Texas Instruments MSP430FG4616IPZ, MSP430FG4616IZQW, MSP430FG4617IPZ, MSP430FG4617IZQW, MSP430FG4618IPZ User Manual

...
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D Low Supply-Voltage Range: 1.8 V to 3.6 V D Ultralow-Power Consumption:
− Standby Mode: 1.3 μA
− Off Mode (RAM Retention): 0.22 μA
D Five Power-Saving Modes D Wake-Up From Standby Mode in Less
Than 6 μs
D 16-Bit RISC Architecture, Extended
Memory, 125-ns Instruction Cycle Time
D Three Channel Internal DMA D 12-Bit A/D Converter With Internal
Reference, Sample-and-Hold, and Autoscan Feature
D Three Configurable Operational Amplifiers D Dual 12-Bit Digital-to-Analog (D/A)
Converters With Synchronization
D 16-Bit Timer_A With Three
Capture/Compare Registers
D 16-Bit Timer_B With Seven
Capture/Compare-With-Shadow Registers
D On-Chip Comparator D Supply Voltage Supervisor/Monitor With
Programmable Level Detection
D Serial Communication Interface (USART1),
Select Asynchronous UART or Synchronous SPI by Software
D Universal Serial Communication Interface
− Enhanced UART Supporting Auto-Baudrate Detection
− IrDA Encoder and Decoder
− Synchronous SPI
− I2C
TM
D Serial Onboard Programming,
Programmable Code Protection by Security Fuse
D Brownout Detector D Basic Timer With Real Time Clock Feature D Integrated LCD Driver up to 160 Segments
With Regulated Charge Pump
D Family Members Include:
− MSP430xG4616:
92KB+256B Flash or ROM Memory 4KB RAM
− MSP430xG4617:
92KB+256B Flash or ROM Memory, 8KB RAM
− MSP430xG4618:
116KB+256B Flash or ROM Memory, 8KB RAM
− MSP430xG4619:
120KB+256B Flash or ROM Memory, 4KB RAM
D For Complete Module Descriptions, See the
MSP430x4xx Family User’s Guide
(
literature number SLAU056
)
description
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is op t i m i zed to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 μs.
The MSP430xG461x series are microcontroller configurations with two 16-bit timers, a high-performance 12-bit A/D converter, dual 12-bit D/A converters, three configurable operational amplifiers, one universal serial communication interface (USCI), one universal synchronous/asynchronous communication interface (USART), DMA, 80 I/O pins, and a liquid crystal display (LCD) driver with regulated charge pump.
Typical applications for this device include portable medical applications and e-meter applications.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright © 2011, Texas Instruments Incorporated
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
AVAILABLE OPTIONS
{
PACKAGED DEVICES
}
T
A
PLASTIC 100-PIN TQFP
(PZ)
PLASTIC 113-BALL BGA
(ZQW)
MSP430FG4616IPZ MSP430FG4616IZQW MSP430FG4617IPZ MSP430FG4617IZQW MSP430FG4618IPZ MSP430FG4618IZQW MSP430FG4619IPZ MSP430FG4619IZQW
−40°C to 85°C MSP430CG4616IPZ MSP430CG4616IZQW
MSP430CG4617IPZ MSP430CG4617IZQW MSP430CG4618IPZ MSP430CG4618IZQW MSP430CG4619IPZ MSP430CG4619IZQW
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
DEVELOPMENT TOOL SUPPORT
All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy-to-use development tools. Recommended hardware options include:
D Debugging and Programming Interface
MSP-FET430UIF (USB)
MSP-FET430PIF (Parallel Port)
D Debugging and Programming Interface with Target Board
MSP-FET430U100 (for PZ package)
D Standalone Target Board
MSP-TS430PZ100 (for PZ package)
D Production Programmer
MSP-GANG430
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
pin designation, MSP430xG461xIPZ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
P1.7/CA1
P6.1/A1/OA0O
P6.0/A0/OA0I0
RST/NMI
XT2IN
XT2OUT
P1.3/TBOUTH/SVSOUT
P1.4/TBCLK/SMCLK
P1.5/TACLK/ACLK
P1.6/CA0
P2.3/TB2
P9,2/S15
P9.1/S16
P9.0/S17
P8.5/S20
P8.0/S25
P7.7/S26
P7.6/S27
P7.5/S28
P7.4/S29
P7.2/UCA0SOMI/S31
P4.7/UCA0RXD/S34
P7.3/UCA0CLK/S30
P1.0/TA0
TDI/TCLK
TDO/TDI
P8.4/S21
SS1
DV
P6.2/A2/OA0I1
P1.2/TA1
P8.1/S24
P4.6/UCA0TXD/S35
DV
CC1
P6.3/A3/OA1O P6.4/A4/OA1I0 P6.5/A5/OA2O
P6.6/A6/DAC0/OA2I0
P6.7/A7/DAC1/SVSIN
VREF+
XIN
XOUT
VeREF+/DAC0
VREF−/VeREF−
P5.1/S0/A12/DAC1
P5.0/S1/A13/OA1I1
P10.7/S2/A14/OA2I1
P10.6/S3/A15
P10.5/S4 P10.4/S5 P10.3/S6 P10.2/S7 P10.1/S8 P10.0/S9 P9.7/S10 P9.6/S11 P9.5/S12 P9.4/S13
P2.4/UCA0TXD P2.5/UCA0RXD P2.6/CAOUT P2.7/ADC12CLK/DMAE0 P3.0/UCB0STE P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 P4.0/UTXD1 P4.1/URXD1 DV
SS2
DV
CC2
LCDCAP/R33 P5.7/R23 P5.6/LCDREF/R13 P5.5/R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/STE1/S39
P8.6/S19
P8.3/S22
P8.2/S23
P7.0/UCA0STE/S33
P7.1/UCA0SIMO/S32
P4.5/UCLK1/S36
P4.4/SOMI1/S37
P4.3/SIMO1/S38
CCAVSS
AV
TCK
TMS
P1.1/TA0/MCLK
P2.0/TA2
P2.1/TB0
P2.2/TB1
MSP430xG4616IPZ MSP430xG4617IPZ MSP430xG4618IPZ MSP430xG4619IPZ
P9.3/S14
P8.7/S18
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
pin designation, MSP430xG461xIZQW (top view)
A B C D E F
G
H
J
K L
M
123456789101112
NOTE: For terminal assignments, see the MSP430xG461x Terminal Functions table.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
functional block diagram
Oscillators
FLL+
RAM
4kB 8kB 8kB 4kB
Brownout
Protection
SVS/SVM
RST/NMI
DVCC1/2 DVSS1/2
MCLK
Watchdog
WDT+
15/16−Bit
Timer_A3
3CC
Registers
8MHz CPUX incl.16
Registers
XOUT/ XT2OUT
OA0, OA1,
OA2
3 Op Amps
Basic Timer
&
Real−Time
Clock
JTAG
Interface
LCD_A
160
Segments
1,2,3,4 Mux
Ports P1/P2
2x8 I/O
Interrupt
capability
USCI_A0:
UART,
IrDA, SPI
USCI_B0:
SPI,I2C
Comparator
_A
Flash(FG) ROM(CG)
120kB 116kB
92kB 92kB
Hardware
Multiplier
MPY,
MPYS,
MAC,
MACS
Timer_B7
7CC
Registers,
Shadow
Reg
ADC12
12−Bit
12
Channels
DAC12
12−Bit
2Channels Voltage out
USART1
UART, SPI
DMA
Controller
3 Channels
Ports P3/P4 P5/P6
4x8 I/O
Ports
P7/P8
P9/P10
4x8/2x16 I/O
AVCC AVSS P1.x/P2.x
2x8
P3.x/P4.x P5.x/P6.x
4x8
P7.x/P8.x
P9.x/P10.x
4x8/2x16
XIN/
XT2IN
22
SMCLK
ACLK
MDB
MAB
Enhanced
Emulation
( FG only)
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Terminal Functions
TERMINAL
NAME
NO.PZNO.
ZQW
I/O DESCRIPTION
DV
CC1
1 A1 Digital supply voltage, positive terminal P6.3/A3/OA1O 2 B1 I/O General-purpose digital I/O / analog input a3—12-bit ADC / OA1 output P6.4/A4/OA1I0 3
B2
I/O General-purpose digital I/O / analog input a4—12-bit ADC / OA1 input multiplexer
on +terminal and −terminal P6.5/A5/OA2O 4 C2 I/O General-purpose digital I/O / analog input a5—12-bit ADC / OA2 output P6.6/A6/DAC0/OA2I0 5
C1
I/O General-purpose digital I/O / analog input a6—12-bit ADC / DAC12.0 output / OA2
input multiplexer on +terminal and −terminal P6.7/A7/DAC1/SVSIN 6 C3 I/O
General-purpose digital I/O / analog input a7—12-bit ADC / DAC12.1 output /
analog input to brownout, supply voltage supervisor V
REF+
7 D2 O Output of positive terminal of the reference voltage in the ADC XIN 8 D1 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 E1 O Output terminal of crystal oscillator XT1 Ve
REF+
/DAC0 10 E2 I/O Input for an external reference voltage to the ADC / DAC12.0 output
V
REF−
/Ve
REF−
11 E4 I
Negative terminal for the ADC reference voltage for both sources, the internal reference voltage, or an external applied reference voltage
P5.1/S0/A12/DAC1 (see Note 1) 12 F1 I/O
General-purpose digital I/O / LCD segment output 0 / analog input a12 − 12−bit ADC / DAC12.1 output
P5.0/S1/A13/OA1I1 (see Note 1) 13 F2 I/O
General-purpose digital I/O / LCD segment output 1 / analog input a13 − 12−bit ADC/OA1 input multiplexer on +terminal and −terminal
P10.7/S2/A14/OA2I1 (see Note 1) 14 E5 I/O
General-purpose digital I/O / LCD segment output 2 / analog input a14 − 12−bit ADC/OA2 input multiplexer on +terminal and −terminal
P10.6/S3/A15 (see Note 1) 15 G1 I/O
General-purpose digital I/O / LCD segment output 3 / analog input a15 − 12−bit
ADC P10.5/S4 16 G2 I/O General-purpose digital I/O / LCD segment output 4 P10.4/S5 17 F4 I/O General-purpose digital I/O / LCD segment output 5 P10.3/S6 18 H1 I/O General-purpose digital I/O / LCD segment output 6 P10.2/S7 19 H2 I/O General-purpose digital I/O / LCD segment output 7 P10.1/S8 20 F5 I/O General-purpose digital I/O / LCD segment output 8 P10.0/S9 21 J1 I/O General-purpose digital I/O / LCD segment output 9 P9.7/S10 22 J2 I/O General-purpose digital I/O / LCD segment output 10 P9.6/S11 23 G4 I/O General-purpose digital I/O / LCD segment output 11 P9.5/S12 24 K1 I/O General-purpose digital I/O / LCD segment output 12 P9.4/S13 25 L1 I/O General-purpose digital I/O / LCD segment output 13 P9.3/S14 26 M2 I/O General-purpose digital I/O / LCD segment output 14 P9.2/S15 27 K2 I/O General-purpose digital I/O / LCD segment output 15 P9.1/S16 28 L3 I/O General-purpose digital I/O / LCD segment output 16 P9.0/S17 29 M3 I/O General-purpose digital I/O / LCD segment output 17 P8.7/S18 30 H4 I/O General-purpose digital I/O / LCD segment output 18 P8.6/S19 31 L4 I/O General-purpose digital I/O / LCD segment output 19 P8.5/S20 32 M4 I/O General-purpose digital I/O / LCD segment output 20 P8.4/S21 33 G5 I/O General-purpose digital I/O / LCD segment output 21 P8.3/S22 34 L5 I/O General-purpose digital I/O / LCD segment output 22
NOTES: 1. Segments S 0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and cannot be used together
with the LCD charge pump. In addition, when using segments S0 through S3 with an external LCD voltage supply, V
LCD
AVCC.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Terminal Functions (Continued)
TERMINAL
NAME
NO.PZNO.
ZQW
I/O DESCRIPTION
P8.2/S23 35 M5 I/O General-purpose digital I/O / LCD segment output 23 P8.1/S24 36 H5 I/O General-purpose digital I/O / LCD segment output 24 P8.0/S25 37 J5 I/O General-purpose digital I/O / LCD segment output 25 P7.7/S26 38 M6 I/O General-purpose digital I/O / LCD segment output 26 P7.6/S27 39 L6 I/O General-purpose digital I/O / LCD segment output 27 P7.5/S28 40 J6 I/O General-purpose digital I/O / LCD segment output 28 P7.4/S29 41 M7 I/O General-purpose digital I/O / LCD segment output 29
P7.3/UCA0CLK/S30 42 H6 I/O
General-purpose digital I/O / external clock input − USCI_A0/UART or SPI mode, clock output − USCI_A0/SPI mode / LCD segment 30
P7.2/UCA0SOMI/S31 43 L7 I/O
General-purpose digital I/O / slave out/master in of USCI_A0/SPI mode / LCD segment output 31
P7.1/UCA0SIMO/S32 44 M8 I/O
General-purpose digital I/O / slave in/master out of USCI_A0/SPI mode / LCD segment output 32
P7.0/UCA0STE/S33 45 L8 I/O
General-purpose digital I/O / slave transmit enable—USCI_A0/SPI mode / LCD segment output 33
P4.7/UCA0RXD/S34 46 J7 I/O
General-purpose digital I/O / receive data in − USCI_A0/UART or IrDA mode / LCD segment output 34
P4.6/UCA0TXD/S35 47 M9 I/O
General-purpose digital I/O / transmit data out − USCI_A0/UART or IrDA mode / LCD segment output 35
P4.5/UCLK1/S36 48 L9 I/O
General-purpose digital I/O / external clock input − USART1/UART or SPI mode, clock output − USART1/SPI MODE / LCD segment output 36
P4.4/SOMI1/S37 49 H7 I/O
General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37
P4.3/SIMO1/S38 50 M10 I/O
General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38
P4.2/STE1/S39 51 M11 I/O
General-purpose digit a l I / O / slave transmit enable—USART1/SPI mode / LCD segment
output 39 COM0 52 L10 O COM0−3 are used for LCD backplanes. P5.2/COM1 53 L12 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.3/COM2 54 J8 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.4/COM3 55 K12 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.5/R03 56 K11 I/O General-purpose digital I/O / Input port of lowest analog LCD level (V5)
P5.6/LCDREF/R13 57 J12 I/O
General-purpose digital I/O / External reference voltage input for regulated LCD voltage
/ Input port of third most positive analog LCD level (V4 or V3) P5.7/R23 58 J11 I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2) LCDCAP/R33 59 H11 I LCD capacitor connection / Input/output port of most positive analog LCD level (V1) DV
CC2
60 H12 Digital supply voltage, positive terminal
DV
SS2
61 G12 Digital supply voltage, negative terminal P4.1/URXD1 62 G11 I/O General-purpose digital I/O / receive data in—USART1/UART mode P4.0/UTXD1 63 H9 I/O General-purpose digital I/O / transmit data out—USART1/UART mode
P3.7/TB6 64 F12 I/O
General-purpose digital I/O / Timer_B7 CCR6. Capture: CCI6A/CCI6B input, compare: Out6 output
P3.6/TB5 65 F11 I/O
General-purpose digital I/O / Timer_B7 CCR5. Capture: CCI5A/CCI5B input, compare: Out5 output
P3.5/TB4 66 G9 I/O
General-purpose digital I/O / Timer_B7 CCR4. Capture: CCI4A/CCI4B input, compare: Out4 output
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Terminal Functions (Continued)
TERMINAL
NAME
NO.PZNO.
ZQW
I/O DESCRIPTION
P3.4/TB3 67 E12 I/O
General-purpose digital I/O / T imer_B7 CCR3. Capture: CCI3A/CCI3B input, compare: Out3 output
P3.3/UCB0CLK 68 E11 I/O
General-purpose digital I/O / external clock input—USCI_B0/UART or SPI mode, clock output—USCI_B0/SPI mode
P3.2/UCB0SOMI/ UCB0SCL
69 F9 I/O
General-purpose digital I/O / slave out/master in of USCI_B0/SPI mode /I2C clock—USCI_B0/I2C mode
P3.1/UCB0SIMO/ UCB0SDA
70 D12 I/O
General-purpose digital I/O / slave in/master out of USCI_B0/SPI mode, I2C
data—USCI_B0/I2C mode P3.0/UCB0STE 71 D11 I/O General-purpose digital I/O / slave transmit enable—USCI_B0/SPI mode P2.7/ADC12CLK/
DMAE0
72 E9 I/O General-purpose digital I/O / conversion clock—12-bit ADC / DMA Channel 0 external trigger
P2.6/CAOUT 73 C12 I/O General-purpose digital I/O / Comparator_A output P2.5/UCA0RXD 74 C11 I/O General-purpose digital I/O / receive data in—USCI_A0/UART or IrDA mode P2.4/UCA0TXD 75 B12 I/O General-purpose digital I/O / transmit data out—USCI_A0/UART or IrDA mode
P2.3/TB2 76 A11 I/O
General-purpose digital I/O / T imer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2
output P2.2/TB1 77 E8 I/O
General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1
output P2.1/TB0 78 D8 I/O
General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0
output P2.0/TA2 79 A10 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 80 B10 I/O General-purpose digital I/O / Comparator_A input P1.6/CA0 81 A9 I/O General-purpose digital I/O / Comparator_A input
P1.5/TACLK/ACLK 82 B9 I/O
General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by
1, 2, 4, or 8) P1.4/TBCLK/SMCLK 83 B8 I/O
General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK
output P1.3/TBOUTH/SVSOUT 84 A8 I/O
General-purpose digital I/O / switch all PWM digital output ports to high
impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator P1.2/TA1 85 D7 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output
P1.1/TA0/MCLK 86 E7 I/O
General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output.
Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 87 A7 I/O
General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL
transmit XT2OUT 88 B7 O Output terminal of crystal oscillator XT2 XT2IN 89 B6 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 90 A6 I/O Test data output port. TDO/TDI data output or programming data input terminal TDI/TCLK 91 D6 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 92 E6 I Test mode select. TMS is used as an input port for device programming and test. TCK 93 A5 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 94 B5 I Reset input or nonmaskable interrupt input port
P6.0/A0/OA0I0 95 A4 I/O
General-purpose digital I/O / analog input a0—12-bit ADC / OA0 input multiplexer on
+ terminal and − terminal P6.1/A1/OA0O 96 D5 I/O General-purpose digital I/O / analog input a1—12-bit ADC / OA0 output
P6.2/A2/OA0I1 97 B4 I/O
General-purpose digital I/O / analog input a2—12-bit ADC / OA0 input multiplexer on
+ terminal and − terminal
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Terminal Functions (Continued)
TERMINAL
NAME
NO.PZNO.
ZQW
I/O DESCRIPTION
AV
SS
98 A3
Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator , comparator_A, port 1
DV
SS1
(see Note 1) 99 B3 Digital supply voltage, negative terminal
AV
CC
100 A2
Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1; must not power up prior to DV
CC1
/DV
CC2
.
NOTE 1: All unassigned ball locations on the ZQW package should be electrically tied to the ground supply. The shortest ground return path to
the device should be established via ball location B3.
General-Purpose Register
Program Counter
Stack Pointer
Status Register
Constant Generator
General-Purpose Register
General-Purpose Register
General-Purpose Register
PC/R0
SP/R1
SR/CG1/R2
CG2/R3
R4
R5
R12
R13
General-Purpose Register
General-Purpose Register
R6
R7
General-Purpose Register
General-Purpose Register
R8
R9
General-Purpose Register
General-Purpose Register
R10
R11
General-Purpose Register
General-Purpose Register
R14
R15
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.
The MSP430xG461x device family utilizes the MSP430X CPU and is completely backwards compatible with the MSP430 CPU. For a complete description of the MSP430X CPU, see the MSP430x4xx Family User’s Guide (SLAU056).
instruction set
The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 shows the address modes.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Table 1. Instruction Word Formats
Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g., CALL R8 PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g., JNE Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE S D SYNTAX EXAMPLE OPERATION
Register F
F
MOV Rs,Rd MOV R10,R11 R10 —> R11
Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)—> M(6+R6)
Symbolic (PC relative) F F MOV EDE,TONI M(EDE) —> M(TONI)
Absolute F F MOV & MEM, & TCDAT M(MEM) —> M(TCDAT)
Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) —> M(Tab+R6) Indirect
autoincrement
F MOV @Rn+,Rm MOV @R10+,R11
M(R10) —> R11 R10 + 2—> R10
Immediate F MOV #X,TONI MOV #45,TONI #45 —> M(TONI)
NOTE: S = source D = destination
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating modes
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode (AM)
All clocks are active
D Low-power mode 0 (LPM0)
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
FLL+ loop control remains active
D Low-power mode 1 (LPM1)
CPU is disabled
FLL+ loop control is disabled
ACLK and SMCLK remain active, MCLK is disabled
D Low-power mode 2 (LPM2)
CPU is disabled
MCLK, FLL+ loop control and DCOCLK are disabled
DCO’s dc-generator remains enabled
ACLK remains active
D Low-power mode 3 (LPM3)
CPU is disabled
MCLK, FLL+ loop control, and DCOCLK are disabled
DCO’s dc-generator is disabled
ACLK remains active
D Low-power mode 4 (LPM4)
CPU is disabled
ACLK is disabled
MCLK, FLL+ loop control, and DCOCLK are disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
interrupt vector addresses
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 3. Interrupt Sources, Flags, and Vectors of MSP430xG461x Configurations
INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT
WORD
ADDRESS
PRIORITY
Power-Up
External Reset
Watchdog
Flash Memory
WDTIFG
KEYV
(see Note 1 and 5)
Reset 0FFFEh 31, highest
NMI
Oscillator Fault
Flash Memory Access Violation
NMIIFG (see Notes 1 and 3)
OFIFG (see Notes 1 and 3)
ACCVIFG (see Notes 1, 2, and 5)
(Non)maskable (Non)maskable (Non)maskable
0FFFCh 30
Timer_B7 TBCCR0 CCIFG0 (see Note 2) Maskable 0FFFAh 29 Timer_B7
TBCCR1 CCIFG1 ... TBCCR6 CCIFG6,
TBIFG (see Notes 1 and 2)
Maskable 0FFF8h 28
Comparator_A CAIFG Maskable 0FFF6h 27
Watchdog Timer+ WDTIFG Maskable 0FFF4h 26
USCI_A0/USCI_B0 Receive UCA0RXIFG, UCB0RXIFG (see Note 1) Maskable 0FFF2h 25
USCI_A0/USCI_B0 Transmit UCA0TXIFG, UCB0TXIFG (see Note 1) Maskable 0FFF0h 24
ADC12 ADC12IFG (see Notes 1 and 2) Maskable 0FFEEh 23
Timer_A3 TACCR0 CCIFG0 (see Note 2) Maskable 0FFECh 22 Timer_A3
TACCR1 CCIFG1 and TACCR2 CCIFG2,
TAIFG (see Notes 1 and 2)
Maskable 0FFEAh 21
I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0FFE8h 20
USART1 Receive URXIFG1 Maskable 0FFE6h 19
USART1 Transmit UTXIFG1 Maskable 0FFE4h 18
I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0FFE2h 17
Basic Timer1/RTC BTIFG Maskable 0FFE0h 16
DMA DMA0IFG, DMA1IFG, DMA2IFG
(see Notes 1 and 2)
Maskable 0FFDEh 15
DAC12 DAC12.0IFG, DAC12.1IFG (see Notes 1 and 2) Maskable 0FFDCh 14
0FFDAh 13
Reserved Reserved (see Note 4)
... ...
Reserved
Reserved (see Note 4)
0FFC0h 0, lowest
NOTES: 1. Multiple source flags
2. Interrupt flags are located in the module.
3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh). (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
4. The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if necessary.
5. Access and key violations, KEYV and ACCVIFG, only applicable to F devices.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
special function registers (SFRs)
The MSP430 SFRs are located in the lowest address space and are organized as byte mode registers. SFRs should be accessed with byte instructions.
interrupt enable 1 and 2
7654 0
OFIE WDTIE
321
rw–0 rw–0 rw–0
Address 0h ACCVIE NMIIE
rw–0
WDTIE Watchdog-timer interrupt enable. Inactive if watchdog mode is selected.
Active if watchdog timer is configured as a general-purpose timer. OFIE Oscillator-fault-interrupt enable NMIIE Nonmaskable-interrupt enable ACCVIE Flash access violation interrupt enable
7654 0321
Address 01h
rw–0
BTIE UTXIE1 URXIE1
rw–0 rw–0
UCA0TXIE UCA0RXIE
rw–0 rw–0
UCB0TXIE UCB0RXIE
rw–0 rw–0
UCA0RXIE USCI_A0 receive-interrupt enable UCA0TXIE USCI_A0 transmit-interrupt enable UCB0RXIE USCI_B0 receive-interrupt enable UCB0TXIE USCI_B0 transmit-interrupt enable URXIE1 USART1 UART and SPI receive-interrupt enable UTXIE1 USART1 UART and SPI transmit-interrupt enable BTIE Basic timer interrupt enable
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
interrupt flag register 1 and 2
7654 0
OFIFG WDTIFG
321
rw–0 rw–1 rw–(0)
Address 02h NMIIFG
WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation
Reset on V
CC
power-on or a reset condition at the RST/NMI pin in reset mode OFIFG: Flag set on oscillator fault NMIIFG: Set via RST
/NMI pin
7654 0321
Address 03h
BTIFG
rw–0
UTXIFG1 URXIFG1
rw–1 rw–0
UCA0TXIFG UCA0RXIFG
rw–0 rw–0
UCB0TXIFG UCB0RXIFG rw–0 rw–0
UCA0RXIFG USCI_A0 receive-interrupt flag UCA0TXIFG USCI_A0 transmit-interrupt flag UCB0RXIFG USCI_B0 receive-interrupt flag UCB0TXIFG USCI_B0 transmit-interrupt flag URXIFG0: USART1: UART and SPI receive flag UTXIFG0: USART1: UART and SPI transmit flag BTIFG: Basic timer flag
module enable registers 1 and 2
7654 0321
Address 04h
7654 0
UTXE1
321
rw–0 rw–0
Address 05h
URXE1 USPIE1
URXE1: USART1: UART mode receive enable UTXE1: USART1: UART mode transmit enable USPIE1: USART1: SPI mode transmit and receive enable
Legend rw:
rw-0,1:
Bit can be read and written.
Bit can be read and written. It is Reset or Set by PUC.
Bit can be read and written. It is Reset or Set by POR.
rw-(0,1):
SFR bit is not present in device
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
memory organization
MSP430FG4616 MSP430FG4617 MSP430FG4618 MSP430FG4619
Memory Main: interrupt vector Main: code memory
Size Flash Flash
92KB
0FFFFh − 0FFC0h
018FFFh − 002100h
92KB
0FFFFh − 0FFC0h
019FFFh − 003100h
116KB
0FFFFh − 0FFC0h
01FFFFh − 003100h
120KB
0FFFFh − 0FFC0h
01FFFFh − 002100h
RAM (Total) Size 4KB
020FFh − 01100h
8KB
030FFh − 01100h
8KB
030FFh − 01100h
4KB
020FFh − 01100h
Extended Size 2KB
020FFh − 01900h
6KB
030FFh − 01900h
6KB
030FFh − 01900h
2KB
020FFh − 01900h
Mirrored Size 2KB
018FFh − 01100h
2KB
018FFh − 01100h
2KB
018FFh − 01100h
2KB
018FFh − 01100h
Information memory Size
Flash
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
Boot memory Size
ROM
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
RAM (mirrored at 018FFh − 01100h)
Size 2KB
09FFh − 0200h
2KB
09FFh − 0200h
2KB
09FFh − 0200h
2KB
09FFh − 0200h
Peripherals 16 bit
8 bit
8-bit SFR
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
MSP430CG4616 MSP430CG4617 MSP430CG4618 MSP430CG4619
Memory Main: interrupt vector Main: code memory
Size
ROM ROM
92KB
0FFFFh − 0FFC0h
018FFFh − 002100h
92KB
0FFFFh − 0FFC0h
019FFFh − 003100h
116KB
0FFFFh − 0FFC0h
01FFFFh − 003100h
120KB
0FFFFh − 0FFC0h
01FFFFh − 002100h
RAM (Total) Size 4KB
020FFh − 01100h
8KB
030FFh − 01100h
8KB
030FFh − 01100h
4KB
020FFh − 01100h
Extended Size 2KB
020FFh − 01900h
6KB
030FFh − 01900h
6KB
030FFh − 01900h
2KB
020FFh − 01900h
Mirrored Size 2KB
018FFh − 01100h
2KB
018FFh − 01100h
2KB
018FFh − 01100h
2KB
018FFh − 01100h
Information memory Size
ROM
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
Boot memory (Optional on CG)
Size
ROM
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
RAM (mirrored at 018FFh − 01100h)
Size 2KB
09FFh − 0200h
2KB
09FFh − 0200h
2KB
09FFh − 0200h
2KB
09FFh − 0200h
Peripherals 16 bit
8 bit
8-bit SFR
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
bootstrap loader (BSL)
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. A bootstrap loader security key is provided at address 0FFBEh to disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. The BSL is optional for ROM-based devices. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089.
BSLKEY DESCRIPTION
00000h Erasure of flash disabled if an invalid password is supplied
0AA55h BSL disabled
any other value BSL enabled
BSL FUNCTION PZ/ZQW PACKAGE PINS
Data Transmit 87/A7 − P1.0
Data Receive 86/E7 − P1.1
flash memory
The flash memory can be programmed via the JT AG port, the bootstrap loader, or in system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and two segments of information memory (A and B) of
128 bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0 to n.
Segments A and B are also called information memory.
D New devices may have some bytes programmed in the information memory (needed for test during
manufacturing). The user should perform an erase of the information memory prior to the first use.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide (SLAU056).
DMA controller
The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral.
oscillator and system clock
The clock system in the MSP430xG461x family of devices is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs. The FLL+ module provides the following clock signals:
D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal D Main clock (MCLK), the system clock used by the CPU D Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules D ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8
brownout, supply voltage supervisor
The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset).
The CPU begins code execution after the brownout circuit releases the device reset. However, V
CC
may not
have ramped to V
CC(min)
at that time. The user must insure the default FLL+ settings are not changed until V
CC
reaches V
CC(min)
. If desired, the SVS circuit can be used to determine when VCC reaches V
CC(min)
.
digital I/O
There are ten 8-bit I/O ports implemented—ports P1 through P10:
D All individual I/O bits are independently programmable. D Any combination of input, output, and interrupt conditions is possible. D Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. D Read/write access to port-control registers is supported by all instructions. D Ports P7/P8 and P9/P10 can be accessed word-wise as ports PA and PB respectively.
Basic Timer1 and Real-Time Clock
The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Basic Timer1 is extended to provide an integrated real-time clock (RTC). An int e r n a l calendar compensates for months with less than 31 days and includes leap-year correction.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
LCD_A drive with regulated charge pump
The LCD_A driver generates the segment and common signals required to drive an LCD display . The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. Furthermore it is possible to control the level of the LCD voltage and, thus, contrast by software.
watchdog timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.
universal serial communication interface (USCI)
The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection, and IrDA.
The USCI_A0 module provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA. The USCI_B0 module provides support for SPI (3 or 4 pin) and I2C.
USART1
The hardware universal synchronous/asynchronous receive transmit (USART) peripheral module is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.
hardware multiplier
The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16, 16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication, as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Timer_A3 Signal Connections
Input Pin Number
Device Input Module Input Module Module Output
Output Pin Number
PZ/ZQW
Device Input
Signal
Module Input
Name
Module
Block
Module Output
Signal
PZ/ZQW
82/B9 - P1.5 TACLK TACLK
ACLK ACLK
SMCLK SMCLK
Timer NA
82/B9 - P1.5 TACLK INCLK 87/A7 - P1.0 TA0 CCI0A
87/A7 - P1.0
86/E7 - P1.1 TA0 CCI0B
DV
SS
GND
CCR0 TA0
DV
CC
V
CC
85/D7 - P1.2 TA1 CCI1A
85/D7 - P1.2
CAOUT (internal) CCI1B
ADC12 (internal)
DV
SS
GND
CCR1 TA1
DV
CC
V
CC
79/A10 - P2.0 TA2 CCI2A
79/A10 - P2.0
ACLK (internal) CCI2B
DV
SS
GND
CCR2 TA2
DV
CC
V
CC
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Timer_B7
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Timer_B7 Signal Connections
Input Pin Number
Device Input Module Input Module Module Output
Output Pin Number
PZ/ZQW
Device Input
Signal
Module Input
Name
Module
Block
Module Output
Signal
PZ/ZQW
83/B8 - P1.4 TBCLK TBCLK
ACLK ACLK
SMCLK SMCLK
Timer NA
83/B8 - P1.4 TBCLK INCLK 78/D8 - P2.1 TB0 CCI0A
78/D8 - P2.1
78/D8 - P2.1 TB0 CCI0B
ADC12 (internal)
DV
SS
GND
CCR0 TB0
DV
CC
V
CC
77/E8 - P2.2 TB1 CCI1A
77/E8 - P2.2
77/E8 - P2.2 TB1 CCI1B
ADC12 (internal)
DV
SS
GND
CCR1 TB1
DV
CC
V
CC
76/A11 - P2.3 TB2 CCI2A
76/A11 - P2.3
76/A11 - P2.3 TB2 CCI2B
DV
SS
GND
CCR2 TB2
DV
CC
V
CC
67/E12 - P3.4 TB3 CCI3A
67/E12 - P3.4
67/E12 - P3.4 TB3 CCI3B
DV
SS
GND
CCR3 TB3
DV
CC
V
CC
66/G9 - P3.5 TB4 CCI4A
66/G9 - P3.5
66/G9 - P3.5 TB4 CCI4B
DV
SS
GND
CCR4 TB4
DV
CC
V
CC
65/F11 - P3.6 TB5 CCI5A
65/F11 - P3.6
65/F11 - P3.6 TB5 CCI5B
DV
SS
GND
CCR5 TB5
DV
CC
V
CC
64/F12 - P3.7 TB6 CCI6A
64/F12 - P3.7
ACLK (internal) CCI6B
DV
SS
GND
CCR6 TB6
DV
CC
V
CC
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Comparator_A
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.
ADC12
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.
DAC12
The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation.
OA
The MSP430xG461x has three configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.
OA Signal Connections
Input Pin
Number
Device Input
Module Input
Module
Module
Out
p
ut
Device Out
p
ut
Output Pin
Number
PZ
Signal Name Block
Output
Signal
Output
Signal
PZ
95 - P6.0 OA0I0 OA0I0
OA0O 96 - P6.1
97 - P6.2 OA0I1 OA0I1
OA0O ADC12 (internal)
DAC12_0OUT
(internal)
DAC12_0OUT
OA0 OA0OUT
DAC12_1OUT
(internal)
DAC12_1OUT
3 - P6.4 OA1I0 OA1I0
OA1O 2 - P6.3
13 - P5.0 OA1I1 OA1I1
OA1O 13- P5.0
DAC12_0OUT
(internal)
DAC12_0OUT
OA1 OA1OUT
OA1O ADC12 (internal)
DAC12_1OUT
(internal)
DAC12_1OUT
5 - P6.6 OA2I0 OA2I0
OA2O 4 - P6.5
14 - P10.7 OA2I1 OA2I1
OA2O 14 - P10.7
DAC12_0OUT
(internal)
DAC12_0OUT
OA2 OA2OUT
OA2O ADC12 (internal)
DAC12_1OUT
(internal)
DAC12_1OUT
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map
PERIPHERALS WITH WORD ACCESS
Watchdog+ Watchdog timer control WDTCTL 0120h Timer_B7
Capture/compare register 6 TBCCR6 019Eh
_
Capture/compare register 5 TBCCR5 019Ch Capture/compare register 4 TBCCR4 019Ah Capture/compare register 3 TBCCR3 0198h Capture/compare register 2 TBCCR2 0196h Capture/compare register 1 TBCCR1 0194h Capture/compare register 0 TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control 6 TBCCTL6 018Eh Capture/compare control 5 TBCCTL5 018Ch Capture/compare control 4 TBCCTL4 018Ah Capture/compare control 3 TBCCTL3 0188h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh
Timer_A3
Capture/compare register 2 TACCR2 0176h
_
Capture/compare register 1 TACCR1 0174h Capture/compare register 0 TACCR0 0172h Timer_A register TAR 0170h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh
Hardware
Sum extend SUMEXT 013Eh
Multiplier
Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed + accumulate/operand1 MACS 0136h Multiply + accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h
Flash
Flash control 3 FCTL3 012Ch
(FG devices only)
Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH WORD ACCESS (CONTINUED)
DMA
DMA module control 0 DMACTL0 0122h DMA module control 1 DMACTL1 0124h DMA interrupt vector DMAIV 0126h
DMA Channel 0
DMA channel 0 control DMA0CTL 01D0h DMA channel 0 source address DMA0SA 01D2h DMA channel 0 destination address DMA0DA 01D6h DMA channel 0 transfer size DMA0SZ 01DAh
DMA Channel 1
DMA channel 1 control DMA1CTL 01DCh DMA channel 1 source address DMA1SA 01DEh DMA channel 1 destination address DMA1DA 01E2h DMA channel 1 transfer size DMA1SZ 01E6h
DMA Channel 2
DMA channel 2 control DMA2CTL 01E8h DMA channel 2 source address DMA2SA 01EAh DMA channel 2 destination address DMA2DA 01EEh DMA channel 2 transfer size DMA2SZ 01F2h
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH WORD ACCESS (CONTINUED)
ADC12
Conversion memory 15 ADC12MEM15 015Eh
See also Peripherals
Conversion memory 14 ADC12MEM14 015Ch
See also Peripherals
With Byte Access
Conversion memory 13 ADC12MEM13 015Ah
y
Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Inerrupt-enable register ADC12IE 01A6h Inerrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h
DAC12
DAC12_1 data DAC12_1DAT 01CAh DAC12_1 control DAC12_1CTL 01C2h DAC12_0 data DAC12_0DAT 01C8h DAC12_0 control DAC12_0CTL 01C0h
Port PA
Port PA selection PASEL 03Eh Port PA direction PADIR 03Ch Port PA output PAOUT 03Ah Port PA input PAIN 038h
Port PB
Port PB selection PBSEL 00Eh Port PB direction PBDIR 00Ch Port PB output PBOUT 00Ah Port PB input PBIN 008h
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS
OA2 Operational Amplifier 2 control register 1
Operational Amplifier 2 control register 0
OA2CTL1 OA2CTL0
0C5h 0C4h
OA1 Operational Amplifier 1 control register 1
Operational Amplifier 1 control register 0
OA1CTL1 OA1CTL0
0C3h 0C2h
OA0 Operational Amplifier 0 control register 1
Operational Amplifier 0 control register 0
OA0CTL1 OA0CTL0
0C1h 0C0h
LCD_A LCD Voltage Control 1
LCD Voltage Control 0 LCD Voltage Port Control 1 LCD Voltage Port Control 0 LCD memory 20 : LCD memory 16 LCD memory 15 : LCD memory 1 LCD control and mode
LCDAVCTL1 LCDAVCTL0 LCDAPCTL1 LCDAPCTL0 LCDM20 : LCDM16 LCDM15 : LCDM1 LCDCTL
0AFh 0AEh 0ADh 0ACh 0A4h : 0A0h 09Fh : 091h 090h
ADC12
ADC memory-control register 15 ADC12MCTL15 08Fh
(Memory control
ADC memory-control register 14 ADC12MCTL14 08Eh
registers require byte
ADC memory-control register 13 ADC12MCTL13 08Dh
access
)
ADC memory-control register 12 ADC12MCTL12 08Ch ADC memory-control register 11 ADC12MCTL11 08Bh ADC memory-control register 10 ADC12MCTL10 08Ah ADC memory-control register 9 ADC12MCTL9 089h ADC memory-control register 8 ADC12MCTL8 088h ADC memory-control register 7 ADC12MCTL7 087h ADC memory-control register 6 ADC12MCTL6 086h ADC memory-control register 5 ADC12MCTL5 085h ADC memory-control register 4 ADC12MCTL4 084h ADC memory-control register 3 ADC12MCTL3 083h ADC memory-control register 2 ADC12MCTL2 082h ADC memory-control register 1 ADC12MCTL1 081h ADC memory-control register 0 ADC12MCTL0 080h
USART1
Transmit buffer U1TXBUF 07Fh Receive buffer U1RXBUF 07Eh Baud rate U1BR1 07Dh Baud rate U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
USCI
USCI I2C Slave Address UCBI2CSA 011Ah USCI I2C Own Address UCBI2COA 0118h USCI Synchronous Transmit Buffer UCBTXBUF 06Fh USCI Synchronous Receive Buffer UCBRXBUF 06Eh USCI Synchronous Status UCBSTAT 06Dh USCI I2C Interrupt Enable UCBI2CIE 06Ch USCI Synchronous Bit Rate 1 UCBBR1 06Bh USCI Synchronous Bit Rate 0 UCBBR0 06Ah USCI Synchronous Control 1 UCBCTL1 069h USCI Synchronous Control 0 UCBCTL0 068h USCI Transmit Buffer UCATXBUF 067h USCI Receive Buffer UCARXBUF 066h USCI Status UCASTAT 065h USCI Modulation Control UCAMCTL 064h USCI Baud Rate 1 UCABR1 063h USCI Baud Rate 0 UCABR0 062h USCI Control 1 UCACTL1 061h USCI Control 0 UCACTL0 060h USCI IrDA Receive Control UCAIRRCTL 05Fh USCI IrDA Transmit Control UCAIRTCTL 05Eh USCI LIN Control UCAABCTL 05Dh
Comparator_A
Comparator_A port disable CAPD 05Bh
p
_
Comparator_A control 2 CACTL2 05Ah Comparator_A control 1 CACTL1 059h
BrownOUT, SVS SVS control register (Reset by brownout signal) SVSCTL 056h FLL+Clock
FLL+ Control 1 FLL_CTL1 054h FLL+ Control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h
RTC (Basic Timer 1)
Real Time Clock Year High Byte RTCYEARH 04Fh
()
Real Time Clock Year Low Byte RTCYEARL 04Eh Real Time Clock Month RTCMON 04Dh Real Time Clock Day of Month RTCDAY 04Ch Basic Timer1 Counter 2 BTCNT2 047h Basic Timer1 Counter 1 BTCNT1 046h Real Time Counter 4 (Real Time Clock Day of Week)
RTCNT4 (RTCDOW)
045h
Real Time Counter 3 (Real Time Clock Hour)
RTCNT3 (RTCHOUR)
044h
Real Time Counter 2 (Real Time Clock Minute)
RTCNT2 (RTCMIN)
043h
Real Time Counter 1 (Real Time Clock Second)
RTCNT1 (RTCSEC)
042h
Real Time Clock Control RTCCTL 041h Basic Timer1 Control BTCTL 040h
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Port P10 Port P10 selection P10SEL 00Fh
Port P10 direction P10DIR 00Dh Port P10 output P10OUT 00Bh Port P10 input P10IN 009h
Port P9 Port P9 selection P9SEL 00Eh
Port P9 direction P9DIR 00Ch Port P9 output P9OUT 00Ah Port P9 input P9IN 008h
Port P8 Port P8 selection P8SEL 03Fh
Port P8 direction P8DIR 03Dh Port P8 output P8OUT 03Bh Port P8 input P8IN 039h
Port P7 Port P7 selection P7SEL 03Eh
Port P7 direction P7DIR 03Ch Port P7 output P7OUT 03Ah Port P7 input P7IN 038h
Port P6
Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h
Port P5
Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h
Port P4
Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch
Port P3
Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h
Port P2
Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h
Port P1
Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Special functions
SFR module enable 2 ME2 005h
p
SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
30
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Voltage range applied at VCC to VSS −0.3 V to 4.1 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range applied to any pin (see Note) −0.3 V to V
CC
+ 0.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diode current at any device terminal . ±2 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
: Unprogrammed device −55°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmed device −40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only , a nd functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE: All voltages referenced to V
SS.
The JT AG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied
to the TDI/TCLK pin when blowing the JTAG fuse.
recommended operating conditions
MIN NOM MAX UNITS
Supply voltage during program execution (see Note 1), V
CC
(AVCC = DV
CC1/2
= VCC)
MSP430xG461x 1.8 3.6 V
Supply voltage during flash memory programming (see Note 1), V
CC
(AVCC = DV
CC1/2
= VCC)
MSP430FG461x 2.7 3.6 V
Supply voltage during program execution, SVS enabled and PORON = 1 (see Note 1 and Note 2), V
CC
(AVCC = DV
CC1/2
= VCC)
MSP430xG461x 2 3.6 V
Supply voltage (see Note 1), V
SS
(AVSS = DV
SS1/2
= VSS) 0 0 V
Operating free-air temperature range, T
A
MSP430xG461x −40 85 °C
LF selected, XTS_FLL = 0 Watch crystal 32.768
LFXT1 crystal frequency, f
(LFXT1)
XT1 selected, XTS_FLL = 1 Ceramic resonator 450 8000
kHz
(
see Note
2)
XT1 selected, XTS_FLL = 1 Crystal 1000 8000
kHz
Ceramic resonator 450 8000
XT2 crystal frequency, f
(XT2)
Crystal 1000 8000
kHz
VCC = 1.8 V DC 3.0
Processor frequency (signal MCLK), f
(Sy
stem
)
VCC = 2.0 V DC 4.6
MHz
Processor frequency (signal MCLK), f
(System)
VCC = 3.6 V DC 8.0
MHz
NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between A VCC and DVCC can
be tolerated during power up and operation.
2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry.
3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.
1.8 3.62.7 3
3.0 MHz
8.0 MHz
Supply Voltage − V
Supply voltage range, MSP430FG461x, during flash memory programming
Supply voltage range, MSP430xG461x, during program execution
2.0
4.6 MHz
f
System
(MHz)
Figure 1. Frequency vs Supply Voltage, Typical Characteristic
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
supply current into AVCC + DVCC excluding external current
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Active mode (see Note 1 and Note 4)
VCC = 2.2 V 280 370
()
f
(MCLK)
= f
(SMCLK)
= 1 MHz,
f
= 32,768 Hz
CG461x
TA = −40°C to 85°C
VCC = 3 V 470 580
μA
I
(AM)
f
(ACLK)
= 32,
768 Hz
XTS=0, SELM=(0,1)
VCC = 2.2 V 400 480
(FG461x: Program executes from flash)
FG461x
TA = −40°C to 85°C
VCC = 3 V 600 740
μA
Low-power mode (LPM0) xG461x
VCC = 2.2 V 45 70
I
(LPM0)
Low power mode (LPM0)
(see Note 1 and Note 4)
xG461x
TA = −40°C to 85°C
VCC = 3 V 75 110
μA
Low-power mode (LPM2), f
= f
= 0 MHz,
VCC = 2.2 V 11 20
I
(LPM2)
f
(MCLK)
= f
(SMCLK)
= 0
MHz
,
f
(ACLK)
= 32,768 Hz, SCG0 = 0 (see Note 2 and
Note 4)
T
A
= −40°C to 85°C
VCC = 3 V 17 24
μA
TA = −40°C 1.3 4.0
Low-power mode (LPM3)
=
=
TA = 25°C
1.3 4.0
f
(MCLK)
=
f
(SMCLK)
= 0
MHz
,
f
(
ACLK
)
= 32,768 Hz, SCG0 = 1
T
A
= 60°C
VCC = 2.2 V
2.22 6.5
f
(ACLK)
32,768 Hz, SCG0 1
Basic Timer1 enabled, ACLK selected
TA = 85°C 6.5 15.0
I
(LPM3)
LCD_A enabled, LCDCPEN = 0;
=
TA = −40°C 1.9 5.0
μA
(static mode; f
LCD
=
f
(ACLK)
/32)
(see Note 2 and Note 3 and Note 4)
T
A
= 25°C
1.9 5.0
(see Note 2 and Note 3 and Note 4)
TA = 60°C
VCC = 3 V
2.5 7.5 TA = 85°C 7.5 18.0 TA = −40°C 1.5 5.5
Low-power mode (LPM3)
=
=
TA = 25°C
1.5 5.5
f
(MCLK)
=
f
(SMCLK)
= 0
MHz
,
f
(
ACLK
)
= 32,768 Hz, SCG0 = 1
T
A
= 60°C
VCC = 2.2 V
2.8 7.0
f
(ACLK)
32,768 Hz, SCG0 1
Basic Timer1 enabled, ACLK selected
TA = 85°C 7.2 17.0
I
(LPM3)
LCD_A enabled, LCDCPEN = 0;
=
TA = −40°C 2.5 6.5
μA
(4−mux mode; f
LCD
=
f
(ACLK)
/32)
(see Note 2 and Note 3 and Note 4)
T
A
= 25°C
2.5 6.5
(see Note 2 and Note 3 and Note 4)
TA = 60°C
VCC = 3 V
3.2 8.0 TA = 85°C 8.5 20.0 TA = −40°C 0.13 1.0 TA = 25°C
0.22 1.0
TA = 60°C
VCC = 2.2 V
0.9 2.5
L
ow-power mode
(LPM4)
f
= 0 MHz, f
= 0 MHz,
T
A
= 85°C 4.3 12.5
I
(LPM4)
f
(MCLK)
= 0
MHz, f
(SMCLK)
= 0
MHz
,
f
(ACLK)
= 0 Hz, SCG0 = 1
TA = −40°C 0.13 1.6
μA
(ACLK)
(see Note 2 and Note 4)
T
A
= 25°C
0.3 1.6 TA = 60°C
VCC = 3 V
1.1 3.0 TA = 85°C 5.0 15.0
NOTES: 1. Timer_B is clocked by f
(DCOCLK)
= f
(DCO)
= 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
2. All inputs are tied to 0 V or to V
CC
. Outputs do not source or sink any current.
3. The LPM3 currents are characterized with a Micro Crystal CC4V−T1A (9 pF) crystal and OSCCAPx = 1h.
4. Current for brownout included.
Current consumption of active mode versus system frequency, F version:
I
(AM)
= I
(AM)
[1 MHz] × f
(System)
[MHz]
Current consumption of active mode versus supply voltage, F version:
I
(AM)
= I
(AM) [3 V]
+ 200 μA/V × (VCC – 3 V)
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
32
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
Schmitt-trigger inputs − Ports P1 to P10, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC = 2.2 V 1.1 1.55
V
IT+
Positive-going input threshold voltage
V
CC
= 3 V 1.5 1.98
V
VCC = 2.2 V 0.4 0.9
V
IT−
Negative-going input threshold voltage
V
CC
= 3 V 0.9 1.3
V
VCC = 2.2 V 0.3 1.1
V
hys
Input voltage hysteresis (V
IT+
− V
IT−
)
VCC = 3 V 0.5 1
V
inputs Px.x, TAx, TBx
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
Port P1, P2: P1.x to P2.x, external trigger signal
2.2 V 62
t
(int)
External interrupt timing
Port P1, P2: P1.x to P2.x, external trigger signal
for the interrupt flag, (see Note 1)
3 V 50
ns
Timer_A, Timer_B capture
TA0, TA1, TA2 2.2 V 62
t
(cap)
Timer_A, Timer_B capture
timing
TB0, TB1, TB2, TB3, TB4, TB5, TB6
3 V 50
ns
f
(TAext)
Timer_A, Timer_B clock
2.2 V 8
f
(TBext)
frequency externally applied to pin
TACLK, TBCLK, INCLK: t
(H)
= t
(L)
3 V 10
MHz
f
(TAint)
Timer_A, Timer_B clock
2.2 V 8
f
(TBint)
Timer_A, Timer_B clock
frequency
SMCLK or ACLK signal selected
3 V 10
MHz
NOTES: 1. The external signal sets the interrupt flag every time the minimum t
(int)
parameters are met. It may be set even with trigger signals
shorter than t
(int)
.
leakage current − Ports P1 to P10 (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I
lkg(Px.y)
Leakage current
Port Px
V
(Px.y)
(see Note 2)
(1 ≤ x ≤ 10, 0 ≤ y ≤ 7)
VCC = 2.2 V/3 V ±50 nA
NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
2. The port pin must be selected as input.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
outputs − Ports P1 to P10
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I
OH(max)
= −1.5 mA, V
CC
= 2.2 V, See Note 1 VCC−0.25 V
CC
I
OH(max)
= −6 mA, V
CC
= 2.2 V, See Note 2 VCC−0.6 V
CC
V
OH
High-level output voltage
I
OH(max)
= −1.5 mA, V
CC
= 3 V, See Note 1 VCC−0.25 V
CC
V
I
OH(max)
= −6 mA, V
CC
= 3 V, See Note 2 VCC−0.6 V
CC
I
OL(max)
= 1.5 mA, V
CC
= 2.2 V, See Note 1 V
SS
VSS+0.25
I
OL(max)
= 6 mA, V
CC
= 2.2 V, See Note 2 V
SS
VSS+0.6
V
OL
Low-level output voltage
I
OL(max)
= 1.5 mA, V
CC
= 3 V, See Note 1 V
SS
VSS+0.25
V
I
OL(max)
= 6 mA, V
CC
= 3 V, See Note 2 V
SS
VSS+0.6
NOTES: 1. The maximum total current, I
OH(max)
and I
OL(max),
for all outputs combined, should not exceed ±12 mA to satisfy the maximum
specified voltage drop.
2. The maximum total current, I
OH(max)
and I
OL(max),
for all outputs combined, should not exceed ±48 mA to satisfy the maximum
specified voltage drop.
output frequency
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CL = 20 pF,
V
CC
= 2.2 V DC 10 MHz
f
(Px.y)
(1 ≤ x ≤ 10, 0 ≤ y ≤ 7)
C
L
= 20 pF,
I
L
= ±1.5 mA
V
CC
= 3 V DC 12 MHz
f
(MCLK)
P1.1/TA0/MCLK,
f
(SMCLK)
P1.4/TBCLK/SMCLK,
C
L
= 20 pF
V
CC
= 2.2 V 10 MHz
f
(ACLK)
P1.5/TACLK/ACLK
C
L
20
pF
V
CC
= 3 V DC 12 MHz
f
(ACLK)
= f
(LFXT1)
= f
(XT1)
40% 60%
P1.5/TACLK/ACLK
,
C
L
= 20 pF
f
(ACLK)
= f
(LFXT1)
= f
(LF)
30% 70%
C
L
20
pF
VCC = 2.2 V / 3 V
f
(ACLK)
= f
(LFXT1)
50%
P1.1/TA0/MCLK
,
f
(MCLK)
= f
(XT1)
40% 60%
t
(Xdc)
Duty cycle of output frequency
P1.1/TA0/MCLK
,
C
L
= 20 pF,
V
CC
= 2.2 V / 3 V
f
(MCLK)
= f
(DCOCLK)
50%−
15 ns
50%
50%+
15 ns
P1.4/TBCLK/SMCLK
,
f
(SMCLK)
= f
(XT2)
40% 60%
P1.4/TBCLK/SMCLK
,
C
L
= 20 pF,
V
CC
= 2.2 V / 3 V
f
(SMCLK)
= f
(DCOCLK)
50%−
15 ns
50%
50%+
15 ns
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
34
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
typical characteristics − outputs
Figure 2
VOL − Low-Level Output Voltage − V
0.0
5.0
10.0
15.0
20.0
25.0
0.0 0.5 1.0 1.5 2.0 2.5
VCC = 2.2 V P2.0
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TA = 25°C
TA = 85°C
OL
I − Typical Low-Level Output Current − mA
Figure 3
VOL − Low-Level Output Voltage − V
0.0
10.0
20.0
30.0
40.0
50.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VCC = 3 V P2.0
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TA = 25°C
TA = 85°C
OL
I − Typical Low-Level Output Current − mA
Figure 4
VOH − High-Level Output Voltage − V
−25.0
−20.0
−15.0
−10.0
−5.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5
VCC = 2.2 V P2.0
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TA = 25°C
TA = 85°C
OH
I − Typical High-Level Output Current − mA
Figure 5
VOH − High-Level Output Voltage − V
−50.0
−40.0
−30.0
−20.0
−10.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VCC = 3 V P2.0
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TA = 25°C
TA = 85°C
OH
I − Typical High-Level Output Current − mA
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
wake-up LPM3
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f = 1 MHz 6
t
d(LPM3
)
Delay time
f = 2 MHz
V
CC
= 2.2 V/3 V
6
μs
t
d(LPM3)
Delay time
f = 3 MHz
V
CC
2.2 V/3 V
6
μs
RAM
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VRAMh CPU halted (see Note 1) 1.6 V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution
should take place during this supply voltage condition.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
36
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
LCD_A
PARAMETER TEST CONDITIONS
V
CC
MIN TYP MAX UNIT
V
CC(LCD)
Supply voltage (see Note 2)
Charge pump enabled (LCDCPEN = 1; VLCDx > 0000)
2.2 3.6 V
I
CC(LCD)
Supply current (see Note 2 )
V
LCD(typ)
=3 V; LCDCPEN = 1, VLCDx= 1000; all segments on, f
LCD =
f
ACLK
/32, no LCD connected (see Note 4) T
A
= 25°C
2.2 V 3 μA
C
LCD
Capacitor on LCDCAP (see Note 1 and Note 3)
Charge pump enabled (LCDCPEN = 1; VLCDx > 0000)
4.7 μF
f
LCD
LCD frequency 1.1 kHz
VLCDx = 0000 V
CC
VLCDx = 0001 2.60 VLCDx = 0010 2.66 VLCDx = 0011 2.72 VLCDx = 0100 2.78 VLCDx = 0101 2.84 VLCDx = 0110 2.90 VLCDx = 0111 2.96
V
LCD
LCD voltage (see Note 3)
VLCDx = 1000
3.02
V
VLCDx = 1001 3.08 VLCDx = 1010 3.14 VLCDx = 1011 3.20 VLCDx = 1100 3.26 VLCDx = 1101 3.32 VLCDx = 1110 3.38 VLCDx = 1111 3.44 3.60
R
LCD
LCD driver output impedance
V
LCD
=3 V; CPEN = 1;
VLCDx = 1000, I
LOAD
= 10 μΑ
2.2 V 10 kΩ
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.
2. Refer to the supply current specifications I
(LPM3)
for additional current specifications with the LCD_A module active.
3. Segments S 0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and cannot be used together with the LCD charge pump. In addition, when using segments S0 through S3 with an external LCD voltage supply, V
LCD
AVCC.
4. Connecting an actual display will increase the current consumption depending on the size of the LCD.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
Comparator_A (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC = 2.2 V 25 40
I
(CC)
CAON=1, CARSEL=0, CAREF=0
VCC = 3 V 45 60
μA
CAON=1, CARSEL=0, CAREF=1/2/3,
VCC = 2.2 V 30 50
I
(Refladder/RefDiode)
No load at P1.6/CA0 and P1.7/CA1
VCC = 3 V 45 71
μA
V
(Ref025)
Voltage @ 0.25 VCCnode
V
CC
PCA0=1, CARSEL=1, CAREF=1, No load at P1.6/CA0 and P1.7/CA1
VCC = 2.2 V / 3 V 0.23 0.24 0.25
V
(Ref050)
Voltage @ 0.5 VCCnode
V
CC
PCA0=1, CARSEL=1, CAREF=2, No load at P1.6/CA0 and P1.7/CA1
VCC = 2.2V / 3 V 0.47 0.48 0.5
PCA0=1, CARSEL=1, CAREF=3,
VCC = 2.2 V 390 480 540
V
(RefVT)
No load at P1.6/CA0 and P1.7/CA1; T
A
= 85°C
VCC = 3 V 400 490 550
mV
V
IC
Common-mode input voltage range
CAON=1 VCC = 2.2 V / 3 V 0 VCC−1 V
Vp−V
S
Offset voltage See Note 2 VCC = 2.2 V / 3 V −30 30 mV
V
hys
Input hysteresis CAON = 1 VCC = 2.2 V / 3 V 0 0.7 1.4 mV
TA = 25°C,
VCC = 2.2 V 160 210 300
T
A
=
25 C
,
Overdrive 10 mV, without filter: CAF = 0
VCC = 3 V 80 150 240
ns
t
(response LH)
TA = 25°C
VCC = 2.2 V 1.4 1.9 3.4
T
A
=
25 C
Overdrive 10 mV, with filter: CAF = 1
VCC = 3 V 0.9 1.5 2.6
μs
TA = 25°C
VCC = 2.2 V 130 210 300
T
A
=
25 C
Overdrive 10 mV, without filter: CAF = 0
VCC = 3 V 80 150 240
ns
t
(response HL)
TA = 25°C,
VCC = 2.2 V 1.4 1.9 3.4
T
A
=
25 C
,
Overdrive 10 mV, with filter: CAF = 1
VCC = 3 V 0.9 1.5 2.6
μs
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I
lkg(Px.x)
specification.
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
38
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
typical characteristics
TA − Free-Air Temperature − °C
400
450
500
550
600
650
−45 −25 −5 15 35 55 75 95
VCC = 3 V
Figure 6. V
(
RefVT
)
vs Temperature
V
REF
− Reference Voltage − mV
Typical
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
Figure 7. V
(
RefVT
)
vs Temperature
TA − Free-Air Temperature − °C
400
450
500
550
600
650
−45 −25 −5 15 35 55 75 95
VCC = 2.2 V
Typical
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
V
REF
− Reference Voltage − mV
_
+
CAON
0
1
V+
0
1
CAF
Low-Pass Filter
τ 2 μs
To Internal Modules
Set CAIFG Flag
CAOUT
V−
V
CC
1
0 V
0
Figure 8. Block Diagram of Comparator_A Module
Overdrive
V
CAOUT
t
(response)
V+
V−
400 mV
Figure 9. Overdrive Definition
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
POR/brownout reset (BOR) (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
d(BOR)
2000 μs
V
CC(start)
dVCC/dt 3 V/s (see Figure 10) 0.7 × V
(B_IT−)
V
V
(B_IT−)
Brownout
dVCC/dt 3 V/s (see Figure 10 through Figure 12) 1.79 V
V
hys(B_IT−)
(see Notes 2 and 3)
dVCC/dt 3 V/s (see Figure 10) 70 130 210 mV
t
(reset)
Pulse length needed at RST/NMI pin to accepted reset internally, V
CC
= 2.2 V/3 V
2 μs
NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data.
2. The voltage level V
(B_IT−)
+ V
hys(B_IT−)
is 1.89V.
3. During power up, the CPU begins code execution following a period of t
d(BOR)
after VCC = V
(B_IT−)
+ V
hys(B_IT−)
. The default
FLL+ settings must not be changed until V
CC
V
CC(min)
, where V
CC(min)
is the minimum supply voltage for the desired
operating frequency. See the MSP430x4xx Family User’s Guide for more information on the brownout/SVS circuit.
typical characteristics
0
1
t
d(BOR)
V
CC
V
(B_IT−)
V
hys(B_IT−)
V
CC(start)
Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage
V
CC(drop)
V
CC
3 V
t
pw
0
0.5
1
1.5
2
0.001 1 1000
Typical Conditions
1 ns 1 ns
tpw − Pulse Width − μst
pw
− Pulse Width − μs
V
CC
= 3 V
V
CC(drop)
− V
Figure 11. V
CC(drop)
Level With a Square Voltage Drop to Generate a POR/Brownout Signal
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
40
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
typical characteristics (continued)
V
CC
0
0.5
1
1.5
2
V
CC(drop)
t
pw
t
pw
− Pulse Width − μs
V
CC(drop)
− V
3 V
0.001 1 1000
t
f
t
r
tpw − Pulse Width − μs
t
f
= t
r
Typical Conditions
V
CC
= 3 V
Figure 12. V
CC(drop)
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
SVS (supply voltage supervisor/monitor) (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
dVCC/dt > 30 V/ms (see Figure 13) 5 150
t
(SVSR)
dVCC/dt 30 V/ms 2000
μs
t
d(SVSon)
SVS on, switch from VLD = 0 to VLD 0, VCC = 3 V 150 300 μs
t
settle
VLD 0
12 μs
V
(SVSstart)
VLD 0, VCC/dt 3 V/s (see Figure 13) 1.55 1.7 V
VLD = 1 70 120 155 mV
V
hys(SVS_IT−
)
VCC/dt 3 V/s (see Figure 13)
VLD = 2 .. 14
V
(SVS_IT−)
x 0.001
V
(SVS_IT−)
x 0.016
V
hys(SVS_IT−)
VCC/dt 3 V/s (see Figure 13), external voltage applied on A7
VLD = 15 4.4 20 mV VLD = 1 1.8 1.9 2.05
VLD = 2 1.94 2.1 2.23 VLD = 3 2.05 2.2 2.35 VLD = 4 2.14 2.3 2.46 VLD = 5 2.24 2.4 2.58 VLD = 6 2.33 2.5 2.69 VLD = 7 2.46 2.65 2.84
VCC/dt 3 V/s (see Figure 13)
VLD = 8 2.58 2.8 2.97
V
(SVS_IT−)
VLD = 9 2.69 2.9 3.10
V
VLD = 10 2.83 3.05 3.26 VLD = 11 2.94 3.2 3.39 VLD = 12 3.11 3.35 3.58
VLD = 13 3.24 3.5 3.73
VLD = 14 3.43 3.7
3.96
VCC/dt 3 V/s (see Figure 13), external voltage applied on A7
VLD = 15 1.1 1.2 1.3
I
CC(SVS)
(see Note 1)
VLD 0, VCC = 2.2 V/3 V 10 15 μA
The recommended operating voltage range is limited to 3.6 V.
t
settle
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere
between 2 and 15. The overdrive is assumed to be > 50 mV.
NOTE 1: The current consumption of the SVS module is not included in the I
CC
current consumption data.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
41
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
typical characteristics
V
CC(start)
V
CC
V
(B_IT−)
Brownout
Region
V
(SVSstart)
V
(SVS_IT−)
Software Sets VLD>0:
SVS is Active
t
d(SVSR)
undefined
V
hys(SVS_IT−)
0
1
t
d(BOR)
Brownout
0
1
t
d(SVSon)
t
d(BOR)
0
1
Set POR
Brown-
Out
Region
SVS Circuit is Active From VLD > to VCC < V(
B_IT−)
SVS
Out
V
hys(B_IT−)
Figure 13. SVS Reset (SVSR) vs Supply Voltage
0
0.5
1
1.5
2
V
CC
V
CC
1 ns 1 ns
t
pw
t
pw
− Pulse Width − μs
3 V
1 10 1000
t
f
t
r
t − Pulse Width − μs
100
t
pw
3 V
t
f
= t
r
Rectangular Drop
Triangular Drop
V
CC(drop)
V
CC(drop)
− V
V
CC(drop)
Figure 14. V
CC(drop)
With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
42
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
DCO
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
f
(DCOCLK)
N
(DCO)
=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0 2.2 V/3 V 1 MHz
2.2 V 0.3 0.65 1.25
f
(DCO=2)
FN_8=FN_4=FN_3=FN_2=0 ; DCOPLUS = 1
3 V 0.3 0.7 1.3
MHz
2.2 V 2.5 5.6 10.5
f
(DCO=27)
FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1
3 V 2.7 6.1 11.3
MHz
2.2 V 0.7 1.3 2.3
f
(DCO=2)
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1
3 V 0.8 1.5 2.5
MHz
2.2 V 5.7 10.8 18
f
(DCO=27)
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1
3 V 6.5 12.1 20
MHz
2.2 V 1.2 2 3
f
(DCO=2)
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1
3 V 1.3 2.2 3.5
MHz
2.2 V 9 15.5 25
f
(DCO=27)
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1
3 V 10.3 17.9 28.5
MHz
2.2 V 1.8 2.8 4.2
f
(DCO=2)
FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1
3 V 2.1 3.4 5.2
MHz
2.2 V 13.5 21.5 33
f
(DCO=27)
FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1
3 V 16 26.6 41
MHz
2.2 V 2.8 4.2 6.2
f
(DCO=2)
FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1
3 V 4.2 6.3 9.2
MHz
2.2 V 21 32 46
f
(DCO=27)
FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1
3 V 30 46 70
MHz
Step size between adjacent DCO taps:
1 < TAP ≤ 20 1.06 1.11
S
n
Step size between adjacent DCO taps:
Sn = f
DCO(Tap n+1)
/ f
DCO(Tap n)
(see Figure 16 for taps 21 to 27)
TAP = 27 1.07 1.17
Temperature drift, ND = 01Eh, FN_8=FN_4=FN_3=FN_2=0
2.2 V –0.2 –0.3 –0.4
D
t
Temperature drift, N
(DCO)
=
01Eh, FN_8=FN_4=FN_3=FN_2=0
D = 2; DCOPLUS = 0
3 V –0.2 –0.3 –0.4
%/_C
D
V
Drift with VCC variation, N
(DCO)
= 01Eh, FN_8=FN_4=FN_3=FN_2=0
D = 2; DCOPLUS = 0
0 5 15 %/V
TA − °CVCC − V
f
(DCO)
f
(DCO205C)
f
(DCO)
f
(DCO3V)
1.8 3.02.4 3.6
1.0
20 6040 85
1.0
0−20−400
Figure 15. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
43
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12720
1.11
1.17
DCO Tap
S
n
- Stepsize Ratio between DCO Taps
Min
Max
1.07
1.06
Figure 16. DCO Tap Step Size
DCO Frequency Adjusted by Bits 2
9
to 25 in SCFI1 {N
{DCO}
}
FN_2=0 FN_3=0 FN_4=0 FN_8=0
FN_2=1 FN_3=0 FN_4=0 FN_8=0
FN_2=x FN_3=1 FN_4=0 FN_8=0
FN_2=x FN_3=x FN_4=1 FN_8=0
FN_2=x FN_3=x FN_4=x
FN_8=1
Legend
Tolerance at Tap 27
Tolerance at Tap 2
Overlapping DCO Ranges: Uninterrupted Frequency Range
f
(DCO)
Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
44
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OSCCAPx = 0h, VCC = 2.2 V / 3 V 0
Integrated input capacitance
OSCCAPx = 1h, V
CC
= 2.2 V / 3 V 10
C
XIN
Integrated input capacitance
(see Note 4)
OSCCAPx = 2h, V
CC
= 2.2 V / 3 V 14
pF
OSCCAPx = 3h, VCC = 2.2 V / 3 V 18 OSCCAPx = 0h, VCC = 2.2 V / 3 V 0
Integrated output capacitance
OSCCAPx = 1h, V
CC
= 2.2 V / 3 V 10
C
XOUT
Integrated output capacitance
(see Note 4)
OSCCAPx = 2h, V
CC
= 2.2 V / 3 V 14
pF
OSCCAPx = 3h, VCC = 2.2 V / 3 V 18
V
IL
V
SS
0.2×V
CC
V
IH
Input levels at XIN VCC = 2.2 V/3 V (see Note 3)
0.8×V
CC
V
CC
V
NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is
(C
XINxCXOUT
) / (C
XIN
+ C
XOUT
). This is independent of XTS_FLL.
2. To improve EMI on the low-power LFXT1 oscillator , particularly in the LF mode (32 kHz), the following guidelines should be ob served.
Keep the trace between the device and the crystal as short as possible.
Design a good ground plane around the oscillator pins.
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.
4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.
crystal oscillator, XT2 oscillator (see Note 1)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
C
XT2IN
Integrated input capacitance VCC = 2.2 V/3 V 2 pF
C
XT2OUT
Integrated output capacitance VCC = 2.2 V/3 V 2 pF
V
IL
V
SS
0.2 × V
CC
V
V
IH
Input levels at XT2IN VCC = 2.2 V/3 V (see Note 2)
0.8 × V
CC
V
CC
V
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
45
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
USCI (UART mode)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
f
USCI
USCI input clock frequency
Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10%
f
SYSTEM
MHz
f
BITCLK
BITCLK clock frequency (equals Baudrate in MBaud)
2.2V /3 V 1 MHz
UART receive deglitch time
2.2 V 50 150 600
t
τ
UART receive deglitch time
(see Note 1)
3 V 50 100 600
ns
NOTE 1: Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized their width should exceed the maximum specification of the deglitch time.
USCI (SPI master mode) (see Figure 18 and Figure 19)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
f
USCI
USCI input clock frequency
SMCLK, ACLK Duty Cycle = 50% ± 10%
f
SYSTEM
MHz
2.2 V 110
t
SU,MI
SOMI input data setup time
3 V 75
ns
2.2 V 0
t
HD,MI
SOMI input data hold time
3 V 0
ns
UCLK edge to SIMO valid;
2.2 V 30
t
VALID,MO
SIMO output data valid time
UCLK edge to SIMO valid;
CL = 20 pF
3 V 20
ns
USCI (SPI slave mode) (see Figure 20 and Figure 21)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
t
STE,LEAD
STE lead time STE low to clock
2.2 V/3 V 50 ns
t
STE,LAG
STE lag time Last clock to STE high
2.2 V/3 V 10 ns
t
STE,ACC
STE access time STE low to SOMI data out
2.2 V/3 V 50 ns
t
STE,DIS
STE disable time STE high to SOMI high impedance
2.2 V/3 V 50 ns
2.2 V 20
t
SU,SI
SIMO input data setup time
3 V 15
ns
2.2 V 10
t
HD,SI
SIMO input data hold time
3 V 10
ns
UCLK edge to SOMI valid;
2.2 V 75 110
t
VALID,SO
SOMI output data valid time
UCLK edge to SOMI valid;
CL = 20 pF
3 V 50 75
ns
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
46
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
UCLK
CKPL = 0
CKPL = 1
SIMO
1/f
UCxCLK
t
LOW/HIGHtLOW/HIGH
SOMI
t
SU,MI
t
HD,MI
t
VALID,MO
Figure 18. SPI Master Mode, CKPH = 0
UCLK
CKPL = 0
CKPL = 1
SIMO
1/f
UCxCLK
t
LOW/HIGHtLOW/HIGH
SOMI
t
SU,MI
t
HD,MI
t
VALID,MO
Figure 19. SPI Master Mode, CKPH = 1
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
47
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
STE
UCLK
CKPL = 0
CKPL = 1
SOMI
t
ACC
t
DIS
1/f
UCxCLK
t
LOW/HIGHtLOW/HIGH
SIMO
t
SU,SIMO
t
HD,SIMO
t
VALID,SOMI
t
STE,LEAD
t
STE,LAG
Figure 20. SPI Slave Mode, CKPH = 0
STE
UCLK
CKPL=0
CKPL=1
t
STE,LEAD
t
STE,LAG
t
ACC
t
DIS
t
LOW/HIGHtLOW/HIGH
t
SU,SI
t
HD,SI
t
VALID,SO
SOMI
SIMO
1/f
UCxCLK
Figure 21. SPI Slave Mode, CKPH = 1
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
48
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
USCI (I2C mode) (see Figure 22)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
f
USCI
USCI input clock frequency
Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10%
f
SYSTEM
MHz
f
SCL
SCL clock frequency 2.2 V/3 V 0 400 kHz
f
SCL
100kHz 2.2 V/3 V 4.0
t
HD,STA
Hold time (repeated) START
f
SCL
> 100kHz 2.2 V/3 V 0.6
μs
f
SCL
100kHz 2.2 V/3 V 4.7
t
SU,STA
Set−up time for a repeated START
f
SCL
> 100kHz 2.2 V/3 V 0.6
μs
t
HD,DAT
Data hold time 2.2 V/3 V 0 ns
t
SU,DAT
Data set−up time 2.2 V/3 V 250 ns
t
SU,STO
Set−up time for STOP 2.2 V/3 V 4.0 μs Pulse width of spikes suppressed b
y
2.2 V 50 150 600
t
SP
Pulse width of spikes suppressed by
input filter
3 V 50 100 600
ns
SDA
SCL
t
LOW
t
HD ,DAT
t
SU ,DAT
t
HD ,STA
t
SU ,STAtHD ,STA
t
HIGH
t
SU ,STO
t
SP
t
BUF
Figure 22. I2C Mode Timing
USART1 (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC = 2.2 V, SYNC = 0, UART mode 200 430 800
t
(τ)
USART1 deglitch time
VCC = 3 V, SYNC = 0, UART mode 150 280 500
ns
NOTE 1: The signal applied to the USART1 receive signal/terminal (URXD1) should meet the timing requirements of t
)
to ensure that the URXS
flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t
)
. The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD1 line.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
49
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit ADC, power supply and input range conditions (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AV
CC
Analog supply voltage
AVCC and DVCC are connected together, AV
SS
and DVSS are connected together,
V
(AVSS)
= V
(DVSS)
= 0 V
2.2 3.6 V
V
(P6.x/Ax)
Analog input voltage range (see Note 2)
All external Ax terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x=1, V
(AVSS)
VAx V
(AVCC)
0 V
AVCC
V
Operating supply current
f
ADC12CLK
= 5.0 MHz,
VCC = 2.2 V 0.65 1.3
I
ADC12
into AVCC terminal (see Note 3)
ADC12ON = 1, REFON = 0, SHT0=0, SHT1=0, ADC12DIV=0
VCC = 3 V 0.8 1.6
mA
Operating supply current
f
ADC12CLK
= 5.0 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 1
VCC = 3 V 0.5 0.8 mA
I
REF+
into AVCC terminal (see Note 4)
f
ADC12CLK
= 5.0 MHz,
VCC = 2.2 V 0.5 0.8
(see Note 4)
ADC12ON = 0, REFON = 1, REF2_5V = 0
VCC = 3 V 0.5 0.8
mA
C
I
Input capacitance
Only one terminal can be selected at one time, Ax
VCC = 2.2 V 40 pF
R
I
Input MUX ON resistance 0V VAx V
AVCC
VCC = 3 V 2000 Ω
NOTES: 1. The leakage current is defined in the leakage current table with Ax parameter.
2. The analog input voltage range must be within the selected reference voltage range V
R+
to VR− for valid conversion results.
3. The internal reference supply current is not included in current consumption parameter I
ADC12
.
4. The internal reference current is supplied via terminal AV
CC
. Consumption is independent of the ADC12ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
12-bit ADC, external reference (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V
eREF+
Positive external reference voltage input
V
eREF+
> V
REF−/VeREF−
, (see Note 2) 1.4 V
AVCC
V
V
REF− /VeREF−
Negative external reference voltage input
V
eREF+
> V
REF−/VeREF−
, (see Note 3) 0 1.2 V
(V
eREF+
V
REF−/VeREF−
)
Differential external reference voltage input
V
eREF+
> V
REF−/VeREF−
, (see Note 4) 1.4 V
AVCC
V
I
VeREF+
Input leakage current 0V ≤V
eREF+
V
AVCC
VCC = 2.2 V/3 V ±1 μA
I
VREF−/VeREF−
Input leakage current 0V V
eREF−
V
AVCC
VCC = 2.2 V/3 V ±1 μA
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
50
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit ADC, built-in reference
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
Positive built-in reference
REF2_5V = 1 for 2.5 V, I
VREF+
max I
VREF+
I
VREF+
min
VCC = 3 V 2.4 2.5 2.6
V
REF+
Positive built in reference
voltage output
REF2_5V = 0 for 1.5 V, I
VREF+
max I
VREF+
I
VREF+
min
V
CC
=
2.2 V/3 V
1.44 1.5 1.56
V
REF2_5V = 0, I
VREF+
max I
VREF+
I
VREF+
min 2.2
AV
CC(min
)
AV
CC
minimum voltage
,
Positive built-in reference
REF2_5V = 1, I
VREF+
min I
VREF+
−0.5mA 2.8
V
AV
CC(min)
Positive built in reference
active
REF2_5V = 1, I
VREF+
min I
VREF+
−1mA 2.9
V
Load current out of V
REF+
VCC = 2.2 V 0.01 −0.5
I
VREF+
Load current out of V
REF
+
terminal
VCC = 3 V 0.01 −1
mA
I
VREF+
= 500 μA +/− 100 μA,
VCC = 2.2 V ±2
Load-current regulation
Analog input voltage ~0.75 V; REF2_5V = 0
VCC = 3 V ±2
LSB
I
L(VREF)+
Load current regulation
V
REF+
terminal
I
VREF+
= 500 μA ± 100 μA, Analog input voltage ~1.25 V, REF2_5V = 1
VCC = 3 V ±2 LSB
Load current regulation
I
VREF+
=100 μA 900 μA,
I
DL(VREF) +
Load current regulation
V
REF+
terminal
C
VREF+
=5 μF, ax ~0.5 x V
REF+
,
Error of conversion result 1 LSB
VCC = 3 V 20 ns
C
VREF+
Capacitance at pin V
REF+
(see Note 1)
REFON =1, 0 mA I
VREF+
I
VREF+
max
VCC =
2.2 V/3 V
5 10 μF
T
REF+
Temperature coefficient of built-in reference
I
VREF+
is a constant in the range of 0 mA I
VREF+
1 mA
VCC =
2.2 V/3 V
±100 ppm/°C
t
REFON
Settle time of internal reference voltage (see Figure 23 and Note 2)
I
VREF+
= 0.5 mA, C
VREF+
= 10 μF,
V
REF+
= 1.5 V, V
AVCC
= 2.2 V
17 ms
NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses
two capacitors between pins V
REF+
and AVSS and V
REF−/VeREF−
and AVSS: 10 μF tantalum and 100 nF ceramic.
2. The condition is that the error in a conversion started after t
REFON
is less than ±0.5 LSB. The settling time depends on the external
capacitive load.
C
VREF+
1 μF
0
1 ms
10 ms
100 ms t
REFON
t
REFON
.66 x C
VREF+
[ms] with C
VREF+
in μF
100 μF
10 μF
Figure 23. Typical Settling Time of Internal Reference t
REFON
vs External Capacitor on V
REF
+
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
51
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
+
10 μ F 100 nF
AV
SS
MSP430FG461x
+
+
10 μ F 100 nF
10 μ F 100 nF
AV
CC
10 μ F 100 nF
DV
SS1/2
DV
CC1/2
From
Power
Supply
Apply
External
Reference
+
Apply External Reference [V
eREF+
]
or Use Internal Reference [V
REF+
]
V
REF+
or V
eREF+
V
REF
−/V
eREF−
Figure 24. Supply Voltage and Reference Voltage Design V
REF−/VeREF−
External Supply
+
10 μ F 100 nF
AV
SS
MSP430FG461x
+
10 μ F 100 nF
AV
CC
10 μ F 100 nF
DV
SS1/2
DV
CC1/2
From
Power
Supply
+
Apply External Reference [V
eREF+
]
or Use Internal Reference [V
REF+
]
V
REF+
or V
eREF+
V
REF−/VeREF−
Reference Is Internally Switched to AV
SS
Figure 25. Supply Voltage and Reference Voltage Design V
REF−/VeREF−
= AVSS, Internally Connected
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
52
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit ADC, timing parameters
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
f
ADC12CLK
For specified performance of ADC12 linearity parameters
VCC = 2.2V/3 V 0.45 5 6.3 MHz
f
ADC12OSC
Internal ADC12 oscillator
ADC12DIV=0, f
ADC12CLK=fADC12OSC
VCC = 2.2 V/ 3 V 3.7 5 6.3 MHz
C
VREF+
5 μF, Internal oscillator,
f
ADC12OSC
= 3.7 MHz to 6.3 MHz
VCC = 2.2 V/ 3 V 2.06 3.51 μs
t
CONVERT
Conversion time
External f
ADC12CLK
from ACLK, MCLK, or SMCLK,
ADC12SSEL 0
13×ADC12DIV×
1/f
ADC12CLK
μs
t
ADC12ON
Turn on settling time of the ADC
(see Note 1) 100 ns R
S
= 400 Ω, R
I
= 1000 Ω,
VCC = 3 V 1220
t
Sample
Sampling time
C
I
= 30 pF, τ = [R
S
+ RI] x CI,
(see Note 2)
VCC = 2.2 V 1400
ns
NOTES: 1. The condition is that the error in a conversion started after t
ADC12ON
is less than ±0.5 LSB. The reference and input signal are already
settled.
2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: t
Sample
= ln(2
n+1
) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance.
12-bit ADC, linearity parameters
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
1.4 V (V
eREF+
− V
REF−/VeREF−
) min 1.6 V
VCC =
±2
EIIntegral linearity error
1.6 V < (V
eREF+
− V
REF−/VeREF−
) min [V
AVCC
]
V
CC
=
2.2 V/3 V
±1.7
LSB
E
D
Differential linearity error
(V
eREF+
− V
REF−/VeREF−)min
(V
eREF+
− V
REF−/VeREF−
),
C
VREF+
= 10 μF (tantalum) and 100 nF (ceramic)
VCC =
2.2 V/3 V
±1 LSB
E
O
Offset error
(V
eREF+
− V
REF−/VeREF−)min
(V
eREF+
− V
REF−/VeREF−
),
Internal impedance of source R
S
< 100 Ω,
C
VREF+
= 10 μF (tantalum) and 100 nF (ceramic)
VCC =
2.2 V/3 V
±2 ±4 LSB
E
G
Gain error
(V
eREF+
− V
REF−/VeREF−)min
(V
eREF+
− V
REF−/VeREF−
),
C
VREF+
= 10 μF (tantalum) and 100 nF (ceramic)
VCC =
2.2 V/3 V
±1.1 ±2 LSB
E
T
Total unadjusted error
(V
eREF+
− V
REF−/VeREF−)min
(V
eREF+
− V
REF−/VeREF−
),
C
VREF+
= 10 μF (tantalum) and 100 nF (ceramic)
VCC =
2.2 V/3 V
±2 ±5 LSB
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
53
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit ADC, temperature sensor and built-in V
MID
PARAMETER
TEST CONDITIONS V
CC
MIN NOM MAX UNIT
Operating supply current into REFON = 0, INCH = 0Ah,
2.2 V 40 120
I
SENSOR
Operating supply current into
AVCC terminal (see Note 1)
REFON = 0, INCH = 0Ah
,
ADC12ON=NA, T
A
= 25_C
3 V 60 160
μA
ADC12ON = 1, INCH = 0Ah, 2.2 V/
V
SENSOR
(see Note 2)
ADC12ON = 1, INCH = 0Ah
,
T
A
= 0°C
2.2 V/
3 V
986 mV
2.2 V/
TC
SENSOR
ADC12ON = 1, INCH = 0Ah
2.2 V/
3 V
3.55±3% mV/°C
Sample time required if
ADC12ON = 1, INCH = 0Ah,
2.2 V 30
t
SENSOR(sample)
channel 10 is selected (see Note 3)
ADC12ON = 1, INCH = 0Ah
,
Error of conversion result 1 LSB
3 V 30
μs
Current into divider at
2.2 V NA
I
VMID
Current into divider at
channel 11 (see Note 4)
ADC12ON = 1, INCH = 0Bh
3 V NA
μA
ADC12ON = 1, INCH = 0Bh,
2.2 V 1.1 1.1±0.04
V
MID
AVCC divider at channel 11
ADC12ON = 1, INCH = 0Bh
,
V
MID
is ~0.5 x V
AVCC
3 V 1.5 1.50±0.04
V
Sample time required if
ADC12ON = 1, INCH = 0Bh,
2.2 V 1400
t
VMID(sample)
channel 11 is selected (see Note 5)
ADC12ON = 1, INCH = 0Bh
,
Error of conversion result 1 LSB
3 V 1220
ns
NOTES: 1. The sensor current I
SENSOR
is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal
is high). When REFON = 1, I
SENSOR
is already included in I
REF+
.
2. The temperature sensor offset can be as much as ±20_C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor.
3. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t
SENSOR(on)
4. No additional current is needed. The V
MID
is used during sampling.
5. The on-time t
VMID(on)
is included in the sampling time t
VMID(sample)
; no additional on time is needed.
12-bit DAC, supply specifications
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
AV
CC
Analog supply voltage
AV
CC =
DVCC,
AV
SS
= DVSS =0 V
2.20 3.60 V
DAC12AMPx=2, DAC12IR=0, DAC12_xDAT=0800h
50 110
Supply current:
DAC12AMPx=2, DAC12IR=1, DAC12_xDAT=0800h
, VeREF+=VREF+
= AV
CC
50 110
I
DD
Single DAC Channel (see Notes 1 and 2)
DAC12AMPx=5, DAC12IR=1, DAC12_xDAT=0800h, V
eREF+=VREF+
= AV
CC
2.2 V/3 V 200 440
μA
DAC12AMPx=7, DAC12IR=1, DAC12_xDAT=0800h, V
eREF+=VREF+
= AV
CC
700 1500
Power-supply
DAC12_xDAT = 800h, V
REF
= 1.5 V,
ΔAV
CC
= 100mV
2.2 V
PSRR
rejection ratio (see Notes 3 and 4)
DAC12_xDAT = 800h, V
REF
= 1.5 V or 2.5 V,
ΔAV
CC
= 100mV
3 V
70 dB
NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.
2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.
3. PSRR = 20*log{ΔAV
CC
/ΔV
DAC12_xOUT
}.
4. V
REF
is applied externally. The internal reference is not used.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
54
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit DAC, linearity specifications (see Figure 26)
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
Resolution (12-bit Monotonic) 12 bits
Integral nonlinearity
V
ref
= 1.5 V,
DAC12AMPx = 7, DAC12IR = 1
2.2 V
INL
Integral nonlinearity
(see Note 1)
V
ref
= 2.5 V,
DAC12AMPx = 7, DAC12IR = 1
3 V
±2.0 ±8.0 LSB
Differential nonlinearity
V
ref
= 1.5 V,
DAC12AMPx = 7, DAC12IR = 1
2.2 V
DNL
Differential nonlinearity
(see Note 1)
V
ref
= 2.5 V,
DAC12AMPx = 7, DAC12IR = 1
3 V
±0.4 ±1.0 LSB
Offset voltage without
V
ref
= 1.5 V,
DAC12AMPx = 7, DAC12IR = 1
2.2 V
E
O
calibration (see Notes 1, 2)
V
ref
= 2.5 V,
DAC12AMPx = 7, DAC12IR = 1
3 V
±21
Offset voltage with
V
ref
= 1.5 V,
DAC12AMPx = 7, DAC12IR = 1
2.2 V
mV
calibration (see Notes 1, 2)
V
ref
= 2.5 V,
DAC12AMPx = 7, DAC12IR = 1
3 V
±2.5
d
E(O)/dT
Offset error temperature coefficient (see Note 1)
2.2 V/3 V ±30 μV/°C
V
REF
= 1.5 V 2.2 V
E
G
Gain error (see Note 1)
V
REF
= 2.5 V 3 V
±3.50 % FSR
d
E(G)/dT
Gain temperature coefficient (see Note 1)
2.2 V/3 V 10
ppm of
FSR/°C
DAC12AMPx = 2 100
t
Offset_Cal
Time for offset calibration
DAC12AMPx = 3,5
2.2 V/3 V
32
ms
t
Offset_Cal
(see Note 3)
DAC12AMPx = 4,6,7
2.2 V/3 V
6
ms
NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and
“b” of the first order equation: y = a + b*x. V
DAC12_xOUT
= EO + (1 + EG) * (V
eREF+
/4095) * DAC12_xDAT, DAC12IR = 1.
2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON
3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may effect accuracy and is not recommended.
Positive
Negative
V
R+
Gain Error
Offset Error
DAC Code
DAC V
OUT
Ideal transfer function
R
Load
=
AV
CC
C
Load
= 100pF
2
DAC Output
Figure 26. Linearity Test Load Conditions and Gain/Offset Definition
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
55
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit DAC, linearity specifications (continued)
DAC12_xDAT − Digital Code
−4
−3
−2
−1
0
1
2
3
4
0 512 1024 1536 2048 2560 3072 3584
VCC = 2.2 V, V
REF
= 1.5V DAC12AMPx = 7 DAC12IR = 1
TYPICAL INL ERROR
vs
DIGITAL INPUT DATA
4095
INL − Integral Nonlinearity Error − LSB
DAC12_xDAT − Digital Code
−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
0 512 1024 1536 2048 2560 3072 3584
VCC = 2.2 V, V
REF
= 1.5V DAC12AMPx = 7 DAC12IR = 1
TYPICAL DNL ERROR
vs
DIGITAL INPUT DATA
4095
DNL − Differential Nonlinearity Error − LSB
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
56
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit DAC, output specifications
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
No Load, Ve
REF+
= AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7
0 0.005
Output voltage ran
g
e
No Load, Ve
REF+
= AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7
AVCC−0.05 AV
CC
V
O
range
(see Note 1, Figure 29)
R
Load
= 3 kΩ, Ve
REF+
= AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7
2.2 V/3 V 0 0.1
V
R
Load
= 3 kΩ, Ve
REF+
= AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7
AVCC−0.13 AV
CC
C
L(DAC12)
Max DAC12 load capacitance
2.2V/3V 100 pF
Max DAC12
2.2V −0.5 +0.5
I
L(DAC12)
Max DAC12
load current
3V −1.0 +1.0
mA
R
Load
= 3 kΩ, V
O/P(DAC12)
< 0.3 V,
DAC12AMPx = 2, DAC12_xDAT = 0h
150 250
R
O/P(DAC12)
Output resistance (see Figure 29)
R
Load
= 3 kΩ,
V
O/P(DAC12)
> AVCC−0.3 V
DAC12_xDAT = 0FFFh
2.2 V/3 V
150 250
Ω
(g)
R
Load
= 3 kΩ,
0.3V V
O/P(DAC12)
AVCC − 0.3V
1 4
NOTE 1: Data is valid after the offset calibration of the output amplifier.
R
O/P(DAC12_x)
Max
0.3 AV
CC
AVCC −0.3V
V
OUT
Min
R
Load
AV
CC
C
Load
= 100pF
2
I
Load
DAC12
O/P(DAC12_x)
Figure 29. DAC12_x Output Resistance Tests
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
57
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
12-bit DAC, reference input specifications
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
Reference input
DAC12IR=0 (see Notes 1 and 2)
AVCC/3 AVCC+0.2
Ve
REF+
Reference input
voltage range
DAC12IR=1 (see Notes 3 and 4)
2.2 V/3 V AVcc AVcc+0.2
V
DAC12_0 IR=DAC12_1 IR =0 20 MΩ DAC12_0 IR=1, DAC12_1 IR = 0
Ri
(VREF+)
, Reference input
DAC12_0 IR=0, DAC12_1 IR = 1
40 48 56
(VREF+)
,
Ri
(VeREF+)
p
resistance
DAC12_0 IR=DAC12_1 IR =1, DAC12_0 SREFx = DAC12_1 SREFx (see Note 5)
2.2 V/3 V
20 24 28
kΩ
NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
2. The maximum voltage applied at reference input voltage terminal Ve
REF+
= [AVCC − V
E(O)
] / [3*(1 + EG)].
3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV
CC
).
4. The maximum voltage applied at reference input voltage terminal Ve
REF+
= [AVCC − V
E(O)
] / (1 + EG).
5. When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance.
12-bit DAC, dynamic specifications; V
ref
= VCC, DAC12IR = 1 (see Figure 30 and Figure 31)
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
DAC12_xDAT = 800h,
DAC12AMPx = 0 {2, 3, 4} 60 120
t
ON
DAC12
DAC12_xDAT = 800h
,
Error
V(O)
< ±0.5 LSB
DAC12AMPx = 0 {5, 6}
2.2 V/3 V
15 30
μs
t
ON
on-time
Error
V(O)
<
±0.5 LSB
(see Note 1,Figure 30)
DAC12AMPx = 0 7
2.2 V/3 V
6 12
μs
DAC12AMPx = 2 100 200
t
S(FS
)
Settling time,
DAC12_xDAT =
DAC12AMPx = 3,5
2.2 V/3 V
40 80
μs
t
S(FS)
full-scale 80h F7Fh 80h
DAC12AMPx = 4,6,7
2.2 V/3 V
15 30
μs
DAC12_xDAT =
DAC12AMPx = 2 5
t
S(C-C
)
Settling time,
DAC12_xDAT =
3F8h 408h 3F8h
DAC12AMPx = 3,5
2.2 V/3 V
2
μs
t
S(C-C)
code to code
3F8h 408h 3F8h
BF8h C08h BF8h
DAC12AMPx = 4,6,7
2.2 V/3 V
1
μs
DAC12_xDAT =
DAC12AMPx = 2 0.05 0.12
SR Slew rate
DAC12_xDAT =
80h F7Fh 80h
DAC12AMPx = 3,5
2.2 V/3 V
0.35 0.7
V/μs
SR
Slew rate
80h F7Fh 80h
(see Note 2)
DAC12AMPx = 4,6,7
2.2 V/3 V
1.5 2.7
V/μs
DAC12AMPx = 2 600
Glitch energy, full-scale
DAC12_xDAT =
DAC12AMPx = 3,5
2.2 V/3 V
150
nV-s
Glitch energy, full scale
80h F7Fh 80h
DAC12AMPx = 4,6,7
2.2 V/3 V
30
nV s
NOTES: 1. R
Load
and C
Load
connected to AVSS (not AVCC/2) in Figure 30.
2. Slew rate applies to output voltage steps >= 200mV.
R
Load
AV
CC
C
Load
= 100pF
2
DAC Output
R
O/P(DAC12.x)
I
Load
Conversion 1 Conversion 2
V
OUT
Conversion 3
Glitch
Energy
+/− 1/2 LSB
+/− 1/2 LSB
t
settleLH
t
settleHL
= 3 kΩ
Figure 30. Settling Time and Glitch Energy Testing
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
58
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
Conversion 1 Conversion 2
V
OUT
Conversion 3
10%
t
SRLH
t
SRHL
90%
10%
90%
Figure 31. Slew Rate Testing
12-bit DAC, dynamic specifications continued (T
A
= 25°C unless otherwise noted)
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
40
BW
−3dB
3-dB bandwidth, V
DC
=1.5V, VAC=0.1V
PP
DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
2.2 V/3 V
180
kHz
(see Figure 32)
DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
550
DAC12_0DAT = 800h, No Load, DAC12_1DAT = 80h<−>F7Fh, R
Load
= 3kΩ
f
DAC12_1OUT
= 10kHz @ 50/50 duty cycle
−80
Channel-to-channel crosstalk (see Note 1 and Figure 33)
DAC12_0DAT = 80h<−>F7Fh, R
Load
= 3kΩ, DAC12_1DAT = 800h, No Load, f
DAC12_0OUT
= 10kHz @ 50/50 duty cycle
2.2 V/3 V
−80
dB
NOTE 1: R
LOAD
= 3 kΩ, C
LOAD
= 100 pF
Ve
REF+
AC DC
R
Load
AV
CC
C
Load
= 100pF
2
I
Load
DAC12_x
DACx
= 3 kΩ
Figure 32. Test Conditions for 3-dB Bandwidth Specification
DAC12_xDAT 080h
V
OUT
f
Toggle
7F7h
V
DAC12_yOUT
080h 7F7h 080h
V
DAC12_xOUT
REF+
R
Load
AV
CC
C
Load
= 100pF
2
I
Load
DAC12_1
R
Load
AV
CC
C
Load
= 100pF
2
I
Load
DAC12_0
DAC0
DAC1
V
Figure 33. Crosstalk Test Conditions
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
59
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
operational amplifier OA, supply specifications
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
V
CC
Supply voltage 2.2 3.6 V
Fast Mode,
Fast Mode
,
OARRIP = 1 (rail-to-rail mode off)
180 290
Medium Mode,
Medium Mode
,
OARRIP = 1 (rail-to-rail mode off)
110 190
Supply current
Slow Mode, OARRIP = 1 (rail-to-rail mode off)
50 80
I
CC
Supply current
(see Note 1)
Fast Mode,
2.2 V/3 V
μA
(see Note 1)
Fast Mode
,
OARRIP = 0 (rail-to-rail mode on)
300 490
Medium Mode,
Medium Mode
,
OARRIP = 0 (rail-to-rail mode on)
190 350
Slow Mode,
Slow Mode
,
OARRIP = 0 (rail-to-rail mode on)
90 190
PSRR Power supply rejection ratio Non-inverting 2.2 V/3 V 70 dB
NOTE 1: P6SEL.x = 1 for each corresponding pin when used in OA input or OA output mode.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
60
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operational amplifier OA, input/output specifications
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
OARRIP = 1 (rail-to-rail mode off) −0.1 VCC−1.2
V
I/P
Voltage supply, I/P
OARRIP = 0 (rail-to-rail mode on)
−0.1 VCC+0.1
V
Input leakage current, I/P
TA = −40 to +55_C −5 ±0.5 5
I
Ikg
Input leakage current, I/P
(see Notes 1 and 2)
TA = +55 to +85_C
−20 ±5 20
nA
Fast Mode 50 Medium Mode
f
V(I/P
)
= 1 kHz
80
Slow Mode
f
V(I/P)
1
kHz
140
V
n
Voltage noise density, I/P
Fast Mode
30
nV/Hz
Medium Mode
f
V(I/P
)
= 10 kHz
50
Slow Mode
f
V(I/P)
10
kHz
65
V
IO
Offset voltage, I/P 2.2 V/3 V ±10 mV Offset temperature drift, I/P see Note 3 2.2 V/3 V ±10 μV/°C Offset voltage drift
with supply, I/P
0.3V VIN VCC−0.3V ΔV
CC
± 10%, TA = 25°C
2.2 V/3 V ±1.5 mV/V
Fast Mode, I
SOURCE
−500μA 2.2 V VCC−0.2 V
CC
V
OH
High-level output voltage, O/P
Slow Mode,I
SOURCE
−150μA 3 V VCC−0.1 V
CC
V
Fast Mode, I
SOURCE
+500μA 2.2 V V
SS
0.2
V
OL
Low-level output voltage, O/P
Slow Mode,I
SOURCE
+150μA 3 V V
SS
0.1
V
R
Load
= 3 kΩ, C
Load
= 50pF, OARRIP = 0 (rail-to-rail mode on), V
O/P(OAx)
< 0.2 V
150 250
R
O/P
(OAx
)
Output Resistance (see Figure 34 and Note 4)
R
Load
= 3 kΩ, C
Load
= 50pF, OARRIP = 0 (rail-to-rail mode on), V
O/P(OAx)
> AVCC − 0.2 V
2.2 V/3 V
150 250
Ω
R
Load
= 3 kΩ, C
Load
= 50pF, OARRIP = 0 (rail-to-rail mode on),
0.2 V V
O/P(OAx)
AVCC − 0.2 V
0.1 4
CMRR Common-mode rejection ratio Non-inverting 2.2 V/3 V 70 dB
NOTES: 1. ESD damage can degrade input current leakage.
2. The input bias current is overridden by the input leakage current.
3. Calculated using the box method.
4. Specification valid for voltage-follower OAx configuration.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
61
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
R
O/P(OAx)
Max
0.2V
AV
CC
AVCC −0.2V
V
OUT
Min
R
Load
AV
CC
C
Load
2
I
Load
OAx
O/P(OAx)
Figure 34. OAx Output Resistance Tests
operational amplifier OA, dynamic specifications
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
Fast Mode 1.2
SR Slew rate
Medium Mode 0.8
V/μs
SR
Slew rate
Slow Mode 0.3
V/μs
Open-loop voltage gain 100 dB
φ
m
Phase margin CL = 50 pF 60 deg Gain margin CL = 50 pF 20 dB
-
Non−inverting, Fast Mode, RL = 47kΩ, CL = 50pF 2.2
Gain-bandwidth product
GBW
(see Figure 35
Non−inverting, Medium Mode, RL =300kΩ, CL = 50pF 2.2 V/3 V 1.4 MHz
GBW
(see Figure 35 a
n
Fir
2.2 V/3 V
MHz
and Figure 36)
Non−inverting, Slow Mode, RL =300kΩ, CL = 50pF 0.5
t
en(on)
Enable time on ton, non-inverting, Gain = 1 2.2 V/3 V 10 20 μs
t
en(off)
Enable time off 2.2 V/3 V 1 μs
Figure 35
Input Frequency − kHz
−80
−60
−40
−20
0
20
40
60
80
100
120
140
TYPICAL OPEN-LOOP GAIN vs FREQUENCY
Slow Mode
Fast Mode
Gain − dB
Medium Mode
0.001 0.01 0.1 1 10 100 1000 10000
Figure 36
Input Frequency − kHz
−250
−200
−150
−100
−50
0
1 10 100 1000 10000
TYPICAL PHASE vs FREQUENCY
Phase − degrees
Slow Mode
Fast Mode
Medium Mode
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
62
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
operational amplifier OA feedback network, noninverting amplifier mode (OAFCx = 4)
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
OAFBRx = 0 0.996 1.00 1.002 OAFBRx = 1 1.329 1.334 1.340 OAFBRx = 2 1.987 2.001 2.016 OAFBRx = 3
2.64 2.667 2.70
G Gain
OAFBRx = 4
2.2 V/ 3 V
3.93 4.00 4.06 OAFBRx = 5 5.22 5.33 5.43 OAFBRx = 6 7.76 7.97 8.18 OAFBRx = 7 15.0 15.8 16.6
Total harmonic distortion/
2.2 V −60
THD
Total harmonic distortion/
nonlinearity
All gains
3 V −70
dB
t
Settle
Settling time (see Note 1) All power modes 2.2 V/3 V 7 12 μs
NOTES: 1. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The
settling time of the amplifier itself might be faster.
operational amplifier OA feedback network, inverting amplifier mode (OAFCx = 6) (see Note 1)
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
OAFBRx = 1 −0.371 −0.335 −0.298 OAFBRx = 2 −1.031 −1.002 −0.972 OAFBRx = 3 −1.727 −1.668 −1.609 OAFBRx = 4
−3.142 −3.00 −2.856
G
Gai
n
OAFBRx = 5
2.2 V/ 3 V
−4.581 −4.33 −4.073
OAFBRx = 6 −7.529 −6.97 −6.379 OAFBRx = 7
−17.04 0
−14.8
−12.27 9
Total harmonic distortion/
2.2 V −60
THD
Total harmonic distortion/
nonlinearity
All gains
3 V −70
dB
t
Settle
Settling time (see Note 2) All power modes 2.2 V/3 V 7 12 μs
NOTES: 1. This includes the 2 OA configuration “inverting amplifier with input buffer”. Both OA needs to be set to the same power mode OAPMx.
2. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The settling time of the amplifier itself might be faster.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
63
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
flash memory (MSP430FG461x devices only)
PARAMETER
TEST
CONDITIONS
V
CC
MIN TYP MAX UNIT
V
CC(PGM/
ERASE)
Program and Erase supply voltage 2.7 3.6 V
f
FTG
Flash Timing Generator frequency 257 476 kHz
I
PGM
Supply current from DVCC during program 2.7 V/ 3.6 V 3 5 mA
I
ERASE
Supply current from DVCC during erase See Note 3 2.7 V/ 3.6 V 3 7 mA
I
GMERASE
Supply current from DVCC during global mass erase
See Note 4 2.7 V/ 3.6 V 6 14 mA
t
CPT
Cumulative program time See Note 1 2.7 V/ 3.6 V 10 ms
t
CMErase
Cumulative mass erase time 2.7 V/ 3.6 V 20 ms Program/Erase endurance 10
4
10
5
cycles
t
Retention
Data retention duration TJ = 25°C 100 years
t
Word
Word or byte program time 30
t
Block, 0
Block program time for 1st byte or word 25
t
Block, 1-63
Block program time for each additional byte or word
18
t
Block, End
Block program end-sequence wait time
See Note 2
6
t
FTG
t
Mass Erase
Mass erase time 10593
t
Global Mass Erase
Global mass erase time 10593
t
Seg Erase
Segment erase time 4819
NOTES: 1. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write
feature is used.
2. These values are hardwired into the Flash Controller’s state machine (t
FTG
= 1/f
FTG
).
3. Lower 64-KB or upper 64-KB Flash memory erased.
4. All Flash memory erased.
JTAG interface
PARAMETER
TEST
CONDITIONS
V
CC
MIN TYP MAX UNIT
2.2 V 0 5 MHz
f
TCK
TCK input frequency See Note 1
3 V 0 10 MHz
R
Internal
Internal pull-up resistance on TMS, TCK, TDI/TCLK See Note 2 2.2 V/ 3 V 25 60 90 kΩ
NOTES: 1. f
TCK
may be restricted to meet the timing requirements of the module selected.
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.
JTAG fuse (see Note 1)
PARAMETER
TEST
CONDITIONS
V
CC
MIN TYP MAX UNIT
V
CC(FB)
Supply voltage during fuse-blow condition TA = 25°C 2.5 V
V
FB
Voltage level on TDI/TCLK for fuse-blow: F versions 6 7 V
I
FB
Supply current into TDI/TCLK during fuse blow 100 mA
t
FB
Time to blow fuse 1 ms
NOTE 1: Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched
to bypass mode.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
64
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematics
Port P1, P1.0 to P1.5, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P1SEL.x
1
0
P1DIR.x
P1IN.x
DV
SS
DV
SS
Pad Logic
DV
SS
P1IRQ.x
D
EN
Module X IN
1
0
Module X OUT
P1OUT.x
Note: x= 0,1,2,3,4,5
P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK
Interrupt
Edge
Select
Q
EN
Set
P1SEL.x
P1IES.x
P1IFG.x
P1IE.x
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
65
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P1 (P1.0 to P1.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P1.X)
X FUNCTION
P1DIR.x P1SEL.x
P1.0/TA0 0
P1.0 (I/O) I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1
P1.1/TA0/MCLK 1
P1.1 (I/O) I: 0; O: 1 0 Timer_A3.CCI0B 0 1 MCLK 1 1
P1.2/TA1 2
P1.2 (I/O) I: 0; O: 1 0 Timer_A3.CCI1A 0 1 Timer_A3.TA1 1 1
P1.3/TBOUTH/SVSOUT 3
P1.3 (I/O) I: 0; O: 1 0 Timer_B7.TBOUTH 0 1 SVSOUT 1 1
P1.4/TBCLK/SMCLK 4
P1.4 (I/O) I: 0; O: 1 0 Timer_B7.TBCLK 0 1 SMCLK 1 1
P1.5/TACLK/ACLK 5
P1.5 (I/O) I: 0; O: 1 0 Timer_A3.TACLK 0 1 ACLK 1 1
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
66
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P1, P1.6, P1.7, input/output with Schmitt trigger
+
Comp_A
Bus
Keeper
EN
Direction 0: Input 1: Output
P1SEL.x
1
0
P1DIR.x
P1IN.x
DV
SS
DV
SS
Pad Logic
CAPD.x
P1IRQ.x
D
EN
Module X IN
1
0
Module X OUT
P1OUT.x
Note:x = 6,7
P1.6/CA0 P1.7/CA1
Interrupt
Edge
Select
Q
EN
Set
P1SEL.x
P1IES.x
P1IFG.x
P1IE.x
P2CA0
CA0
CA1
P2CA1
1
0
1
0
Port P1 (P1.6 and P1.7) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P1.X)
X FUNCTION
CAPD.x P1DIR.x P1SEL.x
P1.6/CA0 6
P1.6 (I/O) 0 I: 0; O: 1 0 CA0 1 X X
P1.7/CA1 7
P1.7 (I/O) 0 I: 0; O: 1 0 CA1 1 X X
NOTE 1: X: Don’t care
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
67
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P2, P2.0 to P2.3, P2.6 to P2.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.x
1
0
P2DIR.x
P2IN.x
DV
SS
DV
SS
Pad Logic
TBOUTH
P2IRQ.x
D
EN
Module X IN
1
0
Module X OUT
P2OUT.x
Note:x = 0,1,2,3,6,7
P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.6/CAOUT P2.7/ADC12CLK/DMAE0
Interrupt
Edge
Select
Q
EN
Set
P2SEL.x
P2IES.x
P2IFG.x
P2IE.x
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
68
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P2 (P2.0, P2.1, P2.2, P2.3, P2.6 and P2.7) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P2.X)
X FUNCTION
P2DIR.x P2SEL.x
P2.0/TA2 0
P2.0 (I/O) I: 0; O: 1 0 Timer_A3.CCI2A 0 1 Timer_A3.TA2 1 1
P2.1/TB0 1
P2.1 (I/O) I: 0; O: 1 0 Timer_B7.CCI0A and Timer_B7.CCI0B 0 1 Timer_B7.TB0 (see Note 1) 1 1
P2.2/TB1 2
P2.2 (I/O) I: 0; O: 1 0 Timer_B7.CCI1A and Timer_B7.CCI1B 0 1 Timer_B7.TB1 (see Note 1) 1 1
P2.3/TB3 3
P2.3 (I/O) I: 0; O: 1 0 Timer_B7.CCI2A and Timer_B7.CCI2B 0 1 Timer_B7.TB3 (see Note 1) 1 1
P2.6/CAOUT 6
P2.6 (I/O) I: 0; O: 1 0 CAOUT 1 1
P2.7/ADC12CLK/DMAE0 7
P2.7 (I/O) I: 0; O: 1 0 ADC12CLK 1 1 DMAE0 0 1
NOTE 1: Setting TBOUTH causes all Timer_B outputs to be set to high impedance.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
69
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P2, P2.4 to P2.5, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.x
1
0
P2DIR.x
P2IN.x
DV
SS
DV
SS
Pad Logic
DV
SS
P2IRQ.x
D
EN
Module X IN
1
0
Module X OUT
P2OUT.x
Note: x =4,5
P2.4/UCA0TXD P2.5/UCA0RXD
Interrupt
Edge
Select
Q
EN
Set
P2SEL.x
P2IES.x
P2IFG.x
P2IE.x
Direction control
from Module X
Port P2 (P2.4 and P2.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P2.X)
X FUNCTION
P2DIR.x P2SEL.x
P2.4/UCA0TXD 4
P2.4 (I/O) I: 0; O: 1 0 USCI_A0.UCA0TXD (see Note 1, 2) X 1
P2.5/UCA0RXD 5
P2.5 (I/O) I: 0; O: 1 0 USCI_A0.UCA0RXD (see Note 1, 2) X 1
NOTES: 1. X: Don’t care
2. When in USCI mode, P2.4 is set to output, P2.5 is set to input.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
70
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P3, P3.0 to P3.3, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P3SEL.x
1
0
P3DIR.x
P3IN.x
DV
SS
DV
SS
Pad Logic
DV
SS
D
EN
Module X IN
1
0
Module X OUT
P3OUT.x
Note: x = 0,1,2,3
P3.0/UCB0STE P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK
Port P3 (P3.0 to P3.3) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P3.X)
X FUNCTION
P3DIR.x P3SEL.x
P3.0/UCB0STE 0
P3.0 (I/O) I: 0; O: 1 0 UCB0STE (see Notes 1, 2) X 1
P3.1/UCB0SIMO/ 1
P3.1 (I/O) I: 0; O: 1 0
UCB0SDA
UCB0SIMO/UCB0SDA (see Notes 1, 2, 3) X 1
P3.2/UCB0SOMI/ 2
P3.2 (I/O) I: 0; O: 1 0
UCB0SCL
UCB0SOMI/UCB0SCL (see Notes 1, 2, 3) X 1
P3.3/UCB0CLK 3
P3.3 (I/O) I: 0; O: 1 0 UCB0CLK (see Notes 1, 2) X 1
NOTES: 1. X: Don’t care
2. The pin direction is controlled by the USCI module.
3. In case the I2C functionality is selected the output drives only the logical 0 to V
SS
level.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
71
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P3, P3.4 to P3.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P3SEL.x
1
0
P3DIR.x
P3IN.x
DV
SS
DV
SS
Pad Logic
TBOUTH
D
EN
Module X IN
1
0
Module X OUT
P3OUT.x
Note: x = 4,5,6,7
P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6
Port P3 (P3.4 to P3.7) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P3.X)
X FUNCTION
P3DIR.x P3SEL.x
P3.4/TB3 4
P3.4 (I/O) I: 0; O: 1 0 Timer_B7.CCI3A and Timer_B7.CCI3B 0 1 Timer_B7.TB3 (see Note 1) 1 1
P3.5/TB4 5
P3.5 (I/O) I: 0; O: 1 0 Timer_B7.CCI4A and Timer_B7.CCI4B 0 1 Timer_B7.TB4 (see Note 1) 1 1
P3.6/TB5 6
P3.6 (I/O) I: 0; O: 1 0 Timer_B7.CCI5A and Timer_B7.CCI5B 0 1 Timer_B7.TB5 (see Note 1) 1 1
P3.7/TB6 7
P3.7 (I/O) I: 0; O: 1 0 Timer_B7.CCI6A and Timer_B7.CCI6B 0 1 Timer_B7.TB6 (see Note 1) 1 1
NOTE 1: Setting TBOUTH causes all Timer_B outputs to be set to high impedance.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
72
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P4, P4.0 to P4.1, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL.x
1
0
P4DIR.x
P4IN.x
DV
SS
DV
SS
Pad Logic
DV
SS
D
EN
Module X IN
1
0
Module X OUT
P4OUT.x
Note: x = 0,1
P4.1/URXD1 P4.0/UTXD1
Direction control
from Module X
Port P4 (P4.0 to P4.1) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P4.X)
X FUNCTION
P4DIR.x P4SEL.x
P4.0/UTXD1 0
P4.0 (I/O) I: 0; O: 1 0 USART1.UTXD1 (see Notes 1, 2) X 1
P4.1/URXD1 1
P4.1 (I/O) I: 0; O: 1 0 USART1.URXD1 (see Notes 1, 2) X 1
NOTES: 1. X: Don’t care
2. When in USART1 mode, P4.0 is set to output, P4.1 is set to input.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
73
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P4, P4.2 to P4.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL.x
1
0
P4DIR.x
P4IN.x
LCDS32/36
Segment Sy
Pad Logic
DV
SS
D
EN
Module X IN
1
0
Module X OUT
P4OUT.x
Note:x =2,3,4,5,6,7 y
= 34,35,36,37,38,39
P4.7/UCA0RXD/S34 P4.6/UCA0TXD/S35 P4.5/UCLK1/S36 P4.4/SOMI1/S37 P4.3/SIMO1/S38 P4.2/STE1/S39
Direction control
from Module X
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
74
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P4 (P4.2 to P4.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P4.X)
X FUNCTION
P4DIR.x P4SEL.x LCDS36
P4.2/STE1/S39 2
P4.2 (I/O) I: 0; O: 1 0 0 USART1.STE1 X 1 0 S39 (see Note 1) X X 1
P4.3/SIMO/S38 3
P4.3 (I/O) I: 0; O: 1 0 0 USART1.SIMO1 (see Notes 1, 2) X 1 0 S38 (see Note 1) X X 1
P4.4/SOMI/S37 4
P4.4 (I/O) I: 0; O: 1 0 0 USART1.SOMI1 (see Notes 1, 2) X 1 0 S37 (see Note 1) X X 1
P4.5/SOMI/S36 5
P4.5 (I/O) I: 0; O: 1 0 0 USART1.UCLK1 (see Notes 1, 2) X 1 0 S36 (see Note 1) X X 1
P4.6/UCA0TXD/S35 6
P4.6 (I/O) I: 0; O: 1 0 0 USCI_A0.UCA0TXD (see Notes 1, 3) X 1 0 S35 (see Note 1) X X 1
P4.7/UCA0RXD/S34 7
P4.7 (I/O) I: 0; O: 1 0 0 USCI_A0.UCA0RXD (see Notes 1, 3) X 1 0 S34 (see Note 1) X X 1
NOTES: 1. X: Don’t care
2. The pin direction is controlled by the USART1 module.
3. When in USCI mode, P4.6 is set to output, P4.7 is set to input.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
75
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P5, P5.0, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P5SEL.x
1
0
P5DIR.x
P5IN .x
LCDS0
Segment Sy
1
0
P5OUT.x
P5.0/S1/A13/OA1I1
DV
SS
INCH=13
#
A13
#
Pad Logic
+
OA1
Note:x = 0
y = 1
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
76
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P5 (P5.0) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P5.X)
X FUNCTION
P5DIR.x P5SEL.x INCHx
OAPx(OA1) OANx(OA1)
LCDS0
P5.0/S1/A13/OA1I1 0
P5.0 (I/O) (see Note 1) I: 0; O: 1 0 X X 0 OAI11 (see Note 1) 0 X X 1 0 A13 (see Notes 1, 3) X 1 13 X X S1 enabled (see Note 1) X 0 X X 1 S1 disabled (see Note 1) X 1 X X 1
NOTES: 1. X: Don’t care
2. N/A: Not available or not applicable.
3. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
77
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P5, P5.1, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P5SEL.x
1
0
P5DIR.x
P5IN.x
LCDS0
Segment Sy
1
0
P5OUT.x
P5.1/S0/A12/DAC1
DV
SS
INCH=12
#
A12
#
Pad Logic
DAC12.1OPS
DAC1
1
0
2
DV
SS
0 if DAC12.1AMPx = 0 and DAC12.1OPS=1 1 if DAC12.1AMPx = 1 and DAC12.1OPS=1 2 if DAC12.1AMPx > 1 and DAC12.1OPS=1
Note:x = 1
y = 0
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
78
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P5 (P5.1) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P5.X)
X FUNCTION
P5DIR.x P5SEL.x INCHx DAC12.1OPS DAC12.1AMPx LCDS0
P5.1/S0/A12/DAC1 1
P5.1 (I/O) (see Note 1) I: 0; O: 1 0 X 0 X 0 DAC1 high impedance
(see Note 1)
X X X 1 0 X
DVSS (see Note 1) X X X 1 1 X DAC1 output
(see Note 1)
X X X 1 > 1 X
A12 (see Notes 1, 2) X 1 12 0 X 0 S0 enabled (see Note 1) X 0 X 0 X 1 S0 disabled
(see Note 1)
X 1 X 0 X 1
NOTES: 1. X: Don’t care
2. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
79
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P5, P5.2 to P5.4, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P5SEL.x
1
0
P5DIR.x
P5IN.x
LCD Signal
Pad Logic
DV
SS
1
0
P5OUT.x
Note:x = 2,3,4
P5.2/COM1 P5.3/COM2 P5.4/COM3
DV
SS
Port P5 (P5.2 to P5.4) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P5.X)
X FUNCTION
P5DIR.x P5SEL.x
P5.2/COM1 2
P5.2 (I/O) I: 0; O: 1 0 COM1 (see Note 1) X 1
P5.3/COM2 3
P5.3 (I/O) I: 0; O: 1 0 COM2 (see Note 1) X 1
P5.4/COM3 4
P5.4 (I/O) I: 0; O: 1 0 COM3 (see Note 1) X 1
NOTE 1: X: Don’t care
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
80
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P5, P5.5 to P5.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P5SEL.x
1
0
P5DIR.x
P5IN.x
LCD Signal
Pad Logic
DV
SS
1
0
P5OUT.x
Note:x = 5,6,7
P5.5/R03 P5.6/LCDREF/R13 P5.7/R03
DV
SS
Port P5 (P5.5 to P5.7) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P5.X)
X FUNCTION
P5DIR.x P5SEL.x
P5.5/R03 5
P5.5 (I/O) I: 0; O: 1 0 R03 (see Note 1) X 1
P5.6/LCDREF/R13 6
P5.6 (I/O) I: 0; O: 1 0 R13 or LCDREF (see Notes 1, 2) X 1
P5.7/R03 7
P5.7 (I/O) I: 0; O: 1 0 R03 (see Note 1) X 1
NOTES: 1. X: Don’t care
2. External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
81
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P6, P6.0, P6.2, and P6.4, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P6SEL.x
1
0
P6DIR.x
P6IN.x
INCH=0/2/4
#
Ay
#
Pad Logic
1
0
DV
SS
P6OUT.x
P6.0/A0/OA0I0 P6.2/A2/OA0I1 P6.4/A4/OA1I0
+
OA0/1
Note:x = 0, 2, 4
y = 0, 1 # = Signal from or to ADC12
Port P6 (P6.0, P6.2, and P6.4) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P6.X)
X FUNCTION
P6DIR.x P6SEL.x
OAPx (OA0) OANx (OA0)
OAPx (OA1)
OANx(OA1)
INCHx
P6.0/A0/OA0I0 0
P6.0 (I/O) (see Note 1) I: 0; O: 1 0 X X X OA0I0 (see Note 1) 0 X 0 X X A0 (see Notes 1, 3) X 1 X X 0
P6.2/A2/OA0I1 2
P6.2 (I/O) (see Note 1) I: 0; O: 1 0 X X X OA0I1 (see Note 1) 0 X 1 X X A2 (see Notes 1, 3) X 1 X X 2
P6.4/A4/OA1I0 4
P6.4 (I/O) (see Note 1) I: 0; O: 1 0 X X X OA1I0 (see Note 1) 0 X X 0 X A4 (see Notes 1, 3) X 1 X X 4
NOTES: 1. X: Don’t care
2. N/A: Not available or not applicable.
3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
82
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P6, P6.1, P6.3, and P6.5 input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0:Input 1:Output
P6SEL.x
1
0
P6DIR.x
P6IN.x
INCH=1/3/5
#
Ay
#
Pad Logic
1
0
DV
SS
P6OUT.x
P6.1/A1/OA0O P6.3/A3/OA1O P6.5/A5/OA2O
+
OAy
OAPMx> 0
OAADC1
Note:x = 1, 3, 5
y = 0, 1, 2 # = Signal from or to ADC12
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
83
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P6 (P6.1, P6.3, and P6.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P6.X)
X FUNCTION
P6DIR.x P6SEL.x OAADC1 OAPMx INCHx
P6.1/A1/OA0O 1
P6.1 (I/O) (see Note 1) I: 0; O: 1 0 X 0 X OA0O (see Notes 1, 4) X X 1 > 0 X A1 (see Notes 1, 3) X 1 X 0 1
P6.3/A3/OA1O 3
P6.3 (I/O) (see Note 1) I: 0; O: 1 0 X 0 X OA1O (see Notes 1, 4) X X 1 > 0 X A3 (see Notes 1, 3) X 1 X 0 3
P6.5/A5/OA2O 5
P6.5 (I/O) (see Note 1) I: 0; O: 1 0 X 0 X OA2O (see Notes 1, 4) X X 1 > 0 X A5 (see Notes 1, 3) X 1 X 0 5
NOTES: 1. X: Don’t care
2. N/A: Not available or not applicable.
3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
4. Setting the OAADC1 bit or setting OAFCx = 00 will cause the operational amplifier to be present at the pin as well as internally connected to the corresponding ADC12 input.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
84
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P6, P6.6, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P6SEL.x
1
0
P6DIR.x
P6IN.x
INCH=6
#
A6
#
Pad Logic
1
0
DV
SS
P6OUT.x
P6.6/A6/DAC0/OA2I0
+
OA2
DAC0
DAC12.0OPS
DAC12.0AMP> 0
1
0 2
0 if DAC12.0AMPx=0 and DAC12.0OPS= 0 1 if DAC12.0AMPx=1 and DAC12.0OPS= 0 2 if DAC12.0AMPx>1 and DAC12.0OPS= 0
DVSS
Note:x = 6
# = Signal from or to ADC12
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
85
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P6 (P6.6) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P6.X)
X FUNCTION
P6DIR.x P6SEL.x INCHx DAC12.0OPS DAC12.0AMPx
OAPx (OA2) OANx (OA2)
P6.6/A6/DAC0/OA2I0 6
P6.6 (I/O) (see Note 1) I: 0; O: 1 0 X 1 X X DAC0 high impedance
(see Note 1)
X X X 0 0 X
DVSS (see Note 1) X X X 0 1 X DAC0 output
(see Note 1)
X X X 0 >1 X
A6 (see Notes 1, 2) X 1 6 X X X OA2I0 (see Note 1) 0 X 0 X X 0
NOTES: 1. X: Don’t care
2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
86
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P6, P6.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P6SEL.x
1
0
P6DIR.x
P6IN.x
INCH=7
#
A7
#
Pad Logic
1
0
DV
SS
P6OUT.x
P6.7/A7/DAC1/SVSIN
DAC1
DAC12.1OPS
DAC12.1AMP> 0
1
0
2
0 if DAC12.1AMPx = 0 and DAC12.1OPS= 0 1 if DAC12.1AMPx = 1 and DAC12.1OPS= 0 2 if DAC12.1AMPx > 1 and DAC12.1OPS= 0
To SVS Mux
VLD=15
DVSS
Note:x = 7
# = Signal from or to ADC12
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
87
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P6 (P6.7) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P6.X)
X FUNCTION
P6DIR.x P6SEL.x INCHx DAC12.1OPS DAC12.1AMPx
P6.7/A7/DAC1/SVSIN 7
P6.7 (I/O) (see Note 1) I: 0; O: 1 0 X 1 X DAC1 high impedance
(see Note 1)
X X X 0 0
DVSS (see Note 1) X X X 0 1 DAC1 output
(see Note 1)
X X X 0 > 1
A7 (see Notes 1, 2) X 1 7 X X SVSIN (see Notes 1,3) 0 1 0 1 X
NOTES: 1. X: Don’t care
2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
3. Setting VLDx = 15 will also cause the external SVSIN to be used. In this case, the P6SEL.x bit is a do not care.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
88
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P7, P7.0 to P7.3, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P7SEL.x
1
0
P7DIR.x
P7IN.x
LCDS28/32
Segment Sy
Pad Logic
DV
SS
D
EN
Module X IN
1
0
Module X OUT
P7OUT.x
P7.3/UCA0CLK/S30 P7.2/UCA0SOMI/S31 P7.1/UCA0SIMO/S32 P7.0/UCA0STE/S33
Direction control
from Module X
Note:x = 0, 1, 2, 3
y = 30, 31, 32, 33
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
89
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P7 (P7.0 to P7.1) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P7.X)
X FUNCTION
P7DIR.x P7SEL.x LCDS32
P7.0/UCA0STE/S33 0
P7.0 (I/O) I: 0; O: 1 0 0 USCI_A0.UCA0STE (see Notes 1, 2) X 1 0 S33 (see Note 1) X X 1
P7.1/UCA0SIMO/S32 1
P7.1 (I/O) I: 0; O: 1 0 0 USCI_A0.UCA0SIMO (see Notes 1, 2) X 1 0 S32 (see Note 1) X X 1
P7.2/UCA0SOMI/S31 2
P7.2 (I/O) I: 0; O: 1 0 0 USCI_A0.UCA0SOMI (see Notes 1, 3) X 1 0 S31 (see Note 1) X X 1
P7.3/UCA0CLK/S30 3
P7.3 (I/O) I: 0; O: 1 0 0 USCI_A0.UCA0CLK (see Notes 1, 3) X 1 0 S30 (see Note 1) X X 1
NOTES: 1. X: Don’t care
2. The pin direction is controlled by the USCI module.
3. The pin direction is controlled by the USCI module.
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
90
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P7, P7.4 to P7.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P7SEL.x
1
0
P7DIR.x
P7IN .x
LCDS24/28
Segment Sy
Pad Logic
DV
SS
1
0
P7OUT.x
P7.7/S26 P7.6/S27 P7.5/S28 P7.4/S29
DV
SS
Note:x = 4, 5, 6, 7
y = 26, 27, 28, 29
Port P7 (P7.4 to P7.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P7.X)
X FUNCTION
P7DIR.x P7SEL.x LCDS28
P7.4/S29 4
P7.4 (I/O) I: 0; O: 1 0 0 S29 (see Note 1) X X 1
P7.5/S28 5
P7.5 (I/O) I: 0; O: 1 0 0 S28 (see Note 1) X X 1
P7.6/S27 6
P7.6 (I/O) I: 0; O: 1 0 0 S27 (see Note 1) X X 1
P7.7/S26 7
P7.7 (I/O) I: 0; O: 1 0 0 S26 (see Note 1) X X 1
NOTE 1: X: Don’t care
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
91
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P8, P8.0 to P8.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P8SEL.x
1
0
P8DIR.x
P8IN.x
LCDS16/20/24
Segment Sy
Pad Logic
DV
SS
1
0
P8OUT.x
Note:x = 0,1,2,3,4,5,6,7 y= 25,24,23,22,21,20,19,18
P8.7/S18 P8.6/S19 P8.5/S20 P8.4/S21 P8.3/S22 P8.2/S23 P8.1/S24 P8.0/S25
DV
SS
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
92
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P8 (P8.0 to P8.1) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P8.X)
X FUNCTION
P8DIR.x P8SEL.x LCDS16
P8.0/S18 0
P8.0 (I/O) I: 0; O: 1 0 0 S18 (see Note 1) X X 1
P8.1/S19 0
P8.0 (I/O) I: 0; O: 1 0 0 S19 (see Note 1) X X 1
P8.2/S20 2
P8.2 (I/O) I: 0; O: 1 0 0 S20 (see Note 1) X X 1
P8.3/S21 3
P8.3 (I/O) I: 0; O: 1 0 0 S21 (see Note 1) X X 1
P8.4/S22 4
P8.4 (I/O) I: 0; O: 1 0 0 S22 (see Note 1) X X 1
P8.5/S23 5
P8.5 (I/O) I: 0; O: 1 0 0 S23 (see Note 1) X X 1
NOTE 1: X: Don’t care
Port P8 (P8.6 to P8.7) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P8.X)
X FUNCTION
P8DIR.x P8SEL.x LCDS24
P8.6/S24 6
P8.6 (I/O) I: 0; O: 1 0 0 S24 (see Note 1) X X 1
P8.7/S25 7
P8.7 (I/O) I: 0; O: 1 0 0 S25 (see Note 1) X X 1
NOTE 1: X: Don’t care
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
93
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P9, P9.0 to P9.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0:Input 1:Output
P9SEL.x
1
0
P9DIR.x
P9IN.x
LCDS8/12/16
Segment Sy
Pad Logic
DV
SS
1
0
P9OUT.x
Note:x = 0,1,2,3,4,5,6,7 y= 17,16,15,14,13,12,11,10
P9.7/S10 P9.6/S11 P9.5/S12 P9.4/S13 P9.3/S14 P9.2/S15 P9.1/S16 P9.0/S17
DV
SS
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
94
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P9 (P9.0 to P9.1) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P9.X)
X FUNCTION
P9DIR.x P9SEL.x LCDS16
P9.0/S17 0
P9.0 (I/O) I: 0; O: 1 0 0 S17 (see Note 1) X X 1
P9.1/S16 1
P9.1 (I/O) I: 0; O: 1 0 0 S16 (see Note 1) X X 1
P9.2/S20 2
P9.2 (I/O) I: 0; O: 1 0 0 S15 (see Note 1) X X 1
P9.3/S21 3
P9.3 (I/O) I: 0; O: 1 0 0 S14 (see Note 1) X X 1
P9.4/S22 4
P9.4 (I/O) I: 0; O: 1 0 0 S13 (see Note 1) X X 1
P9.5/S23 5
P9.5 (I/O) I: 0; O: 1 0 0 S12 (see Note 1) X X 1
P9.6/S24 6
P9.6 (I/O) I: 0; O: 1 0 0 S11 (see Note 1) X X 1
P9.7/S25 7
P9.7 (I/O) I: 0; O: 1 0 0 S10 (see Note 1) X X 1
NOTE 1: X: Don’t care
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
95
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P10, P10.0 to P10.5, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P10SEL.x
1
0
P10DIR.x
P10IN .x
LCDS4/8
Segment Sy
Pad Logic
DV
SS
1
0
P10OUT.x
Note:x = 0,1,2,3,4,5 y= 9,8,7,6,5,4
P10.5/S4 P10.4/S5 P10.3/S6 P10.2/S7 P10.1/S8 P10.0/S9
DV
SS
Port P10 (P10.0 to P10.1) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P10.X)
X FUNCTION
P10DIR.x P10SEL.x LCDS8
P10.0/S8 0
P10.0 (I/O) I: 0; O: 1 0 0 S8 (see Note 1) X X 1
P10.1/S7 1
P10.1 (I/O) I: 0; O: 1 0 0 S7 (see Note 1) X X 1
P10.2/S7 2
P10.2 (I/O) I: 0; O: 1 0 0 S7 (see Note 1) X X 1
P10.3/S6 3
P10.3 (I/O) I: 0; O: 1 0 0 S6 (see Note 1) X X 1
P10.4/S5 4
P10.4 (I/O) I: 0; O: 1 0 0 S5 (see Note 1) X X 1
P10.5/S4 5
P10.5 (I/O) I: 0; O: 1 0 0 S4 (see Note 1) X X 1
NOTE 1: X: Don’t care
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
96
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P10, P10.6, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P10SEL.x
1
0
P10DIR.x
P10IN .x
LCDS0
Segment Sy
1
0
P10OUT.x
Note: x= 6
y
=3
P10.6/S3/A15
DV
SS
INCH=15
#
A15
#
Pad Logic
Port P10 (P10.6) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P10.X)
X FUNCTION
P10DIR.x P10SEL.x INCHx LCDS0
P10.6/S3/A15 6
P5.0 (I/O) (see Note 1) I: 0; O: 1 0 X 0 A15 (see Notes 1, 3) X 1 15 0 S3 enabled (see Note 1) X 0 X 1 S3 disabled (see Note 1) X 1 X 1
NOTES: 1. X: Don’t care
2. N/A: Not available or not applicable.
3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
97
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
port P10, P10.7, input/output with Schmitt trigger
Bus
Keeper
EN
Direction 0: Input 1: Output
P10SEL.x
1
0
P10DIR.x
P10IN .x
LCDS0
Segment Sy
1
0
P10OUT.x
Note:x = 7 y= 2
P10.7/S2/A14/OA2 I1
DV
SS
INCH=14
#
A14
#
Pad Logic
+
OA2
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
98
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P10 (P10.7) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P10.X)
X FUNCTION
P10DIR.x P10SEL.x INCHx
OAPx (OA1) OANx (OA1)
LCDS0
P10.7/S2/A14/OA2I1 7
P10.7 (I/O) (see Note 1) I: 0; O: 1 0 X X 0 A14 (see Notes 1, 3) X 1 14 X 0 OA2I1 (see Notes 1, 3) 0 X X 1 0 S2 enabled (see Note 1) X 0 X X 1 S2 disabled (see Note 1) X 1 X X 1
NOTES: 1. X: Don’t care
2. N/A: Not available or not applicable.
3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 201 1
99
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Ve
REF+
/DAC0
Ve
REF+
/DAC0
#
Reference Voltage to ADC12
1
0
’0’, if DAC12CALON = 0
DAC12AMPx>1 AND DAC12OPS=1
’1’, if DAC12AMPx=1
’1’, if DAC12AMPx>1
+
DAC12OPS
Reference Voltage to DAC1
Reference Voltage to DAC0
If the reference of DAC0 is taken from pin Ve
REF+
/DAC0, unpredictable voltage levels will be on pin.
In this situation, the DAC0 output is fed back to its own reference input.
#
DAC0_2_OA
DAC12.0OPS
1
0
P6.6/A6/DAC0/OA2I0
MSP430xG461x MIXED SIGNAL MICROCONTROLLER
SLAS508I − APRIL 2006 − REVISED MARCH 2011
100
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger or output
TDI
TDO
TMS
TDI/TCLK
TDO/TDI
Controlled
by JTAG
TCK
TMS
TCK
DV
CC
Controlled by JTAG
Test
JTAG
and
Emulation
Module
DV
CC
DV
CC
Burn and Test
Fuse
RST/NMI
G
D S
U
G
D S
U
TCK
Tau ~ 50 ns
Brownout
Controlled by JTAG
Loading...