_
+
PWM H-
IN-
Bridge
V
O+
V
O-
Internal
Oscillator
C
S
ToBattery
V
DD
GND
Bias
Circuitry
R
I
R
I
+
-
Differential
Input
TPA2006D1
SHUTDOWN
8
SHUTDOWN
NC
IN+
IN−
V
O−
GND
V
DD
V
O+
8-PINQFN(DRB)PACKAGE
(TOP VIEW)
7
6
5
1
2
3
4
NC − Nointernalconnection
IN+
1.45-W MONO FILTER-FREE CLASS-D AUDIO POWER AMPLIFIER WITH 1.8-V
COMPATIBLE INPUT THRESHOLDS
FEATURES APPLICATIONS
• Maximum Battery Life and Minimum Heat
– Efficiency With an 8- Ω Speaker:
• 88% at 400 mW
• 80% at 100 mW
– 2.8-mA Quiescent Current
– 0.5- µ A Shutdown Current
• Shutdown Pin has 1.8-V Compatible
Thresholds
• Only Three External Components
• Optimized PWM Output Stage Eliminates
LC Output Filter
• Internally Generated 250-kHz Switching
Frequency Eliminates Capacitor and
Resistor
• Improved PSRR (–75 dB) and Wide
Supply Voltage (2.5 V to 5.5 V) Eliminates
Need for a Voltage Regulator
• Fully Differential Design Reduces RF
Rectification and Eliminates Bypass
Capacitor
• Improved CMRR Eliminates Two Input
Coupling Capacitors
• Space Saving 3 mm x 3 mm QFN Package
(DRB)
TPA2006D1
SLOS498 – SEPTEMBER 2006
• Ideal for Wireless or Cellular Handsets and
PDAs
DESCRIPTION
The TPA2006D1 is a 1.45-W high efficiency
filter-free class-D audio power amplifier in a 3 mm ×
3 mm QFN package that requires only three external
components. The SHUTDOWN pin is fully
compatible with 1.8-V logic GPIO, such as are used
on low power cellular chipsets.
Features like 88% efficiency, –75-dB PSRR,
improved RF-rectification immunity, and very small
total PCB footprint make the TPA2006D1 ideal for
cellular handsets. A fast start-up time of 1 ms with
minimal pop makes the TPA2006D1 ideal for PDA
applications.
In cellular handsets, the earpiece, speaker phone,
and melody ringer can each be driven by the
TPA2006D1. The TPA2006D1 allows independent
gain while summing signals from separate sources,
and has a low 36 µ V noise floor, A-weighted.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
APPLICATION CIRCUIT
Copyright © 2006, Texas Instruments Incorporated
TPA2006D1
SLOS498 – SEPTEMBER 2006
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
ORDERING INFORMATION
T
A
PACKAGE
–40 ° C to 85 ° C 8-pin QFN (DRB) TPA2006D1DRB BTQ
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
Web site at www.ti.com .
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range unless otherwise noted
V
Supply voltage
DD
V
Input voltage –0.3 V to V
I
Continuous total power dissipation See Dissipation Rating Table
T
Operating free-air temperature –40 ° C to 85 ° C
A
T
Operating junction temperature –40 ° C to 125 ° C
J
T
Storage temperature –65 ° C to 150 ° C
stg
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(1)
(1)
PART NUMBER SYMBOL
TPA2006D1
In active mode –0.3 V to 6 V
In SHUTDOWN mode –0.3 V to 7 V
+ 0.3 V
DD
RECOMMENDED OPERATING CONDITIONS
MIN NOM MAX UNIT
V
Supply voltage 2.5 5.5 V
DD
V
High-level input voltage SHUTDOWN 1.3 V
IH
V
Low-level input voltage SHUTDOWN 0 0.35 V
IL
R
Input resistor Gain ≤ 20 V/V (26 dB) 15 k Ω
I
V
Common mode input voltage range V
IC
T
Operating free-air temperature –40 85 ° C
A
= 2.5 V, 5.5 V, CMRR ≤ –49 dB 0.5 VDD–0.8 V
DD
PACKAGE DISSIPATION RATINGS
PACKAGE DERATING FACTOR
(1)
DRB 21.8 mW/ ° C 2.7 W 1.7 W 1.4 W
(1) Derating factor measure with High K board.
TA≤ 25 ° C TA= 70 ° C TA= 85 ° C
POWER RATING POWER RATING POWER RATING
V
DD
2
Submit Documentation Feedback
TPA2006D1
SLOS498 – SEPTEMBER 2006
ELECTRICAL CHARACTERISTICS
TA= 25 ° C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
|V
PSRR Power supply rejection ratio V
CMRR Common mode rejection ratio –68 –49 dB
|IIH| High-level input current V
|IIL| Low-level input current V
I
(Q)
I
(SD)
r
DS(on)
f
(sw)
Output offset voltage
| VI= 0 V, AV= 2 V/V, V
OS
(measured differentially)
= 2.5 V to 5.5 V –75 –55 dB
DD
V
= 2.5 V to 5.5 V, VIC= VDD/2 to 0.5 V,
DD
VIC= VDD/2 to V
= 5.5 V, VI= 5.8 V 100 µ A
DD
= 5.5 V, VI= –0.3 V 5 µ A
DD
V
= 5.5 V, no load 3.4 4.9
DD
Quiescent current V
Shutdown current V
Static drain-source on-state
resistance
Output impedance in SHUTDOWN V
Switching frequency V
= 3.6 V, no load 2.8 mA
DD
V
= 2.5 V, no load 2.2 3.2
DD
( SHUTDOWN)
V
= 2.5 V 770
DD
V
= 3.6 V 590 m Ω
DD
V
= 5.5 V 500
DD
( SHUTDOWN)
= 2.5 V to 5.5 V 200 250 300 kHz
DD
= 2.5 V to 5.5 V 25 mV
DD
–0.8 V
DD
= 0.35 V, V
= 2.5 V to 5.5 V 0.5 2 µ A
DD
= 0.35 V >1 k Ω
Gain V
Resistance from shutdown to GND 300 k Ω
OPERATING CHARACTERISTICS
TA= 25 ° C, Gain = 2 V/V, RL= 8 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
THD + N = 10%, f = 1 kHz, RL= 8 Ω V
P
THD+N V
k
SVR
SNR Signal-to-noise ratio V
V
CMRR Common mode rejection ratio V
Z
I
Output power
O
THD + N = 1%, f = 1 kHz, RL= 8 Ω V
V
= 5 V, PO= 1 W, RL= 8 Ω , f = 1 kHz 0.19%
Total harmonic distortion plus
noise
Supply ripple rejection ratio V
Output voltage noise µ V
n
DD
= 3.6 V, PO= 0.5 W, RL= 8 Ω , f = 1 kHz 0.19%
DD
V
= 2.5 V, PO= 200 mW, RL= 8 Ω , f = 1 kHz 0.20%
DD
V
= 3.6 V, Inputs ac-grounded
DD
with Ci= 2 µ F
= 5 V, PO= 1 W, RL= 8 Ω , A-weighted 97 dB
DD
V
= 3.6 V, f = 20 Hz to 20 kHz,
DD
Inputs ac-grounded with Ci= 2 µ F
= 3.6 V, VIC= 1 V
DD
Input impedance 142 150 158 k Ω
Start-up time from shutdown V
= 3.6 V 1 ms
DD
= 2.5 V to 5.5 V
DD
V
= 5 V 1.45
DD
= 3.6 V 0.73 W
DD
V
= 2.5 V 0.33
DD
V
= 5 V 1.19
DD
= 3.6 V 0.59 W
DD
V
= 2.5 V 0.26
DD
f = 217 Hz,
= 200 –67 dB
(RIPPLE)
mV
PP
No weighting 48
A weighting 36
PP
f = 217 Hz –63 dB
RMS
Submit Documentation Feedback
3
SC
150kW
300kW
150kW
150kW
150kW
TPA2006D1
SLOS498 – SEPTEMBER 2006
Terminal Functions
TERMINAL
NAME DRB
IN– 4 I Negative differential input
IN+ 3 I Positive differential input
V
DD
V
O+
GND 7 O High-current ground
V
O-
SHUTDOWN 1 I Shutdown terminal (active low logic)
NC 2 - No Connect, not connected internal to the device. May be left unconnected
Thermal Pad O Should be soldered to a grounded thermal pad on PCB for best thermal performance
6 I Power supply
5 O Positive BTL output
8 O Negative BTL output
FUNCTIONAL BLOCK DIAGRAM
I/O DESCRIPTION
4
Submit Documentation Feedback
TPA2006D1
IN+
IN-
OUT+
OUT-
V
DD
GND
C
I
C
I
R
I
R
I
Measurement
Output
+
-
1 Fm
+
-
V
DD
Load
30-kHz
Low-Pass
Filter
Measurement
Input
+
-
SLOS498 – SEPTEMBER 2006
TYPICAL CHARACTERISTICS
TABLE OF GRAPHS
FIGURE
Efficiency vs Output power 1
P
I
(Q)
I
(SD)
P
THD+N Total harmonic distortion plus noise vs Frequency 10, 11, 12
K
K
CMRR Common-mode rejection ratio
Power dissipation vs Output power 2
D
Supply current vs Output power 3
Quiescent current vs Supply voltage 4
Shutdown current vs Shutdown voltage 5
Output power
O
vs Supply voltage 8
vs Load resistance 6, 7
vs Output power 9
vs Common-mode input voltage 13
Supply ripple rejection ratio vs Frequency 14, 15
SVR
GSM power supply rejection
Supply ripple rejection ratio vs Common-mode input voltage 18
SVR
vs Time 16
vs Frequency 17
vs Frequency 19
vs Common-mode input voltage 20
TPA2006D1
TEST SET-UP FOR GRAPHS
A. CIis shorted for any common-mode input voltage measurement.
B. A 33- µ H inductor is placed in series with the load resistor to emulate a small speaker for efficiency measurements.
C. The 30-kHz low-pass filter is required even if the analyzer has an internal low-pass filter. An RC low-pass filter
(100 Ω , 47 nF) is used on each output for the data sheet graphs.
Submit Documentation Feedback
5
0
10
20
30
40
50
60
70
80
90
0 0.2 0.4 0.6 0.8 1 1.2
V
DD
L
=2.5V,
R =8 ,33 HW m
Class-AB,
V =5V,
R =8
DD
L
W
P -OutputPower-W
O
Efficiency-%
V
DD
L
=5V,
R =8 ,33 HW m
0
50
100
150
200
250
300
0 0.2 0.4 0.6 0.8 1 1.2
P
O
-OutputPower-W
V =2.5V,
R =8 ,33 H
DD
L
W m
V =3.6V,
R =8 ,33 H
DD
L
W m
V =5V,
R =8 ,33 H
DD
L
W m
SupplyCurrent-mA
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 0.2 0.4 0.6 0.8 1 1.2
P
-
D
PowerDissipation-W
PO-OutputPower-W
Class-AB, V =5V,R =8
DD L
W
Class-AB,
V =3.6V,
R =8
DD
L
W
V =3.6V,
R =8 ,33 H
DD
L
W m
V =5V,
R =8 ,33 H
DD
L
W m
0
0.5
1
1.5
2
0 0.1 0.2 0.3 0.4 0.5
Shutdown Voltage − V
− Shutdown Current −
I
(SD)
Aµ
VDD = 5 V
VDD = 3.6 V
VDD = 2.5 V
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
8 12 16 20 24 28 32
VDD=5V
V =3.6V
DD
V =2.5V
DD
R -LoadResistance-LW
P -OutputPower-W
O
f=1kHz
THD+N=10%
Gain=2V/V
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
3.8
2.5 3 3.5 4 4.5 5 5.5
I
(Q)
− QuiescentCurrent −
mA
V − V
DD
− SupplyVoltage
NoLoad
R =8 ,33 H
L
W m
2.5 3 3.5 4 4.5 5
V -SupplyVDDoltage-V
P -OutputPower-W
O
R =8
f=1kHz
L
W
Gain=2V/V
THD+N=1%
THD+N=10%
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
20
0.1
1
0.001 0.01 1k 10k
PowerOutput − W
THD+N − TotalHarmonicDistortion+Noise − %
0.1k
R =8
f=1kHz
L
W
2.5V
3.6V
5V
10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
8 12 16 20 28
R -LoadResistance-LW
P -OutputPower-W
O
3224
f=1kHz
THD+N=1%
Gain=2V/V
V =2.5V
DD
V =3.6V
DD
VDD=5V
TPA2006D1
SLOS498 – SEPTEMBER 2006
EFFICIENCY POWER DISSIPATION SUPPLY CURRENT
vs vs vs
OUTPUT POWER OUTPUT POWER OUTPUT POWER
Figure 1. Figure 2. Figure 3.
QUIESCENT CURRENT SUPPLY CURRENT OUTPUT POWER
vs vs vs
SUPPLY VOLTAGE SHUTDOWN VOLTAGE LOAD RESISTANCE
Figure 4. Figure 5. Figure 6.
TOTAL HARMONIC DISTORTION +
OUTPUT POWER OUTPUT POWER NOISE
vs vs vs
LOAD RESISTANCE SUPPLY VOLTAGE OUTPUT POWER
6
Figure 7. Figure 8. Figure 9.
Submit Documentation Feedback
10
0.01
0.1
1
20 100 10k 20k
f − Frequency − Hz
THD+N − TotalHarmonicDistortion+Noise − %
P =1W
O
P =0.25W
O
P =0.5W
O
V =5V
DD
R =8LW
1k
10
0.001
0.1
1
20 100 10k 20k
f − Frequency − Hz
THD+N − TotalHarmonicDistortion+Noise − %
0.01
1k
V =3.6V
DD
R =8LW
P =0.25W
O
P =0.5W
O
P =0.125W
O
10
0.001
0.1
1
20 100 10k 20k
f − Frequency − Hz
THD+N − TotalHarmonicDistortion+Noise − %
0.01
1k
V =2.5V
DD
R =8LW
P =0.2W
O
P =0.075W
O
P =0.015W
O
−90
−80
−70
−60
−50
−40
−30
20 100 1k 10k
VDD=5V
VDD=2.5V
f − Frequency − Hz
SopplyRippleRejectionRatio − dB
Inputsfloating
R =8LW
20k
VDD=3.6V
−90
−80
−70
−60
−50
−40
−30
20 100 1k 20k
f − Frequency − Hz
SupplyRippleRejectionRatio − dB
VDD=2.5V
VDD=3.6V
VDD=5V
Inputsac-grounded
C
I
=2 Fm
R
L
=8 W
Gain=2V/V
10k
0.1
1
10
0 0.5 1 1.5 2 2.5
f = 1 kHz
PO = 200 mW
V
IC
− Common Mode Input Voltage − V
THD+N − Total Harmonic Distortion + Noise − %
3 3.5 4 4.5 5
VDD = 2.5 V
VDD = 5 V
VDD = 3.6 V
C1 − High
3.6 V
C1 − Amp
512 mV
C1 − Duty
12%
t − Time − 2 ms/div
V
DD
200 mV/div
V
OUT
20 mV/div
−150
−100
−50
0 400 800 1200 1600 2000
−150
−100
−50
0
0
f − Frequency − Hz
− Output Voltage − dBVV
O
− Supply Voltage − dBVV
DD
VDD Shown in Figure 22
CI = 2 µF,
Inputs ac-grounded
Gain = 2V/V
TPA2006D1
SLOS498 – SEPTEMBER 2006
TOTAL HARMONIC DISTORTION + TOTAL HARMONIC DISTORTION + TOTAL HARMONIC DISTORTION +
NOISE NOISE NOISE
vs vs vs
FREQUENCY FREQUENCY FREQUENCY
Figure 10. Figure 11. Figure 12.
TOTAL HARMONIC DISTORTION +
NOISE SUPPLY RIPPLE REJECTION RATIO SUPPLY RIPPLE REJECTION RATIO
vs vs vs
COMMON MODE INPUT VOLTAGE FREQUENCY FREQUENCY
Figure 13. Figure 14. Figure 15.
GSM POWER SUPPLY REJECTION GSM POWER SUPPLY REJECTION
vs vs
TIME FREQUENCY
Figure 16. Figure 17.
Submit Documentation Feedback
7
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
0 1 2 3 4 5
VIC − Common Mode Input Voltage − V
CMRR − Common Mode Rejection Ratio − dB
VDD = 5 V,
Gain = 2
VDD = 2.5 V
VDD = 3.6 V
−75
−70
−65
−60
−55
−50
20 100 1 k 20 k
VDD = 3.6 V
f − Frequency − Hz
CMRR − Common Mode Rejection Ratio − dB
V
IC
= 200 mV
PP
RL = 8 Ω
Gain = 2 V/V
10 k
−80
−70
−60
−50
−40
−30
−20
−10
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
DC Common Mode Voltage − V
Sopply Ripple Rejection Ratio − dB
VDD = 2. 5 V
VDD = 3.6 V
VDD = 5 V
TPA2006D1
SLOS498 – SEPTEMBER 2006
SUPPLY RIPPLE REJECTION RATIO COMMON-MODE REJECTION RATIO COMMON-MODE REJECTION RATIO
vs vs vs
DC COMMON MODE VOLTAGE FREQUENCY COMMON-MODE INPUT VOLTAGE
Figure 18. Figure 19. Figure 20.
8
Submit Documentation Feedback