1
2
3
4
8
7
6
5
VO1
IN1–
IN1+
GND
V
DD
VO2
IN2–
IN2+
D OR DGN PACKAGE
(TOP VIEW)
Short-Circuit
Protection
Over-Temperature
Protection
V
DD
8
V
DD
IN1−
IN1+
IN2−
IN2+
2
3
6
5
VO1
1
VO2
7
4
R
F
R
F
R
F
R
I
R
I
R
I
R
I
V
DD/2
C
I
C
I
C
I
C
I
LIN−
LIN+
RIN−
RIN+
R
F
R
O
R
O
R
C
R
C
C
C
C
C
To Headphone
Jack
(See TPA152)
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
150-mW STEREO AUDIO POWER AMPLIFIER
FEATURES DESCRIPTION
• 150-mW Stereo Output
• Wide Range of Supply Voltages
– Fully Specified for 3.3-V and 5-V Operation
– Operational From 2.5 V to 5.5 V
• Thermal and Short-Circuit Protection input channel and does not require external compen-
• Surface-Mount Packaging
– PowerPAD™ MSOP
– SOIC
• Standard Operational Amplifier Pinout
The TPA112 is a stereo audio power amplifier packaged in an 8-pin PowerPAD™ MSOP package
capable of delivering 150 mW of continuous RMS
power per channel into 8-Ω loads. Amplifier gain is
externally configured by means of two resistors per
sation for settings of 1 to 10.
THD+N when driving an 8-Ω load from 5 V is 0.1% at
1 kHz, and less than 2% across the audio band of 20
Hz to 20 kHz. For 32-Ω loads, the THD+N is reduced
to less than 0.06% at 1 kHz, and is less than 1%
across the audio band of 20 Hz to 20 kHz. For 10-kΩ
loads, the THD+N performance is 0.01% at 1 kHz,
and less than 0.02% across the audio band of 20 Hz
to 20 kHz.
TPA112
FUNCTIONAL BLOCK DIAGRAM
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
PowerPAD is a trademark of Texas Instruments.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 1998–2004, Texas Instruments Incorporated
TPA112
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
These devices have limited built-in ESD protection. The leads should be shorted together or the device
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
SMALL OUTLINE
(D) (DGN)
–40°C to 85°C TPA112D TPA112DGN TI AAD
(1) The D and DGN packages are available in left-ended tape and reel only (e.g., TPA112DR,
TPA112DGNR).
TERMINAL
NAME NO.
I/O DESCRIPTION
GND 4 I GND is the ground connection.
IN1- 2 I IN1- is the inverting input for channel 1.
IN1+ 3 I IN1+ is the noninverting input for channel 1.
IN2- 6 I IN2- is the inverting input for channel 2.
IN2+ 5 I IN2+ is the noninverting input for channel 2.
V
DD
8 I V
is the supply voltage terminal.
DD
VO1 1 O VO1 is the audio output for channel 1.
VO2 7 O VO2 is the audio output for channel 2.
(1)
Terminal Functions
(1)
MSOP
MSOP
SYMBOLIZATION
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted)
V
V
I
I
I
O
T
T
(1) Stresses beyond those listed under "absolute maximum ratings” may cause permanent damage to the device. These are stress ratings
Supply voltage 6 V
DD
Differential input voltage –0.3 V to V
I
Input current ±2.5 µA
Output current ±250 mA
Continuous total power dissipation Internally llimited
Operating junction temperature range –40°C to 150°C
J
Storage temperature range –65°C to 150°C
stg
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(1)
UNIT
DISSIPATION RATING TABLE
PACKAGE
D 725 mW 5.8 mW/°C 464 mW 377 mW
DGN 2.14 W
(1) See the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report
(SLMA002), for more information on the PowerPAD package. The thermal data was measured on a
PCB layout based on the information in the section entitled Texas Instruments Recommended Board
for PowerPAD, of that document.
TA≤ 25°C DERATING FACTOR TA= 70°C TA= 85°C
POWER RATING ABOVE TA= 25°C POWER RATING POWER RATING
(1)
17.1 mW/°C 1.37 W 1.11 W
+ 0.3 V
DD
2
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
RECOMMENDED OPERATING CONDITIONS
MIN MAX UNIT
V
T
Supply voltage 2.5 5.5 V
DD
Operating free-air temperature –40 85 °C
A
DC ELECTRICAL CHARACTERISTICS
at TA= 25°C, V
V
OO
PSRR Power supply rejection ratio V
I
DD(q)
Z
I
Output offset voltage 10 mV
Supply current 1.5 3 mA
Input impedance > 1 MΩ
= 3.3 V
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
= 3.2 V to 3.4 V 83 dB
DD
AC OPERATING CHARACTERISTICS
V
= 3.3 V, TA= 25°C, RL= 8 Ω
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
P
O
Output power (each channel) THD ≤ 0.1% 70
THD+N Total harmonic distortion + noise PO= 70 mW, 20 Hz–20 kHz 2%
B
OM
Maximum output power BW G = 10, THD < 5% > 20 kHz
Phase margin Open loop 58°
S
VRR
Supply ripple rejection f = 1 kHz 68 dB
Channel/channel output separation f = 1 kHz 86 dB
SNR Signal-to-noise ratio PO= 100 mW 100 dB
V
n
Noise output voltage 9.5 µV(rms)
(1) Measured at 1 kHz
(1)
TPA112
mW
DC ELECTRICAL CHARACTERISTICS
at TA= 25°C, V
V
PSRR Power supply rejection ratio V
I
Z
Output offset voltage 10 mV
OO
Supply current 1.5 3 mA
DD(q)
Input impedance > 1 MΩ
I
= 5 V
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
= 4.9 V to 5.1 V 76 dB
DD
AC OPERATING CHARACTERISTICS
V
= 5 V, TA= 25°C, RL= 8 Ω
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
P
Output power (each channel) THD ≤ 0.1% 70
O
THD+N Total harmonic distortion + noise PO= 150 mW, 20 Hz–20 kHz 2%
B
Maximum output power BW G = 10, THD < 5% > 20 kHz
OM
Phase margin Open loop 56°
S
Supply ripple rejection f = 1 kHz 68 dB
VRR
Channel/channel output separation f = 1 kHz 86 dB
SNR Signal-to-noise ratio PO= 150 mW 100 dB
V
Noise output voltage 9.5 µV(rms)
n
(1) Measured at 1 kHz
(1)
mW
3
TPA112
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
AC OPERATING CHARACTERISTICS
V
= 3.3 V, TA= 25°C, RL= 32 Ω
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
P
O
Output power (each channel) THD ≤ 0.1% 40
THD+N Total harmonic distortion + noise PO= 30 mW, 20 Hz–20 kHz 0.5%
B
OM
Maximum output power BW G = 10, THD < 2% > 20 kHz
Phase margin Open loop 58°
S
VRR
Supply ripple rejection f = 1 kHz 68 dB
Channel/channel output separation f = 1 kHz 86 dB
SNR Signal-to-noise ratio PO= 100 mW 100 dB
V
n
Noise output voltage 9.5 µV(rms)
(1) Measured at 1 kHz
AC OPERATING CHARACTERISTICS
V
= 5 V, TA= 25°C, RL= 32 Ω
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
P
THD+N Total harmonic distortion + noise PO= 60 mW, 20 Hz–20 kHz 0.4%
B
S
SNR Signal-to-noise ratio PO= 150 mW 100 dB
V
(1) Measured at 1 kHz
Output power (each channel) THD ≤ 0.1% 40
O
Maximum output power BW G = 10, THD < 2% > 20 kHz
OM
Phase margin Open loop 56°
Supply ripple rejection f = 1 kHz 68 dB
VRR
Channel/channel output separation f = 1 kHz 86 dB
Noise output voltage 9.5 µV(rms)
n
(1)
(1)
mW
mW
4
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
AV = 10
AV = 5
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
AV = 1
VDD = 3.3 V
PO = 30 mW
CB = 1 µ F
RL = 32 Ω
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
VDD = 3.3 V
AV = 1 V/V
RL = 32 Ω
CB = 1 µ F
PO = 10 mW
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
PO = 15 mW
PO = 30 mW
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
TYPICAL CHARACTERISTICS
Table of Graphs
THD+N Total harmonic distortion plus noise vs Frequency
vs Output power 3, 6, 9, 12, 15, 18
PSSR Power supply rejection ratio vs Frequency 19, 20
V
I
CC
SNR Signal-to-noise ratio vs Voltage gain 35
Output noise voltage vs Frequency 21, 22
n
Crosstalk vs Frequency 23-26, 37, 38
Mute attenuation vs Frequency 27, 28
Open-loop gain vs Frequency 29, 30
Phase margin vs Frequency 29, 30
Phase vs Frequency 39-44
Output power vs Load resistance 31, 32
Supply current vs Supply voltage 33
Closed-loop gain vs Frequency 39-44
Power dissipation/amplifier vs Output power 45, 46
1, 2, 4, 5, 7, 8, 10, 11,
13, 14, 16, 17, 34, 36
TPA112
FIGURE
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY FREQUENCY
Figure 1. Figure 2.
5
10 kHz
0.1
0.01
1
10
THD+N −Total Harmonic Distortion + Noise − %
PO − Output Power − mW
1 10 50
VDD = 3.3 V
RL = 32 Ω
AV = 1 V/V
CB = 1 µF
20 kHz
1 kHz
20 Hz
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
VDD = 5 V
PO = 60 mW
RL = 32 Ω
CB = 1 µF
AV = 10 mW
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
AV = 5 mW
AV = 1 mW
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
VDD = 5 V
RL = 32 Ω
AV = 1 V/V
CB = 1 µF
PO = 15 mW
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
PO = 30 mW
PO = 60 mW
THD+N −Total Harmonic Distortion + Noise − %
20 kHz
0.1
0.01
1
10
PO − Output Power − W
VDD = 5 V
AV = 1 V/V
RL = 32 Ω
CB = 1 µF
10 kHz
1 kHz
20 Hz
0.002 0.01 0.1 0.2
TPA112
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
OUTPUT POWER FREQUENCY
Figure 3. Figure 4.
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY OUTPUT POWER
6
Figure 5. Figure 6.
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
VDD = 3.3 V
RL = 10 kΩ
PO = 100 µF
CB = 1 µF
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
AV = 5 mW
AV = 2 mW
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
VDD = 3.3 V
RL = 10 kΩ
AV = 1 V/V
CB = 1 µF
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
PO = 45 µW
PO = 130 µW
PO = 90 µW
5 10 100 200
THD+N −Total Harmonic Distortion + Noise − %
20 Hz
0.01
0.001
1
10
PO − Output Power − µW
10 kHz
1 kHz
20 Hz
0.1
VDD = 3.3 V
RL = 10 k Ω
AV = 1 V/V
CB = 1 µF
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
VDD = 5 V
RL = 10 kΩ
PO = 300 µW
CB = 1 µF
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
AV = 1
AV = 2
AV = 5
TPA112
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY FREQUENCY
Figure 7. Figure 8.
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
OUTPUT POWER FREQUENCY
Figure 9. Figure 10.
7
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
VDD = 5 V
RL = 10 kΩ
AV = 1 V/V
CB = 1 µF
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
PO = 300 µW
PO = 200 µW
PO = 100 µW
0.1
0.01
0.001
1
10
5 10 100 500
VDD = 5 V
RL = 10 kΩ
AV = 1 V/V
CB = 1 µ F
THD+N −Total Harmonic Distortion + Noise − %
20 Hz
1 kHz
20 kHz
10 kHz
PO − Output Power − µW
20
THD+N − Total Harmonic Distortion Plus Noise − %
f − Frequency − Hz
2
0.1
0.01
0.001
100 1k 10k 20k
1
AV = 1
AV = 2
AV = 5
V
DD
= 3.3 V
PO = 75 mW
RL = 8 Ω
CB = 1 µF
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
VDD = 3.3 V
RL = 8 Ω
AV = 1 V/V
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
PO = 75 mW
PO = 15 mW
PO = 30 mW
TPA112
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY OUTPUT POWER
Figure 11. Figure 12.
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY FREQUENCY
8
Figure 13. Figure 14.
20
THD+N − Total Harmonic Distortion Plus Noise − %
f − Frequency − Hz
2
0.1
0.01
0.001
100 1k 10k 20k
1
AV = 1
AV = 2
AV = 5
V
DD
= 5 V
PO = 100 mW
RL = 8 Ω
CB = 1 µF
20 kHz
0.1
0.01
1
10
THD+N −Total Harmonic Distortion + Noise − %
PO − Output Power − W
10m 0.1 0.3
VDD = 3.3 V
RL = 8 Ω
AV = 1 V/V
10 kHz
1 kHz
20 Hz
0.1
0.01
0.001
1
10
20 100 1k 10k 20k
THD+N −Total Harmonic Distortion + Noise − %
f − Frequency − Hz
VDD = 5 V
RL = 8 kΩ
AV = 1 V/V
PO = 30 mW
PO = 60 mW
PO = 10 mW
20 kHz
0.1
0.01
1
10
THD+N −Total Harmonic Distortion + Noise − %
PO − Output Power − W
10m 0.1 1
1 kHz
20 Hz
10 kHz
VDD = 5 V
RL = 8 Ω
AV = 1 V/V
TPA112
SLOS212E – AUGUST 1998 – REVISED JUNE 2004
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
OUTPUT POWER FREQUENCY
Figure 15. Figure 16.
TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs
FREQUENCY OUTPUT POWER
Figure 17. Figure 18.
9