depends on the installation situation (heat dissipation by heat conduction and convection); hence, no fixed value can be given for the whole assembly.
In general, a reliable operation is given when following conditions are met:
Table 15: Climate and operational conditions
Parameter Range Remark
Permitted Environment temperature –40 °C to +85 °C
Permitted storage temperature –40 °C to +100 °C
Relative humidity (operating / storage) 10 % to 90 % Not condensing
Detailed information concerning the CPUs’ thermal characteristics is to be taken from the NXP Reference Manuals (1).

7.5 Reliability and service life

The calculated theoretical MTBF of the TQMLS1028A is (TBD) h @ +40 °C environmental temperature, ground benign. The TQMLS1028A is designed to be insensitive to vibration and impact. High quality industrial grade connectors are assembled on the TQMLS1028A.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 24
8.

ENVIRONMENT PROTECTION

8.1 RoHS

The TQMLS1028A is manufactured RoHS compliant.
All components and assemblies are RoHS compliant
The soldering processes are RoHS compliant
8.2 WEEE
The final distributor is responsible for compliance with the WEEE
®
®
regulation.
Within the scope of the technical possibilities, the TQMLS1028A was designed to be recyclable and easy to repair.
®
8.3 REACH
The EU-chemical regulation 1907/2006 (REACH
®
regulation) stands for registration, evaluation, certification and restriction of substances SVHC (Substances of very high concern, e.g., carcinogen, mutagen and/or persistent, bio accumulative and toxic). Within the scope of this juridical liability, TQ-Systems GmbH meets the information duty within the supply chain with regard to the SVHC substances, insofar as suppliers inform TQ-Systems GmbH accordingly.

8.4 EuP

The Ecodesign Directive, also Energy using Products (EuP), is applicable to products for the end user with an annual quantity >200,000. The TQMLS1028A must therefore always be seen in conjunction with the complete device.
The available standby and sleep modes of the components on the TQMLS1028A enable compliance with EuP requirements for the TQMLS1028A.

8.5 Battery

No batteries are assembled on the TQMLS1028A.

8.6 Packaging

By environmentally friendly processes, production equipment and products, we contribute to the protection of our environment. To be able to reuse the TQMLS1028A, it is produced in such a way (a modular construction) that it can be easily repaired and disassembled. The energy consumption of this subassembly is minimised by suitable measures. The TQMLS1028A is delivered in reusable packaging.

8.7 Other entries

The energy consumption of this subassembly is minimised by suitable measures. Due to the fact that at the moment there is still no technical equivalent alternative for printed circuit boards with bromine-
containing flame protection (FR-4 material), such printed circuit boards are still used. No use of PCB containing capacitors and transformers (polychlorinated biphenyls). These points are an essential part of the following laws:
The law to encourage the circular flow economy and assurance of environmentally acceptable removal of waste as at 27.9.94 (Source of information: BGBl I 1994, 2705)
Regulation with respect to the utilization and proof of removal as at 1.9.96 (Source of information: BGBl I 1996, 1382, (1997, 2860))
Regulation with respect to the avoidance and utilization of packaging waste as at 21.8.98 (Source of information: BGBl I 1998, 2379)
Regulation with respect to the European Waste Directory as at 1.12.01 (Source of information: BGBl I 2001, 3379)
This information is to be seen as notes. Tests or certifications were not carried out in this respect.
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 25
9.

APPENDIX

9.1 Acronyms and definitions

The following acronyms and abbreviations are used in this document:
Table 16: Acronyms
Acronym Meaning
Acronym Meaning
ARM® Advanced RISC Machine
BGA Ball Grid Array
BIOS Basic Input/Output System
BSP Board Support Package
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DC Direct Current
DDR Double Data Rate
DMA Direct Memory Access
DP Display Port
EC European Community
ECC Error Checking and Correction
EEPROM Electrically Erasable Programmable Read-only Memory
EMC Electromagnetic Compatibility
eMMC embedded Multi-Media Card
ESD Electrostatic Discharge
EuP Energy using Products
FR-4 Flame Retardant 4
GPU Graphics Processing Unit
I Input
I2C Inter-Integrated Circuit
IIC Inter-Integrated Circuit
IP00 Ingress Protection 00
JTAG® Joint Test Action Group
LED Light Emitting Diode
MAC Media Access Control
MOZI Module extractor (Modulzieher)
MTBF Mean operating Time Between Failures
NAND Not-And
NOR Not-Or
O Output
OC Open-Collector
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 26
9.1 Acronyms and definitions (continued)
Table 16: Acronyms (continued)
Acronym Meaning
PBL Pre-Boot Loader
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect express
PCMCIA People Can't Memorize Computer Industry Acronyms
PD Pull-Down
PHY Physical (device)
PMIC Power Management Integrated Circuit
PU Pull-Up
PWP Permanent Write Protected
QSPI Quad Serial Peripheral Interface
RCW Reset Configuration Word
REACH® Registration, Evaluation, Authorisation (and restriction of) Chemicals
RoHS Restriction of (the use of certain) Hazardous Substances
RTC Real-Time Clock
RWP Reversible Write Protected
SD card Secure Digital Card
SDHC Secure Digital High Capacity
SDRAM Synchronous Dynamic Random Access Memory
SLC Single Level Cell (memory technology)
SoC System on Chip
SPI Serial Peripheral Interface
STEP Standard for the Exchange of Product (model data)
STR Single Transfer Rate
SVHC Substances of Very High Concern
TBD To Be Determined
TSN Time-Sensitive Networking
UART Universal Asynchronous Receiver / Transmitter
UM User's Manual
USB Universal Serial Bus
WEEE® Waste Electrical and Electronic Equipment
Preliminary User's Manual l TQMLS1028A UM 0001 l © 2019, TQ-Systems GmbH Page 27

9.2 References

Table 17: Further applicable documents
No.: Name Rev., Date Company
(1) LS1028A / LS1018A Data Sheet Rev. C, 06/2018 NXP
(2) LS1027A / LS1017A Data Sheet Rev. C, 06/2018 NXP
(3) LS1028A Reference Manual Rev. B, 12/2018 NXP
(4) QORIQPMWP QorIQ Power Management Rev. 0, 12/2014 NXP
(5) Data Sheet SA56004X Rev. 7, 25 February 2013 NXP
(6) MBLS1028A User’s Manual – current – TQ-Systems
(7) TQMLS1028A Support-Wiki – current – TQ-Systems
TQ-Systems GmbH
Mühlstraße 2 l Gut Delling l 82229 Seefeld
Info@TQ-Group | TQ-Group
Loading...