TOSHIBA TMP86CH22UG Technical data

8 Bit Microcontroller
TLCS-870/C Series
TMP86CH22UG
TMP86CH22UG
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications.
Also, please keep in mind the precautions and conditions set forth in the Handling Guide for Semiconductor Devices, or TOSHIBA Semiconductor Reliability Handbook etc. 021023_A
The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of
human life or bodily injury (Unintended Usage). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk. 021023_B
The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
The products described in this document may include products subject to the foreign exchange and foreign trade laws. 021023_F
For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S
© 2006 TOSHIBA CORPORATION
All Rights Reserved
Page 2
Revision History
Date Revision
2005/12/8 1 First Release
2006/9/8 2 Contents Revised
2008/8/29
3 Contents Revised
Caution in Setting the UART Noise Rejection Time
When UART is used, settings of RXDNC are limited depending on the transfer clock specified by BRG. The com-
bination "O" is available but please do not select the combination "–".
The transfer clock generated by timer/counter interrupt is calculated by the following equation : Transfer clock [Hz] = Timer/counter source clock [Hz] ÷ TTREG set value
RXDNC setting
BRG setting
000 fc/13 O O O – 110
(When the transfer clock gen-
erated by timer/counter inter-
rupt is the same as the right
side column) The setting except the aboveOOOO
Transfer
clock [Hz]
fc/8 O
fc/16 O O
fc/32OOO–
00
(No noise rejection)
(Reject pulses shorter than 31/fc[s] as noise)
01
(Reject pulses shorter than 63/fc[s] as noise)
10
(Reject pulses shorter
11
than 127/fc[s] as
noise)
Table of Contents
TMP86CH22UG
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Pin Names and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Operational Description
2.1 CPU Core Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Memory Address Map............................................................................................................................... 9
2.1.2 Program Memory (MaskROM).................................................................................................................. 9
2.1.3 Data Memory (RAM)............................................................................................................................... 10
2.2 System Clock Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Clock Generator...................................................................................................................................... 10
2.2.2 Timing Generator.................................................................................................................................... 12
2.2.2.1 Configuration of timing generator
2.2.2.2 Machine cycle
2.2.3 Operation Mode Control Circuit .............................................................................................................. 13
2.2.3.1 Single-clock mode
2.2.3.2 Dual-clock mode
2.2.3.3 STOP mode
2.2.4 Operating Mode Control ......................................................................................................................... 18
2.2.4.1 STOP mode
2.2.4.2 IDLE1/2 mode and SLEEP1/2 mode
2.2.4.3 IDLE0 and SLEEP0 modes (IDLE0, SLEEP0)
2.2.4.4 SLOW mode
2.3 Reset Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 External Reset Input ............................................................................................................................... 31
2.3.2 Address trap reset .................................................................................................................................. 32
2.3.3 Watchdog timer reset.............................................................................................................................. 32
2.3.4 System clock reset.................................................................................................................................. 32
3. Interrupt Control Circuit
3.1 Interrupt latches (IL19 to IL2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Interrupt enable register (EIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Interrupt master enable flag (IMF) .......................................................................................................... 36
3.2.2 Individual interrupt enable flags (EF19 to EF4) ...................................................................................... 37
Note 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Interrupt Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Interrupt acceptance processing is packaged as follows........................................................................ 39
3.3.2 Saving/restoring general-purpose registers ............................................................................................ 40
3.3.2.1 Using PUSH and POP instructions
3.3.2.2 Using data transfer instructions
3.3.3 Interrupt return ........................................................................................................................................ 41
3.4 Software Interrupt (INTSW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Address error detection .......................................................................................................................... 42
3.4.2 Debugging .............................................................................................................................................. 42
i
3.5 Undefined Instruction Interrupt (INTUNDEF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Address Trap Interrupt (INTATRAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4. Special Function Register (SFR)
4.1 SFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 DBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5. I/O Ports
5.1 Port P1 (P17 to P10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Port P2 (P22 to P20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Port P3 (P37, P34 to P33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Port P5 (P57 to P50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Port P6 (P64 to P61) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Port P7 (P76 to P70) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6. Watchdog Timer (WDT)
6.1 Watchdog Timer Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Watchdog Timer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.1 Malfunction Detection Methods Using the Watchdog Timer ................................................................... 64
6.2.2 Watchdog Timer Enable ......................................................................................................................... 65
6.2.3 Watchdog Timer Disable ........................................................................................................................ 66
6.2.4 Watchdog Timer Interrupt (INTWDT)...................................................................................................... 66
6.2.5 Watchdog Timer Reset ........................................................................................................................... 67
6.3 Address Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.1 Selection of Address Trap in Internal RAM (ATAS) ................................................................................ 68
6.3.2 Selection of Operation at Address Trap (ATOUT) .................................................................................. 68
6.3.3 Address Trap Interrupt (INTATRAP)....................................................................................................... 68
6.3.4 Address Trap Reset................................................................................................................................ 69
7. Time Base Timer (TBT)
7.1 Time Base Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1.1 Configuration .......................................................................................................................................... 71
7.1.2 Control .................................................................................................................................................... 71
7.1.3 Function .................................................................................................................................................. 72
7.2 Divider Output (DVO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.1 Configuration .......................................................................................................................................... 73
7.2.2 Control .................................................................................................................................................... 73
8. 18-Bit Timer/Counter (TC1)
8.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3.1 Timer mode............................................................................................................................................. 79
ii
8.3.2 Event Counter mode............................................................................................................................... 80
8.3.3 Pulse Width Measurement mode............................................................................................................ 81
8.3.4 Frequency Measurement mode .............................................................................................................. 82
9. 8-Bit TimerCounter (TC5, TC6)
9.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 TimerCounter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.3 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.3.1 8-Bit Timer Mode (TC5 and 6) ................................................................................................................ 91
9.3.2 8-Bit Event Counter Mode (TC5, 6) ........................................................................................................ 92
9.3.3 8-Bit Programmable Divider Output (PDO) Mode (TC5, 6)..................................................................... 92
9.3.4 8-Bit Pulse Width Modulation (PWM) Output Mode (TC5, 6).................................................................. 95
9.3.5 16-Bit Timer Mode (TC5 and 6) .............................................................................................................. 97
9.3.6 16-Bit Event Counter Mode (TC5 and 6) ................................................................................................ 98
9.3.7 16-Bit Pulse Width Modulation (PWM) Output Mode (TC5 and 6).......................................................... 98
9.3.8 16-Bit Programmable Pulse Generate (PPG) Output Mode (TC5 and 6) ............................................. 101
9.3.9 Warm-Up Counter Mode....................................................................................................................... 103
9.3.9.1 Low-Frequency Warm-up Counter Mode
9.3.9.2 High-Frequency Warm-Up Counter Mode
(NORMAL1 NORMAL2 SLOW2 SLOW1)
(SLOW1 SLOW2 NORMAL2 NORMAL1)
10. Real-Time Clock
10.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2 Control of the RTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.3 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11. Asynchronous Serial interface (UART )
11.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.3 Transfer Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.4 Transfer Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.5 Data Sampling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.6 STOP Bit Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.7 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.8 Transmit/Receive Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.8.1 Data Transmit Operation .................................................................................................................... 112
11.8.2 Data Receive Operation ..................................................................................................................... 112
11.9 Status Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.9.1 Parity Error.......................................................................................................................................... 113
11.9.2 Framing Error...................................................................................................................................... 113
11.9.3 Overrun Error ...................................................................................................................................... 113
11.9.4 Receive Data Buffer Full..................................................................................................................... 114
11.9.5 Transmit Data Buffer Empty ............................................................................................................... 114
11.9.6 Transmit End Flag .............................................................................................................................. 115
12. Synchronous Serial Interface (SIO)
12.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
iii
12.3 Serial clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.3.1 Clock source ....................................................................................................................................... 119
12.3.1.1 Internal clock
12.3.1.2 External clock
12.3.2 Shift edge............................................................................................................................................ 121
12.3.2.1 Leading edge
12.3.2.2 Trailing edge
12.4 Number of bits to transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.5 Number of words to transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.6 Transfer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.6.1 4-bit and 8-bit transfer modes ............................................................................................................. 122
12.6.2 4-bit and 8-bit receive modes ............................................................................................................. 124
12.6.3 8-bit transfer / receive mode ............................................................................................................... 125
13. 8-Bit AD Converter (ADC)
13.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
13.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
13.3 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
13.3.1 AD Conveter Operation ...................................................................................................................... 130
13.3.2 AD Converter Operation ..................................................................................................................... 130
13.3.3 STOP and SLOW Mode during AD Conversion ................................................................................. 131
13.3.4 Analog Input Voltage and AD Conversion Result ............................................................................... 132
13.4 Precautions about AD Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.4.1 Restrictions for AD Conversion interrupt (INTADC) usage ................................................................. 133
13.4.2 Analog input pin voltage range ........................................................................................................... 133
13.4.3 Analog input shared pins .................................................................................................................... 133
13.4.4 Noise countermeasure........................................................................................................................ 133
14. Key-on Wakeup (KWU)
14.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.3 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
15. LCD Driver
15.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
15.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
15.2.1 LCD driving methods .......................................................................................................................... 139
15.2.2 Frame frequency................................................................................................................................. 140
15.2.3 LCD drive voltage ............................................................................................................................... 141
15.2.4 Adjusting the LCD panel drive capability ............................................................................................ 141
15.3 LCD Display Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
15.3.1 Display data setting ............................................................................................................................ 142
15.3.2 Blanking .............................................................................................................................................. 142
15.4 Control Method of LCD Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
15.4.1 Initial setting........................................................................................................................................ 143
15.4.2 Store of display data ........................................................................................................................... 143
15.4.3 Example of LCD driver output............................................................................................................. 145
16. Input/Output Circuit
iv
16.1 Control pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
16.2 Input/Output Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
17. Electrical Characteristics
17.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
17.2 Recommended Operating Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
17.3 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
17.4 LCD Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
17.5 AD Conversion Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
17.6 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
17.7 Timer Counter 1 input (ECIN) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 161
17.8 Recommended Oscillating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
17.9 Handling Precaution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
18. Package Dimension
This is a technical document that describes the operating functions and electrical specifications of the 8-bit microcontroller series TLCS-870/C (LSI).
v
vi
CMOS 8-Bit Microcontroller

TMP86CH22UG

TMP86CH22UG
Product No.
TMP86CH22UG

1.1 Features

1. 8-bit single chip microcomputer TLCS-870/C series
- Instruction execution time :
- 132 types & 731 basic instructions
2. 18interrupt sources (External : 5 Internal : 13)
3. Input / Output ports (I/O : 32 pins Output : 1 pin)
Large current output: 3pins (Typ. 20mA), LED direct drive
4. Watchdog Timer
5. Prescaler
- Time base timer
- Divider output function
6. 18-bit Timer/Counter : 1ch
- Timer Mode
- Event Counter Mode
- Pulse Width Measurement Mode
- Frequency Measurement Mode
7. 8-bit timer counter : 2 ch
- Timer, Event counter, Programmable divider output (PDO),
ROM
(MaskROM)
16384
bytes
RAM Package OTP MCU Emulation Chip
512
bytes
0.25 µs (at 16 MHz)
122 µs (at 32.768 kHz)
P-LQFP44-1010-0.80B TMP86PH22UG TMP86C923XB
Pulse width modulation (PWM) output,
060116EBP
• The information contained herein is subject to change without notice. 021023_D
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc. 021023_A
• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equip­ment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instru­ments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
• The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by impli­cation or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
• The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E
• For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S
Page 1
1.1 Features TMP86CH22UG
Programmable pulse generation (PPG) modes
8. 8-bit UART : 1 ch
9. 8-bit SIO: 1 ch
10. 8-bit successive approximation type AD converter (with sample hold)
Analog inputs: 4ch
11. Key-on wakeup : 1 ch
12. LCD driver/controller
- LCD direct drive capability (MAX 23 seg × 4 com)
- 1/4,1/3,1/2duties or static drive are programmably selectable
13. Clock operation
Single clock mode
Dual clock mode
14. Low power consumption operation
STOP mode: Oscillation stops. (Battery/Capacitor back-up.)
SLOW1 mode: Low power consumption operation using low-frequency clock.(High-frequency clock
stop.)
SLOW2 mode: Low power consumption operation using low-frequency clock.(High-frequency clock
oscillate.)
IDLE0 mode: CPU stops, and only the Time-Based-Timer(TBT) on peripherals operate using high fre-
quency clock. Release by falling edge of the source clock which is set by TBTCR<TBTCK>.
IDLE1 mode: CPU stops and peripherals operate using high frequency clock. Release by interru-
puts(CPU restarts).
IDLE2 mode: CPU stops and peripherals operate using high and low frequency clock. Release by inter-
ruputs. (CPU restarts).
SLEEP0 mode: CPU stops, and only the Time-Based-Timer(TBT) on peripherals operate using low fre-
quency clock.Release by falling edge of the source clock which is set by TBTCR<TBTCK>.
SLEEP1 mode: CPU stops, and peripherals operate using low frequency clock. Release by interru-
put.(CPU restarts).
SLEEP2 mode: CPU stops and peripherals operate using high and low frequency clock. Release by
interruput.
15. Wide operation voltage:
4.5 V to 5.5 V at 16MHz /32.768 kHz
2.7 V to 5.5 V at 8 MHz /32.768 kHz
1.8 V to 5.5 V at 4.2MHz /32.768 kHz
Page 2

1.2 Pin Assignment

TMP86CH22UG
P52 (SEG21)
P51 (SEG22)
P53 (SEG20)
P55 (SEG18)
P56 (SEG17)
P70 (SEG15)
P73 (SEG12)
P57 (SEG16)
P72 (SEG13)
P71 (SEG14)
P54 (SEG19)
(SEG11) P74 (SEG10) P75
(SEG9) P76
COM3 COM2 COM1 COM0
VLC
(
PDO6/PWM6/PPG6/TC6) P33
PDO5/PWM5/TC5) P34
(
DVO) P37
(
3332313029282726252423
34 35 36 37 38 39 40 41 42 43 44
123456789
XIN
VSS
XOUT
VDD
TEST
(XTIN) P21
(XTOUT) P22
RESET
11
10
(INT5/STOP) P20
(ECIN/AIN1) P61
(ECNT/AIN2) P62
22 21 20 19 18 17 16 15 14 13 12
Figure 1-1 Pin Assignment
P50(SEG23) P17(SEG24/
SCK)
P16(SEG25/SO) P15(SEG26/SI) P14(SEG27/INT3) P13(SEG28/INT2) P12(SEG29/INT1) P11(SEG30/TXD) P10(SEG31/RXD) P64(AIN4/STOP2) P63(AIN3/INT0)
Page 3

1.3 Block Diagram

1.3 Block Diagram
TMP86CH22UG
Figure 1-2 Block Diagram
Page 4

1.4 Pin Names and Functions

Table 1-1 Pin Names and Functions(1/3)
Pin Name Pin Number Input/Output Functions
P17 SEG24
SCK
21
IO
PORT17
O
LCD segment output 24
IO
Serial Clock I/O
TMP86CH22UG
P16 SEG25 SO
P15 SEG26 SI
P14 SEG27 INT3
P13 SEG28 INT2
P12 SEG29 INT1
P11 SEG30 TXD
P10 SEG31 RXD
P22 XTOUT
IO
20
19
18
17
16
15
14
7
PORT16
O
LCD segment output 25
O
Serial Data Output
IO
PORT15
O
LCD segment output 26
I
Serial Data Input
IO
PORT14
O
LCD segment output 27
I
External interrupt 3 input
IO
PORT13
O
LCD segment output 28
I
External interrupt 2 input
IO
PORT12
O
LCD segment output 29
I
External interrupt 1 input
IO
PORT11
O
LCD segment output 30
I
UART data output
IO
PORT10
O
LCD segment output 31
I
UART data input
PORT22
IO
Resonator connecting pins(32.768kHz) for inputting external
O
clock
P21 XTIN
P20
STOP
INT5
P37
DVO
P34 TC5
PDO5/PWM5
P33 TC6
PDO6/PWM6/PPG6
P57 SEG16
P56 SEG17
P55 SEG18
PORT21
6
9
44
43
42
29
28
27
IO
Resonator connecting pins(32.768kHz) for inputting external
I
clock
IO
PORT20
I
STOP mode release signal input
I
External interrupt 5 input
OOPORT37
Divider Output
IO
PORT34
I
TC5 input
O
PDO5/PWM5 output
IO
PORT33
I
TC6 input
O
PDO6/PWM6/PPG6 output
IOOPORT57
LCD segment output 16
IOOPORT56
LCD segment output 17
IOOPORT55
LCD segment output 18
Page 5
1.4 Pin Names and Functions
Table 1-1 Pin Names and Functions(2/3)
Pin Name Pin Number Input/Output Functions
TMP86CH22UG
P54 SEG19
P53 SEG20
P52 SEG21
P51 SEG22
P50 SEG23
P64 AIN4 STOP2
P63 AIN3
INT0
P62 AIN2 ECNT
P61 AIN1 ECIN
26
25
24
23
22
13
12
11
10
IOOPORT54
LCD segment output 19
IOOPORT53
LCD segment output 20
IOOPORT52
LCD segment output 21
IOOPORT51
LCD segment output 22
IOOPORT50
LCD segment output 23
IO
PORT64
I
AD converter analog input 4
I
STOP2 input
IO
PORT63
I
AD converter analog input 3
I
External interrupt 0 input
IO
PORT62
I
AD converter analog input 2
I
ECNT input
IO
PORT61
I
AD converter analog input 1
I
ECIN input
P76 SEG9
P75 SEG10
P74 SEG11
P73 SEG12
P72 SEG13
P71 SEG14
P70 SEG15
COM3 37 O LCD common output 3
COM2 38 O LCD common output 2
COM1 39 O LCD common output 1
COM0 40 O LCD common output 0
XIN 2 I Resonator connecting pins for high-frequency clock
36
35
34
33
32
31
30
IOOPORT76
LCD segment output 9
IOOPORT75
LCD segment output 10
IOOPORT74
LCD segment output 11
IOOPORT73
LCD segment output 12
IOIPORT72
LCD segment output 13
IOOPORT71
LCD segment output 14
IOOPORT70
LCD segment output 15
Page 6
TMP86CH22UG
Table 1-1 Pin Names and Functions(3/3)
Pin Name Pin Number Input/Output Functions
XOUT 3 O Resonator connecting pins for high-frequency clock
RESET 8 I Reset signal
TEST 4 I Test pin for out-going test. Normally, be fixed to low.
VDD 5 I +5V
VSS 1 I 0(GND)
Page 7
1.4 Pin Names and Functions TMP86CH22UG
Page 8

2. Operational Description

2.1 CPU Core Functions

The CPU core consists of a CPU, a system clock controller, and an interrupt controller.
This section provides a description of the CPU core, the program memory, the data memory, and the reset circuit.

2.1.1 Memory Address Map

The TMP86CH22UG memory is composed MaskROM, RAM, DBR(Data buffer register) and SFR(Special
function register). They are all mapped in 64-Kbyte address space. Figure 2-1 shows the TMP86CH22UG memory address map.
0000
SFR
RAM
003F
0040
023F
H
64 bytes
H
H
512
bytes
H
Special function register includes:
SFR:
I/O ports Peripheral control registers Peripheral status registers System control registers Program status word Random access memory includes:
RAM:
Data memory
Stac k
TMP86CH22UG
0F80
H
DBR
MaskROM
0FFF
C000
FFB0
FFBF
FFC0
FFDF
FFE0
FFFF
H
H
H
H
H
H
H
H
128
bytes
16384
bytes
Figure 2-1 Memory Address Map

2.1.2 Program Memory (MaskROM)

DBR: Data buffer register includes:
Peripheral control registers Peripheral status registers LCD display memory
MaskROM:
Vector table for interrupts
(16 bytes)
Vector table for vector call instructions (32 bytes)
Vector table for interrupts
(32 bytes)
Program memory
The TMP86CH22UG has a 16384 bytes (Address C000H to FFFFH) of program memory (MaskROM ).
Page 9
2. Operational Description

2.2 System Clock Controller

2.1.3 Data Memory (RAM)

The TMP86CH22UG has 512bytes (Address 0040H to 023FH) of internal RAM. The first 192 bytes (0040H to 00FFH) of the internal RAM are located in the direct area; instructions with shorten operations are available against such an area.
The data memory contents become unstable when the power supply is turned on; therefore, the data memory should be initialized by an initialization routine.
Example :Clears RAM to “00H”. (TMP86CH22UG)
SRAMCLR: LD (HL), A
TMP86CH22UG
LD HL, 0040H ; Start address setup
LD A, H ; Initial value (00H) setup
LD BC, 01FFH
INC HL
DEC BC
JRS F, SRAMCLR
2.2 System Clock Controller
The system clock controller consists of a clock generator, a timing generator, and a standby controller.
Clock
generator
XIN
High-frequency clock oscillator
XOUT
XTIN
Low-frequency clock oscillator
XTOUT
Figure 2-2 System Colck Control

2.2.1 Clock Generator

Timing generator control register
TBTCR
0036
H
fc
Timing
generator
fs
System clocks
Clock generator control
Standby controller
0038
H
0039
H
SYSCR2SYSCR1
System control registers
The clock generator generates the basic clock which provides the system clocks supplied to the CPU core and peripheral hardware. It contains two oscillation circuits: One for the high-frequency clock and one for the low-frequency clock. Power consumption can be reduced by switching of the standby controller to low-power operation based on the low-frequency clock.
The high-frequency (fc) clock and low-frequency (fs) clock can easily be obtained by connecting a resonator between the XIN/XOUT and XTIN/XTOUT pins respectively. Clock input from an external oscillator is also possible. In this case, external clock is applied to XIN/XTIN pin with XOUT/XTOUT pin not connected.
Page 10
TMP86CH22UG
(a) Crystal/Ceramic
resonator
Note:The function to monitor the basic clock directly at external is not provided for hardware, however, with dis-
abling all interrupts and watchdog timers, the oscillation frequency can be adjusted by monitoring the pulse which the fixed frequency is outputted to the port by the program. The system to require the adjustment of the oscillation frequency should create the program for the adjust­ment in advance.
High-frequency clock
XOUTXIN
(b) External oscillator
Figure 2-3 Examples of Resonator Connection
XOUTXIN
(Open)
Low-frequency clock
XTIN
(c) Crystal (d) External oscillator
XTOUT
XTIN
XTOUT
(Open)
Page 11
2. Operational Description
2.2 System Clock Controller

2.2.2 Timing Generator

The timing generator generates the various system clocks supplied to the CPU core and peripheral hardware from the basic clock (fc or fs). The timing generator provides the following functions.
2.2.2.1 Configuration of timing generator
1. Generation of main system clock
2. Generation of divider output (
DVO) pulses
3. Generation of source clocks for time base timer
4. Generation of source clocks for watchdog timer
5. Generation of internal source clocks for timer/counters
6. Generation of warm-up clocks for releasing STOP mode
7. LCD
TMP86CH22UG
SYSCK DV7CK
High-frequency
clock fc
Low-frequency
clock fs
The timing generator consists of a 2-stage prescaler, a 21-stage divider, a main system clock generator,
and machine cycle counters.
An input clock to the 7th stage of the divider depends on the operating mode, SYSCR2<SYSCK> and TBTCR<DV7CK>, that is shown in Figure 2-4. As reset and STOP mode started/canceled, the prescaler and the divider are cleared to “0”.
fc or fs
S
fc/4
1 21 432 87 109 1211 1413 1615
5 6 17 18 19 20 21
A
Y
B
Multi-
plexer
Machine cycle countersMain system clock generator
Divider
B0 B1
A0 A1
S
Y0 Y1
Multiplexer
Warm-up controller
Watchdog timer
Timer counter, Serial interface, Time-base-timer, divider output, etc. (Peripheral functions)
Figure 2-4 Configuration of Timing Generator
Page 12
Timing Generator Control Register
TMP86CH22UG
TBTCR
(0036H)
Note 1: In single clock mode, do not set DV7CK to “1”. Note 2: Do not set “1” on DV7CK while the low-frequency clock is not operated stably. Note 3: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *: Don’t care Note 4: In SLOW1/2 and SLEEP1/2 modes, the DV7CK setting is ineffective, and fs is input to the 7th stage of the divider. Note 5: When STOP mode is entered from NORMAL1/2 mode, the DV7CK setting is ineffective during the warm-up period after
76543210
(DVOEN) (DVOCK) DV7CK (TBTEN) (TBTCK) (Initial value: 0000 0000)
DV7CK
release of STOP mode, and the 6th stage of the divider is input to the 7th stage during this period.
Selection of input to the 7th stage of the divider
0: fc/2 1: fs
8
[Hz]
2.2.2.2 Machine cycle
Instruction execution and peripheral hardware operation are synchronized with the main system clock.
The minimum instruction execution unit is called an “machine cycle”. There are a total of 10 different types of instructions for the TLCS-870/C Series: Ranging from 1-cycle instructions which require one machine cycle for execution to 10-cycle instructions which require 10 machine cycles for execution. A machine cycle consists of 4 states (S0 to S3), and each state consists of one main system clock.
1/fc or 1/fs [s]
R/W
Main system clock
State
Machine cycle
Figure 2-5 Machine Cycle

2.2.3 Operation Mode Control Circuit

The operation mode control circuit starts and stops the oscillation circuits for the high-frequency and low­frequency clocks, and switches the main system clock. There are three operating modes: Single clock mode, dual clock mode and STOP mode. These modes are controlled by the system control registers (SYSCR1 and SYSCR2). Figure 2-6 shows the operating mode transition diagram.
2.2.3.1 Single-clock mode
Only the oscillation circuit for the high-frequency clock is used, and P21 (XTIN) and P22 (XTOUT) pins are used as input/output ports. The main-system clock is obtained from the high-frequency clock. In the single-clock mode, the machine cycle time is 4/fc [s].
S3S2S1S0 S3S2S1S0
(1) NORMAL1 mode
In this mode, both the CPU core and on-chip peripherals operate using the high-frequency clock.
The TMP86CH22UG is placed in this mode after reset.
Page 13
2. Operational Description
2.2 System Clock Controller TMP86CH22UG
(2) IDLE1 mode
In this mode, the internal oscillation circuit remains active. The CPU and the watchdog timer are
halted; however on-chip peripherals remain active (Operate using the high-frequency clock).
IDLE1 mode is started by SYSCR2<IDLE> = "1", and IDLE1 mode is released to NORMAL1 mode by an interrupt request from the on-chip peripherals or external interrupt inputs. When the IMF (Interrupt master enable flag) is “1” (Interrupt enable), the execution will resume with the acceptance of the interrupt, and the operation will return to normal after the interrupt service is completed. When the IMF is “0” (Interrupt disable), the execution will resume with the instruction which follows the IDLE1 mode start instruction.
(3) IDLE0 mode
In this mode, all the circuit, except oscillator and the timer-base-timer, stops operation.
This mode is enabled by SYSCR2<TGHALT> = "1".
When IDLE0 mode starts, the CPU stops and the timing generator stops feeding the clock to the peripheral circuits other than TBT. Then, upon detecting the falling edge of the source clock selected with TBTCR<TBTCK>, the timing generator starts feeding the clock to all peripheral circuits.
When returned from IDLE0 mode, the CPU restarts operating, entering NORMAL1 mode back again. IDLE0 mode is entered and returned regardless of how TBTCR<TBTEN> is set. When IMF = “1”, EF6 (TBT interrupt individual enable flag) = “1”, and TBTCR<TBTEN> = “1”, interrupt pro­cessing is performed. When IDLE0 mode is entered while TBTCR<TBTEN> = “1”, the INTTBT interrupt latch is set after returning to NORMAL1 mode.
2.2.3.2 Dual-clock mode
Both the high-frequency and low-frequency oscillation circuits are used in this mode. P21 (XTIN) and P22 (XTOUT) pins cannot be used as input/output ports. The main system clock is obtained from the high-frequency clock in NORMAL2 and IDLE2 modes, and is obtained from the low-frequency clock in SLOW and SLEEP modes. The machine cycle time is 4/fc [s] in the NORMAL2 and IDLE2 modes, and 4/fs [s] (122 µs at fs = 32.768 kHz) in the SLOW and SLEEP modes.
The TLCS-870/C is placed in the signal-clock mode during reset. To use the dual-clock mode, the low­frequency oscillator should be turned on at the start of a program.
(1) NORMAL2 mode
In this mode, the CPU core operates with the high-frequency clock. On-chip peripherals operate
using the high-frequency clock and/or low-frequency clock.
(2) SLOW2 mode
In this mode, the CPU core operates with the low-frequency clock, while both the high-frequency clock and the low-frequency clock are operated. As the SYSCR2<SYSCK> becomes "1", the hard­ware changes into SLOW2 mode. As the SYSCR2<SYSCK> becomes “0”, the hardware changes into NORMAL2 mode. As the SYSCR2<XEN> becomes “0”, the hardware changes into SLOW1 mode. Do not clear SYSCR2<XTEN> to “0” during SLOW2 mode.
(3) SLOW1 mode
This mode can be used to reduce power-consumption by turning off oscillation of the high-fre­quency clock. The CPU core and on-chip peripherals operate using the low-frequency clock.
Page 14
TMP86CH22UG
Switching back and forth between SLOW1 and SLOW2 modes are performed by SYSCR2<XEN>. In SLOW1 and SLEEP modes, the input clock to the 1st stage of the divider is stopped; output from the 1st to 6th stages is also stopped.
(4) IDLE2 mode
In this mode, the internal oscillation circuit remain active. The CPU and the watchdog timer are halted; however, on-chip peripherals remain active (Operate using the high-frequency clock and/or the low-frequency clock). Starting and releasing of IDLE2 mode are the same as for IDLE1 mode, except that operation returns to NORMAL2 mode.
(5) SLEEP1 mode
In this mode, the internal oscillation circuit of the low-frequency clock remains active. The CPU, the watchdog timer, and the internal oscillation circuit of the high-frequency clock are halted; how­ever, on-chip peripherals remain active (Operate using the low-frequency clock). Starting and releas­ing of SLEEP mode are the same as for IDLE1 mode, except that operation returns to SLOW1 mode. In SLOW1 and SLEEP1 modes, the input clock to the 1st stage of the divider is stopped; output from the 1st to 6th stages is also stopped.
(6) SLEEP2 mode
The SLEEP2 mode is the idle mode corresponding to the SLOW2 mode. The status under the SLEEP2 mode is same as that under the SLEEP1 mode, except for the oscillation circuit of the high­frequency clock.
(7) SLEEP0 mode
In this mode, all the circuit, except oscillator and the timer-base-timer, stops operation. This mode is enabled by setting “1” on bit SYSCR2<TGHALT>.
When SLEEP0 mode starts, the CPU stops and the timing generator stops feeding the clock to the peripheral circuits other than TBT. Then, upon detecting the falling edge of the source clock selected with TBTCR<TBTCK>, the timing generator starts feeding the clock to all peripheral circuits.
When returned from SLEEP0 mode, the CPU restarts operating, entering SLOW1 mode back again. SLEEP0 mode is entered and returned regardless of how TBTCR<TBTEN> is set. When IMF = “1”, EF6 (TBT interrupt individual enable flag) = “1”, and TBTCR<TBTEN> = “1”, interrupt pro­cessing is performed. When SLEEP0 mode is entered while TBTCR<TBTEN> = “1”, the INTTBT interrupt latch is set after returning to SLOW1 mode.
2.2.3.3 STOP mode
In this mode, the internal oscillation circuit is turned off, causing all system operations to be halted. The
internal status immediately prior to the halt is held with a lowest power consumption during STOP mode.
STOP mode is started by the system control register 1 (SYSCR1), and STOP mode is released by a
inputting (Either level-sensitive or edge-sensitive can be programmably selected) to the
STOP pin. After
the warm-up period is completed, the execution resumes with the instruction which follows the STOP mode start instruction.
Page 15
2. Operational Description
2.2 System Clock Controller TMP86CH22UG
IDLE1
mode
(a) Single-clock mode
IDLE2
mode
SLEEP2
mode
SLEEP1
mode
(b) Dual-clock mode
SYSCR2<TGHALT> = "1"
SYSCR2<IDLE> = "1"
Interrupt
SYSCR2<XTEN> = "0"
SYSCR2<IDLE> = "1"
Interrupt
SYSCR2<SYSCK> = "0"
SYSCR2<IDLE> = "1"
Interrupt
SYSCR2<XEN> = "1"
SYSCR2<IDLE> = "1"
Interrupt
Note 2
IDLE0
mode
NORMAL1
mode
NORMAL2
mode
SLOW2
mode
SLOW1
mode
Reset release
Note 2
SYSCR1<STOP> = "1"
STOP pin input
SYSCR2<XTEN> = "1"
SYSCR1<STOP> = "1"
STOP pin input
SYSCR2<SYSCK> = "1"
SYSCR2<XEN> = "0"
SYSCR1<STOP> = "1"
STOP pin input
SYSCR2<TGHALT> = "1"
RESET
STOP
SLEEP0
mode
Note 1: NORMAL1 and NORMAL2 modes are generically called NORMAL; SLOW1 and SLOW2 are called SLOW; IDLE0, IDLE1
and IDLE2 are called IDLE; SLEEP0, SLEEP1 and SLEEP2 are called SLEEP.
Note 2: The mode is released by falling edge of TBTCR<TBTCK> setting.
Figure 2-6 Operating Mode Transition Diagram
Table 2-1 Operating Mode and Conditions
Operating Mode
Single clock
Dual clock
Oscillator
High
Frequency
RESET
NORMAL1 Operate
IDLE1
STOP Stop Halt
NORMAL2
IDLE2 Halt
SLOW2
SLEEP2 Halt
SLOW1
SLEEP1
STOP Stop Halt
Oscillation
Oscillation
Stop
Low
Frequency
Stop
Oscillation
CPU Core TBT
Reset Reset Reset
Operate
HaltIDLE0
Operate with
high frequency
Operate with
low frequency
Operate
Operate with
low frequency
HaltSLEEP0
Other
Peripherals
Operate
Halt
Operate
Halt
Machine Cycle
Time
4/fc [s]
4/fc [s]
4/fs [s]
Page 16
System Control Register 1
SYSCR176543210
(0038H) STOP RELM RETM OUTEN WUT (Initial value: 0000 00**)
TMP86CH22UG
STOP STOP mode start
RELM
RETM
OUTEN Port output during STOP mode
WUT
Release method for STOP mode
Operating mode after STOP mode
Warm-up time at releasing STOP mode
0: CPU core and peripherals remain active 1: CPU core and peripherals are halted (Start STOP mode)
0: Edge-sensitive release 1: Level-sensitive release
0: Return to NORMAL1/2 mode 1: Return to SLOW1 mode
0: High impedance 1: Output kept
Return to NORMAL mode Return to SLOW mode
00
01
10
11
3 x 2
2
3 x 2
2
16
/fc
16
/fc
14
/fc
14
/fc
3 x 2
2
3 x 2
R/W
R/W
R/W
R/W
13
/fs
13
/fs
6
/fs
6
/fs
2
R/W
Note 1: Always set RETM to “0” when transiting from NORMAL mode to STOP mode. Always set RETM to “1” when transiting
from SLOW mode to STOP mode.
Note 2: When STOP mode is released with
RESET pin input, a return is made to NORMAL1 regardless of the RETM contents.
Note 3: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *; Don’t care Note 4: Bits 1 and 0 in SYSCR1 are read as undefined data when a read instruction is executed. Note 5: As the hardware becomes STOP mode under OUTEN = “0”, input value is fixed to “0”; therefore it may cause external
interrupt request on account of falling edge. Note 6: When the key-on wakeup is used, RELM should be set to "1". Note 7: Port P20 is used as
STOP pin. Therefore, when stop mode is started, OUTEN does not affect to P20, and P20 becomes
High-Z mode. Note 8: The warmig-up time should be set correctly for using oscillator.
System Control Register 2
SYSCR2
(0039H)
Note 1: A reset is applied if both XEN and XTEN are cleared to “0”, XEN is cleared to “0” when SYSCK = “0”, or XTEN is cleared
Note 2: *: Don’t care, TG: Timing generator, *; Don’t care Note 3: Bits 3, 1 and 0 in SYSCR2 are always read as undefined value. Note 4: Do not set IDLE and TGHALT to “1” simultaneously. Note 5: Because returning from IDLE0/SLEEP0 to NORMAL1/SLOW1 is executed by the asynchronous internal clock, the period
Note 6: When IDLE1/2 or SLEEP1/2 mode is released, IDLE is automatically cleared to “0”. Note 7: When IDLE0 or SLEEP0 mode is released, TGHALT is automatically cleared to “0”. Note 8: Before setting TGHALT to “1”, be sure to stop peripherals. If peripherals are not stopped, the interrupt latch of peripherals
76543210
XEN XTEN SYSCK IDLE
XEN High-frequency oscillator control
XTEN Low-frequency oscillator control
Main system clock select
SYSCK
IDLE
TGHALT
(Write)/main system clock moni­tor (Read)
CPU and watchdog timer control (IDLE1/2 and SLEEP1/2 modes)
TG control (IDLE0 and SLEEP0 modes)
TGHALT
0: Turn off oscillation 1: Turn on oscillation
0: Turn off oscillation 1: Turn on oscillation
0: High-frequency clock (NORMAL1/NORMAL2/IDLE1/IDLE2) 1: Low-frequency clock (SLOW1/SLOW2/SLEEP1/SLEEP2)
0: CPU and watchdog timer remain active 1: CPU and watchdog timer are stopped (Start IDLE1/2 and SLEEP1/2 modes)
0: Feeding clock to all peripherals from TG 1: Stop feeding clock to peripherals except TBT from TG. (Start IDLE0 and SLEEP0 modes)
(Initial value: 1000 *0**)
to “0” when SYSCK = “1”.
of IDLE0/SLEEP0 mode might be shorter than the period setting by TBTCR<TBTCK>.
may be set after IDLE0 or SLEEP0 mode is released.
R/W
R/W
Page 17
2. Operational Description
2.2 System Clock Controller

2.2.4 Operating Mode Control

2.2.4.1 STOP mode
TMP86CH22UG
STOP mode is controlled by the system control register 1, the STOP pin input and key-on wakeup input (STOP2) which is controlled by the STOP mode release control register (STOPCR). The
STOP pin is also used both as a port P20 and an INT5 (external interrupt input 5) pin. STOP mode is
started by setting SYSCR1<STOP> to “1”. During STOP mode, the following status is maintained.
1. Oscillations are turned off, and all internal operations are halted.
2. The data memory, registers, the program status word and port output latches are all held in the status in effect before STOP mode was entered.
3. The prescaler and the divider of the timing generator are cleared to “0”.
4. The program counter holds the address 2 ahead of the instruction (e.g., [SET (SYSCR1).7]) which started STOP mode.
STOP mode includes a level-sensitive mode and an edge-sensitive mode, either of which can be selected with the SYSCR1<RELM>. Do not use any key-on wakeup input (STOP2) for releasing STOP mode in edge-sensitive mode.
Note 1: The STOP mode can be released by either the STOP or key-on wakeup pin (STOP2). However,
because the STOP pin is different from the key-on wakeup and can not inhibit the release input, the STOP pin must be used for releasing STOP mode.
Note 2: During STOP period (from start of STOP mode to end of warm up), due to changes in the external
interrupt pin signal, interrupt latches may be set to “1” and interrupts may be accepted immediately after STOP mode is released. Before starting STOP mode, therefore, disable interrupts. Also, before enabling interrupts after STOP mode is released, clear unnecessary interrupt latches.
(1) Level-sensitive release mode (RELM = “1”)
In this mode, STOP mode is released by setting the
STOP pin high or setting the STOP2 pin input
which is enabled by STOPCR. This mode is used for capacitor backup when the main power supply is cut off and long term battery backup.
Even if an instruction for starting STOP mode is executed while input is low, STOP mode does not start but instead the warm-up sequence starts immediately. Thus, to start STOP mode in the level-sensitive release mode, it is necessary for the program to first con­firm that the
STOP pin input is low or STOP2 input is high. The following two methods can be used
for confirmation.
1. Testing a port.
2. Using an external interrupt input
INT5 (INT5 is a falling edge-sensitive input).
Example 1 :Starting STOP mode from NORMAL mode by testing a port P20.
STOP pin input is high or STOP2
LD (SYSCR1), 01010000B ; Sets up the level-sensitive release mode
SSTOPH: TEST (P2PRD). 0 ; Wait until the
JRS F, SSTOPH
DI ; IMF ← 0
SET (SYSCR1). 7 ; Starts STOP mode
Page 18
STOP pin input goes low level
Example 2 :Starting STOP mode from NORMAL mode with an INT5 interrupt.
PINT5: TEST (P2PRD). 0 ; To reject noise, STOP mode does not start if
JRS F, SINT5 port P20 is at high
LD (SYSCR1), 01010000B ; Sets up the level-sensitive release mode.
DI ; IMF ← 0
SET (SYSCR1). 7 ; Starts STOP mode
SINT5: RETI
V
STOP pin
XOUT pin
IH
TMP86CH22UG
NORMAL
operation
Confirm by program that the STOP pin input is low and start STOP mode.
STOP
operation
Figure 2-7 Level-sensitive Release Mode
Note 1: Even if the STOP pin input is low after warm-up start, the STOP mode is not restarted.
Note 2: In this case of changing to the level-sensitive mode from the edge-sensitive mode, the release
mode is not switched until a rising edge of the
(2) Edge-sensitive release mode (RELM = “0”)
In this mode, STOP mode is released by a rising edge of the cations where a relatively short program is executed repeatedly at periodic intervals. This periodic signal (for example, a clock from a low-power consumption oscillator) is input to the the edge-sensitive release mode, STOP mode is started even when the Do not use any STOP2 pin input for releasing STOP mode in edge-sensitive release mode.
Example :Starting STOP mode from NORMAL mode
Warm up
STOP mode is released by the hardware.
Always released if the STOP pin input is high.
STOP pin input is detected.
NORMAL operation
STOP pin input. This is used in appli-
STOP pin input is high level.
STOP pin. In
STOP pin
XOUT pin
STOP mode started by the program.
DI ; IMF ← 0
LD (SYSCR1), 10010000B ; Starts after specified to the edge-sensitive release mode
V
IH
NORMAL operation
STOP
operation
Warm up
STOP mode is released by the hardware at the rising edge of STOP pin input.
NORMAL
operation
Figure 2-8 Edge-sensitive Release Mode
Page 19
STOP
operation
Loading...
+ 147 hidden pages