1
2
3
4
8
7
6
5
VO1
SHUTDOWN
BYPASS
IN2
IN1
GND
V
DD
VO2
D PACKAGE
(TOP VIEW)
Audio
Input
Bias
Control
6
1
5
7
VO1
VO2
V
DD
2
8
3
4
IN1
BYPASS
SHUTDOWN
VDD/2
C
I
R
I
R
F
C
B
C
S
Audio
Input
C
I
R
I
IN2
V
DD
−
+
−
+
C
C
C
C
R
F
TPA302
SLOS174C – JANUARY 1997 – REVISED JUNE 2004
300-mW STEREO AUDIO POWER AMPLIFIER
• 300-mW Stereo Output
• PC Power Supply Compatibility 5-V and
3.3-V Specified Operation
• Shutdown Control
• Internal Midrail Generation
• Thermal and Short-Circuit Protection
• Surface-Mount Packaging
• Functional Equivalent of the LM4880
DESCRIPTION
The TPA302 is a stereo audio power amplifier capable of delivering 250 mW of continuous average power into
an 8-Ω load at less than 0.06% THD+N from a 5-V power supply or up to 300 mW at 1% THD+N. The TPA302
has high current outputs for driving small unpowered speakers at 8 Ω or headphones at 32 Ω. For headphone
applications driving 32-Ω loads, the TPA302 delivers 60 mW of continuous average power at less than 0.06%
THD+N. The amplifier features a shutdown function for power-sensitive applications as well as internal thermal
and short-circuit protection. The amplifier is available in an 8-pin SOIC (D) package that reduces board space
and facilitates automated assembly.
TYPICAL APPLICATION CIRCUIT
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 1997–2004, Texas Instruments Incorporated
TPA302
SLOS174C – JANUARY 1997 – REVISED JUNE 2004
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated
circuits be handled with appropriate precautions. Failure to observe proper handling and installation
procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision
integrated circuits may be more susceptible to damage because very small parametric changes could
cause the device not to meet its published specifications.
(1) The D packages are available taped and reeled. To order a taped
AVAILABLE OPTIONS
T
A
–40°C to 85°C TPA302D
and reeled part, add the suffix R (e.g., TPA302DR)
PACKAGED DEVICES
SMALL OUTLINE
(D)
(1)
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted)
V
V
T
T
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
Supply voltage 6 V
DD
Input voltage –0.3 V to V
I
Continuous total power dissipation Internally limited (see Dissipation Rating Table)
Operating junction temperature range –40°C to 150° C
J
Storage temperature range –65°C to 150°C
stg
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(1)
UNIT
+ 0.3 V
DD
DISSIPATION RATING TABLE
PACKAGE
D 731 mW 5.8 mW/°C 460 mW 380 mW
TA≤ 25°C DERATING FACTOR TA= 70°C TA= 85°C
POWER RATING ABOVE TA= 25°C POWER RATING POWER RATING
RECOMMENDED OPERATING CONDITIONS
MIN MAX UNIT
V
T
Supply voltage 2.7 5.5 V
DD
Operating free-air temperature –40 85 °C
A
DC ELECTRICAL CHARACTERISTICS
at specified free-air temperature, V
PARAMETER TEST CONDITION MIN TYP MAX UNIT
I
DD
V
IO
PSRR Power supply rejection ratio V
I
DD(SD)
2
Supply current 2.25 5 mA
Input offset voltage 5 20 mV
Quiescent current in shutdown 0.6 20 µA
= 3.3 V (unless otherwise noted)
DD
= 3.2 V to 3.4 V 55 dB
DD
SLOS174C – JANUARY 1997 – REVISED JUNE 2004
AC OPERATING CHARACTERISTICS
V
= 3.3 V, TA= 25°C, RL= 8 Ω (unless otherwise noted)
DD
PARAMETER TEST CONDITION MIN TYP MAX UNIT
THD < 0.08% 100
P
Output power mW
O
Gain = –1,
f = 1 kHz
THD < 1% 125
THD < 0.08%, RL= 32 Ω 25
THD < 1%, RL= 32 Ω 35
B
Maximum output power bandwidth Gain = 10, 1% THD 20 kHz
OM
B
Unity gain bandwidth Open loop 1.5 MHz
1
Channel separation f = 1 kHz 75 dB
Supply ripple rejection ratio f = 1 kHz 45 dB
V
Noise output voltage Gain = –1 10 µVrms
n
DC ELECTRICAL CHARACTERISTICS
at specified free-air temperature, V
PARAMETER TEST CONDITION MIN TYP MAX UNIT
I
DD
V
OO
PSRR Power supply rejection ratio V
I
DD(SD)
Supply current 4 10 mA
Output offset voltage 5 20 mV
Quiescent current in shutdown 0.6 µA
= 5 V (unless otherwise noted)
DD
= 4.9 V to 5.1 V 65 dB
DD
TPA302
AC OPERATING CHARACTERISTICS
V
= 5 V, TA= 25°C, RL= 8 Ω (unless otherwise noted)
DD
PARAMETER TEST CONDITION MIN TYP MAX UNIT
P
B
B
V
Output power mW
O
Maximum output power bandwidth Gain = 10, 1% THD 20 kHz
OM
Unity gain bandwidth Open loop 1.5 MHz
1
Channel separation f = 1 kHz 75 dB
Supply ripple rejection ratio f = 1 kHz 45 dB
Noise output voltage Gain = -1 10 µVrms
n
Gain = –1,
f = 1 kHz
THD < 0.06% 250
THD < 1% 300
THD < 0.06%, RL= 32 Ω 60
THD < 1%, RL= 32 Ω 80
3
250 mW per Channel at RL = 8 Ω
60 mW per Channel at RL = 32 Ω
Stereo
RLR
L
C
C
C
C
VO1
VO2
BYPASS
IN2-
IN1-
C
B
R
F
R
F
R
I
R
I
C
I
C
I
R
L
Stereo Audio
Input
Bias
Control
From Shutdown
Control Circuit (TPA4860)
C
B
V
DD
4
3
2
1
8
6
5
TPA302
SLOS174C – JANUARY 1997 – REVISED JUNE 2004
TYPICAL APPLICATION
4
1
0.1
0.010
10
20 100 1 k 10 k 20 k
f − Frequency − Hz
VCC = 5 V
PO = 250 mW
RL = 8 Ω
AV = −5 V/V
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
20 100 1 k 10 k 20 k
THD + N − Total Harmonic Distortion Plus Noise − %
f − Frequency − Hz
VCC = 5 V
PO = 250 mW
RL = 8 Ω
AV = −1 V/V
VO1
VO2
THD+N Total harmonic distortion plus noise
I
DD
V
Supply current
Output noise voltage vs Frequency 27, 28
n
Maximum package power dissipation vs Free-air temperature 29
Power dissipation vs Output power 30, 31
P
P
Maximum output power vs Free-air temperature 32, 33
Omax
Output power
O
Open-loop response 36
Closed-loop response 37
Crosstalk vs Frequency 38, 39
Supply ripple rejection ratio vs Frequency 40, 41
TPA302
SLOS174C – JANUARY 1997 – REVISED JUNE 2004
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
vs Frequency 1-3, 7-9, 13-15, 19-21
vs Output power 4-6, 10-12 16-18, 22-24
vs Supply voltage 25
vs Free-air temperature 26
vs Load resistance 34
vs Supply voltage 35
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY FREQUENCY
Figure 1. Figure 2.
5
1
0.1
0.010
10
20 100 1 k 10 k 20 k
f − Frequency − Hz
VCC = 5 V
PO = 250 mW
RL = 8 Ω
AV = −10 V/V
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
0.01 0.1 1
VCC = 5 V
f = 20 Hz
RL = 8 Ω
AV = −1 V/V
PO − Output Power − W
THD + N − Total Harmonic Distortion Plus Noise − %
VO2
VO1
1
0.1
0.010
10
0.01 0.1 1
VCC = 5 V
f = 20 kHz
RL = 8 Ω
AV = −1 V/V
PO − Output Power − W
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
0.01 0.1 1
VCC = 5 V
f = 1 kHz
RL = 8 Ω
AV = −1 V/V
PO − Output Power − W
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
TPA302
SLOS174C – JANUARY 1997 – REVISED JUNE 2004
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY OUTPUT POWER
Figure 3. Figure 4.
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
OUTPUT POWER OUTPUT POWER
6
Figure 5. Figure 6.
1
0.1
0.010
10
20 100 1 k 10 k 20 k
f − Frequency − Hz
VCC = 5 V
PO = 60 mW
RL = 32 Ω
AV = −5 V/V
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
20 100 1 k 10 k 20 k
f − Frequency − Hz
VCC = 5 V
PO = 60 mW
RL = 32 Ω
AV = −1 V/V
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
20 100 1 k 10 k 20 k
f − Frequency − Hz
VCC = 5 V
PO = 60 mW
RL = 32 Ω
AV = −10 V/V
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
0.01 0.1 1
VCC = 5 V
f = 20 Hz
RL = 32 Ω
A
V
= −1 V/V
PO − Output Power − W
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
TPA302
SLOS174C – JANUARY 1997 – REVISED JUNE 2004
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY FREQUENCY
Figure 7. Figure 8.
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY OUTPUT POWER
Figure 9. Figure 10.
7
1
0.1
0.010
10
0.01 0.1 1
VCC = 5 V
f = 1 kHz
RL = 32 Ω
AV = −1 V/V
PO − Output Power − W
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
0.01 0.1 1
VCC = 5 V
f = 20 kHz
RL = 32 Ω
AV = −1 V/V
PO − Output Power − W
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
20 100 1 k 10 k 20 k
f − Frequency − Hz
VCC = 3.3 V
PO = 100 mW
RL = 8 Ω
AV = −1 V/V
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
1
0.1
0.010
10
20 100 1 k 10 k 20 k
f − Frequency − Hz
VCC = 3.3 V
PO = 100 mW
RL = 8 Ω
AV = −5 V/V
THD + N − Total Harmonic Distortion Plus Noise − %
VO1
VO2
TPA302
SLOS174C – JANUARY 1997 – REVISED JUNE 2004
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
OUTPUT POWER OUTPUT POWER
Figure 11. Figure 12.
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY FREQUENCY
Figure 13. Figure 14.
8