TEXAS INSTRUMENTS TPA2006D1 Technical data

www.ti.com
_
+
IN-
Bridge
V
O+
V
O-
Internal
Oscillator
C
S
ToBattery
V
DD
GND
Bias
Circuitry
R
I
R
I
+
-
Differential
Input
TPA2006D1
SHUTDOWN
8
SHUTDOWN
NC
IN+
IN−
V
O−
GND
V
DD
V
O+
8-PINQFN(DRB)PACKAGE
(TOP VIEW)
7
6
5
1
2
3
4
NC − Nointernalconnection
IN+
1.45-W MONO FILTER-FREE CLASS-D AUDIO POWER AMPLIFIER WITH 1.8-V COMPATIBLE INPUT THRESHOLDS

FEATURES APPLICATIONS

Maximum Battery Life and Minimum Heat Efficiency With an 8- Speaker:
88% at 400 mW
80% at 100 mW
2.8-mA Quiescent Current – 0.5- µ A Shutdown Current
Shutdown Pin has 1.8-V Compatible Thresholds
Only Three External Components
Optimized PWM Output Stage Eliminates
LC Output Filter
Internally Generated 250-kHz Switching
Frequency Eliminates Capacitor and Resistor
Improved PSRR (–75 dB) and Wide
Supply Voltage (2.5 V to 5.5 V) Eliminates Need for a Voltage Regulator
Fully Differential Design Reduces RF
Rectification and Eliminates Bypass Capacitor
Improved CMRR Eliminates Two Input
Coupling Capacitors
Space Saving 3 mm x 3 mm QFN Package (DRB)
TPA2006D1
SLOS498 – SEPTEMBER 2006
Ideal for Wireless or Cellular Handsets and
PDAs

DESCRIPTION

The TPA2006D1 is a 1.45-W high efficiency filter-free class-D audio power amplifier in a 3 mm × 3 mm QFN package that requires only three external components. The SHUTDOWN pin is fully compatible with 1.8-V logic GPIO, such as are used on low power cellular chipsets.
Features like 88% efficiency, –75-dB PSRR, improved RF-rectification immunity, and very small total PCB footprint make the TPA2006D1 ideal for cellular handsets. A fast start-up time of 1 ms with minimal pop makes the TPA2006D1 ideal for PDA applications.
In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the TPA2006D1. The TPA2006D1 allows independent gain while summing signals from separate sources, and has a low 36 µ V noise floor, A-weighted.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

APPLICATION CIRCUIT

Copyright © 2006, Texas Instruments Incorporated
www.ti.com
TPA2006D1
SLOS498 – SEPTEMBER 2006
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

T
A
PACKAGE
–40 ° C to 85 ° C 8-pin QFN (DRB) TPA2006D1DRB BTQ
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
Web site at www.ti.com .

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted
V
Supply voltage
DD
V
Input voltage –0.3 V to V
I
Continuous total power dissipation See Dissipation Rating Table
T
Operating free-air temperature –40 ° C to 85 ° C
A
T
Operating junction temperature –40 ° C to 125 ° C
J
T
Storage temperature –65 ° C to 150 ° C
stg
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(1)
(1)
PART NUMBER SYMBOL
TPA2006D1
In active mode –0.3 V to 6 V In SHUTDOWN mode –0.3 V to 7 V
+ 0.3 V
DD

RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX UNIT
V
Supply voltage 2.5 5.5 V
DD
V
High-level input voltage SHUTDOWN 1.3 V
IH
V
Low-level input voltage SHUTDOWN 0 0.35 V
IL
R
Input resistor Gain 20 V/V (26 dB) 15 k
I
V
Common mode input voltage range V
IC
T
Operating free-air temperature –40 85 ° C
A
= 2.5 V, 5.5 V, CMRR –49 dB 0.5 VDD–0.8 V
DD

PACKAGE DISSIPATION RATINGS

PACKAGE DERATING FACTOR
(1)
DRB 21.8 mW/ ° C 2.7 W 1.7 W 1.4 W
(1) Derating factor measure with High K board.
TA≤ 25 ° C TA= 70 ° C TA= 85 ° C
POWER RATING POWER RATING POWER RATING
V
DD
2
Submit Documentation Feedback
www.ti.com
V V
285 kW
R
I
300 kW
R
I
315 kW
R
I
TPA2006D1
SLOS498 – SEPTEMBER 2006

ELECTRICAL CHARACTERISTICS

TA= 25 ° C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
|V PSRR Power supply rejection ratio V CMRR Common mode rejection ratio –68 –49 dB |IIH| High-level input current V
|IIL| Low-level input current V
I
(Q)
I
(SD)
r
DS(on)
f
(sw)
Output offset voltage
| VI= 0 V, AV= 2 V/V, V
OS
(measured differentially)
= 2.5 V to 5.5 V –75 –55 dB
DD
V
= 2.5 V to 5.5 V, VIC= VDD/2 to 0.5 V,
DD
VIC= VDD/2 to V
= 5.5 V, VI= 5.8 V 100 µ A
DD
= 5.5 V, VI= –0.3 V 5 µ A
DD
V
= 5.5 V, no load 3.4 4.9
DD
Quiescent current V
Shutdown current V
Static drain-source on-state resistance
Output impedance in SHUTDOWN V Switching frequency V
= 3.6 V, no load 2.8 mA
DD
V
= 2.5 V, no load 2.2 3.2
DD ( SHUTDOWN)
V
= 2.5 V 770
DD
V
= 3.6 V 590 m
DD
V
= 5.5 V 500
DD ( SHUTDOWN)
= 2.5 V to 5.5 V 200 250 300 kHz
DD
= 2.5 V to 5.5 V 25 mV
DD
–0.8 V
DD
= 0.35 V, V
= 2.5 V to 5.5 V 0.5 2 µ A
DD
= 0.35 V >1 k
Gain V
Resistance from shutdown to GND 300 k

OPERATING CHARACTERISTICS

TA= 25 ° C, Gain = 2 V/V, RL= 8 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
THD + N = 10%, f = 1 kHz, RL= 8 V
P
THD+N V
k
SVR
SNR Signal-to-noise ratio V
V
CMRR Common mode rejection ratio V Z
I
Output power
O
THD + N = 1%, f = 1 kHz, RL= 8 V
V
= 5 V, PO= 1 W, RL= 8 , f = 1 kHz 0.19% Total harmonic distortion plus noise
Supply ripple rejection ratio V
Output voltage noise µ V
n
DD
= 3.6 V, PO= 0.5 W, RL= 8 , f = 1 kHz 0.19%
DD
V
= 2.5 V, PO= 200 mW, RL= 8 , f = 1 kHz 0.20%
DD
V
= 3.6 V, Inputs ac-grounded
DD
with Ci= 2 µ F
= 5 V, PO= 1 W, RL= 8 , A-weighted 97 dB
DD
V
= 3.6 V, f = 20 Hz to 20 kHz,
DD
Inputs ac-grounded with Ci= 2 µ F
= 3.6 V, VIC= 1 V
DD
Input impedance 142 150 158 k Start-up time from shutdown V
= 3.6 V 1 ms
DD
= 2.5 V to 5.5 V
DD
V
= 5 V 1.45
DD
= 3.6 V 0.73 W
DD
V
= 2.5 V 0.33
DD
V
= 5 V 1.19
DD
= 3.6 V 0.59 W
DD
V
= 2.5 V 0.26
DD
f = 217 Hz,
= 200 –67 dB
(RIPPLE)
mV
PP
No weighting 48 A weighting 36
PP
f = 217 Hz –63 dB
RMS
Submit Documentation Feedback
3
www.ti.com
SC
150kW
300kW
150kW
150kW
150kW
TPA2006D1
SLOS498 – SEPTEMBER 2006
Terminal Functions
TERMINAL
NAME DRB
IN– 4 I Negative differential input IN+ 3 I Positive differential input V
DD
V
O+
GND 7 O High-current ground V
O-
SHUTDOWN 1 I Shutdown terminal (active low logic) NC 2 - No Connect, not connected internal to the device. May be left unconnected Thermal Pad O Should be soldered to a grounded thermal pad on PCB for best thermal performance
6 I Power supply 5 O Positive BTL output
8 O Negative BTL output

FUNCTIONAL BLOCK DIAGRAM

I/O DESCRIPTION
4
Submit Documentation Feedback
www.ti.com
TPA2006D1
IN+
IN-
OUT+
OUT-
V
DD
GND
C
I
C
I
R
I
R
I
Measurement
Output
+
-
1 Fm
+
-
V
DD
Load
30-kHz
Low-Pass
Filter
Measurement
Input
+
-
SLOS498 – SEPTEMBER 2006

TYPICAL CHARACTERISTICS

TABLE OF GRAPHS

FIGURE
Efficiency vs Output power 1
P
I
(Q)
I
(SD)
P
THD+N Total harmonic distortion plus noise vs Frequency 10, 11, 12
K
K
CMRR Common-mode rejection ratio
Power dissipation vs Output power 2
D
Supply current vs Output power 3 Quiescent current vs Supply voltage 4 Shutdown current vs Shutdown voltage 5
Output power
O
vs Supply voltage 8 vs Load resistance 6, 7 vs Output power 9
vs Common-mode input voltage 13
Supply ripple rejection ratio vs Frequency 14, 15
SVR
GSM power supply rejection
Supply ripple rejection ratio vs Common-mode input voltage 18
SVR
vs Time 16 vs Frequency 17
vs Frequency 19 vs Common-mode input voltage 20
TPA2006D1

TEST SET-UP FOR GRAPHS

A. CIis shorted for any common-mode input voltage measurement. B. A 33- µ H inductor is placed in series with the load resistor to emulate a small speaker for efficiency measurements. C. The 30-kHz low-pass filter is required even if the analyzer has an internal low-pass filter. An RC low-pass filter
(100 , 47 nF) is used on each output for the data sheet graphs.
Submit Documentation Feedback
5
www.ti.com
0
10
20
30
40
50
60
70
80
90
0 0.2 0.4 0.6 0.8 1 1.2
V
DD
L
=2.5V,
R =8 ,33 HW m
Class-AB, V =5V,
R =8
DD
L
W
P -OutputPower-W
O
Efficiency-%
V
DD
L
=5V,
R =8 ,33 HW m
0
50
100
150
200
250
300
0 0.2 0.4 0.6 0.8 1 1.2
P
O
-OutputPower-W
V =2.5V,
R =8 ,33 H
DD
L
W m
V =3.6V,
R =8 ,33 H
DD
L
W m
V =5V,
R =8 ,33 H
DD
L
W m
SupplyCurrent-mA
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 0.2 0.4 0.6 0.8 1 1.2
P
-
D
PowerDissipation-W
PO-OutputPower-W
Class-AB, V =5V,R =8
DD L
W
Class-AB, V =3.6V,
R =8
DD
L
W
V =3.6V,
R =8 ,33 H
DD
L
W m
V =5V,
R =8 ,33 H
DD
L
W m
0
0.5
1
1.5
2
0 0.1 0.2 0.3 0.4 0.5
Shutdown Voltage − V
− Shutdown Current −
I
(SD)
Aµ
VDD = 5 V
VDD = 3.6 V
VDD = 2.5 V
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
8 12 16 20 24 28 32
VDD=5V
V =3.6V
DD
V =2.5V
DD
R -LoadResistance-LW
P -OutputPower-W
O
f=1kHz THD+N=10% Gain=2V/V
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
3.8
2.5 3 3.5 4 4.5 5 5.5
I
(Q)
− QuiescentCurrent −
mA
V − V
DD
− SupplyVoltage
NoLoad
R =8 ,33 H
L
W m
2.5 3 3.5 4 4.5 5
V -SupplyVDDoltage-V
P -OutputPower-W
O
R =8 f=1kHz
L
W
Gain=2V/V
THD+N=1%
THD+N=10%
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
20
0.1
1
0.001 0.01 1k 10k
PowerOutput − W
THD+N − TotalHarmonicDistortion+Noise − %
0.1k
R =8 f=1kHz
L
W
2.5V
3.6V
5V
10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
8 12 16 20 28
R -LoadResistance-LW
P -OutputPower-W
O
3224
f=1kHz THD+N=1% Gain=2V/V
V =2.5V
DD
V =3.6V
DD
VDD=5V
TPA2006D1
SLOS498 – SEPTEMBER 2006
EFFICIENCY POWER DISSIPATION SUPPLY CURRENT
vs vs vs
OUTPUT POWER OUTPUT POWER OUTPUT POWER
Figure 1. Figure 2. Figure 3.
QUIESCENT CURRENT SUPPLY CURRENT OUTPUT POWER
vs vs vs
SUPPLY VOLTAGE SHUTDOWN VOLTAGE LOAD RESISTANCE
Figure 4. Figure 5. Figure 6.
TOTAL HARMONIC DISTORTION +
OUTPUT POWER OUTPUT POWER NOISE
vs vs vs
LOAD RESISTANCE SUPPLY VOLTAGE OUTPUT POWER
6
Figure 7. Figure 8. Figure 9.
Submit Documentation Feedback
www.ti.com
10
0.01
0.1
1
20 100 10k 20k
f − Frequency − Hz
THD+N − TotalHarmonicDistortion+Noise − %
P =1W
O
P =0.25W
O
P =0.5W
O
V =5V
DD
R =8LW
1k
10
0.001
0.1
1
20 100 10k 20k
f − Frequency − Hz
THD+N − TotalHarmonicDistortion+Noise − %
0.01
1k
V =3.6V
DD
R =8LW
P =0.25W
O
P =0.5W
O
P =0.125W
O
10
0.001
0.1
1
20 100 10k 20k
f − Frequency − Hz
THD+N − TotalHarmonicDistortion+Noise − %
0.01
1k
V =2.5V
DD
R =8LW
P =0.2W
O
P =0.075W
O
P =0.015W
O
−90
−80
−70
−60
−50
−40
−30
20 100 1k 10k
VDD=5V
VDD=2.5V
f − Frequency − Hz
SopplyRippleRejectionRatio − dB
Inputsfloating R =8LW
20k
VDD=3.6V
−90
−80
−70
−60
−50
−40
−30
20 100 1k 20k
f − Frequency − Hz
SupplyRippleRejectionRatio − dB
VDD=2.5V
VDD=3.6V
VDD=5V
Inputsac-grounded C
I
=2 Fm
R
L
=8 W
Gain=2V/V
10k
0.1
1
10
0 0.5 1 1.5 2 2.5
f = 1 kHz PO = 200 mW
V
IC
− Common Mode Input Voltage − V
THD+N − Total Harmonic Distortion + Noise − %
3 3.5 4 4.5 5
VDD = 2.5 V
VDD = 5 V
VDD = 3.6 V
C1 − High
3.6 V
C1 − Amp 512 mV
C1 − Duty 12%
t − Time − 2 ms/div
V
DD
200 mV/div
V
OUT
20 mV/div
−150
−100
−50
0 400 800 1200 1600 2000
−150
−100
−50
0
0
f − Frequency − Hz
− Output Voltage − dBVV O
− Supply Voltage − dBVV DD
VDD Shown in Figure 22 CI = 2 µF, Inputs ac-grounded Gain = 2V/V
TPA2006D1
SLOS498 – SEPTEMBER 2006
TOTAL HARMONIC DISTORTION + TOTAL HARMONIC DISTORTION + TOTAL HARMONIC DISTORTION +
NOISE NOISE NOISE
vs vs vs
FREQUENCY FREQUENCY FREQUENCY
Figure 10. Figure 11. Figure 12.
TOTAL HARMONIC DISTORTION +
NOISE SUPPLY RIPPLE REJECTION RATIO SUPPLY RIPPLE REJECTION RATIO
vs vs vs
COMMON MODE INPUT VOLTAGE FREQUENCY FREQUENCY
Figure 13. Figure 14. Figure 15.
GSM POWER SUPPLY REJECTION GSM POWER SUPPLY REJECTION
vs vs
TIME FREQUENCY
Figure 16. Figure 17.
Submit Documentation Feedback
7
www.ti.com
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
0 1 2 3 4 5
VIC − Common Mode Input Voltage − V
CMRR − Common Mode Rejection Ratio − dB
VDD = 5 V, Gain = 2
VDD = 2.5 V
VDD = 3.6 V
−75
−70
−65
−60
−55
−50
20 100 1 k 20 k
VDD = 3.6 V
f − Frequency − Hz
CMRR − Common Mode Rejection Ratio − dB
V
IC
= 200 mV
PP
RL = 8 Gain = 2 V/V
10 k
−80
−70
−60
−50
−40
−30
−20
−10
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
DC Common Mode Voltage − V
Sopply Ripple Rejection Ratio − dB
VDD = 2. 5 V
VDD = 3.6 V
VDD = 5 V
TPA2006D1
SLOS498 – SEPTEMBER 2006
SUPPLY RIPPLE REJECTION RATIO COMMON-MODE REJECTION RATIO COMMON-MODE REJECTION RATIO
vs vs vs
DC COMMON MODE VOLTAGE FREQUENCY COMMON-MODE INPUT VOLTAGE
Figure 18. Figure 19. Figure 20.
8
Submit Documentation Feedback
Loading...
+ 17 hidden pages