TQ-Systems MBLS1012AL Preliminary User's Manual

MBLS1012AL Preliminary User's Manual
MBLS1012AL UM 0001
29.04.2019
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page i
TABLE OF CONTENTS
ABOUT THIS MANUAL ................................................................................................................................................................................ 1
1.
1.1 Copyright and licence expenses ............................................................................................................................................................. 1
1.2 Registered trademarks ............................................................................................................................................................................... 1
1.3 Disclaimer ...................................................................................................................................................................................................... 1
1.4 Imprint ............................................................................................................................................................................................................ 1
1.5 Tips on safety ................................................................................................................................................................................................ 2
1.6 Symbols and typographic conventions ............................................................................................................................................... 2
1.7 Handling and ESD tips ............................................................................................................................................................................... 2
1.8 Naming of signals ........................................................................................................................................................................................ 3
1.9 Further applicable documents / presumed knowledge ................................................................................................................. 3
2. BRIEF DESCRIPTION .................................................................................................................................................................................... 4
3. TECHNICAL DATA ........................................................................................................................................................................................ 4
3.1 System architecture and functionality .................................................................................................................................................. 4
3.1.1 Block diagram MBLS1012AL .................................................................................................................................................................... 4
3.1.2 Functionality and interfaces .................................................................................................................................................................... 5
4. ELECTRONICS ................................................................................................................................................................................................ 6
4.1 System components ................................................................................................................................................................................... 6
4.1.1 TQMLS1012AL .............................................................................................................................................................................................. 6
4.1.2 Power supply ................................................................................................................................................................................................ 6
4.1.3 Protective circuit .......................................................................................................................................................................................... 7
4.1.4 Voltage regulators ...................................................................................................................................................................................... 8
4.2 Communication interfaces ....................................................................................................................................................................... 9
4.2.1 DAPLink / OpenSDA ................................................................................................................................................................................... 9
4.2.2 Debug UART ................................................................................................................................................................................................. 9
4.2.3 eMMC .............................................................................................................................................................................................................. 9
4.2.4 Gigabit Ethernet (Link) ............................................................................................................................................................................ 10
4.2.5 Gigabit Ethernet (Switch ports) ........................................................................................................................................................... 11
4.2.6 I2C .................................................................................................................................................................................................................. 12
4.2.7 JTAG .............................................................................................................................................................................................................. 13
4.2.8 Mini PCIe ..................................................................................................................................................................................................... 15
4.2.9 RTC backup supply .................................................................................................................................................................................. 17
4.2.10 SATA ............................................................................................................................................................................................................. 17
4.2.11 SD card ......................................................................................................................................................................................................... 18
4.2.12 SPI .................................................................................................................................................................................................................. 18
4.2.13 USB ................................................................................................................................................................................................................ 19
4.2.14 WLAN ........................................................................................................................................................................................................... 20
4.3 Reset structure .......................................................................................................................................................................................... 21
4.4 Boot-Mode configuration ...................................................................................................................................................................... 22
4.5 Diagnostic and user interfaces ............................................................................................................................................................. 23
4.5.1 DIP switch S1 ............................................................................................................................................................................................. 23
4.5.2 GPIOs ............................................................................................................................................................................................................ 24
4.5.3 GPIO port expander ................................................................................................................................................................................. 25
4.5.4 Header X22 ................................................................................................................................................................................................. 26
4.5.5 LEDs .............................................................................................................................................................................................................. 28
4.5.6 Push buttons .............................................................................................................................................................................................. 29
4.5.7 Reset Push button .................................................................................................................................................................................... 29
4.5.8 Temperature sensor ................................................................................................................................................................................ 30
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page ii
TABLE OF CONTENTS (continued)
5.
SOFTWARE .................................................................................................................................................................................................. 30
6. MECHANICS ................................................................................................................................................................................................ 31
6.1 TQMLS1012AL and MBLS1012AL dimensions ................................................................................................................................ 31
6.2 Housing ....................................................................................................................................................................................................... 31
6.3 Thermal management ............................................................................................................................................................................ 32
6.4 Assembly ..................................................................................................................................................................................................... 32
7. SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS ......................................................................................................... 33
7.1 EMC ............................................................................................................................................................................................................... 33
7.2 ESD ................................................................................................................................................................................................................ 33
7.3 Operational safety and personal security ......................................................................................................................................... 33
8. CLIMATIC AND OPERATIONAL CONDITIONS ................................................................................................................................... 33
8.1 Protection against external effects ..................................................................................................................................................... 33
8.2 Reliability and service life....................................................................................................................................................................... 33
9. ENVIRONMENT PROTECTION ................................................................................................................................................................ 34
9.1 RoHS ............................................................................................................................................................................................................. 34
9.2 WEEE® .......................................................................................................................................................................................................... 34
9.3 REACH® ........................................................................................................................................................................................................ 34
9.4 EuP ................................................................................................................................................................................................................ 34
9.5 Packaging ................................................................................................................................................................................................... 34
9.6 Batteries ...................................................................................................................................................................................................... 34
9.6.1 General notes ............................................................................................................................................................................................ 34
9.6.2 Lithium batteries ...................................................................................................................................................................................... 34
9.7 Other entries .............................................................................................................................................................................................. 34
10. APPENDIX ................................................................................................................................................................................................... 35
10.1 Acronyms and definitions...................................................................................................................................................................... 35
10.2 References .................................................................................................................................................................................................. 37
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page iii
TABLE DIRECTORY
Table 1:
Terms and Conventions ..................................................................................................................................................................... 2
Table 2: Overview interfaces............................................................................................................................................................................. 5
Table 3: Overview Diagnostic and User Interfaces .................................................................................................................................... 5
Table 4: Parameter protective circuit ............................................................................................................................................................. 7
Table 5: Electrical parameters of voltage regulators ................................................................................................................................. 8
Table 6: Electrical parameters of PCIe and WLAN voltages..................................................................................................................... 8
Table 7: DIP switch setting for UART source ................................................................................................................................................ 9
Table 8: Pinout RJ-45 connector X23 for “Link“ ....................................................................................................................................... 10
Table 9: Characteristics Gigabit Ethernet X23 (Link) .............................................................................................................................. 10
Table 10: Pinout RJ-45 connector X12, X13 for “Switch“ ......................................................................................................................... 11
Table 11: Ethernet Switch, Port-Link Status information ........................................................................................................................ 11
Table 12: Characteristics Gigabit Ethernet (Link) ....................................................................................................................................... 11
Table 13: I2C devices, address mapping on TQMLS1012AL and MBLS1012AL ................................................................................ 12
Table 14: JTAG adapters .................................................................................................................................................................................... 13
Table 15: Pinout JTAG header X18 ................................................................................................................................................................. 14
Table 16: Pinout Mini PCIe X4 .......................................................................................................................................................................... 16
Table 17: Maximum permitted currents Mini PCIe X4 ............................................................................................................................. 16
Table 18: Pinout SIM-Card Connector X5 ..................................................................................................................................................... 16
Table 19: Electrical characteristics backup battery ................................................................................................................................... 17
Table 20: SATA transfer rates ........................................................................................................................................................................... 17
Table 21: Pinout microSD card X9 .................................................................................................................................................................. 18
Table 22: Unused CPU USB pins ...................................................................................................................................................................... 19
Table 23: Characteristics USB-Host ................................................................................................................................................................ 19
Table 24: Pinout WLAN module /Mini PCIe (USB) X3 ............................................................................................................................... 20
Table 25: Maximum permitted current consumption WLAN ................................................................................................................ 20
Table 26: Reset signals ....................................................................................................................................................................................... 21
Table 27: Boot-Mode-Select values for cfg_rcw_src ................................................................................................................................. 22
Table 28: DIP switch S1, functions .................................................................................................................................................................. 23
Table 29: Electrical characteristics of 1.8 V GPIOs ...................................................................................................................................... 24
Table 30: GPIO assignment............................................................................................................................................................................... 24
Table 31: Function of Port Expanders ........................................................................................................................................................... 25
Table 32: Pinout header X22 ............................................................................................................................................................................ 26
Table 33: X22, type of header .......................................................................................................................................................................... 27
Table 34: Status LEDs ......................................................................................................................................................................................... 28
Table 35: Push buttons ...................................................................................................................................................................................... 29
Table 36: Electrical characteristics LM75A ................................................................................................................................................... 30
Table 37: TQMSL1012AL dimensions ............................................................................................................................................................ 31
Table 38: Climatic and operational conditions MBLS1012AL ................................................................................................................ 33
Table 39: Acronyms ............................................................................................................................................................................................ 35
Table 40: Further applicable documents ..................................................................................................................................................... 37
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page iv
ILLUSTRATION DIRECTORY
Illustration 1:
Illustration 2: Block diagram TQMLS1012AL .......................................................................................................................................................... 6
Illustration 3: Block diagram protective circuit ..................................................................................................................................................... 7
Illustration 4: Positon of protective circuit ............................................................................................................................................................. 7
Illustration 5: Block diagram Debug UART1 ........................................................................................................................................................... 9
Illustration 6: Position of eMMC ................................................................................................................................................................................. 9
Illustration 7: Block diagram Ethernet Link ......................................................................................................................................................... 10
Illustration 8: Position of Gigabit Ethernet X23 (Link) ...................................................................................................................................... 10
Illustration 9: Position of Gigabit Ethernet X12, X13 (Switch) ....................................................................................................................... 11
Illustration 10: Block diagram I2C bus ...................................................................................................................................................................... 12
Illustration 11: Block diagram JTAG ......................................................................................................................................................................... 13
Illustration 12: Position of JTAG header X18 ......................................................................................................................................................... 14
Illustration 13: Block diagram Mini PCIe ................................................................................................................................................................. 15
Illustration 14: Position of Mini PCIe socket X4 .................................................................................................................................................... 16
Illustration 15: Position of backup battery X7 ....................................................................................................................................................... 17
Illustration 16: Position of SATA (M.2) connector X10 ........................................................................................................................................ 17
Illustration 17: Block diagram SD card .................................................................................................................................................................... 18
Illustration 18: Position of microSD card socket X9 ............................................................................................................................................ 18
Illustration 19: Block diagram USB 3.0 ..................................................................................................................................................................... 19
Illustration 20: Position of USB 3.0 stacked socket X6 ........................................................................................................................................ 19
Illustration 21: Position of WLAN X3 ........................................................................................................................................................................ 20
Illustration 22: Reset structure ................................................................................................................................................................................... 21
Illustration 23: Position of Reset LED ....................................................................................................................................................................... 22
Illustration 24: Position of DIP switch S1 ................................................................................................................................................................ 23
Illustration 25: Position of Port-Expander .............................................................................................................................................................. 25
Illustration 26: Position of header X22 .................................................................................................................................................................... 27
Illustration 27: Position of Status-LEDs ................................................................................................................................................................... 28
Illustration 28: Block diagram push buttons ......................................................................................................................................................... 29
Illustration 29: Position of push buttons ................................................................................................................................................................ 29
Illustration 30: Position of temperature sensor LM75A ..................................................................................................................................... 30
Illustration 31: TQMLS1012AL dimensions ............................................................................................................................................................ 31
Illustration 32: MBLS1012AL dimensions ............................................................................................................................................................... 31
Illustration 33: MBLS1012AL component placement top ................................................................................................................................. 32
Illustration 34: MBLS1012AL component placement bottom ......................................................................................................................... 32
Block diagram MBLS1012AL ............................................................................................................................................................. 4
REVISION HISTORY
Rev. Date Name Pos. Modification
0001 29.04.2019 Petz First issue
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 1
1.

ABOUT THIS MANUAL

1.1

Copyright and licence expenses

1.2

Registered trademarks

1.3

Disclaimer

Important Notice:
1.4

Imprint

D-82229 Seefeld
Copyright protected © 2019 by TQ-Systems GmbH. This Preliminary User's Manual may not be copied, reproduced, translated, changed or distributed, completely or partially in
electronic, machine readable, or in any other form without the written consent of TQ-Systems GmbH. The drivers and utilities for the components used as well as the BIOS are subject to the copyrights of the respective
manufacturers. The licence conditions of the respective manufacturer are to be adhered to. Bootloader-licence expenses are paid by TQ-Systems GmbH and are included in the price. Licence expenses for the operating system and applications are not taken into consideration and must be calculated / declared
separately.
TQ-Systems GmbH aims to adhere to copyrights of all graphics and texts used in all publications, and strives to use original or license-free graphics and texts.
All brand names and trademarks mentioned in this Preliminary User's Manual, including those protected by a third party, unless specified otherwise in writing, are subjected to the specifications of the current copyright laws and the proprietary laws of the present registered proprietor without any limitation. One should conclude that brand and trademarks are rightly protected by a third party.
TQ-Systems GmbH does not guarantee that the information in this Preliminary User's Manual is up-to-date, correct, complete or of good quality. Nor does TQ-Systems GmbH assume guarantee for further usage of the information. Liability claims against TQ­Systems GmbH, referring to material or non-material related damages caused, due to usage or non-usage of the information given in this Preliminary User's Manual, or due to usage of erroneous or incomplete information, are exempted, as long as there is no proven intentional or negligent fault of TQ-Systems GmbH.
TQ-Systems GmbH explicitly reserves the rights to change or add to the contents of this Preliminary User's Manual or parts of it without special notification.
Before using the Starterkit MBLS1012AL or parts of the MBLS1012AL schematics, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. TQ-Systems GmbH makes no other warranties including, but not limited to, any implied warranty of merchantability or fitness for a particular purpose. Except where prohibited by law, TQ-Systems GmbH will not be liable for any indirect, special, incidental or consequential loss or damage arising from the usage of the Starterkit MBLS1012AL or schematics used, regardless of the legal theory asserted.
TQ-Systems GmbH Gut Delling, Mühlstraße 2
Tel: +49 8153 9308–0 Fax: +49 8153 9308–4223 E-Mail: Info@TQ-Group Web: TQ-Group
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 2
1.5

Tips on safety

1.6

Symbols and typographic conventions

Command
1.7

Handling and ESD tips

Improper or incorrect handling of the product can substantially reduce its life span.
Table 1: Terms and Conventions
Symbol Meaning
This symbol represents the handling of electrostatic-sensitive modules and / or components. These components are often damaged / destroyed by the transmission of a voltage higher than about 50 V. A human body usually only experiences electrostatic discharges above approximately 3,000 V.
This symbol indicates the possible use of voltages higher than 24 V. Please note the relevant statutory regulations in this regard. Non-compliance with these regulations can lead to serious damage to your health and also cause
damage / destruction of the component.
This symbol indicates a possible source of danger. Acting against the procedure described can lead to possible damage to your health and / or cause damage / destruction of the material used.
This symbol represents important details or aspects for working with TQ-products.
A font with fixed-width is used to denote commands, file names, or menu items.
General handling of your TQ-products
The TQ-product may only be used and serviced by certified personnel who have taken note of the information, the safety regulations in this document and all related rules and regulations.
A general rule is: do not touch the TQ-product during operation. This is especially important when switching on, changing jumper settings or connecting other devices without ensuring beforehand that the power supply of the system has been switched off.
Violation of this guideline may result in damage / destruction of the MBLS1012AL and be dangerous to your health.
Improper handling of your TQ-product would render the guarantee invalid.
Proper ESD handling
The electronic components of your TQ-product are sensitive to electrostatic discharge (ESD). Always wear antistatic clothing, use ESD-safe tools, packing materials etc., and operate your TQ-
product in an ESD-safe environment. Especially when you switch modules on, change jumper settings, or connect other devices.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 3
1.8

Naming of signals

1.9

Further applicable documents / presumed knowledge

Specifications and manual of the modules used:
Specifications of the components used:
Chip errata:
Software behaviour:
General expertise:
A hash mark (#) at the end of the signal name indicates a low-active signal. Example: RESET#
If a signal can switch between two functions and if this is noted in the name of the signal, the low-active function is marked with a hash mark and shown at the end.
Example: C / D#
If a signal has multiple functions, the individual functions are separated by slashes when they are important for the wiring. The identification of the individual functions follows the above conventions. Example: WE2# / OE#
These documents describe the service, functionality and special characteristics of the module used (incl. BIOS).
The manufacturer's specifications of the components used, for example CompactFlash cards, are to be taken note of. They contain, if applicable, additional information that must be taken note of for safe and reliable operation. These documents are stored at TQ-Systems GmbH.
It is the user's responsibility to make sure all errata published by the manufacturer of each component are taken note of. The manufacturer’s advice should be followed.
No warranty can be given, nor responsibility taken for any unexpected software behaviour due to deficient components.
Expertise in electrical engineering / computer engineering is required for the installation and the use of the device.
The following documents are required to fully comprehend the following contents:
MBLS1012AL circuit diagram
TQMLS1012AL User’s Manual
LS1012A Data Sheet
U-Boot documentation: www.denx.de/wiki/U-Boot/Documentation
PTXdist documentation: www.ptxdist.de
TQ-Support Wiki: support.tq-group.com/doku.php?id=en:arm:TQMLS1012AL
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 4
2.

BRIEF DESCRIPTION

3.

TECHNICAL DATA

3.1

System architecture and functionality

MBLS1012AL
TQMLS1012
AL
USB Hub
TUSB8041
2× USB 3
.0
Mini PCIe
PCI WLAN
module
USB 3.0
Ethernet
1
Gbit
PHY
DP
83867
SerDes A
4
× Ethernet
1 Gbit
Switch
KSZ9897
SGMII
SerDes D
SATA /
M.2
SerDes B
PCIe
GPIO
GPIO
GPIO
SD card
/
eMMC
eSDHC
eSDHC1
UART
USB debug
JTAG
USB 3
.0
USB
2.0
USB 2.0
RGMII
„Link“
„Switch“
JTAG
3 Push
buttons
Reset
push button
Boot Mode
(
DIP switches)
Status LEDs
100 mil header
Power supply
3.3 V / 5 V
Power supply
1.
1 V / 1.5 V
Power supply
2.5 V
Power supply
1.
0 V
Power IN
(DC socket)
Input
protection
Temperature
sensor
GPIO Expander
GPIO
I2C
TAMPER
UART
Power supply
1.8 V
Power supply
1.2 V
SIM card
I2
C
Kinetis
MK
20
Periphery
2
×
LED,
Reset
signals,
Enable signals
Reset
signals,
GPIO
FTDI
USB
2UART
USB debug
This User's Manual describes the hardware of the MBLS1012AL from revision 0200. The MBLS1012AL is designed as a carrier board for the TQMLS1012AL. All TQMLS1012AL interfaces, which can be used, are available on the MBLS1012AL. Thus the features of the NXP CPU LS1012A
can be evaluated and software development for a TQMLS1012AL-based project can be started directly. The MBLS1012AL supports all LS1012A-based TQ-Modules with the NXP CPUs i.MX6UL (G1, G2, G3) and i.MX6ULL (Y0, Y1, Y2).

3.1.1 Block diagram MBLS1012AL

Illustration 1: Block diagram MBLS1012AL
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 5

3.1.2 Functionality and interfaces

Core of the system is the soldered processor module TQMLS1012AL with an ARM Cortex A53 based NXP Layerscape series CPU LS1012A. In addition to the standard communication interfaces such as USB, Ethernet, etc., more TQMLS1012AL signals are routed to a 100 mil pin header on the MBLS1012AL.
The MBLS1012AL provides the following interfaces and functions:
Table 2: Overview interfaces
Interface Qty. LS1012A interface Remark
Ethernet 1000 Mbits 1 SGMII (SerDes-Lane A, MAC1) Gigabit PHY DP83867
Ethernet 1000 Mbits 4 RGMII (MAC2) 5-fold Gigabit switch KSZ9897
SATA 1 SATA (SerDes-Lane D) Supply and mounting for M.2 SSD
Mini PCIe 1
USB 3.0 4 USB 3.0 from TUSB8041
WLAN 1 USB 2.0 from TUSB8041 As Mini PCIe socket
eMMC1 1 eSDHC1
SD card 1 eSDHC1 Optional instead eMMC
GPIO (native, 1.8 V) 4 GPIO1 GPIO1_25 u. GPIO1_26 with Pull-Up and Pull-Down at DIP switch
GPIO (Port-Expander, 3.3 V) 3 Provided via GPIO-Expander, control via I2C_3V3
Debug 1 UART
JTAG 1 JTAG 10-pin header and over OpenSDA via USB
I2C 1 I2C1_3V3 On pin header
PCIe (SerDes-Lane B) USB 2.0 from TUSB8041
With external SIM card slot
Hub TUSB8041: 1x stacked USB Type A (USB 3.0) 1x WLAN module (USB 2.0) 1x Mini PCIe (USB 2.0)
On-board 4-bit JEDEC 4.5
5.0 eMMC compatible Optional instead SD card
3.3V UART, switchable between FTDI-USB2UART/pin header and OpenSDA (USB) via DIP switch
Table 3: Overview Diagnostic and User Interfaces
Interface Qty. Device Remark
24 V
5 V
6 LED green
Status LEDs
3 LED green Mini PCIe, WLAN, SATA (M.2)
1 LED green GPIO LED at Port-Expander
1 LED green GPIO LED at Port-Expander with light guide
1 LED red Reset LED with light guide
Temperature sensor 1 Digital I2C temperature sensor
Reset button 1 Push button CPU-/MBLS1012AL-Reset
User push button 3 Push button GPIO push button at Port-Expander
Boot-Mode configuration 1 DIP switch See chapter 4.4
JTAG 1 10-pin, 100 mil header
3.3 V
3.3 V PCIE
3.3 V WLAN
2.5 V
1: eMMC functionality prepared. Currently not supported.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 6
4.

ELECTRONICS

4.1

System components

LS1012A
DDR3L SDRAM
TQMLS1012AL, 155 LGA contacts
EEPROM
Temp. sensor + EEPROM
PMIC
VR5100
QSPI NOR flash
3.3 V
RTC (optinal)
PCIe SATA SGMII
RGMII
eSDHC
USB 3.0
JTAG UART
I
2
C
GPIO
Tamper
The TQ-Minimodule TQMLS1012AL with its LS1012A CPU is the central system component. It provides DDR3L SDRAM, eMMC, NOR flash and EEPROM memory. All voltages required by the TQMLS1012AL are derived from the supply voltage of 3.3 V.
The available signals are routed to two connectors on the MBLS1012AL. More detailed information is to be taken from the TQMLS1012AL User’s Manual. The boot behaviour of the TQMLS1012AL can be customised.
The required boot-mode configuration can be set with DIP switches, see section 4.4.

4.1.1 TQMLS1012AL

The TQ-Minimodule TQMLS1012AL with the LS1012A CPU is the central system component. It provides DDR3L SDRAM, NOR flash and an EEPROM. All TQMLS1012AL internal voltages are derived from the 3.3 V supply voltage. Further information can be found in the TQMLS1012AL User's Manual. The boot behaviour of the TQMLS1012AL can be modified. The configuration is defined by DIP switches on the MBLS1012AL, see chapter 4.4. The available signals of the TQMLS1012AL are routed to the MBLS1012AL. The signal assignment can be found in the TQMLS1012AL User's Manual.
Illustration 2: Block diagram TQMLS1012AL

4.1.2 Power supply

The MBLS1012AL has to be supplied with 16 V to 28 V at X21. The typical supply voltage is 24 V. The MBLS1012AL has a maximum power consumption of approx. 51 W at the 24 V supply. This corresponds to a typical
maximum current consumption of 2.1 A. The power supply used must be dimensioned accordingly. In most applications, however, the power consumption will be significantly lower. The largest part of the possible power consumption results from the standard-compliant supply of the USB, PCIe and SATA (M.2) interfaces, as well as from the power available at the pin header.
3.3 V (1.5 A), 5 V (0.75 A) and 24 V (maximum current not defined) are available on pin header X22. The current drawn must be added to the input current. It has to be ensured that the permissible limit values of the input circuit are not exceeded.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 7
Power IN Fuse Filter
Reverse
Polarity
Protection
TVS Diode

4.1.3 Protective circuit

The input supply of the MBLS1012AL supplies the 3.3 V / 5 V regulators. The protection circuit (see Illustration 3) features the following characteristics:
Overcurrent protection by fuse 4 A, slow blow
Overvoltage protection diode
PI filter
Reverse polarity protection by MOSFET
Capacitors for voltage smoothing
Illustration 3: Block diagram protective circuit
The protective circuit has the following electrical characteristics:
Table 4: Parameter protective circuit
Parameter Min. Typ. Max. Unit
Overcurrent limitation by fuse (slow blow) 4 A
Overvoltage limitation 28.9 42.1 V
Illustration 4: Positon of protective circuit
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 8

4.1.4 Voltage regulators

The following table show the electrical parameters of the voltage regulators.
Table 5: Electrical parameters of voltage regulators
Voltage Parameter Min. Typ. Max. Unit Remark
Input voltage 16 24 28 V
24 V
Max. input current 3.2 A
Idle current 0.19 A U-Boot / Linux Idle @24 V
5 V
3.3 V
2.5 V
1.2 V
1.5 V
1.1 V
1.8 V
1.0 V
Output voltage 4.918 4.98 5.124 V
Max. current
4 A
Output voltage 3.281 3.31 3.392 V
Max. current 8 A
Output voltage 2.44 2.48 2.55 V
Max. current
1 A
Output voltage 1.18 1.22 1.23 V
Max. current 1.5 A
Output voltage 1.46 1.49 1.52 V
Max. Current
1 A
Output voltage 1.08 1.08 1.11 V
Max. Current 1 A
Output voltage 1.827 1.88 1.895 V
Max. Current
0.5 A
Output voltage 1.02 1.04 1.044 V
Max. Current 0.25 A
Over input voltage and load range
Over input voltage and load range
Over load range
Over input voltage and load range
Over load range
Over input voltage and load range
Over load range
Over input voltage and load range
The following table shows the voltage drop under full load:
Table 6: Electrical parameters of PCIe and WLAN voltages
Voltage Min. Typ. Max. Unit Remark
V_1V5_PCIE 3 mV IOUT = 0.375 A
V_3V3_PCIE 9 mV IOUT = 1.1 A
V_1V5_WLAN 3 mV IOUT = 0.375 A
V_3V3_WLAN 9 mV IOUT = 1.1 A
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 9
4.2

Communication interfaces

TQMLS1012AL
UART1_SOUT
UART1_SIN
33
1.8 V to 3.3 V OpenSDA K20
Header for FTDI TTL-
232R-3V3
FTDI
UART-2-USB
Mini USB
Mini USB
MUX
3.3 V to 1.8 V
33
10 pF
10 pF

4.2.1 DAPLink / OpenSDA

A circuit for a DAPLink/OpenSDA programmer is prepared on the MBLS1012AL. Currently this circuit is not supported.

4.2.2 Debug UART

Illustration 5: Block diagram Debug UART1
A debug interface is available via UART1. This UART is provided as a virtual COM port via USB. Parallel to this, the UART can also be accessed at a 6-pin pin header.
2
UART1 is optionally available on the DAPLink / OpenSDA interface
(see 4.2.1).
The input signal for the TQMLS1012AL can be switched between OpenSDA and USB/pin header with a DIP switch. The output level is adapted to 3.3 V using a level converter.
Table 7: DIP switch setting for UART source
DIP switch OFF ON
S1, Slot 3 Debug-UART on OpenSDA Debug-UART on USB / header

4.2.3 eMMC

An eMMC can be used instead of the SD card. The use of an eMMC is currently not supported.
Illustration 6: Position of eMMC
2: The DAPLink / O penSDA interface is currently not supported.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 10
TQMLS
1012AL
DP83867
SGMII
RJ
45
(X23)
ETH_LNK_RST#
ETH
_
LINK_PWRDWN#
EMI1
12
GREEN_KATODE
LED_0 (DP83867)
Switched with transistor

4.2.4 Gigabit Ethernet (Link)

Illustration 7: Block diagram Ethernet Link
When using the MBLS1012AL e.g. as router or switch, the single port can be used as LINK interface e.g. to a modem. The single Ethernet port is provided via the PHY DP83867 at the SGMII interface (SerDes-Lane A).
The PHY has boot straps to start with configurable default values. Some boot straps can be customized with assembly options. Further information is available in the latest circuit diagram of the MBLS1012AL.
The following table shows the pin assignment of the Ethernet connector.
Table 8: Pinout RJ-45 connector X23 for “Link“
Pin Name Target pin / Net Remark
1 GND GND – 2 TD1+ TD_P_A – 3 TD1– TD_M_A – 4 TD2+ TD_P_B – 5 TD2– TD_M_B – 6 TD3+ TD_P_C – 7 TD3– TD_M_C – 8 TD4+ TD_P_D
9 TD4– TD_M_D – 10 GND GND – 11 GREEN_ANODE V_2V5 82 Ω in series
13 YELLOW_ANODE V_2V5 82 Ω in series 14 YELLOW_KATODE LED_2 (DP83867) Switched with transistor
The possible data throughput is influenced by the system load and the software platform used. With the MBLS1012AL and the standard BSP, the following transfer rates can be achieved.
Table 9: Characteristics Gigabit Ethernet X23 (Link)
Parameter Min. Typ. Max. Unit
Upstream 940 Mbit/s Downstream 840 Mbit/s
Illustration 8: Position of Gigabit Ethernet X23 (Link)
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 11
Ports 4-1 Gigabit Ethernet Pins
5, 16, 27, 38
TXRX[4:1]M_B
TD1–[4:1]
6, 17, 28, 39
TXRX[4:1]P_C
TD2+[4:1]
– – LED2_A[4:1]
V_2V5, 100 Ω in series
OFF
OFF
Link off
OFF
ON
1000 Mbps Link / No Activity
OFF
Blinking
1000 Mbps Link / Activity
ON
OFF
100 Mbps Link / No Activity
Blinking
OFF
100 Mbps Link / Activity
ON
ON
10 Mbps Link / No Activity
Blinking
Blinking
10 Mbps Link / Activity
Upstream – TBD
1,000
Mbit/s
Downstream
TBD
1,000
Mbit/s

4.2.5 Gigabit Ethernet (Switch ports)

Up to four Ethernet interfaces (1000Base-T) are available via Microchip's KSZ9897 gigabit switch. Connection is via RGMII. The switch is managed via I
2
C. In contrast to MIIM (EMI), this enables full control of the device. The connection of the EMI1 bus is possible via assembly option. The switch has boot straps to start with configurable default values. Some boot straps can be configured with assembly options. Further information is available in the latest circuit diagram of the MBLS1012AL.
The following table shows the pin assignment of the Ethernet connectors:
Table 10: Pinout RJ-45 connector X12, X13 for “Switch“
Switch pin Pin name RJ-45 pin Remark
1, 12, 24, 34 TXRX[4:1]P_A TD0+[4:1] – 2, 13, 25, 35 TXRX[4:1]M_A TD0–[4:1] – 4, 15, 26, 37 TXRX[4:1]P_B TD1+[4:1]
7, 18, 29, 40 TXRX[4:1]M_C TD2–[4:1] – 8, 20, 31, 42 TXRX[4:1]P_D TD3+[4:1] – 9, 21, 32, 43 TXRX[4:1]M_D TD3–[4:1] – 85, 88, 91, 105 LED[4:1]_0 LED1_K[4:1] – 86, 89, 92, 106 LED[4:1]_1 LED2_K[4:1] – – LED1_A[4:1] V_2V5, 100 Ω in series
Table 11: Ethernet Switch, Port-Link Status information
LED1 LED2 Status
The possible data throughput is influenced by the system load and the software platform used. With the MBLS1012AL and the standard BSP, the following transfer rates can be achieved.
Table 12: Characteristics Gigabit Ethernet (Link)
Parameter Min. Typ. Max. Unit
Illustration 9: Position of Gigabit Ethernet X12, X13 (Switch)
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 12
MBLS1012AL
TQMLS1012AL
100 mil header
Temperature
sensor
GPIO
Expander
I2C_3V3
USB Hub
PCIe RefCLK
PCIe card
Ethernet
Switch
I2C_1V8
0x5F / 101 1111b
0x44 / 100 0100b
0x48 / 100 1000b
0x69 / 110 1001b
0x20 / 010 0000b
0x68 / 110 1000b
0x19 / 001 1001b
0x51 / 101 0001b
0x31 / 011 0001b
0x50 / 101 0000b
0x08 / 000 1000b

4.2.6 I2C

The TQMLS1012AL provides an I The 3.3 V branch is routed to a 100 mil pin header and terminated with 4.7 kΩ Pull-Ups. Table 13 lists all I
2
C bus on the MBLS1012AL. This I2C bus is implemented with a 1.8 V and a 3.3 V branch.
2
C addresses used.
Illustration 10: Block diagram I2C bus
The following table shows the I
2
C address mapping on TQMLS1012AL and MBLS1012AL.
Table 13: I2C devices, address mapping on TQMLS1012AL and MBLS1012AL
Location Device Function Address Remark
MBLS1012AL
TQMLS1012AL
KSZ9897R Ethernet Switch
TUSB8041 USB-Hub
LM75ADP Temperature sensor
9FGV0241 PCIe RefClk
PCIe Card
WLAN Card
PCA9555 GPIO Expander
DS1339U-33 RTC
SE97B
24LC64T EEPROM
VR5100 PMIC
Temperature sensor
EEPROM, unprotected
EEPROM. protected
Optional, not connected
Optional, not connected
Optional, not connected
Defined by PCIe card
Defined by PCIe card
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 13
TQMLS1012AL
OpenSDA
Debug
USB
10-pin
ARM JTAG
OpenSDA
X19
10-pin
ARM JTAG
TQMLS1012AL
X18
Level
shifter
1.8 V
3.3 V

4.2.7 JTAG

The JTAG signals of the TQMLS1012AL are available on a standard ARM 10-pin JTAG connector. The JTAG interface of the microcontroller for the OpenSDA interface is also equipped with a 10-pin JTAG connector with standard ARM assignment. For the OpenSDA circuit see section 4.2.1.
A Lauterbach debugger can be used to program the TQMLS1012AL. NXP recommends the "Code Warrior Development Studio for QorIQ LS series" and the "CodeWarrior TAP" programmer for development and programming of the LS1012A processor. The following table shows possible adapters.
Table 14: JTAG adapters
Debugger Details
Lauterbach JTAG-ARMV8-A/R, LA-3743
Lauterbach CONV-ARM20/MIPI34, LA-3770
NXP, CWH-CTP-BASE-HE, 935328292598
NXP, CWH-CTP-CTX10-YE, 935327448598
TRACE32 Debugger for LS1012A
Debugger for Cortex-A/R (ARMv8 32/64-bit)
ARM Converter ARM-20 to MIPI-10/20/34
Converter to connect a Debug Cable to 10/20/34 pin connectors specified by MIPI
Converts to CombiProbe connector
CodeWarrior TAP
Code Warrior TAP removable probe tip for LS1 &L S2 Processors
ARM Mini 10-Pin JTAG
Illustration 11: Block diagram JTAG
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 14
The JTAG test reset pin (TP18, JTAG_TRST#) must be grounded simultaneously with PORESET# during normal operation. This is achieved by using a 0 Ω bridge on the MBLS1012AL. If a boundary-scan is to be performed, this bridge must be removed and both signals must be controlled accordingly. The JTAG interface is not ESD protected.
The following table shows the pin assignment of the JTAG connector.
Table 15: Pinout JTAG header X18
Pin Pin name Target pin / Net
1 VTref / (VCC V_1V8
2 JTAG_CPU_TMS JTAG_TMS (TP17)
3 GND GND
4 JTAG_CPU_TCK JTAG_TCK (TP16)
5 GND GND
6 JTAG_CPU_TDO JTAG_TDO (TP15)
7 KEY NC
8 JTAG_CPU_TDI JTAG_TDI (TP14)
9 GND_DETECT_1V8 GND_DETECT_3V3
10 JTAG_CPU_RESET# RESET_IN#
Illustration 12: Position of JTAG header X18
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 15
PCIe X1
USB
Sim
Card
I2C
LED
TQMLS1012AL
Mini PCIe connector
(X4)
Hub
USB
Clock
Generator
PCIE_DIS#
PCIE_WAKE#
PCIE_RST#

4.2.8 Mini PCIe

Illustration 13: Block diagram Mini PCIe
The processor provides a PCIe Gen2 interface with one lane (x1) via the SerDes interface. In standard muxing, this Lane occupies Lane B of the SerDes interface. It is compatible to the PCI Express Base Specification, Revision 3.0 and supports transfer rates of
2.5 GT/s as well as 5 GT/s.
2
In addition to the PCIe-Lane, a USB host (from the USB hub) and an I
C interface are connected to the Mini PCIe interface. The power supply is implemented with 3.3 V and 1.5 V and must be activated separately on the port expander via VCC_PCIE_EN_1V5 and VCC_PCIE_EN_3V3.
2
When using the I
C functionality, check in advance whether the I2C address used by the plug-in card is not yet being used by a
peripheral on the MBLS1012AL. See also Table 13. The reference clock is provided by a special PCIe clock generator 9FGV0241. The clock generator can optionally be connected to
2
C bus with 0 Ω resistors. Individual outputs can be switched off and the slew rate and amplitude can be changed via the I2C
the I bus. The I2C address can be taken from Table 13.
The control lines PCIE_WAKE# and PCIE_DIS# can be switched via the port expander. There is only one LED, which can be connected to one of the pins 42, 44 or 46 via the pre-resistor. By default LED_WWAN# is
assembled. The layout has been designed to allow both full-size and half-size Mini PCI Express cards to be used. The full-size form factor is
available as standard.
2
The interface is wired with all signals provided by the standard (e.g. USB, I
3
Any standard compliant Mini PCIe card can be used
.
C, and PCIe).
A micro SIM card holder is also provided for the use of a GSM card. SIM cards that require 5 V supply/signal level are not supported.
The voltages provided for the Mini PCIe card must not exceed the currents specified in Table 17.
3: Where required drivers are available.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 16
PCIE_WAKE#
WAKE# 1 2
+3.3Vaux
V_3V3_PCIE
NC
COEX1 3 4
GND
GND
NC
COEX1 5 6
+1.5V
V_1V5_PCIE
NC
CLKREQ#
7 8 UIM_PWR
UIM_PWR
GND
GND 9 10
UIM_DATA
UIM_DATA
PCIE_REFCLK_N
REFCLK–
11
12
UIM_CLK
UIM_CLK
PCIE_REFCLK_P
REFCLK+
13
14
UIM_RESET
UIM_RESET
GND
GND
15
16
UIM_SPU
UIM_SPU
Key notch
NC
UIM_IC_DM
17
18
GND
GND
NC
UIM_IC_DP
19
20
W_DISABLE1#
PCIE_DIS#
GND
GND
21
22
PERST#
RESET_OUT#
PCIE_RX– (TP31)
PERn0
23
24
+3.3Vaux
V_3V3_PCIE
PCIE_RX+ (TP30)
PERp0
25
26
GND
GND
GND
GND
27
28
+1.5V
V_1V5_PCIE
GND
GND
29
30
SMB_CLK
I2C_3V3_SCL
PCIE_TX– (TP33)
PETn0
31
32
SMB_DATA
I2C_3V3_SDA
PCIE_TX+ (TP32)
PETp0
33
34
GND
GND
GND
GND
35
36
USB_D–
USB_H3.D_M
GND
GND
37
38
USB_D+
USB_H3.D_P
V_3V3_PCIE
+3.3Vaux
39
40
GND
GND
V_3V3_PCIE
+3.3Vaux
41
42
LED_WWAN#
LED V28
GND
GND
43
44
LED_WLAN#
LED V28 (optional)
NC
Reserved
45
46
LED_WPAN#
LED V28 (optional)
NC
Reserved
47
48
+1.5V
V_1V5_PCIE
NC
Reserved
49
50
GND
GND
Pin 20 0 Ω n.a.
W_DISABLE2#
51
52
+3.3V
V_3V3_PCIE
C1
UIM_PWR
C2
UIM_RST
C3
UIM_CLK
C5
DGND
C6
UIM_VPP
C7
UIM_DATA
SW1
NC
SW2
NC
V_3V3_PCIE
3.3 V
1.1 A
V_1V5_PCIE
1.5 V
0.375 A
Table 16: Pinout Mini PCIe X4
Target pin / Net Pin name Pin Pin name Target pin / Net
Table 17: Maximum permitted currents Mini PCIe X4
Pin Signal
Illustration 14: Position of Mini PCIe socket X4
Table 18: Pinout SIM-Card Connector X5
Voltage Nominal value I
max
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 17

4.2.9 RTC backup supply

In case of power failure a lithium battery on the MBLS1012AL supplies the RTC on the TQMLS1012AL.
Illustration 15: Position of backup battery X7
For the RTC on the MBLS1012AL the following applies:
Table 19: Electrical characteristics backup battery
Parameter Value
Coin Cell voltage 2.1 V to 3.7 V, typical 3.0 V
Coin Cell type CR2032
Current consumption RTC < 1 µA

4.2.10 SATA

For mass storage, a connection for an SSD in M.2 form factor is provided. The processor provides a SATA 3.0 AHCI interface via the SerDes interface. Transfer rates of 1.5 Gb/s (Gen I), 3 Gb/s (Gen II) and 6Gb/s (Gen III) are possible. The M.2 standard defines different codings for the connector; an M.2 slot with B coding is used on the motherboard. M.2 modules are available in different form factors. The MBLS1012AL supports the common form factors 2242, 2260 and 2280 for SSDs. The mounting for the 2280 form factor is installed as standard. The SATA interface (SerDes-Lane D) of the LS1012A and a 3.3 V power supply are connected. As required by the M.2 specification, the power budget of the MBLS1012AL is 2.5 A for a SATA SSD. The Device Activity Signal (DAS/DSS#; Pin10 on X10) and the Device Sleep Signal (SATA_DEVSLP#; Pin 38 on X10) from the M.2 specification are implemented. SATA_DEVSLP# is connected to pin 27 on pin header X22 and must be wired accordingly if functionality is required. DAS/DSS# is directly connected to LED V17.
Table 20: SATA transfer rates
Value Min. Typ. Max. Unit
Net transmission rate, SATA Rev 1 TBD 1.2 Gbit/s
Net transmission rate, SATA Rev 2 TBD 2.4 Gbit/s
Net transmission rate, SATA Rev 3 TBD 4.8 Gbit/s
Illustration 16: Position of SATA (M.2) connector X10
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 18
TQMLS1012AL
ESD
Protection
MicroSD card
slot
eSDHC1

4.2.11 SD card

Illustration 17: Block diagram SD card
A microSD card is used as non-volatile program memory. Alternatively, an eMMC memory can be used instead. In the reset phase, the CPU requires a high signal (1.8 V) at signal SDHC1_CD#. For this reason, the signal is separated by a tristate
buffer during reset (see also (3), Table 5 and Figure 15). The pull-up is located on the TQMLS1012AL. All data lines provide ESD protection.
Standard, high and extended capacity Card types are supported. For the transfer rates, the SD UHS-1 speed mode SDR104 with theoretical max. 104 MB/s is supported in addition to Default Speed and High Speed Mode. The support of the UHS-1 speed modes SDR12, SDR25, SDR50 and DDR50 is theoretically given but not verified.
The signals of the SDHC1 interface on the TQMLS1012AL are supplied via a separate PMIC controller, whose voltage value can be set by the CPU to a 1.8 V or 3.3 V level (depending on the transmission mode). The conversion is usually done by the corresponding driver and does not have to be done explicitly.
The signal SDHC1_WP is not used and is terminated accordingly.
Table 21: Pinout microSD card X9
Pin Pin name Target pin / Net Remark
1 DAT2 SDHC1_DAT2 (TP43) 34 kΩ Pull-Up
2 DAT3 SDHC1_DAT3 (TP44) 34 kΩ Pull-Up
3 CMD SDHC1_CMD (TP40) 34 kΩ Pull-Up
4 VDD V_3V3
5 CLK SDHC1_CLK (TP39)
6 GND GND
7 DAT0 SDHC1_DAT0 (TP41) 34 kΩ Pull-Up
8 DAT1 SDHC1_DAT1 (TP42) 34 kΩ Pull-Up
M1…4 SHIELD GND
Illustration 18: Position of microSD card socket X9

4.2.12 SPI

The SPI interface is available at X18 if the Reset Configuration Word (RCW) of the TQMLS1012AL is set accordingly.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 19
TQMLS
1012AL
USB
Type A
USB 3.
0 Hub
USB
Type A
USB 3.0
USB1
USB2
USB3
USB4
I2C
WLAN Slot
Mini PCIe

4.2.13 USB

Illustration 19: Block diagram USB 3.0
The TI USB 3.0 hub TUSB8041 is used for the USB 3.0 OTG port of the TQMLS1012A to provide various USB hosts. The OTG port is configured as host. The output ports are USB 3.0 ports, but can also be used as USB 2.0 ports.
Of the four available ports, two are USB 3.0 ports and are connected to the stacked connector (X6). The remaining two ports are connected as USB 2.0 to the two Mini PCIe slots. 0 Ω bridges for the I hub registers. The I
2
C address can be taken from Table 13.
2
C interface are provided for optional access to the internal
A power distribution switch provides the 5 V supply for the USB connectors. The components used have current monitoring and can switch off the bus voltage in the event of overload and/or overheating.
Table 22 shows the wiring of the unused USB pins of the CPU.
Table 22: Unused CPU USB pins
Pin Name Target pin / Net Remark
TP62 USB_VBUS VCC5V5 0 Ω series resistor
TP54 USB1_PWRFAULT GND 1 kΩ Pull-Down
The USB host port of the TQMLS1012AL provides a theoretical data rate of 5 Gbit/s (gross). This is divided among the connected ports. Depending on the software and hardware used, the effective read and write rates of the ports may vary.
Table 23: Characteristics USB-Host
Parameter Min. Typ. Max. Unit Remark
Voltage 4.75 5 5.25 V Preliminary values, not qualified
Current 0.89 1.02 1.143 A Per channel. Preliminary values, not qualified
Drop during load jump TBD mV Switching on a 900 mA load
Read rate TBD 4,000 Mbit/s USB-HDD at Port 2; 2 GB file; 10 MB block size
Write rate TBD 4,000 Mbit/s USB-HDD at Port 2; 2 GB file; 10 MB block size
Illustration 20: Position of USB 3.0 stacked socket X6
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 20
NC
WAKE# 1 2
+3.3Vaux
V_3V3_WLAN
NC
COEX1 3 4
GND
GND
NC
COEX1 5 6
+1.5V
V_1V5_WLAN
NC
CLKREQ#
7 8 UIM_PWR
NC
GND
GND 9 10
UIM_DATA
NC
NC
REFCLK–
11
12
UIM_CLK
NC
NC
REFCLK+
13
14
UIM_RESET
NC
GND
GND
15
16
UIM_SPU
NC
Key notch
NC
UIM_IC_DM
17
18
GND
GND
NC
UIM_IC_DP
19
20
W_DISABLE1#
WLAN_DISABLE#, 4.7 kΩ Pull-Up
GND
GND
21
22
PERST#
WLAN_RST#
NC
PERn0
23
24
+3.3Vaux
V_3V3_WLAN
NC
PERp0
25
26
GND
GND
GND
GND
27
28
+1.5V
V_1V5_WLAN
GND
GND
29
30
SMB_CLK
I2C_3V3_SCL
NC
PETn0
31
32
SMB_DATA
I2C_3V3_SDA
NC
PETp0
33
34
GND
GND
GND
GND
35
36
USB_D–
USB_DN4_D–
GND
GND
37
38
USB_D+
USB_DN4_D+
V_3V3_WLAN
+3.3Vaux
39
40
GND
GND
V_3V3_WLAN
+3.3Vaux
41
42
LED_WWAN#
LED V18 (optional)
GND
GND
43
44
LED_WLAN#
LED V18
NC
Reserved
45
46
LED_WPAN#
LED V18 (optional)
NC
Reserved
47
48
+1.5V
V_1V5_WLAN
NC
Reserved
49
50
GND
GND
NC
W_DISABLE2#
51
52
+3.3Vaux
V_3V3_WLAN
V_3V3_WLAN
3.3 V
1.1 A
V_1V5_WLAN
1.5 V
0.375 A

4.2.14 WLAN

2
A USB host and I
C are provided for access to WLAN networks via an additional Mini PCIe slot (full-size). Half-size and full-size cards are supported. Half-size cards can be mounted using solder nuts and corresponding screws/sleeves, whereby the space for full-size cards is not blocked. Alternatively, half-size cards can be enlarged to full-size using adapters. The power supply is implemented with 3.3 V and 1.5 V and must be activated separately on the port expander via VCC_WLAN_EN_1V5 and VCC_WLAN_EN_3V3. The voltages provided for the WLAN card may be loaded with the maximum currents specified in Table 25. The Mini PCIe slot has no connection to the PCIe bus of the TQMLS1012A. Communication with the host must be carried out via
2
USB or I
C. When using the I2C functionality, check in advance whether the I2C address used by the plug-in card is not yet used by a peripheral on the MBLS1012AL or on the PCIe slot. See also Table 13. The wiring of pins 42, 44 and 46 is the same as for the Mini PCIe interface. LED_WLAN_WL# is wired by default.
Table 24: Pinout WLAN module /Mini PCIe (USB) X3
Target pin / Net Pin name Pin Pin name Target pin / Net
Table 25: Maximum permitted current consumption WLAN
Voltage Nominal value I
Illustration 21: Position of WLAN X3
max
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 21
4.3

Reset structure

RESET
_1V8#
RESET_REQ_OUT#
Ethernet Switch
Ethernet „Link“
RESET_N
RESET_N
Mini PCIe
PERST
#
USB
3.0
GRSTz
WiFi
RESET
_3
V
3#
&
ETH_LNK_RST#
&
&
&
&
Voltage Supervisor
RESET
#
MR#
SENSE
VCC
5
V
ETH_SW_RST#
PCIE_RST#
USB_RST#
WLAN_RST#
DIP
>
1
.8
V to 3
.
3 V
PERST#
Illustration 22: Reset structure
The RESET# signal of the TQMLS1012AL is available via signals RESET_1V8# and RESET_3V3# on the MBLS1012AL. Signal RESET_3V3# on the MBLS1012AL is generated from RESET_1V8#.
Attention: Signal RESET_3V3#
Signal RESET_3V3# is designed as reset triggering signal. The RESET_1V8# signal must be used to send a reset signal to the system.
The global reset is also used by the voltage monitoring. The Supervisor TPS3808G01DBV is used for this purpose. It monitors the 5 V input voltage and includes the manual reset button. The undervoltage threshold is set to 4.455 V, the delay until the reset signal is enabled again is set to 300 ms. On the MBLS1012AL a red LED indicates a reset, see Table 34.
In addition to the signals described above, the MBLS1012AL offers further options for a complete or partial reset of the TQMLS1012AL. All important interfaces are connected to the reset signal via AND gates in such a way that, in addition to the global reset, they can be reset individually via a GPIO signal of the IO expander. In addition, the power supplies of the WLAN and PCIe cards can be switched separately. The following table shows the used signals.
Table 26: Reset signals
Signal Source Default Remark
Activated by the TQMLS1012AL during power sequencing.
RESET_1V8# TQMLS1012AL High
Is activated by means of a delay buffer approx. 140 to 460 ms after switching on the TQMLS1012AL supply.
RESET_3V3# MBLS1012AL High Is generated on the MBLS1012AL from signal RESET_1V8#.
PCIE_RST# I/O-Expander Low
WLAN_RST# I/O-Expander Low
VCC_WLAN_EN_1V5 I/O-Expander Low Switches the 1.5 V power supply of the WLAN card.
VCC_WLAN_EN_3V3 I/O-Expander Low Switches the 3.3 V power supply of the WLAN card.
VCC_PCIE_EN_1V5 I/O-Expander Low Switches the 1.5 V power supply of the PCIe card
VCC_PCIE_EN_3V3 I/O-Expander Low Switches the 1.5 V power supply of the PCIe card
USB_RST# I/O-Expander Low
ETH_SW_RST# I/O-Expander Low
ETH_LNK_RST# I/O-Expander Low
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 22
4.4

Boot-Mode configuration

The RESET_REQ# signal enables the CPU to trigger a reset itself via software or in the event of an error (watchdog, security violation, etc.).
The signals RESET_REQ# and RESET_1V8# are connected via DIP switch S1, slot 2. This enables to separate the connection between the two signals. Thus an endless boot loop can be prevented in case of a missing RCW. This is necessary to install a new RCW. See also section 4.4.
A diode is connected between RESET_REQ# and DIP switch. This prevents RCW_SRC from being pulled low during the reset phase, thus loading the hard-coded RCW (see section 4.4).
Illustration 23: Position of Reset LED
The boot behaviour of the LS1012A is determined by a 512-bit Reset Configuration Word (RCW). This is loaded during normal operation from the connected QSPI flash memory on the TQMLS1012AL. The processor only supports this one boot source.
In case the RCW on the QSPI flash is missing or damaged, a fallback mode exists to store a suitable boot configuration in the memory. For this purpose a fixed standard configuration of the RCW (Hard-Coded RCW) is loaded, which provides the minimum necessary values for the CPU to operate. This is activated via a boot strap resistor at RESET_REQ#.
By connecting the RESET_REQ# / RCW_SRC signal to DIP switch (S1) (see also section 4.5.1), the value assigned to cfg_rcw_src determines one of the two possible RCW sources. The value is read in during Power-On-Reset and can be read out in CPU register PORSR1[RCW_SRC]. For this purpose there is a pull-down resistor at the RESET_REQ# signal to select the Hard-Coded RCW during the boot process (see following table).
Table 27: Boot-Mode-Select values for cfg_rcw_src
cfg_rcw_src value Selection on MBLS1012AL RCW source
0 Slot 1 at DIP switch (S1) to ON Hard-coded in CPU
1 (Default) Slot 1 at DIP switch (S1) to OFF QuadSPI (QSPI)
Attention: Missing RCW in QSPI flash
If no RCW is detected in the QSPI flash, the CPU automatically triggers a reset. See section 4.3.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 23
4.5

Diagnostic and user interfaces

4.5.1 DIP switch S1

A 4-fold DIP switch is used to set boot configurations and select hardware settings. The functions of the individual switches are described in the following table:
Table 28: DIP switch S1, functions
Slot ON OFF Remark
1 Hard-Coded RCW switched on Hard-Coded RCW switched off In case the RCW cannot be read in the flash.
2 RESET_REQ# und RESET# connected RESET_REQ# und RESET# separated To prevent a boot loop in case of a boot error.
3 Debug—UART on USB/header Debug-UART on OpenSDA TX is not switched and can be received at both ends.
4 JTAG der CPU switched off JTAG der CPU switched on
Illustration 24: Position of DIP switch S1
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 24
Native GPIOs
Port Expander GPIO:

4.5.2 GPIOs

GPIO pins from different sources are available on the MBLS1012AL.
The TQMLS1012AL provides six GPIO signals on the configuration selected for the MBLS1012AL. All GPIO signals configured as input are interrupt capable.
Table 29: Electrical characteristics of 1.8 V GPIOs
Wert Min. Typ. Max. Unit Remark
Voltage level 1.8 V
Output impedance 30 45 60 Preliminary values, see (1), table 5
Switchable load high –0.5 mA See (1), table 33
Switchable load Low 0.5 mA See (1), table 33
Attention: GPIO1_29
GPIO1_29 can only be configured as an output. This pin must not be pulled low during the reset cycle! See also (1), table 1 (GPIO1_29) note 5, and (2), chapter 20.1.
Two GPIO port expanders are used (see also section 4.5.3), of which three pins are available on the header. GPIO pins which are implemented via a port expander are usually not suitable for time-critical I/O operations due to their indirect
connection to the CPU. In addition, it should be noted that these pins are only available with a delay at boot time, since the I2C driver must first be loaded for the configuration.
The nominal signal level of the GPIO signals GPIO_3V3_[3:1] is 3.3 V. The GPIO signals GPIO_3V3_[3:1] have a nominal signal level of 3.3 V. However, the pins are 5 Volt tolerant and can be operated with an external signal level up to a maximum of 5.5 V. The GPIO signals can be used with a maximum of 5.5 V.
At the pins GPIO_3V3_[3:1], a current of max. 25 mA can be switched). For more detailed information, refer to the data sheet of the port expander.
Table 30: GPIO assignment
Pin on header (X22) Target pin / Net Location Signal level Remark
25 GPIO1_29 X22 1.8 V See above attention note
23 GPIO1_28 X22 1.8 V
GPIO1_27 1.8 V Interrupt input, 8-Pin GPIO-Expander
21 GPIO1_26 X22 1.8 V
19 GPIO1_25 X22 1.8 V
GPIO1_24 1.8 V Interrupt input, 16-Pin GPIO-Expander
16 GPIO_3V3_1 X22 3.3 V 5 V tolerant
18 GPIO_3V3_2 X22 3.3 V 5 V tolerant
20 GPIO_3V3_3 X22 3.3 V 5 V tolerant
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 25
IO0_2
GPIO_3V3_3
I/O – GPIO on header (pin 28, X22)
IO1_3
PCIE_DIS#
O
High
Pin 20 at X4 (Mini PCIe)
IO_3
ETH_LINK_PWRDWN#
O
Low
Power-Down output for Ethernet Link

4.5.3 GPIO port expander

Due to the low number of native GPIOs provided by the LS1012AL CPU, two GPIO expanders with 16 and 8 IOs are available on the MBLS1012AL. The respective interrupt pin of the GPIO expander is connected to a GPIO pin of the LS1012AL CPU:
16 pin expander
8 pin Expander
NXP, PCA9555PW: GPIO1_24 NXP, PCA9538ABS: GPIO1_27
2
The port expanders are configured via I
C. The address of the port expanders can be changed by resistor assembly. When changing the address, care must be taken to avoid address conflicts with existing I2C devices. The assembly options are documented in the circuit diagram.
In the initial state, after power-up, all ports are set as input and the connected component is thus deactivated. For the properties of the externally available GPIOs see section 4.5.2. The following table shows the functions of the pins of the port expander.
Table 31: Function of Port Expanders
Port Signal Typ. Default Remark
16-Pin Expander, NXP, PCA9555PW
IO0_0 WLAN_DISABLE# O High Pin 20 at X3 (WLAN)
IO0_1 VCC_PCIE_EN_3V3 O Low Enable-Signal for 3.3 V voltage PCIe
IO0_3 VCC_WLAN_EN_3V3 O Low Enable-Signal for 3.3 V voltage WLAN
IO0_4 IOXP_PCIE_RST# O Low Selective Reset PCIe
IO0_5 IOXP_WLAN_RST# O Low Selective Reset WLAN
IO0_6 IOXP_USB_RST# O Low Selective Reset USB IO0_7 IOXP_ETH_SW_RST# O Low Selective Reset Ethernet Switch
IO1_0 IOXP_ETH_LNK_RST# O Low Selective Reset Ethernet Link
IO1_1 GPIO_3V3_1 I/O GPIO on header (Pin 24, X22)
IO1_2 GPIO_3V3_2 I/O GPIO on header (Pin 26, X22)
IO1_4 PCIE_WAKE# I High Pin 1 at X4 (Mini PCIe)
IO1_5 I High Input for push button S2 on front panel
IO1_6 O High LED V15 green with light guide at front panel
IO1_7 O High LED V16 green
8-Pin Expander, NXP, PCA9538ABS
IO_0 PCIE_CLK_PD# O High Disable for PCIe Clock
IO_1 PMIC_INT# I High Input for PMIC Interrupt. Also on X22
IO_2 ETH_SW_INT# I High Input for Ethernet Switch Interrupt
IO_4 I High Input for push button X15
IO_5 I High Input for push button X16
IO_6 VCC_WLAN_EN_1V5 O Low Enable-Signal for 1.5 V voltage WLAN
IO_7 VCC_PCIE_EN_1V5 O Low Enable-Signal for 1.5 V voltage PCIe
Illustration 25: Position of Port-Expander
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 26

4.5.4 Header X22

The MBLS1012AL provides a 34-pin header. On this header all unused signals and those which should be easy to reach are made available. In addition to the signals, 24 V, 5 V, 3.3 V and 1.8 V are available on the header.
Table 32: Pinout header X22
Pin Pin name Remark
1 GND
2 V_24V Note the hint
3 V_5V 0.75 A maximum
4 GND
5 GND
6 V_3V3 1.5 A maximum
7 I2C_3V3_SDA 3.3 V
8 V_1V8_PMIC_OUT 1 A maximum
9 I2C_3V3_SCL 3.3 V
10 GND
11 V_3V3
12 GND
13 SDHC1_CD# 1.8 V / Option eMMC: GPIO1_21
14 GND
15 SDHC1_WP 1.8 V
16 GPIO_3V3_1 3.3 V / Port Expander
17 TA_TMP_DETECT 1.8 V / 10 kΩ PU
18 GPIO_3V3_2 3.3 V / Port Expander
19 GPIO1_25 1.8 V
20 GPIO_3V3_3 3.3 V / Port Expander
21 GPIO1_26 1.8 V
22 PMIC_INT# 1.8 V
23 GPIO1_28 1.8 V
24 PMIC_EN 1.8 V
25 GPIO1_29 1.8 V
26 TEMP_EVENT# 1.8 V
27 SATA_DEVSLP# 3.3 V
28 QSPI_DATA2 1.8 V / alternative: I2C2_SCL
29 RESET_1V8# 1.8 V
30 QSPI_DATA3 1.8 V / alternative: I2C2_SDA
31 RESET_3V3# 3.3 V
32 GND
33 RTC_SQW/INT# 3.3 V
34 GND
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 27
The current drawn from V_24V (pin 2) is added to the current consumption of the rest of the
Attention: Power drawn from V_24V, and V_1V8_PMIC_OUT
TQMLS1012AL. The user must provide any additional power required at the voltage input of the TQMLS1012AL and observe the load capacity of the fuse. The power taken from V_1V8_PMIC_OUT (pin 8) is added to the power consumption at V_3V3_IN (balls G14, H4, J14) of the TQMLS1012AL. If power is taken from V_1V8_PMIC_OUT and there are doubts about the existing utilization of the V_3V3 power budget, the external current consumption at V_3V3 (e.g. at pins 2 and 11 of header X22) must be restricted accordingly.
V_1V8_PMIC_OUT supplies critical components on the TQMLS1012AL. If this voltage is used to supply external components, make sure that the function of the TQMLS1012AL is not impaired. This can be achieved by filtering V_1V8_PMIC_OUT on the carrier board using a suitable circuit.
Illustration 26: Position of header X22
Table 33: X22, type of header
Manufacturer / part number Description
Fischer Elektronik / SL 22 124 60 G Header, 100 mil pitch, 2 × 17 pins
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 28

4.5.5 LEDs

The MBLS1012AL provides 13 diagnosis- and Status LEDs (plus the LEDs at the Ethernet ports) to indicate the system condition. The following table shows the function of all LEDs.
Table 34: Status LEDs
Interface LED Colour Function
Mini PCIe V28 green Mini PCIe WWAN, can be changed to WLAN or WPAN by re-assembling.
WLAN V18 green Mini PCIe WLAN, can be changed to WWAN or WPAN by re-assembling.
GPIO V15 green LED on 16 Port-Expander Port IO1_0 (lit when pin is “low”). Per light guide on front panel
V16 green LED on Port-Expander Port IO1_1 (lit when pin is “low”)
Power V27 green Status 24 V (lights up when supply 24 V active)
V26 green Status 5 V (lights up when supply 5 V active)
V25 green Status 3.3 V (lights up when supply 3.3 V active)
V22 green Status 2.5 V (lights up when supply 2.5 V active)
V24 green Status 3.3 V Mini PCIe (lights up when supply 3.3 V for Mini PCIe active)
V23 green Status 3.3 V WLAN (lights up when power supply 3.3 V for Mini PCIe active)
OpenSDA V21 green Indicator LED for OpenSDA Interface
Reset V38 red Reset LED (lights up when TQMLS1012AL in reset). Via light guide on front panel
SATA (M.2) V17 green SATA Device Activity
Ethernet See 4.2.4 and 4.2.5
Illustration 27: Position of Status-LEDs
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 29
PCA9538
TQMLS1012AL
GPIO1_24
Push button S2
PCA9555
I2C
IO1_8
INT#
I2C_3V3
IO_4
IO_5
I2C
INT#
I2C_1V8
Push button X16
Push button X15
GPIO1_27

4.5.6 Push buttons

For development purposes, the MBLS1012AL has three push buttons connected to the port expanders. By using the interrupt signals at GPIO1_24 and GPIO1_27 interrupts can be triggered with the push buttons. The signal lines between the push button and the port expander are equipped with 10 kΩ pull-up resistors.
Illustration 28: Block diagram push buttons

4.5.7 Reset Push button

For information on reset and reset button, see section 4.3.
Illustration 29: Position of push buttons
Table 35: Push buttons
Push button Function
S2 GPIO
S15 GPIO
S16 GPIO
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 30
5.

SOFTWARE

4.5.8 Temperature sensor

The MBLS1012AL provides a temperature sensor LM75A, which monitors the environmental temperature.
Illustration 30: Position of temperature sensor LM75A
Table 36: Electrical characteristics LM75A
Manufacturer Resolution Accuracy Range Error
NXP 0.125 °C 11 bit
–25 °C to +100 °C –55 °C to +125 °C
The temperature sensor on the MBLS1012AL has I
2
C address 0x48 / 100 1000b.
No software is required for the MBLS1012AL. Suitable software is only required on the TQMLS1012AL and is not a part of this specification. More information can be found in the Support Wiki for the TQMLS1012AL
.
±2 °C ±3 °C
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 31
6.

MECHANICS

6.1

TQMLS1012AL and MBLS1012AL dimensions

6.2

Housing

The MBLS1012AL has overall dimensions (length × width) of 160 × 100 mm2. The MBLS1012AL has a maximum height of approximately 29 mm. The MBLS1012AL has four mounting holes with a diameter of 2.7 mm and three 2.2 mm heat sink mounting holes. The MBLS1012AL weighs approximately 137 grams including TQMLS1012AL.
Illustration 31: TQMLS1012AL dimensions
Table 37: TQMSL1012AL dimensions
Parameter Description Nominal size [mm] Tolerance [mm]
A Component height top side 1.7 Max.
A1 Component height CPU 0.81 ±0.13
B Thickness of PCB 1.65 ±0.16
C Component height bottom side 0.4 Max.
D Height LGA balls 0.125 –0.025 / +0.075
Illustration 32: MBLS1012AL dimensions
The form factor and the mounting holes of the MBLS1012AL are designed for installation in a standard EURO housing.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 32
6.3

Thermal management

6.4

Assembly

No special precautions were taken concerning the thermal management of the TQMLS1012AL. The power dissipation also depends on the software used and can vary according to the application. The power dissipation originates primarily in the CPU, the DDR3L SDRAM and the PMIC. More information is to be taken from the TQMLS1012AL Preliminary User's Manual.
Attention: Destruction or malfunction
The MBLS1012AL belongs to a performance category in which a cooling system is essential in most applications. It is the user’s sole responsibility to define a suitable heat sink (weight and mounting position) depending on the specific mode of operation (e.g., dependence on clock frequency, stack height, airflow, and software). Particularly the tolerance chain (PCB thickness, board warpage, BGA balls, BGA package, thermal pad, heatsink) as well as the maximum pressure on the TQMLS1012AL must be taken into consideration when connecting the heat sink.
The TQMLS1012AL is not the highest component. Inadequate cooling connections can lead to overheating of the MBLS1012AL and thus malfunction, deterioration or destruction.
Illustration 33: MBLS1012AL component placement top
Illustration 34: MBLS1012AL component placement bottom
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 33
7.

SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS

7.1

EMC

7.2

ESD

7.3

Operational safety and personal security

8.

CLIMATIC AND OPERATIONAL CONDITIONS

8.1

Protection against external effects

8.2

Reliability and service life

Since the MBLS1012AL is a development platform, no EMC tests have been performed.
Protection against electrostatic discharge is provided on most interfaces of the MBLS1012AL. The circuit diagram shows which interfaces have ESD protection.
Tests for operational safety and personal protection were not carried out due to the voltages ≤30 V DC.
In general reliable operation is given when the following conditions are met:
Table 38: Climatic and operational conditions MBLS1012AL
Parameter Range Remark
Permitted environmental temperature 0 °C to +60 °C With Lithium battery
Permitted environmental temperature 0 °C to +70 °C Without Lithium battery
Permitted storage temperature –10 °C to +60 °C With Lithium battery
Relative air humidity (operation / storing) 10 % to 90 % Not condensing
Attention: Cooling
The LS1012A CPU belongs to a performance category in which a cooling system is essential in most applications. It is the user’s sole responsibility to define a suitable heat sink (weight and mounting position) depending on the specific mode of operation (e.g., dependence on clock frequency, stack height, airflow, and software).
Particularly the tolerance chain (PCB thickness, board warpage, BGA balls, BGA package, thermal pad, heatsink) as well as the maximum pressure on the i.MX6UL must be taken into consideration when connecting the heat sink. The i.MX6UL is not necessarily the highest component.
Inadequate cooling connections can lead to overheating of the TQMLS1012AL and thus malfunction, deterioration or destruction.
Protection class IP00 was defined for the MBLS1012AL. There is no protection against foreign objects, touch or humidity.
No detailed MTBF calculation has been done for the MBLS1012AL. The MBLS1012AL is designed to be insensitive to vibration and impact.
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 34
9.

ENVIRONMENT PROTECTION

9.1

RoHS

9.2

WEEE®

9.3

REACH®

9.4

EuP

9.5

Packaging

9.6

Batteries

9.7

Other entries

The MBLS1012AL is manufactured RoHS compliant.
All components and assemblies are RoHS compliant
The soldering processes are RoHS compliant
The final distributor is responsible for compliance with the WEEE® regulation. Within the scope of the technical possibilities, the MBLS1012AL was designed to be recyclable and easy to repair.
The EU-chemical regulation 1907/2006 (REACH® regulation) stands for registration, evaluation, certification and restriction of substances SVHC (Substances of very high concern, e.g., carcinogen, mutagen and/or persistent, bio accumulative and toxic). Within the scope of this juridical liability, TQ-Systems GmbH meets the information duty within the supply chain with regard to the SVHC substances, insofar as suppliers inform TQ-Systems GmbH accordingly.
The Ecodesign Directive, also Energy using Products (EuP), is applicable to products for the end user with an annual quantity >200,000. The MBLS1012AL must therefore always be seen in conjunction with the complete device. The available standby and sleep modes of the components on the MBLS1012AL enable compliance with EuP requirements for the MBLS1012AL.
By environmentally friendly processes, production equipment and products, we contribute to the protection of our environment. To be able to reuse the MBLS1012AL, it is produced in such a way (a modular construction) that it can be easily repaired and disassembled. The energy consumption of this subassembly is minimised by suitable measures. The MBLS1012AL is delivered in reusable packaging.

9.6.1 General notes

Due to technical reasons a battery is necessary for the MBLS1012AL. Batteries containing mercury (Hg), cadmium (Cd) or lead (Pb) are not used. If this is for technical reasons unavoidable, the device is marked with the corresponding hazard note. To allow a separate disposal, batteries are generally only mounted in sockets.

9.6.2 Lithium batteries

The requirements concerning special provision 188 of the ADR (section 3.3) are complied with for Lithium batteries. There is therefore no classification as dangerous goods:
Basic lithium content per cell not more than 1 grams (except for lithium ion and lithium polymer cells for which a lithium content of not more than 1.5 g per cell applies (equals 5 Ah)).
Basic lithium content per battery not more than 2grams (except for lithium ion batteries for which a lithium content of not more than 8 grams per cell applies (equals 26 Ah)).
Lithium cells and batteries are examined according to UN document ST/SG/AC.10-1.
During transport a short circuit or discharging of the socketed lithium battery is prevented by extricable insulating foils or by other suitable insulating measures.
By environmentally friendly processes, production equipment and products, we contribute to the protection of our environment. To be able to reuse the MBLS1012AL, it is produced in such a way, that it can be easily repaired and disassembled. The energy consumption of this subassembly is minimised by suitable measures. Due to the fact that at the moment there is still no technical equivalent alternative for printed circuit boards with bromine-containing flame protection (FR-4 material), such printed circuit boards are still used. No use of PCB containing capacitors and transformers (polychlorinated biphenyls). These points are an essential part of the following laws:
The law to encourage the circular flow economy and assurance of the environmentally acceptable removal of waste as at 27.9.94 (Source of information: BGBl I 1994, 2705)
Regulation with respect to the utilization and proof of removal as at 1.9.96 (Source of information: BGBl I 1996, 1382, (1997, 2860))
Regulation with respect to the avoidance and utilization of packaging waste as at 21.8.98 (Source of information: BGBl I 1998, 2379)
Regulation with respect to the European Waste Directory as at 1.12.01
This information is to be seen as notes. Tests or certifications were not carried out in this respect.
(Source of information: BGBl I 2001, 3379)
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 35
10.

APPENDIX

10.1 Acronyms and definitions

ADC
Analog/Digital Converter
ARM®
Advanced RISC Machine
BIOS
Basic Input/Output System
CAN
Controller Area Network
CEC
Consumer Electronics Control
CPI
CEC Programming Interface (Silicon Image)
CPLD
Complex Programmable Logic Device
CPU
Central Processing Unit
DC
Direct Current
DDR3L
Double Data Rate 3 Low voltage
DIP
Dual In-line Package
EDID
Extended Display Identification Data
EEPROM
Electrically Erasable Programmable Read-Only Memory
EMC
Electromagnetic Compatibility
EMI
Electromagnetic Interference
eMMC
embedded Multimedia Card (Flash)
ESD
Electrostatic Discharge
EuP
Energy using Products
FFC
Flat Flex Cable
FR-4
Flame Retardant 4
GPIO
General Purpose Input/Output
GSM
Global System for Mobile Communications (Groupe Spécial Mobile)
HDMI
High Definition Multimedia Interface
I
Input
I/O
Input/Output
I2C
Inter-Integrated Circuit
IFC
Integrated Flash-Controller
IIC
Inter-Integrated Circuit
IP00
Ingress Protection 00
JTAG®
Joint Test Action Group
LCD
Liquid Crystal Display
LDO
Low Drop-Out
LED
Light Emitting Diode
LVDS
Low Voltage Differential Signaling
MOSFET
Metal-Oxide-Semiconductor Field-Effect Transistor
MTBF
Mean operating Time Between Failures
NC
Not Connected
O
Output
OpenSDA
Serial and Debug Adapter (NXP)
OTG
On-The-Go
P
Power
PCB
Printed Circuit Board
PCIe
Peripheral Component Interconnect express
PCMCIA
People Can't Memorize Computer Industry Acronyms
PHY
Physical (layer of the OSI model)
PMC
Power Management Controller
PMIC
Power Management Integrated Circuit
POR
Power-On Reset
PWM
Pulse-Width Modulation
QSPI
Quad Serial Peripheral Interface
The following acronyms and abbreviations are used in this document:
Table 39: Acronyms
Acronym Meaning
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 36
RCW
Reset Configuration Word
REACH
Registration, Evaluation, Authorisation (and restriction of) Chemicals
RGB
Red Green Blue
RGMII
Reduced Gigabit Media Independent Interface
RoHS
Restriction of (the use of certain) Hazardous Substances
RS-232, RS-485
Recommended Standard (serial interface)
RTC
Real-Time Clock
SAI
Serial Audio Interface
SATA
Serial Advanced Technology Attachment
SD
Secure Digital
SD/MMC
Secure Digital Multimedia Card
SDHC
Secure Digital High Capacity
SDR
Single Data Rate
SDRAM
Synchronous Dynamic Random Access Memory
SERDES
Serializer/Deserializer
SGMII
Serial Gigabit Media Independent Interface
SIM
Subscriber Identification Module
SMBUS
System Management Bus
SPI
Serial Peripheral Interface
SS
Super Speed
SVHC
Substances of Very High Concern
SWD
Serial Wire Debug
TDM
Time-Division Multiplexing
THT
Through-Hole Technology
TPI
Transmitter Programming Interface (Silicon Image)
UART
Universal Asynchronous Receiver/Transmitter
UCC
Unified Communications Controller
UMTS
Universal Mobile Telecommunications System
USB
Universal Serial Bus
VHDL
VHSIC Hardware Description Language
WEEE®
Waste Electrical and Electronic Equipment
WLAN
Wireless Local Area Network
WPAN
Wireless Personal Area Network
WWAN
Wireless Wide Area Network
Table 39: Acronyms (continued)
Acronym Meaning
Preliminary User's Manual l MBLS1012AL UM 0001 l © 2019, TQ-Systems GmbH Page 37

10.2 References

Table 40: Further applicable documents
No. Name Rev., Date Company
(1) QorIQ LS1012A Data Sheet 1.0 / 01/2018 NXP
(2) QorIQ LS1012A Reference Manual Rev. 1 / 01/2018 NXP
(3) AN5192 QorIQ LS1012A Design Checklist Rev. 1 / 01/2018 NXP
(4) User’s Manual TQMLS1012AL – current – TQ-Systems
TQ-Systems GmbH
Mühlstraße 2 l Gut Delling l 82229 Seefeld
Info@TQ-Group | TQ-Group
Loading...