Texas Instruments TRF2050PW Datasheet

LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
D
1.2-GHz Operation
D
Pin-for-Pin and Programming Compatible
– Extended Performance Mode (EPM)
D
Dual RF – IF Phase-Locked Loops
D
Fractional-N or Integer-N Operation
D
Programmable EPM Fractional Modulus of 1–16
D
Normal, Speed-Up, and Fractional
CLOCK
DATA
STROBE
V
SS
RFIN RFIN
V
CCP
REFIN
RA
AUXIN
Compensation Charge Pumps
D
2.9-V to 5.1-V Operation
D
Low-Power Consumption
description
The TRF2050 is a low-voltage, low-power consumption 1.2-GHz fractional-N/integer-N frequency synthesizer component for wireless applications. Fractional-N division and an integral speed-up charge pump are used to achieve rapid channel switching. Two operating modes are available: 1) SA7025 emulation mode in which the part emulates the Philips SA7025 fractional-N synthesizer and 2) extended performance mode (EPM), which provides additional features including fractional accumulator modulos from 1 to 16 (compared to only 5 or 8 for the SA7025) and programmable control of the speed-up mode duration (compared to the SA7025 method of holding the strobe line high).
PW PACKAGE
(TOP VIEW)
1 2 3 4 5 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
TRF2050
V
DD
TSETUP LOCK/TEST RF RN V
DDA
PHP PHI V
SSA
PHA
Along with external loop filters, the TRF2050 provides all functions necessary for voltage-controlled oscillator (VCO) control in a dual phase-locked loop (PLL) frequency synthesizer system. A main channel is provided for radio frequency (RF) channels and an auxiliary channel for intermediate frequency (IF) channels. The current-output charge pumps directly drive passive resistance-capacitance (RC) filter networks to generate VCO control voltages. Rapid main-channel frequency switching is achieved with a charge pump arrangement that increases the current drive and alters the loop-filter frequency response during the speed-up mode portion of the switching interval.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Copyright 1998, Texas Instruments Incorporated
1
TRF2050
/
LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
functional block diagram
2
DATA
RFIN RFIN
1 3
5 6
8
10
EM
32/33 Prescaler
EM+EA
EA
FMOD
Accumulator
PA
4/1
5
Fraction
Main Divider
Reference
Divider
CLOCK
STROBE
REFIN
AUXIN
NF
(N/N+1)
NR
NA
Auxiliary
Divider
Serial Control Shift Registers
Common Registers EPM Registers 7025 Registers
8
12
Conversion and Selection
4
N
18
12
SA
2
Control Lines
Fraction
Compensation
Phase
Detector
SM
2
Select
124
Select
Phase
Detector
CK
CN
CN
4
Compensation
Charge Pump
CL
8
Proportional
Charge Pump
CL
8
Integral
Charge Pump
Auxiliary
Charge Pump
17
RF
2
14
PHP
16
RN
2
13
PHI
18
LOCK TEST
9
RA
11
PHA
Terminals 4, 7, 12, 15, and 20 are for supply voltage. Terminal 19 is for testing. These terminals are not shown.
Conversion and selection block provides emulation of SA7025 64/65/72 triple-modulus prescaler operation using the TRF2050 32/33 dual-modulus prescaler .
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
I/O
DESCRIPTION
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
TERMINAL
NAME NO.
AUXIN CLOCK DATA LOCK/
TEST
ÁÁ
PHA PHI PHP RFIN RFIN REFIN RA RN RF STROBE TSETUP
ÁÁ
V
CCP
V
DD
V
DDA
V
SS
V
SSA
10
1 2
18
ÁÁ
11 13 14
5 6 8
9 16 17
3 19
ÁÁ
7 20
15
4 12
TRF2050
LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
Terminal Functions
I Auxiliary channel RF input I Serial interface clock signal I Serial interface data signal
O Lock detector/test mode output
O Auxiliary charge pump output O Integral charge pump output O Proportional charge pump output
I Prescaler positive RF input I Prescaler negative RF input I Reference frequency input signal I Resistor to V I Resistor to V I Resistor to V I Serial interface strobe signal I T est setup for pin 18. For lock detect output, pin 19 connects to VCC through a pullup resistor; for test mode output,
pin 19 terminates to ground. Prescaler positive supply voltage Digital supply voltage Analog supply voltage Digital ground Analog ground
sets auxiliary charge pump reference current
SSA
sets proportional and integral charge pump reference current
SSA
sets compensation charge pump reference current
SSA
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, V
Input voltage range, logic signals –0.6 V to 5.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating ambient temperature range, T Storage temperature range, T
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: Voltage values are with respect to V
CCP,
VDD, V
stg
SSA
(see Note 1) –0.6 V to 5.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDA
A
.
–55°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
TRF2050
LOCK/TEST
DATA, CLOCK, STROBE
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
recommended operating conditions
MIN NOM MAX UNIT
Supply voltage, V
CCP, VDD
High-level input voltage, VIH (CLOCK, DATA STROBE) 0.7 × V Low-level input voltage, VIL (CLOCK, DATA STROBE) –0.3 0.3 × V Operating free-air temperature, T
, V
DDA
A
2.9 DD
4.8 VDD +0.3 V
–40 25 85 °C
5.1
DD
V
V
dc electrical characteristics VDD = V
DDA
= V
= 3.6 V, over recommended operating free-air
CCP
temperature range. internal registers: CN = 128, CL = 1, CK = 3, N = 3969, NF = 1, FMOD = 8, SM = 0, NA = 296, SA = 0, P A = 1. external components: RN = 18 kΩ , RF = 24 kΩ, RA = 100 k(unless otherwise noted)
supply current: I = IDD + I
PARAMETER TEST CONDITIONS
I
STANDBY
I
MAIN
I
AUX
I
TOTAL
Total standby supply currents EM = EA = 0 (see Notes 2 and 3) Operational supply currents EM = 1, EA = 0 (see Note 3) Operational supply currents EM = 0, EA = 1 (see Note 3) Operational supply currents
NOTES: 2. VRN = VRA = VRF = V
3. For optimum standby and operational current consumption, the following condition should be be maintained: VDD V
DDA
digital interface
V
OH
V
OL
I
IH
I
IL
High-level output voltage Low-level output voltage High-level input current Low-level input current
+ I
CCP
DDA
EM = EA = 1 (see Note 3)
DDA
< VDD + 1.
PARAMETER TEST CONDITIONS
IOH = 2 mA VDD –0.5 V IOL = – 2 mA 0.5 V
MIN
TYP
MAX
7.0
1.5
7.5
200
UNIT
µA mA mA mA
MIN TYP MAX UNIT
10 µA 10 µA
charge pump currents (see Figure 1)
auxiliary charge pump
|I
| Output current PHA
PHA
I
PHA
|I
|
ÁÁÁ
PHA
I
PHA
proportional charge pump, normal mode, VRF = V
|I
PHP-NM
I |I
PHP-NM
ÁÁÁ
I
4
PHP-NM
PHP-NM
|
|
PARAMETER
Relative output current variation PHA (see Figure 1)
Output current matching PHA (see Figure 1)
DDA
PARAMETER
Output current PHP Relative output current variation PHP (see Figure 1)
ББББББББББББББ
Output current matching PHP (see Figure 1)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TEST CONDITIONS
V
= 0.5 V
PHA
БББББÁÁÁÁ
V
PHA
= 0.5 V
DDA
DDA
TEST CONDITIONS MIN
V
= 0.5 V
PHP
БББББ
V
PHP
= 0.5 V
DDA
DDA
MIN
200
400
TYP
250
2%
TYP
500
2%
Á
MAX
300
10%
Á
±50
MAX
600
10%
Á
±50
UNIT
µA
Á
µA
UNIT
µA
Á
µA
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
charge pump currents (see Figure 1) (continued)
TRF2050
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
proportional charge pump, speed-up mode, VRF = V
PARAMETER TEST CONDITIONS MIN
|I
PHP-SM
I |I
PHP-SM
I
integral charge pump, speed-up mode, VRF = V
|
PHP-SM
ÁÁÁ
|
PHP-SM
Output current PHP V Relative output current variation PHP (See Figure 1)
ББББББББББББББ
Output current matching PHP (See Figure 1) V
DDA
PARAMETER TEST CONDITIONS
|I I
|I I
|
PHI-SM
PHI-SM
ÁÁÁ
|
PHI-SM
PHI-SM
Output current PHI V Relative output current variation PHI (see Figure 1)
ББББББББББББББ
Output current matching PHI (see Figure 1) V
fractional compensation proportional charge pump, normal mode, V
PARAMETER TEST CONDITIONS
|I
PHP-F-NM
ÁÁÁ
Output current PHP vs fractional numerator
|
(see Note 4)
(see the section on speed-up mode operation)
DDA
TYP
PHP
PHP
= 0.5 V
= 0.5 V
DDA
DDA
2
Á
(see the section on speed-up mode operation)
MIN
TYP
V
PHP
= 0.5 V
PHI
PHI
DDA
= 0.5 V
= 0.5 V
DDA
DDA
= V
RN
DDA
, FNUM = 1
4.8
ÁÁÁ
MIN
TYP
ÁÁÁ
1.25
NOTE: 4. Fractional compensation current is proportional to the numerator content of the fractional accumulator (FNUM).
charge pump leakage currents, VRN = VRA = V
PARAMETER
I
PHP
I
PHI
I
PHA
Output current PHP Output current PHI Output current PHA
RF
= V
DDA
TEST CONDITIONS
V
= 0.5 V V V
PHP PHI PHA
= 0.5 V
= 0.5 V
DDA
DDA
DDA
MIN
TYP
±10 ±10 ±10
2.5 2%
6
2%
MAX
Á
±300
MAX
Á
±600
MAX
ÁÁÁ
MAX
10%
7.2 8%
UNIT
3
mA
Á
µA
UNIT
mA
Á
µA
UNIT
µA
UNIT
nA
ac electrical characteristics, VDD = V
main divider
PARAMETER TEST CONDITIONS
f
RFIN
V
ID_RFIN
RF input frequency Differential RF input power
50-W single-ended characteristic impedance; ac-coupled
CCP
= V
= 3.6 V, TA = 25°C (unless otherwise noted)
DDA
MIN
TYP
–20
MAX
1.2
UNIT
GHz
0
dBm
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
TRF2050
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
AUXIN
yqy( )
Á
Á
Á
Á
Á
Á
Z
AUXIN
Auxiliary in ut im edance
Z
REFIN
Reference in ut im edance
LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
ac electrical characteristics, VDD = V (continued)
auxiliary divider
PARAMETER TEST CONDITIONS
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
f
AUXIN
ÁÁÁ
ÁÁÁ
reference divider
f
REFIN
V
I_REFIN
Auxiliary input frequency (ac-coupled)
p
p
PARAMETER TEST CONDITIONS
Reference input frequency Reference input voltage ac-coupled
p
p
CCP
= V
= 3.6 V, TA = 25°C (unless otherwise noted)
DDA
PA = 0: V
= VDD = 3.6 V
DDA
V
I_AUXIN
V
I_AUXIN
PA = 0: V
= VDD = 4.8 V
DDA
V
I_AUXIN
PA = 1: V
= VDD = 3.6 V
DDA
V
I_AUXIN
PA = 1: V
= VDD = 4.8 V
DDA
ББББББББ
V
I_AUXIN
= 560 mVpp = 200 mVpp
= 200 mVpp
= 200 mVpp
= 200 mVpp
MIN
TYP
MAX
Á
Á
Á
Á
Á
125
Á
70
Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ
Á
Á
Á
110
Á
40
72
5
100
3
MIN
TYP
MAX
40
200
100
3
UNIT
Á
MHz
Á
MHz
Á
MHz
Á
Á
MHz
Á
MHz
k pF
UNIT
MHz
mVpp
k pF
timing requirements, serial data interface (see Figure 2)
f
CLOCK
t
w_CLKHI
t
w_CLKLO
t
su_Data
t
h_Data
t
h_Strobe
t
su_Strobe
t
w_STRBHI
Clock frequency 10 MHz Clock high time pulse width, CLOCK high 30 ns
Clock low time pulse width, CLOCK low 30 ns Setup time, data valid before CLOCK 30 ns Hold time, data valid after CLOCK 30 ns Hold time, STROBE high before CLOCK 30 ns
Setup time, STROBE lowafter CLOCK 30 ns STROBE high time pulse width, STROBE high
MIN MAX UNIT
50 ns
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
PARAMETER MEASUREMENT INFORMATION
charge-pump current output definitions
Current
I
2
I
REL
OUT
I
1
I
SINK
I
OUT
TRF2050
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
MATCH
I
SOURCE
I
OUT
REL
V
1
I
2
I
1
V
2
Voltage
Figure 1. Charge-Pump Output Current Definitions
The relative output current variation is defined as the percent difference between charge-pump current output at two charge-pump output voltages and the mean charge-pump current output (see Figure 1):
D
I
OUT REL
Ť
I
OUT MEAN
+2
Ť
ǒ
I2–I
ǒ
Ť
I2)
Ǔ
1
×100%; with V1+
Ǔ
Ť
I
1
0.7 V, V2+
V
DDA
–0.8 V.
Output current matching is defined as the difference between charge-pump sinking current output and charge-pump sourcing current output at a given charge-pump output (see Figure 1).
I
OUT MATCH
= I
SINK
– I
SOURCE
; with V1 Voltage V2.
serial-data interface timing
DATA
t
su_Data
CLOCK
STROBE
Valid
D0
Change
t
h_Data
D1
t
w_CLKHI
D30
t
su_Strobe
D31
t
w_CLKLO
t
h_Strobe
t
w_STRBHI
V
H
V
L
V
H
V
L
V
H
V
L
Figure 2. Serial-Data Interface Timing
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
TRF2050 LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
TYPICAL CHARACTERISTICS
MAIN DIVIDER INPUT POWER
FREQUENCY AND SUPPLY VOLTAGE
0
TA = 25°C N = 4000
–10
–20
5.1 V
–30
3.6 V
–40
Main Divider Input Power – dBm
–50
–60
500
550
600
4.4 V
650
700
750
800
f – Frequency – MHz
Figure 3
vs
850
900
950
2.9 V
1000
1050
1100
1150
1200
1250
MAIN DIVIDER MINIMUM INPUT POWER
vs
FREQUENCY AND TEMPERATURE
0
V
= VDD = V
CCP
N = 4000
–10
–20
–30
–40
–50
Main Divider Minimum Input Power – dBm
–60
500
550
600
t = 25°C
650
700
f – Frequency – MHz
750
DDA
800
= 4.8 V
t = 85°C
850
900
950
Figure 4
1000
t = –40°C
1100
1050
1150
1200
1250
REFERENCE DIVIDER MINIMUM INPUT POWER
vs
FREQUENCY AND SUPPLY VOLTAGE
10
TA = 25°C
5
N = 100
0
–5
–10 –15
–20 –25
–30
–35
Reference Divider Minimum Input Power –dBm
–40
10 15 20 25 30 35 40
5.1 V
4.4 V
3.6 V
f – Frequency – MHz
Figure 5
45 50 55
REFERENCE DIVIDER MINIMUM INPUT POWER
vs
FREQUENCY AND TEMPERATURE
10
V
= VDD = V
CCP
NR = 100
5
0
–5
–10
–15 –20
t = 85°C
–25
–30 –35
Reference Divider Minimum Input Power – dBm
–40
10 20 30 40 50 60 70
t = –40°C
f – Frequency – MHz
DDA
= 4.8 V
t = 25°C
Figure 6
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TRF2050
LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
TYPICAL CHARACTERISTICS
AUXILIARY DIVIDER MINIMUM INPUT POWER
vs
FREQUENCY AND SUPPLY VOLTAGE
5
TA = 25°C
0
PA = 1
–5
N = 100 –10 –15 –20
–25 –30 –35 –40
–45
Auxiliary Divider Minimum Input Power – dBm
–50
5.1 V
51525
10 20 30 40 50 60
f – Frequency – MHz
3.6 V
35 45 55 65
Figure 7
AUXILIARY DIVIDER MINIMUM INPUT POWER
vs
FREQUENCY AND SUPPLY VOLTAGE
5
TA = 25°C
0
PA = 0 NA = 100
–5 –10 –15
–20 –25 –30
–35 –40
Auxiliary Divider Minimum Input Power – dBm
–45 –50
5 50 100
3.6 V
25 75 125 175
f – Frequency – MHz
4.4 V
5.1 V
Figure 9
4.4 V
150 200
AUXILIARY DIVIDER MINIMUM INPUT POWER
vs
FREQUENCY AND TEMPERATURE
5
V
= VDD = V
CCP
0
PA = 1 N = 100
–5 –10 –15 –20 –25 –30 –35 –40 –45
Auxiliary Divider Minimum Input Power – dBm
–50
10 15 20 25 35 40 45
530
f – Frequency – MHz
DDA
= 4.8 V
t = –40°C
t = 85°C
50 55 60 65 70 75
Figure 8
AUXILIARY DIVIDER MINIMUM INPUT POWER
vs
FREQUENCY AND TEMPERATURE
5
V
= VDD = V
CCP
0
PA = 0 N = 100
–5
–10
–15 –20 –25
–30 –35
–40 –45
Auxiliary Divider Minimum Input Power – dBm
–50
25 50 100 150 175
5 75 125 200
= 4.8 V
DDA
t = –40°C
t = 85°C
t = 25°C
f – Frequency – MHz
Figure 10
t = 25°C
80
85
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
TRF2050 LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
TYPICAL CHARACTERISTICS
CH1 S
1 µFS 2: 37.43 –160.98 1.0245 pF
11
965.000 000 MHz
2
1
3
START 500.000 MHz STOP 1 400.000 MHz
Figure 11. Typical RFIN Impedance (S11)
1: 89.063 –272.88 500 MHz 3: 16.773 –127.36
1.4 GHz
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TRF2050
LOW-VOLTAGE 1.2-GHz FRACTIONAL-N/INTEGER-N SYNTHESIZER
SLWS030D– JUNE 1996 – REVISED OCTOBER 1998
APPLICATION INFORMATION
6
M_VCO
1
MOD
VT
MVT
VDD
JP1
µ.1 F
C7
5
GND
GND
2
R9
10 k
Lock
31
Test
VDD
C8
100 pF
R10
18
R11
R15
18
R12
4
MQE001
VCC OUT
3
VOSC1
C5
49.9
18
C26
C30
R14
30 k
R13
18 k
VDDA
C10
µ.1 F
VDD
TSETUPRFRN
201918171615141312
VDD
TSET
U1
CLK
DATA
123456789
DTA
CLK
C39
100 pF
J1
22 pF
1000 pF
F µ.1
LOCK/TEST
RF
LOCK
STRB
VSS
AGND
STRB
C9
VDD
VOSC3
C33
C34
MVT
C16
180 pF
R19
3.9 k C17
470 pF
R20
12 k
C18
1200 pF
9.1 k
VSSA
VSSA
RA
RA
VOSC2
µ.022 F
PHA 11
PHA
AUX
10
AUX
R16
110 k
J3
NDK_OSC
C21
TRF2050
R22
VDDA
PHP
PHI
RN
PHI
PHP
VDDA
REF
VCCP
RFIN
RFIN
REF
VDD
RFIN
RFIN
100 pF
µ1F
C38
+
µ.1 F
C11
C23
1000 pF
22 pF
3
OUT
VCC
TCXO
VCONT
GND
2
14
µ.039 F
C31
1000 pF
C31
22 pF
AVT
0
R18
R17
12 k
121110
GND
13141516
VCC GND GND
123
AUX1_VCO
VCO190–S
C16
DNP
C14
180 pF
C13
47 pF
R21
36 k
C24
18
R23
R24
OUT
GND
GND
GNDVTGND
AVT
18
9
4
C19
220pF
GND
GND
1800 pF
R25
49.9
R26
18
GND GND MOD GND
C43
220pF
5678
C20
J2
µ.1 F
µ.1 F
C22
Figure 12. Evaluation Board Schematic (Part 1 of 2)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
Loading...
+ 23 hidden pages