Texas Instruments MSP430F2272TDA, MSP430F2252IYFF, MSP430F2232IDA, MSP430F2232IYFF, MSP430F2252IDA User Manual

...
MSP430F22x2 MSP430F22x4
www.ti.com
MIXED SIGNAL MICROCONTROLLER
1
FEATURES
23
Low Supply Voltage Range: 1.8 V to 3.6 V
Ultra-Low Power Consumption – Active Mode: 270 µA at 1 MHz, 2.2 V – Standby Mode: 0.7 µA – Off Mode (RAM Retention): 0.1 µA
Ultra-Fast Wake-Up From Standby Mode in Less Than 1 µs
16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time
Basic Clock Module Configurations – Internal Frequencies up to 16 MHz With
Four Calibrated Frequencies to ±1% – 512B RAM
– Internal Very-Low-Power Low-Frequency – MSP430F2252
Oscillator – 32-kHz Crystal – High-Frequency (HF) Crystal up to 16 MHz – Resonator – External Digital Clock Source – External Resistor
16-Bit Timer_A With Three Capture/Compare Registers
16-Bit Timer_B With Three Capture/Compare Registers
Universal Serial Communication Interface – Enhanced UART Supporting Auto-Baudrate
Detection (LIN) – IrDA Encoder and Decoder – Synchronous SPI – I2C™
10-Bit 200-ksps Analog-to-Digital (A/D) Converter With Internal Reference, Sample­and-Hold, Autoscan, and Data Transfer Controller
Brownout Detector
Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse
Bootstrap Loader
On-Chip Emulation Module
Family Members Include: – MSP430F2232
– 8KB + 256B Flash Memory
– 16KB + 256B Flash Memory – 512B RAM
– MSP430F2272
– 32KB + 256B Flash Memory – 1KB RAM
– MSP430F2234
– 8KB + 256B Flash Memory – 512B RAM
– MSP430F2254
– 16KB + 256B Flash Memory – 512B RAM
– MSP430F2274
– 32KB + 256B Flash Memory – 1KB RAM
Available in a 38-Pin Thin Shrink Small-Outline Package (TSSOP) (DA), 40-Pin QFN Package (RHA), and 49-Pin Ball Grid Array Package (YFF) (See Table 1)
For Complete Module Descriptions, See the MSP430x2xx Family User's Guide (SLAU144)
SLAS504G –JULY 2006–REVISED AUGUST 2012
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2MSP430 is a trademark of Texas Instruments. 3All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
www.ti.com
DESCRIPTION
The Texas Instruments MSP430™ family of ultra-low-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs.
The MSP430F22x4/MSP430F22x2 series is an ultra-low-power mixed signal microcontroller with two built-in 16­bit timers, a universal serial communication interface, 10-bit A/D converter with integrated reference and data transfer controller (DTC), two general-purpose operational amplifiers in the MSP430F22x4 devices, and 32 I/O pins.
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system. Stand-alone radio-frequency (RF) sensor front ends are another area of application.
Table 1. Available Options
PACKAGED DEVICES
T
A
-40°C to 85°C
-40°C to 105°C
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
PLASTIC 49-PIN BGA PLASTIC 38-PIN TSSOP PLASTIC 40-PIN QFN
(YFF) (DA) (RHA)
MSP430F2232IYFF MSP430F2232IDA MSP430F2232IRHA MSP430F2252IYFF MSP430F2252IDA MSP430F2252IRHA MSP430F2272IYFF MSP430F2272IDA MSP430F2272IRHA MSP430F2234IYFF MSP430F2234IDA MSP430F2234IRHA MSP430F2254IYFF MSP430F2254IDA MSP430F2254IRHA MSP430F2274IYFF MSP430F2274IDA MSP430F2274IRHA
MSP430F2232TDA MSP430F2232TRHA MSP430F2252TDA MSP430F2252TRHA MSP430F2272TDA MSP430F2272TRHA MSP430F2234TDA MSP430F2234TRHA MSP430F2254TDA MSP430F2254TRHA MSP430F2274TDA MSP430F2274TRHA
(1)(2)
Development Tool Support
All MSP430™ microcontrollers include an Embedded Emulation Module (EEM) that allows advanced debugging and programming through easy-to-use development tools. Recommended hardware options include:
Debugging and Programming Interface – MSP-FET430UIF (USB) – MSP-FET430PIF (Parallel Port)
Debugging and Programming Interface with Target Board – MSP-FET430U38 (DA package)
Production Programmer – MSP-GANG430
2 Copyright © 2006–2012, Texas Instruments Incorporated
1TEST/SBWTCK
2DVCC
3P2.5/R
OSC
4
XOUT/P2.7
5
XIN/P2.6 6
RST/NMI/SBWTDIO
7
P2.0/ACLK/A0/OA0I0
8
P2.1/TAINCLK/SMCLK/A1/OA0O 9
P2.2/TA0/A2/OA0I1
10
P3.0/UCB0STE/UCA0CLK/A5
11
P3.1/UCB0SIMO/UCB0SDA 12
P3.2/UCB0SOMI/UCB0SCL
13
P3.3/UCB0CLK/UCA0STE 14
P4.0/TB0
15
P4.1/TB1
16
P4.2/TB2
17
P4.3/TB0/A12/OA0O
18 P4.4/TB1/A13/OA1O
19
38 P1.7/TA2/TDO/TDI
37 P1.6/TA1/TDI
36
P1.5/TA0/TMS
35 P1.4/SMCLK/TCK
34
P1.3/TA2
33
P1.2/TA1
32 P1.1/TA0
31
P1.0/TACLK/ADC10CLK
30
P2.4/TA2/A4/VREF+/VeREF+/OA1I0
29 P2.3/TA1/A3/VREF−/VeREF−/OA1I1/OA1O
28 P3.7/A7/OA1I2
27 P3.6/A6/OA0I2
26 P3.5/UCA0RXD/UCA0SOMI
25
P3.4/UCA0TXD/UCA0SIMO
24
23AVCC
22
AVSS
21
P4.7/TBCLK
20
P4.6/TBOUTH/A15/OA1I3
DVSS
P4.5/TB2/A14/OA0I3
1TEST/SBWTCK
2DVCC
3P2.5/R
OSC
4
XOUT/P2.7
5
XIN/P2.6 6
RST/NMI/SBWTDIO
7
P2.0/ACLK/A0
8
P2.1/TAINCLK/SMCLK/A1 9
P2.2/TA0/A2
10
P3.0/UCB0STE/UCA0CLK/A5
11
P3.1/UCB0SIMO/UCB0SDA 12
P3.2/UCB0SOMI/UCB0SCL
13
P3.3/UCB0CLK/UCA0STE 14
P4.0/TB0
15
P4.1/TB1
16
P4.2/TB2
17
P4.3/TB0/A12
18 P4.4/TB1/A13
19
38 P1.7/TA2/TDO/TDI
37 P1.6/TA1/TDI
36
P1.5/TA0/TMS
35 P1.4/SMCLK/TCK
34
P1.3/TA2
33
P1.2/TA1
32 P1.1/TA0
31
P1.0/TACLK/ADC10CLK
30
P2.4/TA2/A4/VREF+/VeREF+
29 P2.3/TA1/A3/VREF−/VeREF−
28 P3.7/A7
27 P3.6/A6
26 P3.5/UCA0RXD/UCA0SOMI
25
P3.4/UCA0TXD/UCA0SIMO
24
23AVCC
22
AVSS
21
P4.7/TBCLK
20
P4.6/TBOUTH/A15
DVSS
P4.5/TB2/A14
MSP430F22x2 MSP430F22x4
www.ti.com
MSP430F22x2 Device Pinout, DA Package
SLAS504G –JULY 2006–REVISED AUGUST 2012
MSP430F22x4 Device Pinout, DA Package
Copyright © 2006–2012, Texas Instruments Incorporated 3
1DVSS
P1.5/TA0/TMS
P1.0/TACLK/ADC10CLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK/TCK
13
P2.4/TA2/A4/VREF+/VeREF+
P2.5/R
OSC
DVCC
TEST/SBWTCK
P1.6/TA1/TDI/TCLK
2
3
4
5
6
7
8
10
9
12 14 15 16 17 18 19
30
29
28
27
26
25
24
23
21
22
3839 37 36 35 34 33 32
XOUT/P2.7
XIN/P2.6
DVSS
RST/NMI/SBWTDIO
P2.0/ACLK/A0
P2.1/TAINCLK/SMCLK/A1
P2.2/TA0/A2
P3.0/UCB0STE/UCA0CLK/A5
P3.1/UCB0SIMO/UCB0SDA
DVCC
P1.7/TA2/TDO/TDI
P2.3/TA1/A3/VREF−/VeREF−
P3.7/A7
P3.6/A6
P3.5/UCA0RXD/UCA0SOMI
P3.4/UCA0TXD/UCA0SIMO
AVCC
AVSS
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK/UCA0STE
P4.0/TB0
P4.1/TB1
P4.2/TB2
P4.3/TB0/A12
P4.4/TB1/A13
P4.5/TB2/A14
P4.6/TBOUTH/A15
P4.7/TBCLK
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
MSP430F22x2 Device Pinout, RHA Package
www.ti.com
4 Copyright © 2006–2012, Texas Instruments Incorporated
1DVSS
P1.5/TA0/TMS
P1.0/TACLK/ADC10CLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK/TCK
13
P2.4/TA2/A4/VREF+/VeREF+/OA1I0
P2.5/R
OSC
DVCC
TEST/SBWTCK
P1.6/TA1/TDI/TCLK
2
3
4
5
6
7
8
10
9
12 14 15 16 17 18 19
30
29
28
27
26
25
24
23
21
22
3839 37 36 35 34 33 32
XOUT/P2.7
XIN/P2.6
DVSS
RST/NMI/SBWTDIO
P2.0/ACLK/A0/OA0I0
P2.1/TAINCLK/SMCLK/A1/OA0O
P2.2/TA0/A2/OA0I1
P3.0/UCB0STE/UCA0CLK/A5
P3.1/UCB0SIMO/UCB0SDA
DVCC
P1.7/TA2/TDO/TDI
P2.3/TA1/A3/VREF−/VeREF−/OA1I1/OA1O
P3.7/A7/OA1I2
P3.6/A6/OA0I2
P3.5/UCA0RXD/UCA0SOMI
P3.4/UCA0TXD/UCA0SIMO
AVCC
AVSS
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK/UCA0STE
P4.0/TB0
P4.1/TB1
P4.2/TB2
P4.3/TB0/A12/OA0O
P4.4/TB1/A13/OA1O
P4.5/TB2/A14/OA0I3
P4.6/TBOUTH/A15/OA1I3
P4.7/TBCLK
MSP430F22x2 MSP430F22x4
www.ti.com
MSP430F22x4 Device Pinout, RHA Package
SLAS504G –JULY 2006–REVISED AUGUST 2012
Copyright © 2006–2012, Texas Instruments Incorporated 5
A1 A2 A4A3 A5 A6 A7
TOP VIEW
B1 B2 B4B3 B5 B6 B7
C1 C2 C4C3 C5 C6 C7
D1 D2 D4D3 D5 D6 D7
E1 E2 E4E3 E5 E6 E7
F1 F2 F4F3 F5 F6 F7
G1 G2 G4G3 G5 G6 G7
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
MSP430F22x4, MSP430F22x2 Device Pinout, YFF Package
www.ti.com
Package Dimensions
The package dimensions for this YFF package are shown in Table 2. See the package drawing at the end of this data sheet for more details.
Table 2. YFF Package Dimensions
PACKAGED DEVICES D E
MSP430F22x2 MSP430F22x4
3.33 ± 0.03 mm 3.49 ± 0.03 mm
6 Copyright © 2006–2012, Texas Instruments Incorporated
Basic Clock
System+
RAM
1kB 512B 512B
Brownout
Protection
RST/NMI
VCC VSS
MCLK
SMCLK
Watchdog
WDT+
15/16−Bit
Timer_A3
3 CC
Registers
16MHz
CPU
incl. 16
Registers
Emulation
(2BP)
XOUT
JTAG
Interface
Flash
32kB 16kB
8kB
ACLK
XIN
MDB
MAB
Spy−Bi Wire
Timer_B3
3 CC
Registers,
Shadow
Reg
USCI_A0:
UART/LIN,
IrDA, SPI
USCI_B0:
SPI, I2C
OA0, OA1
2 Op Amps
ADC10
10−Bit
12 Channels, Autoscan,
DTC
Ports P1/P2
2x8 I/O
Interrupt
capability,
pull−up/down
resistors
Ports P3/P4
2x8 I/O
pull−up/down
resistors
P1.x/P2.x
2x8
P3.x/P4.x
2x8
Basic Clock
System+
RAM
1kB 512B 512B
Brownout
Protection
RST/NMI
VCC VSS
MCLK
SMCLK
Watchdog
WDT+
15/16−Bit
Timer_A3
3 CC
Registers
16MHz
CPU
incl. 16
Registers
Emulation
(2BP)
XOUT
JTAG
Interface
Flash
32kB 16kB
8kB
ACLK
XIN
MDB
MAB
Spy−Bi Wire
Timer_B3
3 CC
Registers,
Shadow
Reg
USCI_A0:
UART/LIN,
IrDA, SPI
USCI_B0:
SPI, I2C
ADC10
10−Bit
12 Channels, Autoscan,
DTC
Ports P1/P2
2x8 I/O
Interrupt
capability,
pull−up/down
resistors
Ports P3/P4
2x8 I/O
pull−up/down
resistors
P1.x/P2.x
2x8
P3.x/P4.x
2x8
MSP430F22x2 MSP430F22x4
www.ti.com
MSP430F22x2 Functional Block Diagram
SLAS504G –JULY 2006–REVISED AUGUST 2012
MSP430F22x4 Functional Block Diagram
Copyright © 2006–2012, Texas Instruments Incorporated 7
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 3. Terminal Functions, MSP430F22x2
TERMINAL
NAME
P1.0/TACLK/ADC10CLK F2 31 29 I/O Timer_A, clock signal TACLK input
P1.1/TA0 G2 32 30 I/O Timer_A, capture: CCI0A input, compare: OUT0 output
P1.2/TA1 E2 33 31 I/O
P1.3/TA2 G1 34 32 I/O
P1.4/SMCLK/TCK F1 35 33 I/O SMCLK signal output
P1.5/TA0/TMS E1 36 34 I/O Timer_A, compare: OUT0 output
P1.6/TA1/TDI/TCLK E3 37 35 I/O Timer_A, compare: OUT1 output
REF-
REF+
(1)
/ V
/ V
eREF-
eREF+
P1.7/TA2/TDO/TDI
P2.0/ACLK/A0 A4 8 6 I/O ACLK output
P2.1/TAINCLK/SMCLK/A1 B4 9 7 I/O
P2.2/TA0/A2 A5 10 8 I/O Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output
P2.3/TA1/A3/V
P2.4/TA2/A4/V
P2.5/R
OSC
XIN/P2.6 A2 6 3 I/O
YFF DA RHA
NO. I/O DESCRIPTION
General-purpose digital I/O pin
ADC10, conversion clock General-purpose digital I/O pin
BSL transmit General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: OUT1 output General-purpose digital I/O pin Timer_A, capture: CCI2A input, compare: OUT2 output General-purpose digital I/O pin
Test Clock input for device programming and test General-purpose digital I/O pin
Test Mode Select input for device programming and test General-purpose digital I/O pin
Test Data Input or Test Clock Input for programming and test General-purpose digital I/O pin
D2 38 36 I/O Timer_A, compare: OUT2 output
Test Data Output or Test Data Input for programming and test General-purpose digital I/O pin
ADC10, analog input A0 General-purpose digital I/O pin Timer_A, clock signal at INCLK SMCLK signal output ADC10, analog input A1 General-purpose digital I/O pin
ADC10, analog input A2 General-purpose digital I/O pin
F3 29 27 I/O
G3 30 28 I/O
C2 3 40 I/O
Timer_A, capture CCI1B input, compare: OUT1 output ADC10, analog input A3 Negative reference voltage input General-purpose digital I/O pin Timer_A, compare: OUT2 output ADC10, analog input A4 Positive reference voltage output or input General-purpose digital I/O pin Input for external DCO resistor to define DCO frequency Input terminal of crystal oscillator General-purpose digital I/O pin
www.ti.com
(1) TDO or TDI is selected via JTAG instruction. 8 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 3. Terminal Functions, MSP430F22x2 (continued)
TERMINAL
NAME
XOUT/P2.7 A1 5 2 I/O
P3.0/UCB0STE/UCA0CLK/ A5
P3.1/UCB0SIMO/ UCB0SDA
P3.2/UCB0SOMI/UCB0SCL A7 13 11 I/O USCI_B0 SPI mode: slave out/master in
P3.3/UCB0CLK/UCA0STE B6 14 12 I/O USCI_B0 clock input/output
P3.4/UCA0TXD/ UCA0SIMO
P3.5/UCA0RXD/ UCA0SOMI
P3.6/A6 F4 27 25 I/O
P3.7/A7 G4 28 26 I/O
P4.0/TB0 D6 17 15 I/O
P4.1/TB1 D7 18 16 I/O
P4.2/TB2 E6 19 17 I/O
P4.3/TB0/A12 E7 20 18 I/O Timer_B, capture: CCI0B input, compare: OUT0 output
P4.4/TB1/A13 F7 21 19 I/O Timer_B, capture: CCI1B input, compare: OUT1 output
P4.5/TB2/A14 F6 22 20 I/O Timer_B, compare: OUT2 output
P4.6/TBOUTH/A15 G7 23 21 I/O Timer_B, switch all TB0 to TB3 outputs to high impedance
YFF DA RHA
NO. I/O DESCRIPTION
Output terminal of crystal oscillator General-purpose digital I/O pin General-purpose digital I/O pin
B5 11 9 I/O
A6 12 10 I/O USCI_B0 SPI mode: slave in/master out
G6 25 23 I/O USCI_A0 UART mode: transmit data output
G5 26 24 I/O USCI_A0 UART mode: receive data input
USCI_B0 slave transmit enable USCI_A0 clock input/output ADC10, analog input A5 General-purpose digital I/O pin
USCI_B0 I2C mode: SDA I2C data General-purpose digital I/O pin
USCI_B0 I2C mode: SCL I2C clock General-purpose digital I/O pin
USCI_A0 slave transmit enable General-purpose digital I/O pin
USCI_A0 SPI mode: slave in/master out General-purpose digital I/O pin
USCI_A0 SPI mode: slave out/master in General-purpose digital I/O pin ADC10 analog input A6 General-purpose digital I/O pin ADC10 analog input A7 General-purpose digital I/O pin Timer_B, capture: CCI0A input, compare: OUT0 output General-purpose digital I/O pin Timer_B, capture: CCI1A input, compare: OUT1 output General-purpose digital I/O pin Timer_B, capture: CCI2A input, compare: OUT2 output General-purpose digital I/O pin
ADC10 analog input A12 General-purpose digital I/O pin
ADC10 analog input A13 General-purpose digital I/O pin
ADC10 analog input A14 General-purpose digital I/O pin
ADC10 analog input A15
(2)
(2) If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to
this pad after reset.
Copyright © 2006–2012, Texas Instruments Incorporated 9
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 3. Terminal Functions, MSP430F22x2 (continued)
TERMINAL
NAME
P4.7/TBCLK F5 24 22 I/O
RST/NMI/SBWTDIO B3 7 5 I
TEST/SBWTCK D1 1 37 I
DV
CC
AV
CC
DV
SS
AV
SS
QFN Pad NA NA Pad NA QFN package pad; connection to DVSSrecommended.
YFF DA RHA
E4, E5
NO. I/O DESCRIPTION
General-purpose digital I/O pin Timer_B, clock signal TBCLK input Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test Selects test mode for JTAG pins on Port 1. The device protection fuse is
connected to TEST. Spy-Bi-Wire test clock input during programming and test
C1, D3, D4,
C6, C7, 16 14 Analog supply voltage
D5
A3, B1, B2, 4 1, 4 Digital ground reference C3,
C4
B7,
C5
2 38, 39 Digital supply voltage
15 13 Analog ground reference
www.ti.com
10 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 4. Terminal Functions, MSP430F22x4
TERMINAL
NAME
P1.0/TACLK/ADC10CLK F2 31 29 I/O Timer_A, clock signal TACLK input
P1.1/TA0 G2 32 30 I/O Timer_A, capture: CCI0A input, compare: OUT0 output
P1.2/TA1 E2 33 31 I/O
P1.3/TA2 G1 34 32 I/O
P1.4/SMCLK/TCK F1 35 33 I/O SMCLK signal output
P1.5/TA0/TMS E1 36 34 I/O Timer_A, compare: OUT0 output
P1.6/TA1/TDI/TCLK E3 37 35 I/O Timer_A, compare: OUT1 output
P1.7/TA2/TDO/TDI
P2.0/ACLK/A0/OA0I0 A4 8 6 I/O
P2.1/TAINCLK/SMCLK/ A1/OA0O
P2.2/TA0/A2/OA0I1 A5 10 8 I/O
P2.3/TA1/A3/ V OA1I1/OA1O
(1)
REF-/VeREF-
YFF DA RHA
/
NO. I/O DESCRIPTION
General-purpose digital I/O pin
ADC10, conversion clock General-purpose digital I/O pin
BSL transmit General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: OUT1 output General-purpose digital I/O pin Timer_A, capture: CCI2A input, compare: OUT2 output General-purpose digital I/O pin
Test Clock input for device programming and test General-purpose digital I/O pin
Test Mode Select input for device programming and test General-purpose digital I/O pin
Test Data Input or Test Clock Input for programming and test General-purpose digital I/O pin
D2 38 36 I/O Timer_A, compare: OUT2 output
Test Data Output or Test Data Input for programming and test General-purpose digital I/O pin ACLK output ADC10, analog input A0 OA0, analog input IO General-purpose digital I/O pin Timer_A, clock signal at INCLK
B4 9 7 I/O SMCLK signal output
ADC10, analog input A1 OA0, analog output General-purpose digital I/O pin Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output ADC10, analog input A2 OA0, analog input I1 General-purpose digital I/O pin Timer_A, capture CCI1B input, compare: OUT1 output
F3 29 27 I/O
ADC10, analog input A3 Negative reference voltage input OA1, analog input I1 OA1, analog output
(1) TDO or TDI is selected via JTAG instruction.
Copyright © 2006–2012, Texas Instruments Incorporated 11
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 4. Terminal Functions, MSP430F22x4 (continued)
TERMINAL
NAME
P2.4/TA2/A4/ V
REF+/VeREF+
P2.5/R
XIN/P2.6 A2 6 3 I/O
XOUT/P2.7 A1 5 2 I/O
P3.0/UCB0STE/UCA0CLK/ A5
P3.1/UCB0SIMO/ UCB0SDA
P3.2/UCB0SOMI/UCB0SCL A7 13 11 I/O USCI_B0 SPI mode: slave out/master in
P3.3/UCB0CLK/UCA0STE B6 14 12 I/O USCI_B0 clock input/output
P3.4/UCA0TXD/ UCA0SIMO
P3.5/UCA0RXD/ UCA0SOMI
P3.6/A6/OA0I2 F4 27 25 I/O ADC10 analog input A6
P3.7/A7/OA1I2 G4 28 26 I/O ADC10 analog input A7
P4.0/TB0 D6 17 15 I/O
P4.1/TB1 D7 18 16 I/O
P4.2/TB2 E6 19 17 I/O
/OA1I0
OSC
YFF DA RHA
NO. I/O DESCRIPTION
General-purpose digital I/O pin Timer_A, compare: OUT2 output
G3 30 28 I/O ADC10, analog input A4
Positive reference voltage output or input OA1, analog input I/O
C2 3 40 I/O
B5 11 9 I/O
A6 12 10 I/O USCI_B0 SPI mode: slave in/master out
G6 25 23 I/O USCI_A0 UART mode: transmit data output
G5 26 24 I/O USCI_A0 UART mode: receive data input
General-purpose digital I/O pin Input for external DCO resistor to define DCO frequency Input terminal of crystal oscillator General-purpose digital I/O pin Output terminal of crystal oscillator General-purpose digital I/O pin General-purpose digital I/O pin USCI_B0 slave transmit enable USCI_A0 clock input/output ADC10, analog input A5 General-purpose digital I/O pin
USCI_B0 I2C mode: SDA I2C data General-purpose digital I/O pin
USCI_B0 I2C mode: SCL I2C clock General-purpose digital I/O pin
USCI_A0 slave transmit enable General-purpose digital I/O pin
USCI_A0 SPI mode: slave in/master out General-purpose digital I/O pin
USCI_A0 SPI mode: slave out/master in General-purpose digital I/O pin
OA0 analog input I2 General-purpose digital I/O pin
OA1 analog input I2 General-purpose digital I/O pin Timer_B, capture: CCI0A input, compare: OUT0 output General-purpose digital I/O pin Timer_B, capture: CCI1A input, compare: OUT1 output General-purpose digital I/O pin Timer_B, capture: CCI2A input, compare: OUT2 output
(2)
www.ti.com
(2) If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to
this pad after reset.
12 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 4. Terminal Functions, MSP430F22x4 (continued)
TERMINAL
NAME
P4.3/TB0/A12/OA0O E7 20 18 I/O
P4.4/TB1/A13/OA1O F7 21 19 I/O
P4.5/TB2/A14/OA0I3 F6 22 20 I/O
P4.6/TBOUTH/A15/OA1I3 G7 23 21 I/O
P4.7/TBCLK F5 24 22 I/O
RST/NMI/SBWTDIO B3 7 5 I
TEST/SBWTCK D1 1 37 I
DV
CC
AV
CC
DV
SS
AV
SS
QFN Pad NA NA Pad NA QFN package pad; connection to DVSSrecommended.
YFF DA RHA
E4, E5
NO. I/O DESCRIPTION
General-purpose digital I/O pin Timer_B, capture: CCI0B input, compare: OUT0 output ADC10 analog input A12 OA0 analog output General-purpose digital I/O pin Timer_B, capture: CCI1B input, compare: OUT1 output ADC10 analog input A13 OA1 analog output General-purpose digital I/O pin Timer_B, compare: OUT2 output ADC10 analog input A14 OA0 analog input I3 General-purpose digital I/O pin Timer_B, switch all TB0 to TB3 outputs to high impedance ADC10 analog input A15 OA1 analog input I3 General-purpose digital I/O pin Timer_B, clock signal TBCLK input Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test Selects test mode for JTAG pins on Port 1. The device protection fuse is
connected to TEST. Spy-Bi-Wire test clock input during programming and test
C1, D3, D4,
C6, C7, 16 14 Analog supply voltage
D5
A3, B1, B2, 4 1, 4 Digital ground reference C3,
C4
B7,
C5
2 38, 39 Digital supply voltage
15 13 Analog ground reference
Copyright © 2006–2012, Texas Instruments Incorporated 13
General-PurposeRegister
ProgramCounter
StackPointer
StatusRegister
ConstantGenerator
General-PurposeRegister
General-PurposeRegister
General-PurposeRegister
PC/R0
SP/R1
SR/CG1/R2
CG2/R3
R4
R5
R12
R13
General-PurposeRegister
General-PurposeRegister
R6
R7
General-PurposeRegister
General-PurposeRegister
R8
R9
General-PurposeRegister
General-PurposeRegister
R10
R11
General-PurposeRegister
General-PurposeRegister
R14
R15
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
SHORT-FORM DESCRIPTION
CPU
The MSP430™ CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to­register operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses and can be handled with all instructions.
Instruction Set
The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data.
Table 5 shows examples of the three types of
instruction formats; Table 6 shows the address modes.
www.ti.com
Dual operands, source-destination ADD R4,R5 R4 + R5 R5 Single operands, destination only CALL R8 PC (TOS), R8 PC Relative jump, unconditional/conditional JNE Jump-on-equal bit = 0
Register MOV Rs,Rd MOV R10,R11 R10 R11 Indexed MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) M(6+R6) Symbolic (PC relative) MOV EDE,TONI M(EDE) M(TONI) Absolute MOV &MEM,&TCDAT M(MEM) M(TCDAT) Indirect MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) M(Tab+R6)
Indirect autoincrement MOV @Rn+,Rm MOV @R10+,R11 Immediate MOV #X,TONI MOV #45,TONI #45 M(TONI)
(1) S = source (2) D = destination
14 Copyright © 2006–2012, Texas Instruments Incorporated
INSTRUCTION FORMAT EXAMPLE OPERATION
ADDRESS MODE S
Table 5. Instruction Word Formats
Table 6. Address Mode Descriptions
(1)
(2)
D
SYNTAX EXAMPLE OPERATION
M(R10) R11
R10 + 2 R10
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Operating Modes
The MSP430 microcontrollers have one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
Active mode (AM) – All clocks are active.
Low-power mode 0 (LPM0) – CPU is disabled. – ACLK and SMCLK remain active. MCLK is disabled.
Low-power mode 1 (LPM1) – CPU is disabled ACLK and SMCLK remain active. MCLK is disabled. – DCO dc-generator is disabled if DCO not used in active mode.
Low-power mode 2 (LPM2) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator remains enabled. – ACLK remains active.
Low-power mode 3 (LPM3) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator is disabled. – ACLK remains active.
Low-power mode 4 (LPM4) – CPU is disabled. – ACLK is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator is disabled. – Crystal oscillator is stopped.
Copyright © 2006–2012, Texas Instruments Incorporated 15
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Interrupt Vector Addresses
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.
If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, if flash is not programmed), the CPU goes into LPM4 immediately after power up.
Table 7. Interrupt Vector Addresses
INTERRUPT SOURCE INTERRUPT FLAG WORD ADDRESS PRIORITY
Power-up
External reset
Watchdog Reset 0FFFEh 31, highest Flash key violation PC out-of-range
(1)
PORIFG
RSTIFG
WDTIFG
(2)
KEYV
NMI NMIIFG (non)-maskable,
Oscillator fault OFIFG (non)-maskable, 0FFFCh 30
Flash memory access violation ACCVIFG
Timer_B3 TBCCR0 CCIFG Timer_B3 maskable 0FFF8h 28
TBCCR1 and TBCCR2 CCIFGs,
TBIFG
(2)(3)
(4)
(2)(4)
Watchdog Timer WDTIFG maskable 0FFF4h 26
Timer_A3 TACCR0 CCIFG (see Note 3) maskable 0FFF2h 25
TACCR1 CCIFG
Timer_A3 TACCR2 CCIFG maskable 0FFF0h 24
USCI_A0/USCI_B0 Receive UCA0RXIFG, UCB0RXIFG USCI_A0/USCI_B0 Transmit UCA0TXIFG, UCB0TXIFG
ADC10 ADC10IFG
I/O Port P2
(eight flags)
I/O Port P1
(eight flags)
(5) (6)
P2IFG.0 to P2IFG.7
P1IFG.0 to P1IFG.7
TAIFG
(2)(4)
(2)
(2)
(4)
(2)(4)
(2)(4)
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from
within unused address range. (2) Multiple source flags (3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event. (4) Interrupt flags are located in the module. (5) This location is used as bootstrap loader security key (BSLSKEY).
A 0AA55h at this location disables the BSL completely.
A zero (0h) disables the erasure of the flash if an invalid password is supplied. (6) The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if
necessary.
SYSTEM
INTERRUPT
(non)-maskable
maskable 0FFFAh 29
0FFF6h 27
maskable 0FFEEh 23 maskable 0FFECh 22 maskable 0FFEAh 21
0FFE8h 20
maskable 0FFE6h 19
maskable 0FFE4h 18
0FFE2h 17 0FFE0h 16
0FFDEh 15
0FFDCh to 0FFC0h 14 to 0, lowest
16 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Special Function Registers
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.
Legend
rw Bit can be read and written. rw-0, 1 Bit can be read and written. It is Reset or Set by PUC. rw-(0), (1) Bit can be read and written. It is Reset or Set by POR.
SFR bit is not present in device.
Table 8. Interrupt Enable 1
Address 7 6 5 4 3 2 1 0
00h ACCVIE NMIIE OFIE WDTIE
rw-0 rw-0 rw-0 rw-0
WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval
OFIE Oscillator fault interrupt enable NMIIE (Non)maskable interrupt enable ACCVIE Flash access violation interrupt enable
Address 7 6 5 4 3 2 1 0
01h UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE
timer mode.
Table 9. Interrupt Enable 2
rw-0 rw-0 rw-0 rw-0
UCA0RXIE USCI_A0 receive-interrupt enable UCA0TXIE USCI_A0 transmit-interrupt enable UCB0RXIE USCI_B0 receive-interrupt enable UCB0TXIE USCI_B0 transmit-interrupt enable
Table 10. Interrupt Flag Register 1
Address 7 6 5 4 3 2 1 0
02h NMIIFG RSTIFG PORIFG OFIFG WDTIFG
rw-0 rw-(0) rw-(1) rw-1 rw-(0)
WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation.
Reset on VCCpower-up or a reset condition at RST/NMI pin in reset mode. OFIFG Flag set on oscillator fault RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCCpower up. PORIFG Power-on reset interrupt flag. Set on VCCpower up. NMIIFG Set via RST/NMI pin
Table 11. Interrupt Flag Register 2
Address 7 6 5 4 3 2 1 0
03h UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG
rw-1 rw-0 rw-1 rw-0
UCA0RXIFG USCI_A0 receive-interrupt flag UCA0TXIFG USCI_A0 transmit-interrupt flag UCB0RXIFG USCI_B0 receive-interrupt flag UCB0TXIFG USCI_B0 transmit-interrupt flag
Copyright © 2006–2012, Texas Instruments Incorporated 17
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Memory Organization
Table 12. Memory Organization
MSP430F223x MSP430F225x MSP430F227x
Memory Size 8KB Flash 16KB Flash 32KB Flash Main: interrupt vector Flash 0FFFFh-0FFC0h 0FFFFh-0FFC0h 0FFFFh-0FFC0h Main: code memory Flash 0FFFFh-0E000h 0FFFFh-0C000h 0FFFFh-08000h
Information memory
Boot memory
RAM Size
Peripherals 8-bit 0FFh-010h 0FFh-010h 0FFh-010h
Size 256 Byte 256 Byte 256 Byte
Flash 010FFh-01000h 010FFh-01000h 010FFh-01000h
Size 1KB 1KB 1KB
ROM 0FFFh-0C00h 0FFFh-0C00h 0FFFh-0C00h
512 Byte 512 Byte 1KB
03FFh-0200h 03FFh-0200h 05FFh-0200h
16-bit 01FFh-0100h 01FFh-0100h 01FFh-0100h
8-bit SFR 0Fh-00h 0Fh-00h 0Fh-00h
Bootstrap Loader (BSL)
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User’s Guide (SLAU319).
Table 13. BSL Function Pins
BSL FUNCTION DA PACKAGE PINS RHA PACKAGE PINS YFF PACKAGE PINS
Data transmit 32 - P1.1 30 - P1.1 G3 - P1.1
Data receive 10 - P2.2 8 - P2.2 A5 - P2.2
Flash Memory
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size.
Segments 0 to n may be erased in one step, or each segment may be individually erased.
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory.
Segment A contains calibration data. After reset, segment A is protected against programming and erasing. It can be unlocked, but care should be taken not to erase this segment if the device-specific calibration data is required.
18 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).
Oscillator and System Clock
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator, an internal digitally-controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals:
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or the internal very­low-power LF oscillator.
Main clock (MCLK), the system clock used by the CPU.
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
Table 14. DCO Calibration Data
(Provided From Factory in Flash Information Memory Segment A)
DCO FREQUENCY CALIBRATION REGISTER SIZE ADDRESS
1 MHz
8 MHz
12 MHz
16 MHz
CALBC1_1MHZ byte 010FFh
CALDCO_1MHZ byte 010FEh
CALBC1_8MHZ byte 010FDh
CALDCO_8MHZ byte 010FCh
CALBC1_12MHZ byte 010FBh
CALDCO_12MHZ byte 010FAh
CALBC1_16MHZ byte 010F9h
CALDCO_16MHZ byte 010F8h
Brownout
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off.
Digital I/O
There are four 8-bit I/O ports implemented—ports P1, P2, P3, and P4:
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt condition is possible.
Edge-selectable interrupt input capability for all eight bits of port P1 and P2.
Read/write access to port-control registers is supported by all instructions.
Each I/O has an individually programmable pullup/pulldown resistor.
Because there are only three I/O pins implemented from port P2, bits [5:1] of all port P2 registers read as 0, and write data is ignored.
Watchdog Timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals.
Copyright © 2006–2012, Texas Instruments Incorporated 19
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Table 15. Timer_A3 Signal Connections
INPUT PIN NUMBER DEVICE MODULE MODULE OUTPUT PIN NUMBER
DA RHA YFF DA RHA YFF
31 - P1.0 29 - P1.0 F2 - P1.0 TACLK TACLK Timer NA
9 - P2.1 7 - P2.1 B4 - P2.1 TAINCLK INCLK 32 - P1.1 30 - P1.1 G2 - P1.1 TA0 CCI0A CCR0 TA0 32 - P1.1 30 - P1.1 G2 - P1.1 10 - P2.2 8 - P2.2 A5 - P2.2 TA0 CCI0B 10 - P2.2 8 - P2.2 A5 - P2.2
33 - P1.2 31 - P1.2 E2 - P1.2 TA1 CCI1A CCR1 TA1 33 - P1.2 31 - P1.2 E2 - P1.2 29 - P2.3 27 - P2.3 F3 - P2.3 TA1 CCI1B 29 - P2.3 27 - P2.3 F3 - P2.3
34 - P1.3 32 - P1.3 G1 - P1.3 TA2 CCI2A CCR2 TA2 34 - P1.3 32 - P1.3 G1 - P1.3
INPUT INPUT OUTPUT
SIGNAL NAME SIGNAL
ACLK ACLK
SMCLK SMCLK
V
SS
V
CC
V
SS
V
CC
ACLK
(internal)
V
SS
V
CC
GND 36 - P1.5 34 - P1.5 E1 - P1.5
V
CC
GND 37 - P1.6 35 - P1.6 E3 - P1.6
V
CC
CCI2B 30 - P2.4 28 - P2.4 G3 - P2.4
GND 38 - P1.7 36 - P1.7 D2 - P1.7
V
CC
MODULE
BLOCK
20 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Timer_B3
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Table 16. Timer_B3 Signal Connections
INPUT PIN NUMBER DEVICE MODULE MODULE OUTPUT PIN NUMBER
DA RHA YFF DA RHA YFF
24 - P4.7 22 - P4.7 F5 - P4.7 TBCLK TBCLK Timer NA
24 - P4.7 22 - P4.7 F5 - P4.7 TBCLK INCLK 17 - P4.0 15 - P4.0 D6 - P4.0 TB0 CCI0A CCR0 TB0 17 - P4.0 15 - P4.0 D6 - P4.0 20 - P4.3 18 - P4.3 E7 - P4.3 TB0 CCI0B 20 - P4.3 18 - P4.3 E7 - P4.3
18 - P4.1 16 - P4.1 D7 - P4.1 TB1 CCI1A CCR1 TB1 18 - P4.1 16 - P4.1 D7 - P4.1 21 - P4.4 19 - P4.4 F7 - P4.4 TB1 CCI1B 21 - P4.4 19 - P4.4 F7 - P4.4
19 - P4.2 17 - P4.2 E6 - P4.2 TB2 CCI2A CCR2 TB2 19 - P4.2 17 - P4.2 E6 - P4.2
INPUT INPUT OUTPUT
SIGNAL NAME SIGNAL
ACLK ACLK
SMCLK SMCLK
V
SS
V
CC
V
SS
V
CC
ACLK
(internal)
V
SS
V
CC
GND
V
CC
GND
V
CC
CCI2B 22 - P4.5 20 - P4.5 F6 - P4.5
GND
V
CC
MODULE
BLOCK
Universal Serial Communications Interface (USCI)
The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA. USCI_B0 provides support for SPI (3 or 4 pin) and I2C.
ADC10
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion result handling allowing ADC samples to be converted and stored without any CPU intervention.
Copyright © 2006–2012, Texas Instruments Incorporated 21
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Operational Amplifier (OA) (MSP430F22x4 only)
The MSP430F22x4 has two configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.
Table 17. OA0 Signal Connections
ANALOG INPUT PIN NUMBER
DA RHA YFF
8 - A0 6 - A0 B4 - A0 OA0I0 OAxI0 10 - A2 8 - A2 B5 - A2 OA0I1 OA0I1 10 - A2 8 - A2 B5 - A2 OA0I1 OAxI1 27 - A6 25 - A6 F4 - A6 OA0I2 OAxIA
22 - A14 20 - A14 F6 - A14 OA0I3 OAxIB
Table 18. OA1 Signal Connections
ANALOG INPUT PIN NUMBER
DA RHA YFF
30 - A4 28 - A4 G3 - A4 OA1I0 OAxI0 10 - A2 8 - A2 B5 - A2 OA0I1 OA0I1 29 - A3 27 - A3 F3 - A3 OA1I1 OAxI1 28 - A7 26 - A7 G4 - A7 OA1I2 OAxIA
23 - A15 21 - A15 G7 - A15 OA1I3 OAxIB
DEVICE INPUT SIGNAL MODULE INPUT NAME
DEVICE INPUT SIGNAL MODULE INPUT NAME
22 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Peripheral File Map
Table 19. Peripherals With Word Access
MODULE REGISTER NAME SHORT NAME ADDRESS
ADC10 ADC data transfer start address ADC10SA 1BCh
ADC memory ADC10MEM 1B4h ADC control register 1 ADC10CTL1 1B2h ADC control register 0 ADC10CTL0 1B0h ADC analog enable 0 ADC10AE0 04Ah ADC analog enable 1 ADC10AE1 04Bh ADC data transfer control register 1 ADC10DTC1 049h ADC data transfer control register 0 ADC10DTC0 048h
Timer_B Capture/compare register TBCCR2 0196h
Capture/compare register TBCCR1 0194h Capture/compare register TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control TBCCTL2 0186h Capture/compare control TBCCTL1 0184h Capture/compare control TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh
Timer_A Capture/compare register TACCR2 0176h
Capture/compare register TACCR1 0174h Capture/compare register TACCR0 0172h Timer_A register TAR 0170h Capture/compare control TACCTL2 0166h Capture/compare control TACCTL1 0164h Capture/compare control TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh
Flash Memory Flash control 3 FCTL3 012Ch
Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h
Watchdog Timer+ Watchdog/timer control WDTCTL 0120h
OFFSET
Copyright © 2006–2012, Texas Instruments Incorporated 23
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Table 20. Peripherals With Byte Access
MODULE REGISTER NAME SHORT NAME ADDRESS
OA1 (MSP430F22x4 only) Operational Amplifier 1 control register 1 OA1CTL1 0C3h
Operational Amplifier 1 control register 1 OA1CTL0 0C2h
OA0 (MSP430F22x4 only) Operational Amplifier 0 control register 1 OA0CTL1 0C1h
Operational Amplifier 0 control register 1 OA0CTL0 0C0h
USCI_B0 USCI_B0 transmit buffer UCB0TXBUF 06Fh
USCI_B0 receive buffer UCB0RXBUF 06Eh USCI_B0 status UCB0STAT 06Dh USCI_B0 bit rate control 1 UCB0BR1 06Bh USCI_B0 bit rate control 0 UCB0BR0 06Ah USCI_B0 control 1 UCB0CTL1 069h USCI_B0 control 0 UCB0CTL0 068h USCI_B0 I2C slave address UCB0SA 011Ah USCI_B0 I2C own address UCB0OA 0118h
USCI_A0 USCI_A0 transmit buffer UCA0TXBUF 067h
USCI_A0 receive buffer UCA0RXBUF 066h USCI_A0 status UCA0STAT 065h USCI_A0 modulation control UCA0MCTL 064h USCI_A0 baud rate control 1 UCA0BR1 063h USCI_A0 baud rate control 0 UCA0BR0 062h USCI_A0 control 1 UCA0CTL1 061h USCI_A0 control 0 UCA0CTL0 060h USCI_A0 IrDA receive control UCA0IRRCTL 05Fh USCI_A0 IrDA transmit control UCA0IRTCTL 05Eh USCI_A0 auto baud rate control UCA0ABCTL 05Dh
Basic Clock System+ Basic clock system control 3 BCSCTL3 053h
Basic clock system control 2 BCSCTL2 058h Basic clock system control 1 BCSCTL1 057h DCO clock frequency control DCOCTL 056h
Port P4 Port P4 resistor enable P4REN 011h
Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch
Port P3 Port P3 resistor enable P3REN 010h
Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h
Port P2 Port P2 resistor enable P2REN 02Fh
Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h
OFFSET
24 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 20. Peripherals With Byte Access (continued)
MODULE REGISTER NAME SHORT NAME ADDRESS
Port P1 Port P1 resistor enable P1REN 027h
Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h
Special Function SFR interrupt flag 2 IFG2 003h
SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h
OFFSET
Copyright © 2006–2012, Texas Instruments Incorporated 25
4.15 MHz
12 MHz
16 MHz
1.8 V 2.2 V 2.7 V 3.3 V 3.6 V
Supply Voltage −V
System Frequency −MHz
Supply voltage range, during flash memory programming
Supply voltage range, during program execution
Legend:
7.5 MHz
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Absolute Maximum Ratings
Voltage applied at VCCto V Voltage applied to any pin
SS
(2)
(1)
-0.3 V to 4.1 V
-0.3 V to VCC+ 0.3 V
www.ti.com
Diode current at any device terminal ±2 mA
Storage temperature, T
stg
(3)
Unprogrammed device -55°C to 150°C Programmed device -55°C to 150°C
(1) Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is
applied to the TEST pin when blowing the JTAG fuse.
(3) Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak
reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
Recommended Operating Conditions
(1)(2)
MIN NOM MAX UNIT
V
CC
V
SS
T
A
f
SYSTEM
During program
Supply voltage AVCC= DVCC= V
CC
execution During program/erase
flash memory
Supply voltage AVSS= DVSS= V
Operating free-air temperature °C
Processor frequency (maximum MCLK frequency) (see Figure 1)
VCC= 1.8 V, Duty cycle = 50% ±10% dc 4.15
(1)(2)
VCC= 2.7 V, Duty cycle = 50% ±10% dc 12 MHz VCC≥ 3.3 V, Duty cycle = 50% ±10% dc 16
SS
I version -40 85 T version -40 105
1.8 3.6 V
2.2 3.6 V 0 V
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the
specified maximum frequency.
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V
of 2.2 V.
26 Copyright © 2006–2012, Texas Instruments Incorporated
Figure 1. Operating Area
CC
MSP430F22x2 MSP430F22x4
www.ti.com
Active Mode Supply Current (into DVCC+ AVCC) Excluding External Current
SLAS504G –JULY 2006–REVISED AUGUST 2012
(1)(2)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
I
AM,1MHz
I
AM,1MHz
I
AM,4kHz
I
AM,100kHz
PARAMETER TEST CONDITIONS T
f
= f
Active mode (AM) current (1 MHz)
DCO
f
ACLK
Program executes in flash,
= f
MCLK
= 32768 Hz,
BCSCTL1 = CALBC1_1MHZ, µA DCOCTL = CALDCO_1MHZ,
= 1 MHz, 2.2 V 270 390
SMCLK
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0
f
= f
Active mode (AM) current (1 MHz)
DCO
f
ACLK
Program executes in RAM,
= f
MCLK
= 32768 Hz,
BCSCTL1 = CALBC1_1MHZ, µA DCOCTL = CALDCO_1MHZ,
= 1 MHz, 2.2 V 240
SMCLK
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0
f
= f
MCLK
4096 Hz, 85°C f
= 0 Hz,
Active mode (AM) Program executes in flash,
DCO
current (4 kHz) SELMx = 11, SELS = 1,
DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0
SMCLK
= f
= 32768 Hz/8 = -40°C to
ACLK
105°C 18
-40°C to 85°C
105°C 20
-40°C to 85°C
105°C 95
-40°C to 85°C
Active mode (AM) current (100 kHz)
f
= f
MCLK
f
= 0 Hz,
ACLK
Program executes in flash, µA
SMCLK
= f
DCO(0, 0)
100 kHz,
RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1
105°C 105
A
V
CC
MIN TYP MAX UNIT
3 V 390 550
3.3 V 340
2.2 V
3 V
2.2 V
3 V
5 9
µA
6 10
60 85
72 95
(1) All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. (2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance is chosen to closely match the required 9 pF.
Copyright © 2006–2012, Texas Instruments Incorporated 27
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
1.5 2.0 2.5 3.0 3.5 4.0
VCC− Supply Voltage − V
Active Mode Current − mA
f
DCO
= 1 MHz
f
DCO
= 8 MHz
f
DCO
= 12 MHz
f
DCO
= 16 MHz
0.0
1.0
2.0
3.0
4.0
5.0
0.0 4.0 8.0 12.0 16.0
f
DCO
− DCO Frequency − MHz
Active Mode Current − mA
TA= 25 °C
TA= 85 °C
VCC= 2.2 V
VCC= 3 V
TA= 25 °C
TA= 85 °C
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Typical Characteristics - Active-Mode Supply Current (Into DVCC+ AVCC)
ACTIVE-MODE CURRENT
vs ACTIVE-MODE CURRENT
SUPPLY VOLTAGE vs
TA= 25°C DCO FREQUENCY
www.ti.com
Figure 2. Figure 3.
28 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
Low-Power-Mode Supply Currents (Into VCC) Excluding External Current
SLAS504G –JULY 2006–REVISED AUGUST 2012
(1)(2)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
I
LPM0,1MHz
PARAMETER TEST CONDITIONS T
f
= 0 MHz, 2.2 V 75 90
MCLK
f
= f
= 1 MHz,
DCO
= 32768 Hz,
Low-power mode 0 (LPM0) current
(3)
SMCLK
f
ACLK
BCSCTL1 = CALBC1_1MHZ, µA DCOCTL = CALDCO_1MHZ,
A
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0
f
= 0 MHz, 2.2 V 37 48
MCLK
f
I
LPM0,100kHz
Low-power mode 0 f (LPM0) current
(3)
= f
SMCLK
= 0 Hz,
ACLK
RSELx = 0, DCOx = 0,
DCO(0, 0)
100 kHz,
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1
-40°C to 85°C
105°C 31
-40°C to 85°C
105°C 34
I
LPM2
Low-power mode 2 (LPM2) current
(4)
f
= f
MCLK
f
= 1 MHz,
DCO
f
= 32768 Hz,
ACLK
BCSCTL1 = CALBC1_1MHZ, µA
SMCLK
= 0 MHz,
DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0
-40°C 0.7 1.4 25°C 0.7 1.4 85°C 2.4 3.3
105°C 5 10
-40°C 0.9 1.5 25°C 0.9 1.5
I
LPM3,LFXT1
Low-power mode 3 f (LPM3) current
(4)
f
= f
DCO ACLK
CPUOFF = 1, SCG0 = 1,
= f
MCLK
= 32768 Hz,
SMCLK
= 0 MHz,
SCG1 = 1, OSCOFF = 0
85°C 2.6 3.8
105°C 6 12
-40°C 0.4 1 25°C 0.5 1 85°C 1.8 2.9
105°C 4.5 9
-40°C 0.5 1.2 25°C 0.6 1.2
I
LPM3,VLO
Low-power mode 3 current, (LPM3)
(4)
f
= f
DCO
f
ACLK
(VLO), µA
= f
MCLK
from internal LF oscillator
SMCLK
= 0 MHz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0
85°C 2.1 3.3
105°C 5.5 11
-40°C 0.1 0.5 25°C 0.1 0.5 85°C 1.5 3
105°C 4.5 9
I
LPM4
Low-power mode 4 f (LPM4) current
(5)
f
= f
DCO ACLK
CPUOFF = 1, SCG0 = 1, 3 V
= f
MCLK
= 0 Hz, 2.2 V/
SMCLK
= 0 MHz,
SCG1 = 1, OSCOFF = 1
(1) All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. (2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance is chosen to closely match the required 9 pF. (3) Current for brownout and WDT clocked by SMCLK included. (4) Current for brownout and WDT clocked by ACLK included. (5) Current for brownout included.
V
MIN TYP MAX UNIT
CC
3 V 90 120
3 V 41 65
2.2 V
3 V
22 29
25 32
2.2 V
3 V
2.2 V
3 V
µA
µA
µA
Copyright © 2006–2012, Texas Instruments Incorporated 29
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Schmitt-Trigger Inputs (Ports P1, P2, P3, P4, and RST/NMI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
V
Positive-going input threshold voltage 2.2 V 1 1.65 V
IT+
CC
3 V 1.35 2.25
V
Negative-going input threshold voltage 2.2 V 0.55 1.20 V
IT-
3 V 0.75 1.65
V
Input voltage hysteresis (V
hys
R
Pullup/pulldown resistor 3 V 20 35 50 k
Pull
C
Input capacitance VIN= VSSor V
I
IT+
- V
) V
IT-
For pullup: VIN= VSS, For pulldown: VIN= V
CC
CC
2.2 V 0.1 1 3 V 0.3 1
MIN TYP MAX UNIT
0.45 V
CC
0.25 V
CC
Inputs (Ports P1, P2)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
t
External interrupt timing 2.2 V, 3 V 20 ns
(int)
Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag
(1)
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse width t
shorter than t
(int)
.
CC
is met. It may be set even with trigger signals
(int)
MIN TYP MAX UNIT
www.ti.com
0.75 V
CC
0.55 V
CC
5 pF
Leakage Current (Ports P1, P2, P3, and P4)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
I
lkg(Px.y)
PARAMETER TEST CONDITIONS V
High-impedance leakage current
(1) (2)
CC
2.2 V, 3 V ±50 nA
(1) The leakage current is measured with VSSor VCCapplied to the corresponding pin(s), unless otherwise noted. (2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is
disabled.
MIN TYP MAX UNIT
30 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Outputs (Ports P1, P2, P3, and P4)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
V
V
High-level output voltage V
OH
Low-level output voltage V
OL
(1) The maximum total current, I
specified.
(2) The maximum total current, I
specified.
OH(max)
OH(max)
I
OH(max)
I
OH(max)
I
OH(max)
I
OH(max)
I
OL(max)
I
OL(max)
I
OL(max)
I
OL(max)
and I and I
= -1.5 mA = -6 mA = -1.5 mA
= -6 mA = 1.5 mA = 6 mA = 1.5 mA = 6 mA
OL(max)
OL(max)
(1)
(2)
(1)
(2)
(1)
(2)
(1)
(2)
, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop , for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
CC
2.2 V
3 V
2.2 V
3 V
MIN MAX UNIT
VCC- 0.25 V
VCC- 0.6 V
VCC- 0.25 V
VCC- 0.6 V
V
SSVSS
V
SS
V
SSVSS
V
SS
Output Frequency (Ports P1, P2, P3, and P4)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
Px.y
f
Port_CLK
PARAMETER TEST CONDITIONS V
Port output frequency (with load) MHz
Clock output frequency P2.0/ACLK, P1.4/SMCLK, CL= 20 pF
P1.4/SMCLK, CL= 20 pF, RL= 1 kagainst VCC/2
(1)(2)
(2)
CC
2.2 V 10 3 V 12
2.2 V 12 3 V 16
MIN TYP MAX UNIT
CC CC CC CC
+ 0.25
VSS+ 0.6
+ 0.25
VSS+ 0.6
MHz
(1) Alternatively, a resistive divider with two 2-kresistors between VCCand VSSis used as load. The output is connected to the center tap
of the divider.
(2) The output voltage reaches at least 10% and 90% VCCat the specified toggle frequency.
Copyright © 2006–2012, Texas Instruments Incorporated 31
VOH− High-Level Output V oltage − V
−25.0
−20.0
−15.0
−10.0
−5.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5
VCC= 2.2 V P4.5
TA= 25°C
TA= 85°C
OH
I − Typical High-Level Output Current − mA
VOH− High-Level Output V oltage − V
−50.0
−40.0
−30.0
−20.0
−10.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VCC= 3 V P4.5
TA= 25°C
TA= 85°C
OH
I − Typical High-Level Output Current − mA
VOL− Low-Level Output V oltage − V
0.0
5.0
10.0
15.0
20.0
25.0
0.0 0.5 1.0 1.5 2.0 2.5
VCC= 2.2 V P4.5
TA= 25°C
TA= 85°C
OL
I − Typical Low-Level Output Current − mA
VOL− Low-Level Output V oltage − V
0.0
10.0
20.0
30.0
40.0
50.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VCC= 3 V P4.5
TA= 25°C
TA= 85°C
OL
I − Typical Low-Level Output Current − mA
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
TYPICAL LOW-LEVEL OUTPUT CURRENT TYPICAL LOW-LEVEL OUTPUT CURRENT
vs vs
LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE
www.ti.com
Typical Characteristics - Outputs
One output loaded at a time.
Figure 4. Figure 5.
TYPICAL HIGH-LEVEL OUTPUT CURRENT TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs vs
HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE
Figure 6. Figure 7.
32 Copyright © 2006–2012, Texas Instruments Incorporated
0
1
t
d(BOR)
V
CC
V
(B_IT−)
V
hys(B_IT−)
V
CC(star t)
MSP430F22x2 MSP430F22x4
www.ti.com
POR/Brownout Reset (BOR)
(1) (2)
SLAS504G –JULY 2006–REVISED AUGUST 2012
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
V
CC(start)
V
(B_IT-)
V
hys(B_IT-)
t
d(BOR)
t
(reset)
PARAMETER TEST CONDITIONS V
See Figure 8 dVCC/dt 3 V/s V See Figure 8 through Figure 10 dVCC/dt 3 V/s 1.71 V
See Figure 8 dVCC/dt 3 V/s 70 130 210 mV See Figure 8 2000 µs Pulse length needed at RST/NMI pin
to accepted reset internally
CC
3 V 2 µs
(1) The current consumption of the brownout module is already included in the ICCcurrent consumption data. The voltage level V
V
(2) During power up, the CPU begins code execution following a period of t
must not be changed until VCC≥ V
hys(B_IT-)
is 1.8 V.
CC(min)
, where V
after VCC= V
is the minimum supply voltage for the desired operating frequency.
CC(min)
d(BOR)
(B_IT-)
MIN TYP MAX UNIT
0.7 ×
V
(B_IT-)
+ V
hys(B_IT-)
. The default DCO settings
(B_IT-)
+
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage
Copyright © 2006–2012, Texas Instruments Incorporated 33
V
CC
0
0.5
1
1.5
2
V
CC(drop)
t
pw
tpw− Pulse Width − µs
V
CC(drop)
− V
3 V
0.001 1 1000
t
f
t
r
tpw− Pulse Width − µs
tf= t
r
Typical Conditions
VCC= 3 V
V
CC(drop)
V
CC
3 V
t
pw
0
0.5
1
1.5
2
0.001 1 1000
Typical Conditions
1 ns 1 ns
tpw− Pulse Width − µs
V
CC(drop)
− V
tpw− Pulse Width − µs
VCC= 3 V
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Typical Characteristics - POR/Brownout Reset (BOR)
Figure 9. V
CC(drop)
www.ti.com
Level With a Square Voltage Drop to Generate a POR/Brownout Signal
Figure 10. V
34 Copyright © 2006–2012, Texas Instruments Incorporated
CC(drop)
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
DCO(RSEL,DCO) DCO(RSEL,DCO+1)
average
DCO(RSEL,DCO) DCO(RSEL,DCO+1)
32 × f × f
f =
MOD × f + (32 – MOD) × f
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Main DCO Characteristics
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15.
DCO control bits DCOx have a step size as defined by parameter S
Modulation control bits MODx select how often f cycles. The frequency f
DCO(RSEL,DCO)
is used for the remaining cycles. The frequency is an average equal to:
DCO(RSEL,DCO+1)
.
DCO
is used within the period of 32 DCOCLK
DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
V
CC
f
DCO(0,0)
f
DCO(0,3)
f
DCO(1,3)
f
DCO(2,3)
f
DCO(3,3)
f
DCO(4,3)
f
DCO(5,3)
f
DCO(6,3)
f
DCO(7,3)
f
DCO(8,3)
f
DCO(9,3)
f
DCO(10,3)
f
DCO(11,3)
f
DCO(12,3)
f
DCO(13,3)
f
DCO(14,3)
f
DCO(15,3)
f
DCO(15,7)
S
RSEL
S
DCO
PARAMETER TEST CONDITIONS V
CC
RSELx < 14 1.8 3.6
Supply voltage range RSELx = 14 2.2 3.6 V
RSELx = 15 3.0 3.6 DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V, 3 V 0.06 0.14 MHz DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V, 3 V 0.07 0.17 MHz DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V, 3 V 0.10 0.20 MHz DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V, 3 V 0.14 0.28 MHz DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V, 3 V 0.20 0.40 MHz DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V, 3 V 0.28 0.54 MHz DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V, 3 V 0.39 0.77 MHz DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V, 3 V 0.54 1.06 MHz DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V, 3 V 0.80 1.50 MHz DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V, 3 V 1.10 2.10 MHz DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V, 3 V 1.60 3.00 MHz DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V, 3 V 2.50 4.30 MHz DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V, 3 V 3.00 5.50 MHz DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V, 3 V 4.30 7.30 MHz DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V, 3 V 6.00 9.60 MHz DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V, 3 V 8.60 13.9 MHz DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3 V 12.0 18.5 MHz DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3 V 16.0 26.0 MHz Frequency step between
range RSEL and RSEL+1 Frequency step between tap
DCO and DCO+1
S
S
= f
RSEL
DCO(RSEL+1,DCO)/fDCO(RSEL,DCO)
= f
DCO
DCO(RSEL,DCO+1)/fDCO(RSEL,DCO)
2.2 V, 3 V 1.55 ratio
2.2 V, 3 V 1.05 1.08 1.12 ratio
Duty cycle Measured at P1.4/SMCLK 2.2 V, 3 V 40 50 60 %
MIN TYP MAX UNIT
Copyright © 2006–2012, Texas Instruments Incorporated 35
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Calibrated DCO Frequencies - Tolerance at Calibration
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
CAL(1MHz)
f
CAL(8MHz)
f
CAL(12MHz)
f
CAL(16MHz)
PARAMETER TEST CONDITIONS T
Frequency tolerance at calibration 25°C 3 V -1 ±0.2 +1 %
BCSCTL1 = CALBC1_1MHZ,
1-MHz calibration value DCOCTL = CALDCO_1MHZ, 25°C 3 V 0.990 1 1.010 MHz
Gating time: 5 ms BCSCTL1 = CALBC1_8MHZ,
8-MHz calibration value DCOCTL = CALDCO_8MHZ, 25°C 3 V 7.920 8 8.080 MHz
Gating time: 5 ms BCSCTL1 = CALBC1_12MHZ,
12-MHz calibration value DCOCTL = CALDCO_12MHZ, 25°C 3 V 11.88 12 12.12 MHz
Gating time: 5 ms BCSCTL1 = CALBC1_16MHZ,
16-MHz calibration value DCOCTL = CALDCO_16MHZ, 25°C 3 V 15.84 16 16.16 MHz
Gating time: 2 ms
V
A
MIN TYP MAX UNIT
CC
Calibrated DCO Frequencies - Tolerance Over Temperature 0°C to 85°C
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
CAL(1MHz)
f
CAL(8MHz)
f
CAL(12MHz)
f
CAL(16MHz)
PARAMETER TEST CONDITIONS T
1-MHz tolerance over temperature
8-MHz tolerance over temperature
12-MHz tolerance over temperature
16-MHz tolerance over temperature
A
0°C to 85°C 3 V -2.5 ±0.5 +2.5 %
0°C to 85°C 3 V -2.5 ±1.0 +2.5 %
0°C to 85°C 3 V -2.5 ±1.0 +2.5 %
0°C to 85°C 3 V -3 ±2.0 +3 %
BCSCTL1 = CALBC1_1MHZ,
1-MHz calibration value DCOCTL = CALDCO_1MHZ, 0°C to 85°C 3 V 0.975 1 1.025 MHz
Gating time: 5 ms
BCSCTL1 = CALBC1_8MHZ,
8-MHz calibration value DCOCTL = CALDCO_8MHZ, 0°C to 85°C 3 V 7.8 8 8.2 MHz
Gating time: 5 ms
BCSCTL1 = CALBC1_12MHZ,
12-MHz calibration value DCOCTL = CALDCO_12MHZ, 0°C to 85°C 3 V 11.7 12 12.3 MHz
Gating time: 5 ms BCSCTL1 = CALBC1_16MHZ, 3 V 15.52 16 16.48
16-MHz calibration value DCOCTL = CALDCO_16MHZ, 0°C to 85°C MHz
Gating time: 2 ms
V
CC
MIN TYP MAX UNIT
2.2 V 0.97 1 1.03
3.6 V 0.97 1 1.03
2.2 V 7.76 8 8.4
3.6 V 7.6 8 8.24
2.2 V 11.7 12 12.3
3.6 V 11.7 12 12.3
3.6 V 15 16 16.48
www.ti.com
36 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
Calibrated DCO Frequencies - Tolerance Over Supply Voltage V
SLAS504G –JULY 2006–REVISED AUGUST 2012
CC
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
CAL(1MHz)
f
CAL(8MHz)
f
CAL(12MHz)
f
CAL(16MHz)
PARAMETER TEST CONDITIONS T
1-MHz tolerance over V 8-MHz tolerance over V 12-MHz tolerance over V 16-MHz tolerance over V
CC CC
CC CC
A
25°C 1.8 V to 3.6 V -3 ±2 +3 % 25°C 1.8 V to 3.6 V -3 ±2 +3 % 25°C 2.2 V to 3.6 V -3 ±2 +3 % 25°C 3 V to 3.6 V -6 ±2 +3 %
BCSCTL1 = CALBC1_1MHZ, 1-MHz calibration value DCOCTL = CALDCO_1MHZ, 25°C 1.8 V to 3.6 V 0.97 1 1.03 MHz
Gating time: 5 ms
BCSCTL1 = CALBC1_8MHZ, 8-MHz calibration value DCOCTL = CALDCO_8MHZ, 25°C 1.8 V to 3.6 V 7.76 8 8.24 MHz
Gating time: 5 ms
BCSCTL1 = CALBC1_12MHZ, 12-MHz calibration value DCOCTL = CALDCO_12MHZ, 25°C 2.2 V to 3.6 V 11.64 12 12.36 MHz
Gating time: 5 ms
BCSCTL1 = CALBC1_16MHZ, 16-MHz calibration value DCOCTL = CALDCO_16MHZ, 25°C 3 V to 3.6 V 15 16 16.48 MHz
Gating time: 2 ms
V
CC
MIN TYP MAX UNIT
Calibrated DCO Frequencies - Overall Tolerance
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS T
1-MHz tolerance I: -40°C to 85°C overall T: -40°C to 105°C
8-MHz tolerance I: -40°C to 85°C overall T: -40°C to 105°C
12-MHz I: -40°C to 85°C tolerance overall T: -40°C to 105°C
16-MHz I: -40°C to 85°C tolerance overall T: -40°C to 105°C
f
CAL(1MHz)
f
CAL(8MHz)
f
CAL(12MHz)
f
CAL(16MHz)
1-MHz I: -40°C to 85°C calibration value T: -40°C to 105°C
8-MHz I: -40°C to 85°C calibration value T: -40°C to 105°C
12-MHz I: -40°C to 85°C calibration value T: -40°C to 105°C
16-MHz I: -40°C to 85°C calibration value T: -40°C to 105°C
BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, 1.8 V to 3.6 V 0.95 1 1.05 MHz Gating time: 5 ms
BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, 1.8 V to 3.6 V 7.6 8 8.4 MHz Gating time: 5 ms
BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, 2.2 V to 3.6 V 11.4 12 12.6 MHz Gating time: 5 ms
BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, 3 V to 3.6 V 15 16 17 MHz Gating time: 2 ms
A
V
CC
MIN TYP MAX UNIT
1.8 V to 3.6 V -5 ±2 +5 %
1.8 V to 3.6 V -5 ±2 +5 %
2.2 V to 3.6 V -5 ±2 +5 %
3 V to 3.6 V -6 ±3 +6 %
Copyright © 2006–2012, Texas Instruments Incorporated 37
TA− Temperature − °C
0.97
0.98
0.99
1.00
1.01
1.02
1.03
−50.0 −25.0 0.0 25.0 50.0 75.0 100.0
Frequency − MHz
VCC= 1.8 V
VCC= 2.2 V
VCC= 3.0 V
VCC= 3.6 V
VCC− Supply Voltage − V
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.5 2.0 2.5 3.0 3.5 4.0
Frequency − MHz
TA= −40 °C
TA= 25 °C
TA= 85 °C
TA= 105 °C
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Typical Characteristics - Calibrated 1-MHz DCO Frequency
CALIBRATED 1-MHz FREQUENCY CALIBRATED 1-MHz FREQUENCY
vs vs
TEMPERATURE SUPPLY VOLTAGE
Figure 11. Figure 12.
www.ti.com
38 Copyright © 2006–2012, Texas Instruments Incorporated
DCO Frequency − MHz
0.10
1.00
10.00
0.10 1.00 10.00
RSELx = 0...11
RSELx = 12...15
DCO Wake-Up Time − µs
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Wake-Up From Lower-Power Modes (LPM3/4)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ
BCSCTL1 = CALBC1_8MHZ,
t
DCO,LPM3/4
t
CPU,LPM3/4
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, a port interrupt) to the first clock
edge observable externally on a clock pin (MCLK or SMCLK).
(2) Parameter applicable only if DCOCLK is used for MCLK.
DCO clock wake-up time from LPM3/4
CPU wake-up time from 1 / f LPM3/4
(1)
(2)
DCOCTL = CALDCO_8MHZ BCSCTL1 = CALBC1_12MHZ,
DCOCTL = CALDCO_12MHZ BCSCTL1 = CALBC1_16MHZ,
DCOCTL = CALDCO_16MHZ
CC
2.2 V, 3 V 1.5
3 V 1
MIN TYP MAX UNIT
2
µs
1
+
MCLK
t
Clock,LPM3/4
Typical Characteristics - DCO Clock Wake-Up Time From LPM3/4
CLOCK WAKE-UP TIME FROM LPM3
vs
DCO FREQUENCY
Copyright © 2006–2012, Texas Instruments Incorporated 39
Figure 13.
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
−50.0 −25.0 0.0 25.0 50.0 75.0 100.0
TA− Temperature − C
DCO Frequency − MHz
R
OSC
= 100k
R
OSC
= 270k
R
OSC
= 1M
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.0 2.5 3.0 3.5 4.0
VCC− Supply Voltage − V
DCO Frequency − MHz
R
OSC
= 100k
R
OSC
= 270k
R
OSC
= 1M
0.01
0.10
1.00
10.00
10.00 100.00 1000.00 10000.00
R
OSC
− External Resistor − kW
DCO Frequency − MHz
RSELx = 4
0.01
0.10
1.00
10.00
10.00 100.00 1000.00 10000.00
R
OSC
− External Resistor − kW
DCO Frequency − MHz
RSELx = 4
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
DCO With External Resistor R
OSC
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
DCO,ROSC
D
T
D
V
(1) R
PARAMETER TEST CONDITIONS V
CC
DCOR = 1, 2.2 V 1.8
DCO output frequency with R
Temperature drift 2.2 V, 3 V ±0.1 %/°C
Drift with V
= 100 kΩ. Metal film resistor, type 0257, 0.6 W with 1% tolerance and TK= ±50 ppm/°C.
OSC
CC
RSELx = 4, DCOx = 3, MODx = 0, MHz
OSC
TA= 25°C
3 V 1.95
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0
2.2 V, 3 V 10 %/V
Typical Characteristics - DCO With External Resistor R
DCO FREQUENCY DCO FREQUENCY
vs vs
R
VCC= 2.2 V, TA= 25°C VCC= 3 V, TA= 25°C
OSC
MIN TYP MAX UNIT
OSC
R
OSC
www.ti.com
Figure 14. Figure 15.
DCO FREQUENCY DCO FREQUENCY
vs vs
TEMPERATURE SUPPLY VOLTAGE
VCC= 3 V TA= 25°C
40 Copyright © 2006–2012, Texas Instruments Incorporated
Figure 16. Figure 17.
MSP430F22x2 MSP430F22x4
www.ti.com
Crystal Oscillator LFXT1, Low-Frequency Mode
(1)
SLAS504G –JULY 2006–REVISED AUGUST 2012
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
LFXT1,LF
PARAMETER TEST CONDITIONS V
LFXT1 oscillator crystal frequency, LF mode 0, 1
XTS = 0, LFXT1Sx = 0 or 1 1.8 V to 3.6 V 32768 Hz
CC
LFXT1 oscillator logic level
f
LFXT1,LF,logic
square wave input frequency, XTS = 0, LFXT1Sx = 3 1.8 V to 3.6 V 10000 32768 50000 Hz LF mode
XTS = 0, LFXT1Sx = 0,
OA
LF
Oscillation allowance for LF crystals
f XTS = 0, LFXT1Sx = 0,
f
LFXT1,LF
LFXT1,LF
= 32768 Hz, C
= 32768 Hz, C
L,eff
L,eff
= 6 pF
= 12 pF
XTS = 0, XCAPx = 0 1
C
L,eff
Integrated effective load capacitance, LF mode
(2)
XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 11 XTS = 0, Measured at P2.0/ACLK,
f XTS = 0, LFXT1Sx = 3
LFXT1,LF
= 32768 Hz
(4)
2.2 V, 3 V 10 10000 Hz
f
Fault,LF
Duty cycle, LF mode 2.2 V, 3 V 30 50 70 % Oscillator fault frequency,
LF mode
(3)
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
(a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This
signal is no longer required for the serial programming adapter.
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the crystal that is used.
(3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
(4) Measured with logic-level input frequency but also applies to operation with crystals.
MIN TYP MAX UNIT
500
200
k
pF
Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER T
f
VLO
df
/dT VLO frequency temperature drift
VLO
df
/dV
VLO
CC
VLO frequency 2.2 V, 3 V kHz
VLO frequency supply voltage drift
(1)
(2)
T: -40°C to 105°C
A
-40°C to 85°C 4 12 20 105°C 22
I: -40°C to 85°C
25°C 1.8 V to 3.6 V 4 %/V
(1) Calculated using the box method:
I version: [MAX(-40...85°C) - MIN(-40...85°C)]/MIN(-40...85°C)/[85°C - (-40°C)] T version: [MAX(-40...105°C) - MIN(-40...105°C)]/MIN(-40...105°C)/[105°C - (-40°C)]
(2) Calculated using the box method: [MAX(1.8...3.6 V) - MIN(1.8...3.6 V)]/MIN(1.8...3.6 V)/(3.6 V - 1.8 V)
Copyright © 2006–2012, Texas Instruments Incorporated 41
V
CC
MIN TYP MAX UNIT
2.2 V, 3 V 0.5 %/°C
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Crystal Oscillator LFXT1, High-Frequency Mode
PARAMETER TEST CONDITIONS V
f
LFXT1,HF0
f
LFXT1,HF1
f
LFXT1,HF2
f
LFXT1,HF,logic
OA
HF
C
L,eff
f
Fault,HF
LFXT1 oscillator crystal frequency, HF mode 0
LFXT1 oscillator crystal frequency, HF mode 1
LFXT1 oscillator crystal frequency, HF mode 2
XTS = 1, LFXT1Sx = 0 1.8 V to 3.6 V 0.4 1 MHz
XTS = 1, LFXT1Sx = 1 1.8 V to 3.6 V 1 4 MHz
XTS = 1, LFXT1Sx = 2 2.2 V to 3.6 V 2 12 MHz
LFXT1 oscillator logic-level square-wave input frequency, HF XTS = 1, LFXT1Sx = 3 2.2 V to 3.6 V 0.4 12 MHz mode
XTS = 1, LFXT1Sx = 0, f
LFXT1,HF
C
= 1 MHz, 2700
= 15 pF
L,eff
Oscillation allowance for HF XTS = 1, LFXT1Sx = 1, crystals (see Figure 18 and f
Figure 19) C
LFXT1,HF
= 4 MHz, 800
= 15 pF
L,eff
XTS = 1, LFXT1Sx = 2,
Integrated effective load capacitance, HF mode
f
LFXT1,HF
C
(2)
XTS = 1
= 16 MHz, 300
= 15 pF
L,eff
(3)
XTS = 1, Measured at P2.0/ACLK, 40 50 60 f
Duty cycle, HF mode 2.2 V, 3 V %
LFXT1,HF
XTS = 1,
= 10 MHz
Measured at P2.0/ACLK, 40 50 60
Oscillator fault frequency
f
(4)
LFXT1,HF
XTS = 1, LFXT1Sx = 3
= 16 MHz
(1)
www.ti.com
CC
MIN TYP MAX UNIT
1.8 V to 3.6 V 2 10
3 V to 3.6 V 2 16
1.8 V to 3.6 V 0.4 10
3 V to 3.6 V 0.4 16
1 pF
(5)
2.2 V, 3 V 30 300 kHz
(1) To improve EMI on the XT1 oscillator the following guidelines should be observed:
(a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This
signal is no longer required for the serial programming adapter.
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should
always match the specification of the used crystal. (3) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. (4) Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and
frequencies in between might set the flag. (5) Measured with logic-level input frequency, but also applies to operation with crystals.
42 Copyright © 2006–2012, Texas Instruments Incorporated
0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
0.0 4.0 8.0 12.0 16.0 20.0
Crystal Frequency − MHz
XT Oscillator Supply Current − uA
LFXT1Sx = 1
LFXT1Sx = 3
LFXT1Sx = 2
Crystal Frequency − MHz
10.00
100.00
1000.00
10000.00
100000.00
0.10 1.00 10.00 100.00
Oscillation Allowance − Ohms
LFXT1Sx = 1
LFXT1Sx = 3
LFXT1Sx = 2
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Typical Characteristics - LFXT1 Oscillator in HF Mode (XTS = 1)
OSCILLATION ALLOWANCE OSCILLATOR SUPPLY CURRENT
vs vs CRYSTAL FREQUENCY CRYSTAL FREQUENCY C
= 15 pF, TA= 25°C C
L,eff
= 15 pF, TA= 25°C
L,eff
Figure 18. Figure 19.
Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
TA
t
TA,cap
PARAMETER TEST CONDITIONS V
CC
Internal: SMCLK, ACLK 2.2 V 10
Timer_A clock frequency External: TACLK, INCLK MHz
Duty cycle = 50% ± 10%
3 V 16
Timer_A capture timing TA0, TA1, TA2 2.2 V, 3 V 20 ns
MIN TYP MAX UNIT
Timer_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
TB
t
TB,cap
PARAMETER TEST CONDITIONS V
CC
Internal: SMCLK, ACLK 2.2 V 10
Timer_B clock frequency External: TACLK, INCLK MHz
Duty cycle = 50% ± 10%
3 V 16
Timer_B capture timing TB0, TB1, TB2 2.2 V, 3 V 20 ns
MIN TYP MAX UNIT
Copyright © 2006–2012, Texas Instruments Incorporated 43
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER CONDITIONS V
CC
Internal: SMCLK, ACLK
f
USCI
f
BITCLK
t
τ
USCI input clock frequency External: UCLK f
Duty cycle = 50% ± 10%
BITCLK clock frequency (equals baud rate in MBaud)
UART receive deglitch time
(1)
2.2 V, 3 V 1 MHz
2.2 V 50 150 600 3 V 50 100 600
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized their width should exceed the maximum specification of the deglitch time.
USCI (SPI Master Mode)
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 20 and Figure 21)
PARAMETER TEST CONDITIONS V
f
USCI
t
SU,MI
t
HD,MI
t
VALID,MO
(1) f
For the slave's parameters t
USCI input clock frequency f
SOMI input data setup time ns
SOMI input data hold time ns
SIMO output data valid time ns
UCxCLK
= 1/2t
LO/HI
with t
LO/HI
USCI (SPI Slave Mode)
max(t
SU,SI(Slave)
(1)
VALID,MO(USCI)
and t
VALID,SO(Slave)
SMCLK, ACLK Duty cycle = 50% ± 10%
UCLK edge to SIMO valid, CL= 20 pF
+ t
SU,SI(Slave)
, t
SU,MI(USCI)
, see the SPI parameters of the attached slave.
+ t
VALID,SO(Slave)
CC
2.2 V 110 3 V 75
2.2 V 0 3 V 0
2.2 V 30 3 V 20
).
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 22 and Figure 23)
t
STE,LEAD
t
STE,LAG
t
STE,ACC
t
STE,DIS
t
SU,SI
t
HD,SI
t
VALID,SO
(1) f
For the master's parameters t
STE lead time, STE low to clock 2.2 V, 3 V 50 ns STE lag time, Last clock to STE high 2.2 V, 3 V 10 ns STE access time, STE low to SOMI data out 2.2 V, 3 V 50 ns STE disable time, STE high to SOMI high
impedance
SIMO input data setup time ns
SIMO input data hold time ns
SOMI output data valid time ns
= 1/2t
UCxCLK
LO/HI
PARAMETER TEST CONDITIONS V
UCLK edge to SOMI valid, CL= 20 pF
with t
LO/HI
max(t
VALID,MO(Master)
SU,MI(Master)
and t
VALID,MO(Master)
+ t
SU,SI(USCI)
, t
SU,MI(Master)
refer to the SPI parameters of the attached slave.
+ t
VALID,SO(USCI)
CC
2.2 V, 3 V 50 ns
2.2 V 20
3 V 15
2.2 V 10
3 V 10
2.2 V 75 110
3 V 50 75
).
MIN TYP MAX UNIT
SYSTEM
MIN TYP MAX UNIT
SYSTEM
MIN TYP MAX UNIT
MHz
ns
MHz
44 Copyright © 2006–2012, Texas Instruments Incorporated
UCLK
CKPL=0
CKPL=1
SIMO
1/f
UCxCLK
t
LO/HItLO/HI
SOMI
t
SU,MI
t
HD,MI
t
VALID,MO
UCLK
CKPL=0
CKPL=1
SIMO
1/f
UCxCLK
t
LO/HItLO/HI
SOMI
t
SU,MI
t
HD,MI
t
VALID,MO
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Figure 20. SPI Master Mode, CKPH = 0
Copyright © 2006–2012, Texas Instruments Incorporated 45
Figure 21. SPI Master Mode, CKPH = 1
STE
UCLK
CKPL=0
CKPL=1
t
STE,LEAD
t
STE,LAG
t
STE,ACC
t
STE,DIS
t
LO/HItLO/HI
t
SU,SI
t
HD,SI
t
VALID,SO
SOMI
SIMO
1/f
UCxCLK
STE
UCLK
CKPL=0
CKPL=1
SOMI
t
STE,ACC
t
STE,DIS
1/f
UCxCLK
t
LO/HItLO/HI
SIMO
t
SU,SI
t
HD,SI
t
VALID,SO
t
STE,LEAD
t
STE,LAG
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Figure 22. SPI Slave Mode, CKPH = 0
46 Copyright © 2006–2012, Texas Instruments Incorporated
Figure 23. SPI Slave Mode, CKPH = 1
SDA
SCL
1/f
SCL
t
HD,DAT
t
SU,DAT
t
HD,STA
t
SU,STAtHD,STA
t
SU,STO
t
SP
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 24)
f
USCI
f
SCL
t
HD,STA
t
SU,STA
t
HD,DAT
t
SU,DAT
t
SU,STO
t
SP
PARAMETER TEST CONDITIONS V
CC
Internal: SMCLK, ACLK
USCI input clock frequency External: UCLK f
Duty cycle = 50% ± 10%
SCL clock frequency 2.2 V, 3 V 0 400 kHz
f
100 kHz 4
Hold time (repeated) START 2.2 V, 3 V µs
Setup time for a repeated START 2.2 V, 3 V µs
SCL
f
> 100 kHz 0.6
SCL
f
100 kHz 4.7
SCL
f
> 100 kHz 0.6
SCL
Data hold time 2.2 V, 3 V 0 ns Data setup time 2.2 V, 3 V 250 ns Setup time for STOP 2.2 V, 3 V 4 µs
Pulse width of spikes suppressed by input filter ns
2.2 V 50 150 600 3 V 50 100 600
MIN TYP MAX UNIT
SYSTEM
MHz
Figure 24. I2C Mode Timing
Copyright © 2006–2012, Texas Instruments Incorporated 47
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
10-Bit ADC, Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS T
V
V
I
Analog supply voltage
CC
range Analog input voltage
Ax
range
ADC10 supply current
ADC10
VSS= 0 V 2.2 3.6 V All Ax terminals,
(2)
Analog inputs selected in 0 V ADC10AE register
f
ADC10CLK
ADC10ON = 1, REFON = 0,
(3)
ADC10SHT0 = 1, mA
= 5 MHz, 2.2 V 0.52 1.05
ADC10SHT1 = 0,
(1)
A
I: -40°C to 85°C
T: -40°C to 105°C
(1)
V
CC
MIN TYP MAX UNIT
3 V 0.6 1.2
ADC10DIV = 0
I
REF+
f
ADC10CLK
Reference supply current, reference buffer mA disabled
(4)
ADC10ON = 0, REF2_5V = 0, 2.2 V, 3 V 0.25 0.4 REFON = 1, REFOUT = 0
f
ADC10CLK
ADC10ON = 0, REF2_5V = 1, 3 V 0.25 0.4
= 5 MHz,
= 5 MHz,
I: -40°C to 85°C
T: -40°C to 105°C
REFON = 1, REFOUT = 0
I
REFB,0
I
REFB,1
C
I
R
I
f
Reference buffer supply current with mA ADC10SR = 0
(4)
Reference buffer supply current with mA ADC10SR = 1
(4)
Input capacitance 27 pF Input MUX ON I: -40°C to 85°C
resistance T: -40°C to 105°C
ADC10CLK
ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 0
f
ADC10CLK
ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 1
Only one terminal Ax selected at I: -40°C to 85°C a time T: -40°C to 105°C
0 V VAx≤ V
= 5 MHz -40°C to 85°C 2.2 V, 3 V 1.1 1.4
105°C 2.2 V, 3 V 1.8
= 5 MHz, -40°C to 85°C 2.2 V, 3 V 0.5 0.7
105°C 2.2 V, 3 V 0.8
CC
2.2 V, 3 V 2000 Ω
(1) The leakage current is defined in the leakage current table with Px.x/Ax parameter. (2) The analog input voltage range must be within the selected reference voltage range VR+to VR-for valid conversion results. (3) The internal reference supply current is not included in current consumption parameter I (4) The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a
ADC10
.
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.
www.ti.com
V
CC
48 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
10-Bit ADC, Built-In Voltage Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
V
CC,REF+
V
REF+
I
LD,VREF+
PARAMETER TEST CONDITIONS V
I
1 mA, REF2_5V = 0 2.2
Positive built-in reference analog I supply voltage range
Positive built-in reference voltage
Maximum V load current
V
REF+
regulation
REF+
load
VREF+
0.5 mA, REF2_5V = 1 2.8 V
VREF+
I
1 mA, REF2_5V = 1 2.9
VREF+
I
I
VREF+
I
VREF+
I
VREF+
Analog input voltage VAx≈ 0.75 V, 2.2 V, 3 V ±2
max, REF2_5V = 0 2.2 V, 3 V 1.41 1.5 1.59
VREF+
I
max, REF2_5V = 1 3 V 2.35 2.5 2.65
VREF+
= 500 µA ± 100 µA,
REF2_5V = 0 I
= 500 µA ± 100 µA,
VREF+
Analog input voltage VAx≈ 1.25 V, 3 V ±2
CC
2.2 V ±0.5 3 V ±1
REF2_5V = 1 I
= 100 µA to 900 µA, ADC10SR = 0 400
VREF+
VAx≈ 0.5 x V Error of conversion result 1 LSB
I
±1 mA,
VREF+
REFON = 1, REFOUT = 1
= constant with
VREF+
0 mA I
VREF+
I
= 0.5 mA, REF2_5V = 0,
VREF+
REFON = 0 to 1 I
= 0.5 mA, ADC10SR = 0 1
VREF+
REF2_5V = 0, REFON = 1, REFBURST = 1
(3)
I
= 0.5 mA, ADC10SR = 0 2
VREF+
REF2_5V = 1, REFON = 1, REFBURST = 1
REF+
1 mA
,
ADC10SR = 1 2000
2.2 V, 3 V ±100 ppm/°C
ADC10SR = 1 2.5
ADC10SR = 1 4.5
2.2 V
3 V
C
VREF+
T
CREF+
t
REFON
t
REFBURST
V
load
REF+
regulation response 3 V ns time
Maximum capacitance at pin 2.2 V, 3 V 100 pF
(1)
V
REF+
Temperature I coefficient
(2)
Settling time of internal reference 3.6 V 30 µs
(3)
voltage
Settling time of reference buffer
(1) The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA 2/A4/V
must be limited; the reference buffer may become unstable otherwise.
(2) Calculated using the box method:
I temperature: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C)) T temperature: (MAX(-40 to 105°C) – MIN(-40 to 105°C)) / MIN(-40 to 105°C) / (105°C – (–40°C))
(3) The condition is that the error in a conversion started after t
REFON
or t
is less than ±0.5 LSB.
RefBuf
MIN TYP MAX UNIT
/ V
REF+
(REFOUT = 1),
eREF+
V
mA
LSB
µs
Copyright © 2006–2012, Texas Instruments Incorporated 49
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
10-Bit ADC, External Reference
(1)
www.ti.com
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
V
eREF+
V
eREF-
ΔV
eREF
I
VeREF+
I
VeREF-
PARAMETER TEST CONDITIONS V
V
> V
,
eREF-
VCC- 0.15 V,
eREF+
> V
eREF-
> V
eREF-
(5)
eREF-
VCC,
eREF+
VCC- 0.15 V 3 V,
eREF+
V
CC
(3)
(3)
Positive external reference input voltage range
Negative external reference input voltage range
(2)
(4)
Differential external reference input voltage range V ΔV
= V
eREF
Static input current into V
Static input current into V
eREF+
- V
eREF-
eREF+
eREF-
eREF+
SREF1 = 1, SREF0 = 0 V
V
eREF-
SREF1 = 1, SREF0 = 1 V
eREF+
eREF+
0 V V SREF1 = 1, SREF0 = 0
0 V V SREF1 = 1, SREF0 = 1
0 V V
CC
2.2 V, 3 V µA
2.2 V, 3 V ±1 µA
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
(3) Under this condition, the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply
current I
(4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
. The current consumption can be limited to the sample and conversion period with REBURST = 1.
REFB
accuracy requirements.
(5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
MIN MAX UNIT
1.4 V
CC
V
1.4 3
0 1.2 V
1.4 V
CC
V
±1
0
10-Bit ADC, Timing Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
f
ADC10CLK
f
ADC10OSC
ADC10 input clock For specified performance of frequency ADC10 linearity parameters
ADC10 built-in oscillator ADC10DIVx = 0, ADC10SSELx = 0, frequency f
ADC10CLK
= f
ADC10OSC
ADC10 built-in oscillator, ADC10SSELx = 0,
t
CONVERT
t
ADC10ON
f
Conversion time µs
Turn on settling time of the ADC
(1)
ADC10CLK
f
ADC10CLK
ADC10SSELx 0 1 / f
= f
ADC10OSC
from ACLK, MCLK or SMCLK, 13 × ADC10DIVx ×
(1) The condition is that the error in a conversion started after t
settled.
ADC10ON
CC
ADC10SR = 0 0.45 6.3 ADC10SR = 1 0.45 1.5
2.2 V, 3 V MHz
2.2 V, 3 V 3.7 6.3 MHz
2.2 V, 3 V 2.06 3.51
is less than ±0.5 LSB. The reference and input signal are already
MIN TYP MAX UNIT
ADC10CLK
100 ns
50 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
10-Bit ADC, Linearity Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
E E E
Integral linearity error 2.2 V, 3 V ±1 LSB
I
Differential linearity error 2.2 V, 3 V ±1 LSB
D
Offset error Source impedance RS< 100 2.2 V, 3 V ±1 LSB
O
SREFx = 010, unbuffered external reference, V
= 1.5 V
eREF+
SREFx = 010, unbuffered external reference, V
= 2.5 V
E
Gain error LSB
G
eREF+
SREFx = 011, buffered external reference V
= 1.5 V
eREF+
SREFx = 011, buffered external reference V
= 2.5 V
eREF+
SREFx = 010, unbuffered external reference, V
= 1.5 V
eREF+
SREFx = 010, unbuffered external reference, V
= 2.5 V
E
Total unadjusted error LSB
T
eREF+
SREFx = 011, buffered external reference V
= 1.5 V
eREF+
SREFx = 011, buffered external reference V
= 2.5 V
eREF+
(1) The reference buffer offset adds to the gain and total unadjusted error.
CC
2.2 V ±1.1 ±2
3 V ±1.1 ±2
(1)
,
(1)
,
2.2 V ±1.1 ±4
3 V ±1.1 ±3
2.2 V ±2 ±5
3 V ±2 ±5
(1)
,
(1)
,
2.2 V ±2 ±7
3 V ±2 ±6
MIN TYP MAX UNIT
10-Bit ADC, Temperature Sensor and Built-In V
MID
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
I
SENSOR
TC
SENSOR
V
Offset,Sensor
Temperature sensor supply REFON = 0, INCHx = 0Ah,
(1)
current
TA= 25°C ADC10ON = 1, INCHx = 0Ah
Sensor offset voltage ADC10ON = 1, INCHx = 0Ah
(2) (2)
Temperature sensor voltage at TA= 105°C (T version only)
V
SENSOR
Sensor output voltage
(3)
Temperature sensor voltage at TA= 85°C 1195 1295 1395 Temperature sensor voltage at TA= 25°C 985 1085 1185 Temperature sensor voltage at TA= 0°C 895 995 1095
t
SENSOR(sample)
I
VMID
V
MID
t
VMID(sample)
(1) The sensor current I
high).When REFON = 1, I input (INCH = 0Ah).
Sample time required if ADC10ON = 1, INCHx = 0Ah, channel 10 is selected
Current into divider at channel 11
(4)
VCCdivider at channel 11 V
Sample time required if ADC10ON = 1, INCHx = 0Bh, channel 11 is selected
is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal is
SENSOR
SENSOR
(4)
(5)
is included in I
Error of conversion result 1 LSB
ADC10ON = 1, INCHx = 0Bh µA
ADC10ON = 1, INCHx = 0Bh, V
0.5 × V
MID
CC
Error of conversion result 1 LSB
.When REFON = 0, I
REF+
applies during conversion of the temperature sensor
SENSOR
(2) The following formula can be used to calculate the temperature sensor output voltage:
V
Sensor,typ
V
Sensor,typ
(3) Results based on characterization and/or production test, not TC (4) No additional current is needed. The V (5) The on time, t
= TC = TC
( 273 + T [°C] ) + V
Sensor
T [°C] + V
Sensor
, is included in the sampling time, t
VMID(on)
Sensor(TA
MID
Offset,sensor
= 0°C) [mV]
[mV] or
is used during sampling.
VMID(sample)
or V
Sensor
Offset,sensor
; no additional on time is needed.
CC
2.2 V 40 120 3 V 60 160
2.2 V, 3 V 3.44 3.55 3.66 mV/°C
2.2 V, 3 V mV
2.2 V, 3 V 30 µs
2.2 V N/A 3 V N/A
2.2 V 1.06 1.1 1.14 3 V 1.46 1.5 1.54
2.2 V 1400 3 V 1220
.
MIN TYP MAX UNIT
-100 100 mV
1265 1365 1465
µA
ns
Copyright © 2006–2012, Texas Instruments Incorporated 51
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Operational Amplifier (OA) Supply Specifications (MSP430F22x4 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
V
Supply voltage range 2.2 3.6 V
CC
CC
Fast Mode 180 290
I
CC
Supply current
(1)
Medium Mode 2.2 V, 3 V 110 190 µA Slow Mode 50 80
PSRR Power-supply rejection ratio Noninverting 2.2 V, 3 V 70 dB
(1) Corresponding pins configured as OA inputs and outputs, respectively.
MIN TYP MAX UNIT
Operational Amplifier (OA) Input/Output Specifications (MSP430F22x4 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
V
I/P
Input voltage range -0.1 VCC- 1.2 V
CC
TA= -40 to +55°C -5 ±0.5 5
I
lkg
Input leakage
(1) (2)
current
TA= +55 to +85°C 2.2 V, 3 V -20 ±5 20 nA TA= +85 to +105°C -50 50 Fast Mode 50 Medium Mode f
V
n
Voltage noise density, I/P
Slow Mode 140 Fast Mode 30 Medium Mode f
= 1 kHz 80
V(I/P)
= 10 kHz 50
V(I/P)
Slow Mode 65
V
IO
V
OH
V
OL
R
O/P(OAx)
CMRR Noninverting 2.2 V, 3 V 70 dB
Offset voltage, I/P 2.2 V, 3 V ±10 mV Offset temperature
(3)
drift, I/P Offset voltage drift 0.3 V VIN≤ VCC- 1.0 V
with supply, I/P ΔVCC≤ ±10%, TA= 25°C High-level output
voltage, O/P Low-level output
voltage, O/P
Output resistance
(4)
(see Figure 25) V
Fast Mode, I Slow Mode, I Fast Mode, I Slow Mode, I R
= 3 k, C
Load
V R
R
0.2 V V
O/P(OAx)
= 3 k, C
Load
O/P(OAx)
= 3 k, C
Load
< 0.2 V
> VCC- 1.2 V
O/P(OAx)
-500 µA VCC- 0.2 V
SOURCE
-150 µA VCC- 0.1 V
SOURCE
500 µA V
SOURCE
150 µA V
SOURCE
= 50 pF,
Load
= 50 pF,
Load
= 50 pF,
Load
VCC- 0.2 V
2.2 V, 3 V ±10 µV/°C
2.2 V, 3 V ±1.5 mV/V
2.2 V, 3 V V
2.2 V, 3 V V
2.2 V, 3 V 150 250
Common-mode rejection ratio
(1) ESD damage can degrade input current leakage. (2) The input bias current is overridden by the input leakage current. (3) Calculated using the box method (4) Specification valid for voltage-follower OAx configuration
MIN TYP MAX UNIT
nV/Hz
CC
CC SS SS
0.2
0.1
150 250
0.1 4
52 Copyright © 2006–2012, Texas Instruments Incorporated
Input Frequency − kHz
−250
−200
−150
−100
−50
0
1 10 100 1000 10000 100000
Phase − degrees
Slow Mode
Fast Mode
Medium Mode
Input Frequency − kHz
−80
−60
−40
−20
0
20
40
60
80
100
120
140
1 10 100 1000 10000 100000
Slow Mode
Fast Mode
Gain − dB
Medium Mode
R
O/P(OAx)
Max
0.2V AV
CC
AVCC−0.2V
V
OUT
Min
R
Load
AV
CC
C
Load
2
I
Load
OAx
O/P(OAx)
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Figure 25. OAx Output Resistance Tests
Operational Amplifier (OA) Dynamic Specifications (MSP430F22x4 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
Fast Mode 1.2
SR Slew rate Medium Mode 0.8 V/µs
Slow Mode 0.3
Open-loop voltage gain 100 dB
φm Phase margin CL= 50 pF 60 deg
Gain margin CL= 50 pF 20 dB
Noninverting, Fast Mode, RL= 47 k, CL= 50 pF
GBW 2.2 V, 3 V 1.4 MHz
t t
Gain-bandwidth product Noninverting, Medium Mode, (see Figure 26 and Figure 27) RL= 300 k, CL= 50 pF
Noninverting, Slow Mode, RL= 300 k, CL= 50 pF
Enable time on ton, noninverting, Gain = 1 2.2 V, 3 V 10 20 µs
en(on)
Enable time off 2.2 V, 3 V 1 µs
en(off)
CC
MIN TYP MAX UNIT
2.2
0.5
TYPICAL OPEN-LOOP GAIN TYPICAL PHASE
vs vs
FREQUENCY FREQUENCY
Figure 26. Figure 27.
Copyright © 2006–2012, Texas Instruments Incorporated 53
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Operational Amplifier OA Feedback Network, Resistor Network (MSP430F22x4 Only)
www.ti.com
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
R R
(1) A single resistor string is composed of 4 R (2) For the matching (that is, the relative accuracy) of the unit resistors on a device, see the gain and level specifications of the respective
Total resistance of resistor string 76 96 128 k
total
Unit resistor of resistor string
unit
(2)
unit
+ 4 R
unit
+ 2 R
unit
+ 2 R
unit
+ 1 R
unit
+ 1 R
unit
+ 1 R
unit
configurations.
MIN TYP MAX UNIT
CC
4.8 6 8 k
+ 1 R
unit
= 16 R
unit
= R
total
.
Operational Amplifier (OA) Feedback Network, Comparator Mode (OAFCx = 3) (MSP430F22x4 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
OAFBRx = 1, OARRIP = 0 0.245 0.25 0.255 OAFBRx = 2, OARRIP = 0 0.495 0.5 0.505 OAFBRx = 3, OARRIP = 0 0.619 0.625 0.631 OAFBRx = 4, OARRIP = 0 N/A OAFBRx = 5, OARRIP = 0 N/A OAFBRx = 6, OARRIP = 0 N/A
V
Comparator level 2.2 V, 3 V V
Level
OAFBRx = 7, OARRIP = 0 N/A OAFBRx = 1, OARRIP = 1 0.061 0.0625 0.065 OAFBRx = 2, OARRIP = 1 0.122 0.125 0.128 OAFBRx = 3, OARRIP = 1 0.184 0.1875 0.192 OAFBRx = 4, OARRIP = 1 0.245 0.25 0.255 OAFBRx = 5, OARRIP = 1 0.367 0.375 0.383 OAFBRx = 6, OARRIP = 1 0.495 0.5 0.505 OAFBRx = 7, OARRIP = 1 N/A Fast Mode, Overdrive 10 mV 40 Fast Mode, Overdrive 100 mV 4 Fast Mode, Overdrive 500 mV 3 Medium Mode, Overdrive 10 mV 60
t
, Propagation delay
t
PLH
(low-high and high-low)
PHL
Medium Mode, Overdrive 100 mV 2.2 V, 3 V 6 µs Medium Mode, Overdrive 500 mV 5 Slow Mode, Overdrive 10 mV 160 Slow Mode, Overdrive 100 mV 20 Slow Mode, Overdrive 500 mV 15
(1) The level is not available due to the analog input voltage range of the operational amplifier.
CC
MIN TYP MAX UNIT
(1) (1) (1) (1)
CC
(1)
54 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Operational Amplifier (OA) Feedback Network, Noninverting Amplifier Mode (OAFCx = 4) (MSP430F22x4 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
OAFBRx = 0 0.998 1 1.002 OAFBRx = 1 1.328 1.334 1.340 OAFBRx = 2 1.985 2.001 2.017
G Gain 2.2 V, 3 V
THD Total harmonic distortion/nonlinearity All gains dB
t
Settling time
Settle
(1) The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The
settling time of the amplifier itself might be faster.
Operational Amplifier (OA) Feedback Network, Inverting Amplifier Mode (OAFCx = 6) (MSP430F22x4 Only)
(1)
(1)
OAFBRx = 3 2.638 2.667 2.696 OAFBRx = 4 3.94 4 4.06 OAFBRx = 5 5.22 5.33 5.44 OAFBRx = 6 7.76 7.97 8.18 OAFBRx = 7 15 15.8 16.6
All power modes 2.2 V, 3 V 7 12 µs
CC
2.2 V -60 3 V -70
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
OAFBRx = 1 -0.345 -0.335 -0.325 OAFBRx = 2 -1.023 -1.002 -0.979 OAFBRx = 3 -1.712 -1.668 -1.624
G Gain OAFBRx = 4 2.2 V, 3 V -3.1 -3 -2.9
OAFBRx = 5 -4.51 -4.33 -4.15 OAFBRx = 6 -7.37 -6.97 -6.57 OAFBRx = 7 -16.3 -14.8 -13.1
THD Total harmonic distortion/nonlinearity All gains dB
t
Settling time
Settle
(1) This includes the 2 OA configuration "inverting amplifier with input buffer". Both OA needs to be set to the same power mode OAPMx. (2) The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The
settling time of the amplifier itself might be faster.
(2)
All power modes 2.2 V, 3 V 7 12 µs
CC
2.2 V -60 3 V -70
MIN TYP MAX UNIT
MIN TYP MAX UNIT
Copyright © 2006–2012, Texas Instruments Incorporated 55
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
V
CC (PGM/ERASE)
f
FTG
I
PGM
I
ERASE
t
CPT
t
CMErase
PARAMETER TEST CONDITIONS V
Program and erase supply voltage 2.2 3.6 V Flash timing generator frequency 257 476 kHz Supply current from VCCduring program 2.2 V, 3.6 V 1 5 mA Supply current from VCCduring erase 2.2 V, 3.6 V 1 7 mA Cumulative program time
(1)
Cumulative mass erase time 2.2 V, 3.6 V 20 ms
CC
2.2 V, 3.6 V 10 ms
Program/Erase endurance 10
t
Retention
t
Word
t
Block, 0
t
Block, 1-63
t
Block, End
t
Mass Erase
t
Seg Erase
Data retention duration TJ= 25°C 100 years Word or byte program time Block program time for first byte or word Block program time for each additional
byte or word Block program end-sequence wait time Mass erase time Segment erase time
(2) (2)
(2)
(2) (2) (2)
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
(2) These values are hardwired into the flash controller's state machine (t
FTG
= 1/f
FTG
).
MIN TYP MAX UNIT
4
5
10
30 t 25 t
18 t
6 t
10593 t
4819 t
cycles
FTG FTG
FTG
FTG FTG FTG
RAM
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
V
(RAMh)
RAM retention supply voltage
(1) This parameter defines the minimum supply voltage VCCwhen the data in RAM remains unchanged. No program execution should
happen during this supply voltage condition.
(1)
CPU halted 1.6 V
56 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
f
SBW
t
SBW,Low
t
SBW,En
t
SBW,Ret
f
TCK
R
Internal
Spy-Bi-Wire input frequency 2.2 V, 3 V 0 20 MHz Spy-Bi-Wire low clock pulse length 2.2 V, 3 V 0.025 15 µs Spy-Bi-Wire enable time
(TEST high to acceptance of first clock edge
(1)
)
Spy-Bi-Wire return to normal operation time 2.2 V, 3 V 15 100 µs
TCK input frequency
(2)
Internal pulldown resistance on TEST 2.2 V, 3 V 25 60 90 k
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t
applying the first SBWCLK clock edge.
(2) f
JTAG Fuse
may be restricted to meet the timing requirements of the module selected.
TCK
(1)
time after pulling the TEST/SBWCLK pin high before
SBW,En
CC
2.2 V, 3 V 1 µs
2.2 V 0 5 MHz 3 V 0 10 MHz
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
V
CC(FB)
V
FB
I
FB
t
FB
Supply voltage during fuse-blow condition TA= 25°C 2.5 V Voltage level on TEST for fuse blow 6 7 V Supply current into TEST during fuse blow 100 mA Time to blow fuse 1 ms
MIN TYP MAX UNIT
(1) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to
bypass mode.
Copyright © 2006–2012, Texas Instruments Incorporated 57
Direction 0: Input 1: Output
P1SEL.x
1
0
P1DIR.x
P1IN.x
P1IRQ.x
D
EN
Module X IN
1
0
Module X OUT
P1OUT.x
Interrupt
Edge
Select
Q
EN
Set
P1SEL.x
P1IES.x
P1IFG.x
P1IE.x
P1.0/TACLK/ADC10CLK P1.1/TA0 P1.2/TA1 P1.3/TA2
1
0
DVSS
DVCC
P1REN.x
Pad Logic
1
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
APPLICATION INFORMATION
Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger
www.ti.com
Table 21. Port P1 (P1.0 to P1.3) Pin Functions
PIN NAME (P1.x) x FUNCTION
(1)
P1.0
P1.0/TACLK/ADC10CLK 0 Timer_A3.TACLK 0 1
ADC10CLK 1 1
(1)
P1.1
(I/O) I: 0; O: 1 0
P1.1/TA0 1 Timer_A3.CCI0A 0 1
P1.2/TA1 2 Timer_A3.CCI1A 0 1
P1.3/TA2 3 Timer_A3.CCI2A 0 1
(1) Default after reset (PUC/POR)
58 Copyright © 2006–2012, Texas Instruments Incorporated
Timer_A3.TA0 1 1
(1)
P1.2
(I/O) I: 0; O: 1 0
Timer_A3.TA1 1 1
(1)
P1.3
(I/O) I: 0; O: 1 0
Timer_A3.TA2 1 1
CONTROL BITS/SIGNALS
P1DIR.x P1SEL.x
I: 0; O: 1 0
Bus
Keeper
EN
Direction 0: Input 1: Output
P1SEL.x
1
0
P1DIR.x
P1IN.x
P1IRQ.x
D
EN
Module X IN
1
0
Module X OUT
P1OUT.x
Interrupt
Edge
Select
Q
EN
Set
P1SEL.x
P1IES.x
P1IFG.x
P1IE.x
P1.4/SMCLK/TCK P1.5/TA0/TMS P1.6/TA1/TDI
1
0
DVSS
DVCC
P1REN.x
To JTAG
From JTAG
1
Pad Logic
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P1 Pin Schematic: P1.4 to P1.6, Input/Output With Schmitt Trigger and In-System Access Features
PIN NAME (P1.x) x FUNCTION
P1.4/SMCLK/TCK 4 SMCLK 1 1 0
P1.5/TA0/TMS 5 Timer_A3.TA0 1 1 0
P1.6/TA1/TDI/TCLK 6 Timer_A3.TA1 1 1 0
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Function controlled by JTAG
Copyright © 2006–2012, Texas Instruments Incorporated 59
P1.4
TCK X X 1 P1.5
TMS X X 1 P1.6
TDI/TCLK
Table 22. Port P1 (P1.4 to P1.6) Pin Functions
(2)
(I/O) I: 0; O: 1 0 0
(2)
(I/O) I: 0; O: 1 0 0
(2)
(I/O) I: 0; O: 1 0 0
(3)
CONTROL BITS/SIGNALS
P1DIR.x P1SEL.x 4-Wire JTAG
X X 1
(1)
From JTAG
From JTAG (TDO)
Bus
Keeper
EN
Direction 0: Input 1: Output
P1SEL.7
1
0
P1DIR.7
P1IN.7
P1IRQ.7
D
EN
Module X IN
1
0
Module X OUT
P1OUT.7
Interrupt
Edge
Select
Q
EN
Set
P1SEL.7
P1IES.7
P1IFG.7
P1IE.7
P1.7/TA2/TDO/TDI
1
0
DVSS
DVCC
P1REN.7
To JTAG
From JTAG
1
Pad Logic
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Port P1 Pin Schematic: P1.7, Input/Output With Schmitt Trigger and In-System Access Features
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Function controlled by JTAG
PIN NAME (P1.x) x FUNCTION
P1.7/TA2/TDO/TDI 7 Timer_A3.TA2 1 1 0
Table 23. Port P1 (P1.7) Pin Functions
(2)
P1.7
(I/O) I: 0; O: 1 0 0
TDO/TDI
(3)
CONTROL BITS/SIGNALS
P1DIR.x P1SEL.x 4-Wire JTAG
X X 1
(1)
60 Copyright © 2006–2012, Texas Instruments Incorporated
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.x
1
0
P2DIR.x
P2IN.x
P2IRQ.x
D
EN
Module X IN
1
0
Module X OUT
P2OUT.x
Interrupt
Edge
Select
Q
EN
Set
P2SEL.x
P2IES.x
P2IFG.x
P2IE.x
P2.0/ACLK/A0/OA0I0 P2.2/TA0/A2/OA0I1
1
0
DVSS
DVCC
P2REN.x
ADC10AE0.y
Pad Logic
INCHx = y
To ADC10
1
OA0
+
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P2 Pin Schematic: P2.0, P2.2, Input/Output With Schmitt Trigger
Pin Name (P2.x) x y FUNCTION
P2.0/ACLK/A0/OA0I0 0 0 ACLK 1 1 0
P2.2/TA0/A2/OA0I1 2 2
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
Table 24. Port P2 (P2.0, P2.2) Pin Functions
(2)
P2.0
(I/O) I: 0; O: 1 0 0
A0/OA0I0 P2.2 Timer_A3.CCI0B 0 1 0 Timer_A3.TA0 1 1 0 A2/OA0I1
(3)
(2)
(I/O) I: 0; O: 1 0 0
(3)
CONTROL BITS/SIGNALS
P2DIR.x P2SEL.x ADC10AE0.y
X X 1
X X 1
(1)
Copyright © 2006–2012, Texas Instruments Incorporated 61
1
OAFCx
OAPMx
OAADCx
To OA0 Feedback Network
1
(OAADCx = 10 or OAFCx = 000) and OAPMx> 00
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.1
1
0
P2DIR.1
P2IN.1
P2IRQ.1
D
EN
Module X IN
1
0
Module X OUT
P2OUT.1
Interrupt
Edge
Select
Q
EN
Set
P2SEL.1
P2IES.1
P2IFG.1
P2IE.1
P2.1/TAINCLK/SMCLK/ A1/OA0O
1
0
DVSS
DVCC
P2REN.1
ADC10AE0.1
Pad Logic
INCHx = 1
To ADC10
1
OA0
+
1
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P2 Pin Schematic: P2.1, Input/Output With Schmitt Trigger
www.ti.com
PIN NAME (P2.x) x y FUNCTION
P2.1/TAINCLK/SMCLK/ A1/OA0O
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
Table 25. Port P2 (P2.1) Pin Functions
(2)
P2.1
(I/O) I: 0; O: 1 0 0
Timer_A3.INCLK 0 1 0
1 1
SMCLK 1 1 0 A1/OA0O
(3)
CONTROL BITS/SIGNALS
P2DIR.x P2SEL.x ADC10AE0.y
X X 1
(1)
62 Copyright © 2006–2012, Texas Instruments Incorporated
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.3
1
0
P2DIR.3
P2IN.3
P2IRQ.3
D
EN
Module X IN
1
0
Module X OUT
P2OUT.3
Interrupt
Edge
Select
Q
EN
Set
P2SEL.3
P2IES.3
P2IFG.3
P2IE.3
1
0
DVSS
DVCC
P2REN.3
ADC10AE0.3
Pad Logic
INCHx = 3
To ADC 10
1
OA1
+
1
OAFCx
OAPMx
OAADCx
To OA1 Feedback Network
To ADC10 V
R−
1
0
SREF2
VSS
P2.3/TA1/ A3/VREF−/VeREF−/ OA1I1/OA1O
1
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00
MSP430F22x2 MSP430F22x4
www.ti.com
Port P2 Pin Schematic: P2.3, Input/Output With Schmitt Trigger
SLAS504G –JULY 2006–REVISED AUGUST 2012
Copyright © 2006–2012, Texas Instruments Incorporated 63
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Table 26. Port P2 (P2.3) Pin Functions
PIN NAME (P2.x) x y FUNCTION
(2)
P2.3
(I/O) I: 0; O: 1 0 0
P2.3/TA1/A3/V /V
eREF-
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
REF-
/ OA1I1/OA1O
Timer_A3.CCI1B 0 1 0
3 3
Timer_A3.TA1 1 1 0 A3/V
REF-/VeREF-
/OA1I1/OA1O
(3)
CONTROL BITS/SIGNALS
P2DIR.x P2SEL.x ADC10AE0.y
X X 1
(1)
64 Copyright © 2006–2012, Texas Instruments Incorporated
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.4
1
0
P2DIR.4
P2IN.4
P2IRQ.4
D
EN
Module X IN
1
0
Module X OUT
P2OUT.4
Interrupt
Edge
Select
Q
EN
Set
P2SEL.4
P2IES.4
P2IFG.4
P2IE.4
P2.4/TA2/ A4/VREF+/VeREF+/ OA1I0
1
0
DVSS
DVCC
P2REN.4
ADC10AE0.4
Pad Logic
INCHx = 4
To ADC10
1
To/from ADC10
positive reference
OA1
+
MSP430F22x2 MSP430F22x4
www.ti.com
Port P2 Pin Schematic: P2.4, Input/Output With Schmitt Trigger
SLAS504G –JULY 2006–REVISED AUGUST 2012
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
PIN NAME (P2.x) x y FUNCTION
P2.4/TA2/A4/V V
eREF+
applying analog signals.
/ OA1I0
REF+
/
Table 27. Port P2 (P2.4) Pin Functions
(2)
P2.4
(I/O) I: 0; O: 1 0 0
4 4 Timer_A3.TA2 1 1 0
A4/V
REF+/VeREF+
/OA1I0
(3)
CONTROL BITS/SIGNALS
P2DIR.x P2SEL.x ADC10AE0.y
X X 1
(1)
Copyright © 2006–2012, Texas Instruments Incorporated 65
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.x
1
0
P2DIR.x
P2IN.x
P2IRQ.x
D
EN
Module X IN
1
0
Module X OUT
P2OUT.x
Interrupt
Edge
Select
Q
EN
Set
P2SEL.x
P2IES.x
P2IFG.x
P2IE.x
P2.5/ROSC
1
0
DVSS
DVCC
P2REN.x
DCOR
Pad Logic
To DCO
1
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P2 Pin Schematic: P2.5, Input/Output With Schmitt Trigger and External R
OSC
www.ti.com
for DCO
Table 28. Port P2 (P2.5) Pin Functions
PIN NAME (P2.x) x FUNCTION
(2)
P2.5
(I/O) I: 0; O: 1 0 0
(3)
N/A
5
DV
SS
R
OSC
P2.5/R
OSC
(1) X = Don't care (2) Default after reset (PUC/POR) (3) N/A = Not available or not applicable
66 Copyright © 2006–2012, Texas Instruments Incorporated
CONTROL BITS/SIGNALS
P2DIR.x P2SEL.x DCOR
0 1 0 1 1 0 X X 1
(1)
LFXT1 off
P2SEL.7
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.6
1
0
P2DIR.6
P2IN.6
P2IRQ.6
D
EN
Module X IN
1
0
Module X OUT
P2OUT.6
Interrupt
Edge
Select
Q
EN
Set
P2SEL.6
P2IES.6
P2IFG.6
P2IE.6
P2.6/XIN
1
0
DVSS
DVCC
P2REN.6
Pad Logic
LFXT1 Oscillator
BCSCTL3.LFXT1Sx = 11
P2.7/XOUT
0
1
1
LFXT1CLK
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger and Crystal Oscillator Input
PIN NAME (P2.x) x FUNCTION
P2.6/XIN 6
(1) X = Don't care (2) Default after reset (PUC/POR)
P2.6 (I/O) I: 0; O: 1 0 XIN
(2)
Table 29. Port P2 (P2.6) Pin Functions
CONTROL BITS/SIGNALS
P2DIR.x P2SEL.x
X 1
(1)
Copyright © 2006–2012, Texas Instruments Incorporated 67
LFXT1 off
P2SEL.6
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL.7
1
0
P2DIR.7
P2IN.7
P2IRQ.7
D
EN
Module X IN
1
0
Module X OUT
P2OUT.7
Interrupt
Edge
Select
Q
EN
Set
P2SEL.7
P2IES.7
P2IFG.7
P2IE.7
P2.7/XOUT
1
0
DVSS
DVCC
P2REN.7
Pad Logic
LFXT1 Oscillator
BCSCTL3.LFXT1Sx = 11
0
1
1
LFXT1CLK
From P2.6/XIN
P2.6/XIN
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger and Crystal Oscillator Output
PIN NAME (P2.x) x FUNCTION
XOUT/P2.7 7
(1) X = Don't care (2) Default after reset (PUC/POR) (3) If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this
pin after reset.
P2.7 (I/O) I: 0; O: 1 0 XOUT
Table 30. Port P2 (P2.7) Pin Functions
(2) (3)
CONTROL BITS/SIGNALS
P2DIR.x P2SEL.x
X 1
(1)
68 Copyright © 2006–2012, Texas Instruments Incorporated
Bus
Keeper
EN
Direction 0: Input 1: Output
P3SEL.0
1
0
P3DIR.0
P3IN.0
D
EN
Module X IN
1
0
Module X OUT
P3OUT.0
1
0
DVSS
DVCC
P3REN.0
ADC10AE0.5
Pad Logic
INCHx = 5
To ADC10
1
USCI Direction
Control
P3.0/UCB0STE/UCA0CLK/A5
MSP430F22x2 MSP430F22x4
www.ti.com
Port P3 Pin Schematic: P3.0, Input/Output With Schmitt Trigger
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 31. Port P3 (P3.0) Pin Functions
PIN NAME (P1.x) x y FUNCTION
(2)
P3.0 P3.0/UCB0STE/ UCA0CLK/A5
(1) X = Don't care (2) Default after reset (PUC/POR) (3) The pin direction is controlled by the USCI module. (4) UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
(5) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
Copyright © 2006–2012, Texas Instruments Incorporated 69
0 5 UCB0STE/UCA0CLK
(I/O) I: 0; O: 1 0 0
(3) (4)
(5)
A5
CONTROL BITS/SIGNALS
P3DIR.x P3SEL.x ADC10AE0.y
X 1 0 X X 1
(1)
Bus
Keeper
EN
Direction 0: Input 1: Output
P3SEL.x
1
0
P3DIR.x
P3IN.x
D
EN
Module X IN
1
0
Module X OUT
P3OUT.x
1
0
DVSS
DVCC
P3REN.x
Pad Logic
1
USCI Direction
Control
DVSS
P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P3 Pin Schematic: P3.1 to P3.5, Input/Output With Schmitt Trigger
www.ti.com
Table 32. Port P3 (P3.1 to P3.5) Pin Functions
PIN NAME (P3.x) x FUNCTION
P3.1/UCB0SIMO/UCB0SDA 1
P3.2/UCB0SOMI/UCB0SCL 2
P3.3/UCB0CLK/UCA0STE 3
P3.4/UCA0TXD/UCA0SIMO 4
P3.5/UCA0RXD/UCA0SOMI 5
(2)
P3.1
(I/O) I: 0; O: 1 0
UCB0SIMO/UCB0SDA
(2)
P3.2
(I/O) I: 0; O: 1 0
UCB0SOMI/UCB0SCL
(2)
P3.3
(I/O) I: 0; O: 1 0
UCB0CLK/UCA0STE
(2)
P3.4
(I/O) I: 0; O: 1 0
UCA0TXD/UCA0SIMO
(2)
P3.5
(I/O) I: 0; O: 1 0
UCA0RXD/UCA0SOMI
(3)
(3)
(3) (4)
(3)
(3)
CONTROL BITS/SIGNALS
P3DIR.x P3SEL.x
X 1
X 1
X 1
X 1
X 1
(1) X = Don't care (2) Default after reset (PUC/POR) (3) The pin direction is controlled by the USCI module. (4) UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to
3-wire SPI mode even if 4-wire SPI mode is selected.
(1)
70 Copyright © 2006–2012, Texas Instruments Incorporated
Bus
Keeper
EN
Direction 0: Input 1: Output
P3SEL.x
1
0
P3DIR.x
P3IN.x
D
EN
Module X IN
1
0
Module X OUT
P3OUT.x
P3.6/A6/OA0I2 P3.7/A7/OA1I2
1
0
DVSS
DVCC
P3REN.x
ADC10AE0.y
Pad Logic
INCHx = y
To ADC10
1
OA0/1
+
DVSS
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P3 Pin Schematic: P3.6 to P3.7, Input/Output With Schmitt Trigger
Table 33. Port P3 (P3.6, P3.7) Pin Functions
PIN NAME (P3.x) x y FUNCTION
P3.6/A6/OA0I2 6 6
P3.7/A7/OA1I2 7 7
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
(2)
P3.6
(I/O) I: 0; O: 1 0 0
A6/OA0I2
(2)
P3.7
(I/O) I: 0; O: 1 0 0
A7/OA1I2
(3)
(3)
CONTROL BITS/SIGNALS
P3DIR.x P3SEL.x ADC10AE0.y
X X 1
X X 1
(1)
Copyright © 2006–2012, Texas Instruments Incorporated 71
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL.x
1
0
P4DIR.x
P4IN.x
D
EN
Module X IN
1
0
Module X OUT
P4OUT.x
P4.0/TB0 P4.1/TB1 P4.2/TB2
1
0
DVSS
DVCC
P4REN.x
Pad Logic
1
P4DIR.6
P4SEL.6
ADC10AE1.7
P4.6/TBOUTH/A15/OA1I3
Timer_B OutputTristate Logic
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P4 Pin Schematic: P4.0 to P4.2, Input/Output With Schmitt Trigger
www.ti.com
Table 34. Port P4 (P4.0 to P4.2) Pin Functions
PIN NAME (P4.x) x FUNCTION
(1)
P4.0
(I/O) I: 0; O: 1 0
P4.0/TB0 0 Timer_B3.CCI0A 0 1
Timer_B3.TB0 1 1
(1)
P4.1
P4.1/TB1 1 Timer_B3.CCI1A 0 1
P4.2/TB2 2 Timer_B3.CCI2A 0 1
(1) Default after reset (PUC/POR)
72 Copyright © 2006–2012, Texas Instruments Incorporated
(I/O) I: 0; O: 1 0
Timer_B3.TB1 1 1
(1)
P4.2
(I/O) I: 0; O: 1 0
Timer_B3.TB2 1 1
CONTROL BITS/SIGNALS
P4DIR.x P4SEL.x
OAPMx
OAADCx
To OA0/1 Feedback Network
1
OAADCx = 01 and OAPMx > 00
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL.x
1
0
P4DIR.x
P4IN.x
D
EN
Module X IN
1
0
Module X OUT
P4OUT.x
P4.3/TB0/A12/OA0O P4.4/TB1/A13/OA1O
1
0
DVSS
DVCC
P4REN.x
ADC10AE1.y
Pad Logic
INCHx = 8+y
To ADC 10
1
OA0/1
+
1
P4DIR.6
P4SEL.6
ADC10AE1.7
P4.6/TBOUTH/A15/OA1I3
Timer_B OutputTristate Logic
MSP430F22x2 MSP430F22x4
www.ti.com
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P4 Pin Schematic: P4.3 to P4.4, Input/Output With Schmitt Trigger
If OAADCx = 11 and not OAFCx = 000, the ADC input A12 or A13 is internally connected to the OA0 or OA1 output,
respectively, and the connections from the ADC and the operational amplifiers to the pad are disabled.
Copyright © 2006–2012, Texas Instruments Incorporated 73
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
Table 35. Port P4 (P4.3 to P4.4) Pin Functions
PIN NAME (P4.x) x y FUNCTION
(2)
P4.3
(I/O) I: 0; O: 1 0 0
P4.3/TB0/A12/OA0O 3 4
P4.4/TB1/A13/OA1O 4 5
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
Timer_B3.CCI0B 0 1 0
Timer_B3.TB0 1 1 0
A12/OA0O
P4.4
Timer_B3.CCI1B 0 1 0
Timer_B3.TB1 1 1 0
A13/OA1O
(3)
(2)
(I/O) I: 0; O: 1 0 0
(3)
CONTROL BITS/SIGNALS
P4DIR.x P4SEL.x ADC10AE1.y
X X 1
X X 1
(1)
74 Copyright © 2006–2012, Texas Instruments Incorporated
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL.5
1
0
P4DIR.5
P4IN.5
D
EN
Module X IN
1
0
Module X OUT
P4OUT.5
P4.5/TB3/A14/OA0I3
1
0
DVSS
DVCC
P4REN.5
ADC10AE1.6
Pad Logic
INCHx = 14
To ADC 10
1
P4DIR.6
P4SEL.6
ADC10AE1.7
P4.6/TBOUTH/A15/OA1I3
Timer_B OutputTristate Logic
OA0
+
MSP430F22x2 MSP430F22x4
www.ti.com
Port P4 Pin Schematic: P4.5, Input/Output With Schmitt Trigger
SLAS504G –JULY 2006–REVISED AUGUST 2012
PIN NAME (P4.x) x y FUNCTION
P4.5/TB3/A14/OA0I3 5 6 Timer_B3.TB2 1 1 0
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
Table 36. Port P4 (P4.5) Pin Functions
(2)
P4.5
(I/O) I: 0; O: 1 0 0
A14/OA0I3
(3)
CONTROL BITS/SIGNALS
P4DIR.x P4SEL.x ADC10AE1.y
X X 1
(1)
Copyright © 2006–2012, Texas Instruments Incorporated 75
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL.6
1
0
P4DIR.6
P4IN.6
D
EN
Module X IN
1
0
Module X OUT
P4OUT.6
1
0DVSS
DVCC
P4REN.6
ADC10AE1.7
Pad Logic
INCHx = 15
To ADC 10
1
OA1
+
P4.6/TBOUTH/ A15/OA1I3
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
Port P4 Pin Schematic: P4.6, Input/Output With Schmitt Trigger
www.ti.com
Table 37. Port P4 (P4.6) Pin Functions
PIN NAME (P4.x) x y FUNCTION
P4.6/TBOUTH/A15/OA1I3 6 7
(1) X = Don't care (2) Default after reset (PUC/POR) (3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
(2)
P4.6
(I/O) I: 0; O: 1 0 0 TBOUTH 0 1 0 DV
SS
A15/OA1I3
(3)
CONTROL BITS/SIGNALS
P4DIR.x P4SEL.x ADC10AE1.y
1 1 0 X X 1
(1)
76 Copyright © 2006–2012, Texas Instruments Incorporated
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL.x
1
0
P4DIR.x
P4IN.x
D
EN
Module X IN
1
0
Module X OUT
P4OUT.x
P4.7/TBCLK
1
0
DVSS
DVCC
P4REN.x
Pad Logic
1
DVSS
MSP430F22x2 MSP430F22x4
www.ti.com
Port P4 Pin Schematic: P4.7, Input/Output With Schmitt Trigger
SLAS504G –JULY 2006–REVISED AUGUST 2012
Table 38. Port P4 (Pr.7) Pin Functions
PIN NAME (P4.x) x FUNCTION
(1)
P4.7
(I/O) I: 0; O: 1 0
P4.7/TBCLK 7 Timer_B3.TBCLK 0 1
DV
SS
(1) Default after reset (PUC/POR)
CONTROL BITS/SIGNALS
P4DIR.x P4SEL.x
1 1
Copyright © 2006–2012, Texas Instruments Incorporated 77
Time TMS Goes Low After POR
TMS
I
TF
I
TEST
MSP430F22x2 MSP430F22x4
SLAS504G –JULY 2006–REVISED AUGUST 2012
www.ti.com
JTAG Fuse Check Mode
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF, of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.
The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see
Figure 28). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition).
Figure 28. Fuse Check Mode Current
NOTE
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader access key is used. Also, see the Bootstrap Loader section for more information.
78 Copyright © 2006–2012, Texas Instruments Incorporated
MSP430F22x2 MSP430F22x4
www.ti.com
REVISION HISTORY
Literature Summary
Number
SLAS504 Preliminary data sheet release
SLAS504A
SLAS504B
SLAS504C
SLAS504D
SLAS504E Added information for YFF package SLAS504F
SLAS504G
Production data sheet release Updated specification and added characterization graphs Updated/corrected port pin schematics
Maximum low-power mode supply current limits decreased Added note concerning f
Added Development Tool Support section (page 2) Changed T
Corrected pin names in "Port P3 pin schematic: P3.0" and "Port P3 (P3.0) pin functions" (page 68) Corrected pin names in "Port P3 pin schematic: P3.1 to P3.5" and "Port P3 (P3.1 to P3.5) pin functions" (page 69) Corrected signal names in "Port P2 pin schematic: P2.5, input/output" (page 65) (D1) Corrected values in "x" column in "Port P3 (P3.1 to P3.5) pin functions" (page 69) (D2)
Correct signal names for P3.6 and P3.7 in MSP430F22x2 pinouts – DA package, RHA package Changed Storage temperature range limit in Absolute Maximum Ratings Corrected Test Conditions in Crystal Oscillator LFXT1, High-Frequency Mode Corrected signal names in Port P1 (P1.0 to P1.3) Pin Functions Corrected typo in note 1 on Crystal Oscillator LFXT1, High-Frequency Mode table
Terminal Functions tables, Corrected description of V Added note on TC
for programmed devices from "-40°C to 105°C" to "-55°C to 105°C" (page 23)
stg
REF+
to USCI SPI parameters
UCxCLK
REF-/VeREF-
in 10-Bit ADC, Built-In Voltage Reference.
SLAS504G –JULY 2006–REVISED AUGUST 2012
pins.
Copyright © 2006–2012, Texas Instruments Incorporated 79
PACKAGE OPTION ADDENDUM
www.ti.com
9-Sep-2014
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430F2232IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2232
MSP430F2232IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2232
MSP430F2232IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2232
MSP430F2232IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2232
MSP430F2232IYFFR ACTIVE DSBGA YFF 49 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2232
MSP430F2232IYFFT ACTIVE DSBGA YFF 49 250 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2232
MSP430F2232TDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2232T
MSP430F2232TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2232T
MSP430F2232TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2232T
MSP430F2232TRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2232T
MSP430F2234IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2234
MSP430F2234IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2234
MSP430F2234IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2234
MSP430F2234IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2234
MSP430F2234IYFFR ACTIVE DSBGA YFF 49 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2234
MSP430F2234IYFFT ACTIVE DSBGA YFF 49 250 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2234
MSP430F2234TDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2234T
PACKAGE OPTION ADDENDUM
www.ti.com
9-Sep-2014
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430F2234TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2234T
MSP430F2234TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2234T
MSP430F2234TRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2234T
MSP430F2252IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2252
MSP430F2252IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2252
MSP430F2252IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2252
MSP430F2252IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2252
MSP430F2252IYFFR ACTIVE DSBGA YFF 49 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2252
MSP430F2252IYFFT ACTIVE DSBGA YFF 49 250 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2252
MSP430F2252TDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2252T
MSP430F2252TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2252T
MSP430F2252TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2252T
MSP430F2252TRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2252T
MSP430F2254IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2254
MSP430F2254IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2254
MSP430F2254IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2254
MSP430F2254IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2254
MSP430F2254IYFFR ACTIVE DSBGA YFF 49 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2254
PACKAGE OPTION ADDENDUM
www.ti.com
9-Sep-2014
Addendum-Page 3
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430F2254IYFFT ACTIVE DSBGA YFF 49 250 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2254
MSP430F2254TDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2254T
MSP430F2254TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2254T
MSP430F2254TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2254T
MSP430F2254TRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2254T
MSP430F2272IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2272
MSP430F2272IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2272
MSP430F2272IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2272
MSP430F2272IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2272
MSP430F2272IYFFR ACTIVE DSBGA YFF 49 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2272
MSP430F2272IYFFT ACTIVE DSBGA YFF 49 250 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2272
MSP430F2272TDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2272T
MSP430F2272TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2272T
MSP430F2272TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2272T
MSP430F2272TRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2272T
MSP430F2274IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2274
MSP430F2274IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430F2274
MSP430F2274IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2274
PACKAGE OPTION ADDENDUM
www.ti.com
9-Sep-2014
Addendum-Page 4
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430F2274IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F2274
MSP430F2274IYFFR ACTIVE DSBGA YFF 49 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2274
MSP430F2274IYFFT ACTIVE DSBGA YFF 49 250 Green (RoHS
& no Sb/Br)
SNAGCU Level-1-260C-UNLIM M430F2274
MSP430F2274TDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2274T
MSP430F2274TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 105 M430F2274T
MSP430F2274TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2274T
MSP430F2274TRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 105 M430
F2274T
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
PACKAGE OPTION ADDENDUM
www.ti.com
9-Sep-2014
Addendum-Page 5
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF MSP430F2252, MSP430F2272, MSP430F2274 :
Automotive: MSP430F2252-Q1, MSP430F2272-Q1
Enhanced Product: MSP430F2274-EP
NOTE: Qualified Version Definitions:
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Enhanced Product - Supports Defense, Aerospace and Medical Applications
PACKAGE MATERIALS INFORMATION
www.ti.com 18-Aug-2014
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
MSP430F2232IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F2232IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2232IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2232TRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2232TRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2234IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F2234IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2234IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2234TRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2252IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F2252IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2252IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2252TRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2252TRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2254IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F2254IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2254IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2254TRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
Type
Package Drawing
Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm)B0(mm)K0(mm)P1(mm)W(mm)
Pin1
Quadrant
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com 18-Aug-2014
Device Package
MSP430F2254TRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2272IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F2272IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2272IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2272TRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2272TRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2274IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F2274IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2274IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
MSP430F2274TRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430F2274TRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2
Type
Package Drawing
Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm)B0(mm)K0(mm)P1(mm)W(mm)
Pin1
Quadrant
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
MSP430F2232IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F2232IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2232IRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2232TRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2232TRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2234IDAR TSSOP DA 38 2000 367.0 367.0 45.0
Pack Materials-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com 18-Aug-2014
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
MSP430F2234IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2234IRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2234TRHAR VQFN RHA 40 2500 367.0 367.0 38.0
MSP430F2252IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F2252IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2252IRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2252TRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2252TRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2254IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F2254IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2254IRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2254TRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2254TRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2272IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F2272IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2272IRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2272TRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2272TRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2274IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F2274IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2274IRHAT VQFN RHA 40 250 210.0 185.0 35.0
MSP430F2274TRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430F2274TRHAT VQFN RHA 40 250 210.0 185.0 35.0
Pack Materials-Page 3
D: Max =
3.518 mm, Min =
3.458 mm
E: Max =
3.36 mm, Min =
3.3 mm
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
Loading...